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for anisotropic diffusion problems on any grid

J. Droniou* R. Eymardf
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Abstract

We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on
unstructured irregular grids, which simultaneously gives an approximation of the solution and
of its gradient. In the case of simplicial meshes, the approximate solution is shown to converge
to the continuous ones as the size of the mesh tends to 0, and an error estimate is given. In the
general case, we propose a slightly modified scheme for which we again prove the convergence,
and give an error estimate. An easy implementation method is then proposed, and the efficiency
of the scheme is shown on various types of grids.

Keywords. Finite volume scheme, unstructured grids, irregular grids, anisotropic diffusion
problems.

1 Introduction

The computation of an approximate solution for equations involving a second order elliptic
operator is needed in so many physical and engineering areas, where the efficiency of some
discretization methods, such as finite difference, finite element or finite volume methods, has
been proven. The use of finite volume methods is particularly popular in the oil engineering
field, since it allows for coupled physical phenomena in the same grids, for which the conservation
of various extensive quantities appears to be a main feature. However, it is more challenging
to define convergent finite volume schemes for second-order elliptic operators on discretization
grids designed for another problem, for which these grids may have been refined or distorted.

For example, in the framework of geological basin simulation, the grids are initially fitted on the
geological layers boundaries, which is a first reason for the loss of orthogonality. Then, these
grids are modified during the simulation, following the compaction of these layers (see [13]), thus
leading to irregular grids, as those proposed by [14]. As a consequence, it is no longer possible
to compute the fluxes resulting from a finite volume scheme for a second order operator, by a
simple two-point difference across each interface between two neighboring control volumes. Such
a two-point scheme is consistent only in the case of an isotropic operator, using a grid such that
the lines connecting the centers of the control volumes are orthogonal to the edges of the mesh.
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The problem of finding a consistent expression using only a small number of points, for the
finite volume fluxes in the general case of any grid and any anisotropic second order operator,
has led to many works (see [1], [2], [3], [13] and references therein; see also [15]). A recent
finite volume scheme has been proposed [10, 11|, permitting to obtain a convergence property
in the case of an anisotropic heterogeneous diffusion problem on unstructured grids, which all
the same satisfy the above orthogonality condition. In the case where such an orthogonality
condition is not satisfied, a classical method is the mixed finite element method which also gives
an approximation of the fluxes and of the gradient of the unknown (see [4], [5], [6], [18] for
example, among a very large literature). Unfortunately, the Raviart-Thomas basis is not easily
available on control volumes which are not simplices or regular polyhedra (although such a basis
can be built on general irregular grids, see [8] and [12], but no easy approximation of these basis
functions are known).

We thus propose in this paper an original finite volume method, which can be applicable on any
type of grids in any space dimension, with very few restrictions on the shape of the control vol-
umes. The implementation of this scheme is proven to be easy, and no geometric complex shape
functions have to be computed. In order to show the mathematical and numerical properties of
this scheme, we study here the following problem: find an approximation of @, weak solution to
the following problem:

—div(AVa) = f in Q, (1)

% = 0 on 0,

under the following assumptions:
Q) is an open bounded connected polygonal subset of R%, d > 1, (2)

A Q — My(R) is a bounded measurable function such that
there exists g > 0 satisfying A(x)€ - € > aglé|? for a.e. z € Q and all £ € R?,

3)

and

f e 1X(Q). (4)
Thanks to Lax-Milgram theorem, there exists a unique weak solution to (1) in the sense that
@ € H}(2) and the equation is satisfied in the sense of distributions on (2.

The principle of our scheme, described in Section 2, is the following. We simultaneously look
for approximations ug, Vi in each control volume K of 4 and Vu, and find an approximation
F, at each edge o of the mesh of [ A(x)Viu(z) - ny dy(z), where n, is a unit vector normal
to 0. The values F, must then satisfy the conservation equation in each control volume, and
consistency relations are imposed on ug, vk and F,. We thus show that these conditions lead
to a linear system which, in the general case, has one and only one approximate solution u and
v, and, for some particular meshes (“simplicial” meshes), also only one F. We then prove, in
this particular case, the convergence of the scheme and an error estimate. We then develop in
Section 3 a penalized version of the scheme which can apply on every type of mesh (that was
the aim of this work), and which leads to existence and uniqueness properties for (u, v, F'). We
provide the mathematical analysis of the convergence of this penalized scheme and give an error
estimate. In Section 4, we propose an easy implementation procedure for the penalized scheme,
and we use it for the study of some numerical examples. We thus obtain acceptable results on
some grids for which it would be complex to use other methods, or to which empirical methods
apply but no mathematical results of convergence nor stability have yet been obtained.



2 A first finite volume scheme

2.1 Admissible discretization of 2

We first present the notion of admissible discretization of the domain 2, which is necessary to
give the expression of the finite volume scheme.

Definition 2.1 [Admissible discretization] Let Q be an open bounded polygonal subset of R?
(d>1), and 90 = Q\ Q its boundary. An admissible finite volume discretization of Q is given
by D= (M,E,P), where:

o M is a finite family of non empty open polygonal convex disjoint subsets of Q0 (the “control
volumes”) such that @ = Uxepm K.

e & is a finite family of disjoint subsets of 0 (the “edges” of the mesh), such that, for all
o € &, there exists an affine hyperplane E of R and K € M with o C 0K NE and o is a
non empty open convexr subset of E. We assume that, for all K € M, there exists a subset
Ex of € such that OK = Ugeg, 0. We also assume that, for all o € &, either o C 02 or
o= KNL for some (K,L) € M2

e P is a family of points of Q indexed by M, denoted by P = (Xx)xem and such that, for
al KeM, xg € K.

Some examples of admissible meshes in the sense of the above definition are shown in Figures 1
and 2.

Remark 2.1 Though the elements of Ex may not be the real edges of a control volume K (each
o € Ex may be only a part of a full edge, see figure 2), we will in the following call “edges of K”
the elements of Ex .

Notice that we could also cut each intersection K N L into more than one edge. This would not
change our theoretical results but this would lead, for practical implementation, to artificially
enlarge the size of the linear systems to solve, which would decrease the efficiency of the scheme.

Remark 2.2 The whole mathematical study done in this paper applies whatever the choice of
the point xXx in each K € M. In particular, we do not impose any orthogonality condition
connecting the edges and the points xx. However, the magnitude of the numerical error (and,
for some reqular or structured types of mesh, its order) does depend on this choice.

We could also extend our definition to non-planar edges, under some curvature condition. In this
case, it remains possible to use the schemes studied in this paper and to prove their convergence.

The following notations are used. The measure of a control volume K is denoted by m(K);
the (d — 1)-dimensional measure of an edge o is m(o). In the case where o € &£ is such that
=KnLfor (K,L) € M?, we denote ¢ = K|L. For all o € £, %, is the barycenter of o.

The set of interior (resp. boundary) edges is denoted by &g (resp. Eext), that is &y = {0 € &;
o ¢ O} (resp. Eext = {0 € E; 0 C IN}). For all K € M, we denote by Nk the subset of M of
the neighboring control volumes (that is, the L such that K N L is an edge of the discretization),
and we denote by Ex ext = Ex N Eext-



To study the convergence of the schemes, we need the following two quantities: the size of the
discretization
size(D) = sup{diam(K); K € M}
and the regularity of the discretization
diam(K)

regul(D) = sup {max (Td Card(EK)> LK e M} (5)

where, for K € M, pg is the supremum of the radius of the balls contained in K. Notice that,

for all K € M,

regul(D)

diam(K)? < regul(D)p% < m(K) (6)

where wy is the volume of the unit ball in R%. Note also that regul(D) does not increase in a
local refinement procedure.

2.2 The discretization space

Let us assume Assumption (2). Let D be an admissible discretization in the sense of Definition
2.1. We denote by Hp the set of functions {2 — R which are piecewise constant on each control
volume K € M. We define the set Lg of all v € H% such that there exists u € Hp with

Vi - (Xe —Xg)+ve - (XL —Xo) =up —ug, VK e M, VL e Nk, with 0 = K|L, 7
VK - (X —XK) = —ug, VK €M, Vo € Ek ext-

In the following, we will need some properties on Lg. The next one, that we call here “Poincaré’s
inequality”, could also be called an “inf-sup” condition connecting the values of u to that of v,
following an analogy of our scheme to a mixed finite element method [16].

Lemma 2.1 [Poincaré’s inequality] Let us assume Assumption (2). Let D be an admissible
discretization of 0 in the sense of Definition 2.1, such that regul(D) < 0 for some 6 > 0. Then
there exists C1 only depending on d, 2 and 6 such that, for all v € lej and w € Hp satisfying
(7),

ull2) < Crllvilz2)e- (8)
As an immediate consequence, for all v € le) there exists one and only one u € Hp such that
(7) holds; we then define 1 : LY, — Hp by ¢(v) = u.
ProOOF.
Let R > 0 and zp € Q be such that Q C B(zg, R) (the open ball of center zy and radius R). We
extend u by the value 0 in B(zo, R)\ Q, and we consider w € HE(B(xo, R)) N H?(B(z9, R)) such
that —Aw(z) = u(x), for a.e. © € B(xg, R). Denoting nk , the unit normal to o outward to K,
we multiply each equation of (7) by [ Vw(zx)-ng s dy(z), and we sum on o € €. Gathering by
control volumes, we find

Z VK - Z (XU—XK)/vw(x)'nK,ad’Y(ﬂf) = - Z UK Z Vw(x) - ng o dvy(z)

KeM 0EEK KeM el V7

. uK/KAw(x)dm

KeM

= > m(K)uj = |ullf2q)
KeM



We now compare the left-hand side of this equation, hereafter denoted T3, with Ty = fQ v(z
Vw(z)dz (note that [To| < [|v[|2qyellwllfgi(n)). We apply Lemma 5.1 to the vector Gx =

—m(lK) Sz Vw(z) dz in order to obtain

/K Vw(z)der =m(K)Gg = Z m(0)Gg - ng o (Xe — XK),

ocefk

and therefore

Z VK - Z GK IIKU( —XK).

KeM o€k

Hence, setting G, = f Vw(x)dy(x), we get

m(a

T = Tol < ) vl Y m(0) [Gx — G| diam(K).
KeM c€fK

Thanks to the Cauchy-Schwarz inequality, we find

(M -T)* < [ Y Ivel* ) m(o) diam(K) > ) m(o) diam(K)|Gg — Gg,of”

KeM o€k KeMoelk

We now apply Lemma 5.3, which gives C'5 only depending on d and 6 such that

diam(K)
2 2
(GK - GK,J) < 02—(0) ||w||H2(K) (9)

(notice that a := %9_1/d < regul(D)~V4 < pg/diam(K) is valid in Lemma 5.3). We also
have, for o € Ex, m(0) < wg_1diam(K)?~!, where wy_1 is the volume of the unit ball in R4~!,
Therefore, according to (6) and since regul(D) > card(Ek) for all K € M,

(T —T2)* < | ) vkl ) m(o) diam(K) > > Codiam(K)?|[w]| 2
KeM A% KeMoelk
< (w iregul(D) Y [vic[2diam(K) ) (cgsize(p)%egul(p)||w|y§,2(m)

KeM

wq_1regul(D)? .
w—d [[v] |%2(Q)dc2d1am(9)2feglﬂ(p) [[w H%{?(Q)'

We can now conclude, writing

ul 22y = Tt < T3 —Ts| + ||

wg—1C20% .
< \/w:ddlam(Q)HV||L2(Q)HwHH2(Q) + HVHLQ(Q)deHHl(Q)

Since there exists C'3 only depending on d and B(zg, R) (the ball chosen at the beginning of the
proof) such that [|wl||g2(q) < Csl[ul|12(q), this concludes the proof. [



Lemma 2.2 [Equicontinuity of the translations| Let us assume Assumption (2). Let D be
an admissible discretization of Q in the sense of Definition 2.1, such that regul(D) < 6 for some
0 > 0. Then there exists Cy only depending on d, Q2 and 6 such that, for all v € LIV) andu € Hp
satisfying (7) (which means that u = (v), see Lemma 2.1), for all ¢ € RY,

Ju(- + &) = ullprray < Cullvlpio)alé] (10)
(u has been extended by 0 outside ).

PROOF.

Let v € LY, and u € Hp (extended by 0 outside ) such that (7) holds. For all o € &, let us
define Dyu = |ur, — ug| if 0 = K|L and Dyu = |ug]| if 0 € Exext. For (z,§) € R? x R% and
o € &, we define x(x,&,0) by 1if o N [z,z + & # 0 and by 0 otherwise. We then have, for all
¢ € R% and a.e. x € R? (the 2’s such that = and = + ¢ do not belong to Uxe 0K, and [z, z + €]
does not intersect the relative boundary of any edge),

el

Applying (7), we get

Do X&) (Vi xe = xxcl + [vellxs —x])
fu(z +€) —ufa)] < | 7S

+ Z X([IJ,{,O’)‘V[{HXO——XI(‘

Uegext 7U€€K

and, gathering by control volumes,

u(z+ &) —u(@)| < > > x(@,¢ 0)diam(K)|vgl. (11)

KeMoelk

In order that x(z,€,0) # 0, x must lie in the set ¢ — [0, 1]¢ which has measure m(o)n, - ¢|
(where n, is a unit normal to o). Hence,

Z / (x,&,0)dx < Z o)|n, - €| < Card(Ex )wq_1diam(K)*1¢|.

g€EK o€k

Thus, integrating (11) on RY, we find

u(- + &) — ull 1) < wi—1regul(D)[¢] Z diam (K)%|vg|
KeM

and we conclude by (6). O

Remark 2.3 We could prove the property |u(-+&) — u||L2 @ < C’HVHiQ(Q)d €] (|&]+size(D)), in
a similar way as in [9], by introducing the mazimum value of diam(K)/pr, for all (K,L) € M?,
in the definition of regul(D). This would allow, in Theorem 2.1, to prove the strong convergence
of um in L?(2). Nevertheless, we chose not to do so since the quantity diam(K)/pr cannot
remain bounded in a local mesh refinement procedure.

Note that we shall all the same prove, in a particular case, a strong convergence property in
L3(Y) for u, as a consequence of the error estimate.



Lemma 2.3 [Compactness property| Let us assume Assumption (2). Let (Dy,)m>1 be ad-
missible discretizations of Q in the sense of Definition 2.1, such that size(D,,) — 0 as m — oo
and (regul(Dp,))m>1 is bounded. Let (Vin)m>1 such that, for allm > 1, vp, € LY, —and such
that (Vin)m>1 is bounded in L?(2)%.

Then there exists a subsequence of (Dy)m>1 (still denoted by (Dp)m>1) and 4 € HL(Q) such
that the corresponding sequence (V(Vp))m>1 converges to 4 weakly in L*(Q) and strongly in
L) for all ¢ < 2, and such that (Vi,)m>1 converges to Vi weakly in L?()%.

PROOF.

Since (Vi )m>1 is bounded in L2(2)?%, we get the existence of a subsequence of (Dy,)m>1, again
denoted by (Dy)m>1, and v € L2(Q)? such that (vy,)m>1 weakly converges to v in L2(92)%.
Thanks to Lemmas 2.1 and 2.2, we can apply Kolmogorov’s theorem on the family (¢(vy,))m>1:
there exists & € L?(f2) and a subsequence of (D,,)m>1, again denoted by (Dy,)m>1, such that
(¥ (Vin))m>1 converges to @ weakly in L?(2) and strongly in L*(Q) (this implies in particular
the strong convergence in L4(2) for all g < 2).

We extend 9(vy,), @, vy, and v by 0 outside © and we now prove that v = Vu in the distri-
butional sense on R?. This will conclude that @ € H'(RY) and, since & = 0 outside (2, that

u € HHQ).
Let e € R and ¢ € C®(RY). For simplicity, we drop the index m for Dy, vy, and u = ¥(vy,).
We multiply each equation of (7) by [ ¢(x)dvy(z)e - ng,. We sum all these equations and we

gather by control volumes, getting T3 = T 4 w1th

T3 = Z Vi Z/ z) e ngq(Xe — XK)

KeM c€fK

S we Y / Je ngo = — /Q w(@)div(p(z)e) d.

KeM o€k

and

We have
lim Ty = — /Q (@) div(p(z)e) do = — /R a(a)div(p(xe) d

size(D)—0

(recall that @ has been extended by 0 outside ). We now want to compare T3 with 75 defined

by
Z VK - Z / z)der m(o) e ng o (Xe — X ).

KeM oc€EK
Since there exists C5 only depending on ¢ such that

1 1
o - oD
m(o) /J p(x) dy(z) (K /K p(z) dz| < Cssize(D),
we get that
|T5 — T5| < Chysize(D Z V| Z B ——

KeM c€EK

But m(o)|x, — Xx| < wg_1diam(K)? < %ﬁul(p)m(fﬂ and, since card(Ex) < regul(D), we
obtain

( )wd_liegul(l))2

|T3 - T5| < C5size D ”V”Li(Q)
Wd



and thus

. lim (Tg - T5) =0.
s1ze(D)—0

Moreover, thanks to Lemma 5.1, we get T5 = [, ¢(z)v(x) - edz and so limgjzep)—o T5 =
Joe@)V(z)-edr = [pap(x)V(z) - edx (V has been extended by 0 outside £2). This proves that

/Rdcp(m)\‘f(:c) cedr = — /Rd a(z)div(p(z)e) dz,

which completes the proof of the lemma. [

2.3 The scheme

Let D be an admissible discretization of € in the sense of Definition 2.1. We consider here
the following scheme: finding (v,u) € H% x Hp satisfying (7) and a family of real numbers
F = (Fro)Kkem, ocey such that

FK,U+FL,U:O7 VO’ZK’LE(‘:int, (12)
miAgvi = Y Fio(xe —xg), VK € M (13)
oceli
(where A = % Sz A(z) dz) and
-3 Fio :/ f@)dz, VK € M. (14)
o€€K K

This scheme can be understood the following way: thanks to Lemma 5.1, we expect from (13)
that Fx, ~ m(0)(AxVvk) - ng, (i.e. that Fi, is the flux of Av through o). This explains
the conservativity imposed in (12). In this setting, (14) is simply the integration on the control
volumes of —div(Av) = f (an equation which is to be expected if we think of v as some
approximation of the gradient of the solution to (1)). The equation (7) gives then a discrete u
whose discrete gradient is v, and thus w itself stands for an approximation of the solution to (1).

We present in the sequel three types of mathematical analysis. The first one is devoted to the
proof of the convergence of this scheme on particular meshes, and to an error estimate. The
second one is the proof that, for general meshes, one can ensure the existence and the uniqueness
of u,v and the existence but not the uniqueness of F. For this reason, we develop in a next
part the study of a slightly modified version of the scheme, which applies on general meshes and
whose additional advantage is to allow an easy implementation.

2.4 Simplicial meshes: convergence of the scheme

A control volume K is a simplex (or is simplicial) if it is the interior of the convex hull of
d + 1 points of R? such that no affine hyperplane of R¢ contains all of them, and if the con-
dition Card(€x) = d + 1 holds. We then call “simplicial meshes” the meshes whose all control
volumes are simplicial. We prove here that, for simplicial meshes, there is a unique solution to
((7),(12),(13),(14)) and that this solution converges, as size(D) — 0 and regul(D) stays bounded,
to the weak solution to (1).

Let us first state an estimate on the fluxes, which holds under conditions (13)-(14).



Lemma 2.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Q in
the sense of definition 2.1, such that regul(D) < @ for some 0 > 0 and M is a simplicial mesh.
Let v € HY and a family of real numbers F = (Fk.o)kem ., ocex be given such that (13) and
(14) hold. Then there exists Cg only depending on d, Q, A and 6 such that

Z Z diam(K)*~"F , < C6(Hf”%2(g) + ”VHiQ(Q)d)' (15)
KeMoelk

PROOF. For K € M, let Ax be the (d+1) x (d+1) matrix whose columns are (1, XU—XK)JTegK

(since K is simplicial, it has d + 1 edges and A is indeed a square matrix). The equations
(13)-(14) can be written Ax Fx = E, where Fgx = (Fi ¢ )oce, and

EK:(_fo@)dx).

m(K)Agvg

We now want to estimate ||Ax'|| and, in order to achieve this, we divide the rest of the proof in
several steps.

Step 1: this step is devoted to allow the assumption diam(K) = 1 in Steps 2 and 3.

Let Ko = diam(K)'K. Then xf o = diam(K) 'xx € Kj and the barycenters of the edges of
Ky are x40 = diam(K )~x,. Notice also that, if pK0 is the supremum of the radius of the balls
included in K, then

1 diam(Kp) diam(K)

< regul(D)Y/4 < g1/4, (16)
PK,0 PK.,0 PK

Let Ak o be the (d+ 1) x (d+ 1) matrix corresponding to Ky, that is to say whose columns are
(1, x50 — XK»O)?;EEK = (1,diam(K) (%, — XK))ZGEK' Since

1 0 0
Ay = O diam(K) . : Axo,
: 0
0 0 diam(K)

we have ||Ax'|| < sup(1,diam(K)~1)||A%||. Hence, an estimate on ||Ay'|| gives an estimate
—1
on || A% |-

Step 2: estimate on Ag .

By (16), Ky contains a closed ball of radius %9*1/ 4. Up to a translation (which does not change
the vectors x,,0—X k0, and hence does not change A o), we can assume that this ball is centered
at 0. Since diam(Kj) = 1, we have then B(0, 201/4) c K, C B(0,1).

Let Zp be the set of couples (L,x;), where L is a simplex such that B(0, %9_1/‘1) Cc L c B(0,1)
and xz; € L. Bach simplex is defined by d + 1 vertices in R? so Zy can be considered as a
subset of P = (R))4*1/S;, 1 x RY, where Sz, is the symmetric group acting on (R%)4*! by
permuting the vectors. As such, Zy is compact in P: it is straightforward if we express the
condition “the adherence of a simplex contains B(0, %9*1/‘1)” as “any point of B(0, %Gfl/d) is a
convex combination of the vertices of the simplex”, which is a closed condition with respect to
the vertices of the simplex.



For (L,x1) € Zp, let M(L,x1,) be the set of (d + 1) x (d + 1) matrices whose columns are, up
to permutations, (1,x, — XL)ZGSL (€L being the set of edges of L and x, being the barycenter
of o). M(L,xz,) can be considered as an element of Mg,1(R)/S4+1 (Sg+1 acting by permuting
the columns) and the application (L,x1) € Zyg — M(L,x1) € Mgy1(R)/S441 is continuous: to
see this, just recall that the barycenter of an edge o € &, is x, = ézz':l X;, where x; are the
vertices of o (i.e. all vertices but one of L).

If (L,x1,) € Zy, all the matrices of M(L,xy,) are invertible. Indeed, assume that such a matrix
has a non-trivial element (A1,...,Ag+1) in its kernel; this leads (denoting (o1,...,0441) the
edges of L) to Zfill Ai = 0 and Zfill Ai(Xg; — X1) = Zfill AiXg, = 0. Assuming A\g11 # 0, we
then can write x5, , = Zf-l:l HiXy, With Zle i = 1 (since p; = —Xj/Ag+1). This means that
Xgq,, 18 in the affine hyperplane H generated by the other barycenters of edges. Note that H is
parallel to o441 (this is a straightforward consequence of Thales’ theorem at the vertex which
does not belong to o441, and of the fact that the barycenters (x,,,...,Xy,) of the edges are in
fact the barycenters of the vertices of the corresponding edge). Therefore H contains the whole
edge 0441, because it contains x,,., € 0441. Let a be the vertex of L which does not belong to
o4+1; a belongs to o1 and we denote (by,...,bg_1) the other vertices of o1 (which also belong
to 0441). We have x,, = 3(a+ fo;ll b;), and therefore a = dx,, — Z?;ll b;; but d—zgz_ll 1=1
and thus a belongs to the affine hyperplane generated by (x4,,b1,...,bg—1). Since all these
points belong to H, we have a € H and, since o441 C H, all the vertices of L in fact belong to
‘H; L is thus contained in an hyperplane, which is a contradiction with the fact that it contains
a non-trivial ball. Thus, for (L,x) € Zy, M(L,xr) is in fact an element of Glg41(R)/Sg+1-
The inversion inv : Glg41(R) — Glg41(R) is continuous; hence, ||inv()|| : Glg+1(R) — R is also
continuous. Permuting the columns of a matrix comes down to permuting the lines of its inverse,
which does not change the norm; therefore ||inv(-)|| : Glgr1(R)/S4+1 — R is well defined and
also continuous.

We can now conclude this step. The application Zg — Glg4+1(R)/Sg+1 — R defined by (L,x1) —
M(L,x1) — ||inv(M(L,xpr))|| is continuous. Since Zp is compact, this application is bounded
by some C7 only depending on d and 6. As (Ko, xk,0) € Zp, this shows that ||A;§OH < Cr.

Step 3: conclusion.
Using the preceding steps, we find || F|| < ||A*||||Ex|| < C7sup(1,diam(K)~1)||Ef||. Hence,
> diam(K)* || F|* < CF sup(diam (), 1) Y diam(K) ™| Ex|[*.
KeM KeM
But ||Ex||? < m(K) [, |f(2)]*dz + Csm(K)?v% with Cs only depending on A. Since m(K) <
wgdiam(K)?, this concludes the proof of (15). O
We can now state the existence and estimate on the solution of the scheme.
Lemma 2.5 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of §2
in the sense of definition 2.1, such that M is a simplicial mesh. Then there exists a unique

(v,u, F') such that ((7),(12),(13),(14)) hold. Moreover, for all 8 > regul(D), there exists Cy
only depending on d, 0, A and 0 such that

1vI72(0)e < CollfllZ2(q) (17)

and

S S diem(KPFE, < Collf|Baey. (18)
KeMoelk
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PROOF.

We first notice that, since ((7),(12),(13),(14)) is square linear in (v,u, F'), it suffices to prove
that any solution satisfies the estimate in order to obtain the existence and uniqueness of the
solution (because f = 0 then implies F' = 0 and v = 0 which, in turn, gives u = 0 thanks to

(8))-
Multiplying (14) by ug, summing on the control volumes and gathering by edges, we have,
thanks to (12),

Z Fr o(ur —ug) + Z —Froug = /Qu(w)f(x) dz.

O’Egint,U:K|L 0€Eext, 0EEK

Using (7) and gathering by control volumes, this gives

/ u(x)f(x) dx = Z FKJVK . (Xg — XK) + FL,UVL . (Xo— — XL)
@ Uegint,U:KlL
+ Y Frovik - (X0 —Xg)
0E€Eext, 0EEK

= Z VK Z FKﬁ(XJ—XK).

KeM o€k

Thanks to (13), we then deduce

/f z)de = Z m(K)Agvk - vig = /QA(QU)V(QT)V(:U) dx. (19)

KeM

In particular, by property of A, a0\|v||%2(md < |[fllz2@)llullL2(q) and the estimate (17) follows
from (8). We then deduce (18), applying Lemma 2.4. [

We can now prove the convergence result.

Theorem 2.1 Let us assume Assumptions (2)-(4). Let (Dp,)m>1 be admissible discretization
of Q in the sense of Definition 2.1, such that size(Dy,) — 0 as m — oo, (regul(Dy,))m>1 is
bounded and My, is a simplicial mesh. Let (Vp,, Um, Fp,) be the solution to ((7),(12),(13),(14))
for the discretization Dy,. Let 4 be the weak solution to (1).

Then, as m — 00, V,, — Va strongly in L*(Q) and u, — @ weakly in L*(Q) and strongly in
L) for all g < 2.

PROOF.

The assumptions of Lemma 2.3 are satisfied and there exists thus @ € H}(£2) such that, up to a
subsequence, v,, — Va weakly in L?(Q)¢ and u,, — @ weakly in L*(Q) and strongly in L9(f)
for all ¢ < 2.

We now prove that the limit function @ is the weak solution to (1). Since any subsequence of
(Vin, U ) has a subsequence which converges as above, and since the reasoning we are going to
make proves that any such limit of a subsequence is the (unique) weak solution to (1), this will

11



conclude the proof, except for the strong convergence of v,,. In order to simplify the notations,
we drop the index m as in the proof of Lemma 2.3.

Let ¢ € C°(£2). We multiply (14) by ¢(xx) and we sum on K. Gathering by edges thanks to

(12), we get
Y. Frolelxr) - Z/ (xx) f

0€&ns,0=K|L KeM

as long as size(D) is small enough (so that ¢ = 0 on the control volumes K such that 0K NoS2 #
0). We set, for o = K|L,

1 1
¢lx1) = o) = s /K V(o) de - (x, =) + o / Ve(e) - (x, — x0) + Rict

and we have |Ri | < C(diam(K)? + diam(L)?). We thus obtain, gathering by control volumes
and using (13) (and the fact that ¢ = 0 on the control volumes on the boundary of €2),

/ Apv(z) - Vo(x)dz = / f(@)pp(z)dx + Tk, (20)
Q Q
where Ap and pp are constant respectively equal to Ax and ¢(xx) on each mesh K, and

Te| <Cpo > |Fgol(diam(K)? + diam(L Co Y ) diam(K)?|Fko|.  (21)
0€Eint,0=K|L KeMoelk

We can write, using Cauchy-Schwarz inequality,

ITs)? < C?O Z Z diam(K)Q_dF?(J Z Z diam (K)*diam (k)42
KeMoelk KeMoe€k
< Cysize(D)? > ) diam(K)*
KeMoelk
(D
< Crsize(D)2regul(D) BN ()
wq

where, according to Lemma 2.5, C'9 does not depend on the mesh since regul(D) stays bounded
(we have also used (6)). Hence, Ts — 0 as size(D) — 0 and we can pass to the limit in (20) to
conclude that @ is a weak solution to (1).

It remains to prove that the convergence of v is strong. We use (19): this equality implies,
since u — u weakly in LQ(Q) and @ is a weak solution to (1) that fQ (x) : ( )dx —
Jo f@)a(z) dz = [, A(z)Va(z) - Va(z) d as size(D) — 0. But N fQ w(z)dz
is a norm on L?(Q)?, comlng from a scalar product (defined by (A + AT) /2) and equlvalent to
the usual norm. Since v — Va weakly in L2(Q)¢ and N(v) — N(Va) as size(D) — 0, this
proves that, in fact, v — Va strongly in L2(Q)¢. O

In the case where the solution to (1) is regular, we can also derive an error estimate.

Theorem 2.2 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of §)
in the sense of Definition 2.1, such that regul(D) < 6 for some 0 > 0 and M is a simplicial

12



mesh. Let (v,u, F') be the solution to ((7),(12),(13),(14)) for the discretization D and u be the
weak solution to (1). We assume that A € C*(Q)¥*¢ and u € C*(Q).
Then there exists C11 only depending on d, 2, u, A and 0 such that

HV — V’H,HLQ(Q)d < Cnsize(D) (22)

and
||u — aHLZ(Q) < CHSiZG(D). (23)

PROOF. In this proof, we denote by C; (for all integer ¢) various real numbers which can depend
on d, Q, u, A and €, but not on size(D). We denote, for all K € M and o € &k, ux = u(xx),
Uy = u(Xs),

Fgo,= / A(z)Vau(z) - ng o dvy(z),

_ 1 1 -
Vi = MAK Z Fk o(x6 — xXK)
oefk
(notice that Ag is indeed invertible since, from (3), Ax > ap). Note that, thanks to Lemma

5.1, we have
|‘7K — Vﬂ(.%’” < Clgdiam(K), Vee K, VK € M. (24)

We thus get
VK - (XU —XK) = Uy — UK +RK,U, VK e M, Vo € &k,

with |Rk,| < Cizdiam(K)? for all K € M and o € k. Since 4 is a classical solution to (1),
we have

- Fre :/ f(z)dz, VK e M.
K

o€elfk

We denote, for all K € M and allo € £k, ux = ug —ug, Vi = Vk —Vk and ﬁK,a = FK,U_FK,U
and we get

— > Fxo=0, VKeM, (25)
oefk
mAxVi = Y Fro(xe —xg), VK €M, (26)
o€k

Vi - (X6 —XK) + VL - (X —%X5) + Rxo — R o = Ur, — Uk,
VK € M, YL € Nk, with o = K|L, 27)
GK . (Xg — XK) + RK,U = —a[{, VK e M, Yo € gK,ext-
We then multiply (25) by ug and (27) by F K,o. Using the conservativity of the fluxes F Ko and

26), we get

( g
> mgAgVk Vg =- > Y RgoFk,e.
KeM KeMoelk
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We therefore get, thanks to the Cauchy-Schwarz inequality,

aOHGH%%Q)d < Z mrAKVEK VK

KeM
1/2 1/2
< Z Z diam(K)Q_dﬁf(’U Z Z diam(K)d_2R%<’U
KeMoelk KeMoelk

We can then apply Lemma 2.4, which holds for F and v (setting f = 0) and, recalling that
|Ri | < Chzdiam(K)?, we get

v = Vllr2(@)a = [[Vl[r2(q) < Ciasize(D). (28)

The estimate (22) then follows from (24), which implies ||V — V|| 00 ()¢ < Cissize(D).
We now set vg = ( y for all K€ M. With this definition of v, (27) implies that (v, R,u) €
L, (D), as defined in Section 3. In order to apply Lemma 3.1, we need to compute

»(D, v, R)? Z Zdlam 25122R m(K).

KeMoelk

We have

Cfydiam(K)*
Ny (D, v, R)? Z Z diam (K 2d_2m(K)$;?)(2) < Cigsize(D)>. (29)
KeMoelk

Since, by Lemma 3.1,
2y < Crr (I9llza@ye + Na(D,w, R))

the estimate (23) follows from (28), (29) and an easy comparison between ux and the values of
@ on K. Note that this also proves in this case the convergence of u to @ in L?(Q) and not only
in L9(Q) for all ¢ € [1,2). O

Remark 2.4 We could derive as well, in the case d < 3, an error estimate in the case where
u € H?(), following some ideas developed in [9] for example. This remark is also valid for
Lemma 3.2.

2.5 General meshes: existence of a discrete solution

In the case of general meshes, we do not know how to prove the convergence of the discrete
solution to the weak solution of (1) (but see the penalized scheme in Section 3). However, in
the case where A is symmetric, we can prove that there exists a solution to ((7),(12),(13),(14)),
and we can give some properties on this solution.

Definition 2.2 [Problem 1] Let us assume Assumption (2)-(4) and that A(x) is symmetric
for a.e. x € Q. Let D be a discretization of () in the sense of Definition 2.1. We say that v s
the solution of Problem 1 if v € Lg and

J(V):wlean Jp(w),
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where Jp : Lg — R is defined by

! /Q Aw)w(z) - wiz) dz — /Q f(@)(w)(a) de

If v e le) s such a solution, then it satisfies:

Vw € Ly, /QA(:U)V(ac)w(x) dr = /Qf(x)w(w x)dz

Notice that, since Jp is strictly convex and coercitive (¢ is linear) on a finite dimensional vector
space (L3), the existence and uniqueness of a minimizer is obvious.

Lemma 2.6 Let us assume Assumptions (2)-(4) and that A(x) is symmetric for a.e. x € Q.
For all discretization D, let v € Lg be the solution of Problem 1. Then there exists at least one
family of real numbers (Fi o) kem,ocey Such that (12),(13),(14) hold.

PrOOF. The solution of Problem 1 is a pair (v,u) € Hd X Hp which satisfies the minimum
value of 3 [ v(z) - A(z)v(z)dz — [, f(z)u(z) dz under the constraints

VK - (X0 —XK)+ VL (Xp — X)) =up —ug, VK eM, VL e Nk,
VK - (Xo —XK) = —ug, VK M, Vo € Ex ext-

Let us choose, for all o € &, one of the two pairs (K, L) € M? such that ¢ = K|L, denoted
by (K(0),L(0)), and for all o € Eut, let us denote by K (o) the element K € M such that
0 € Ekext- Let us introduce, for all (v, u, (F,)sce) the Lagrangian

L, (Fy)oce) = /A dx—/f

(UK( ) — UL(e) T VK (o) * (X — XK (o) + Vi(o) (XL(o) — X0))
Jeglnt

= Y Folug(o) + Vi(o) - (Xo = XK (s))-

O'Ggext

We now define Fg 5, for all K € M, and all 0 € k. If 0 € &g, we set Fg , = F, if K = K(0),
else Fx o = —F5. If 0 € Eoxt, we set Fg o = F,. For all K € M, we then obtain

oL
%(Vﬂb (Fo)oce) == Y Fro— / f(x

o€k

and, defining wx € R? by wﬁ? = aaﬁ) (v,u,(Fy)geg), foralli =1,...,d,
v

K

WK:T)’LKAKVK— E FK,U(XU_XK)-
oEEK

We now remark that there exists at least one family of Lagrange multipliers (F,),ecg such
that these partial derivatives vanish (it suffices to consider an extremal family of independent
constraints, and to complete the multiplier by 0 on the remaining ones). Then (Fk ) ke M, occéx
is such that (12),(13),(14) hold, which concludes the proof of the Lemma. [J
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Remark 2.5 (Non-uniqueness of (Fk ) kem,oce,) In the general case, there is no unique-
ness property of (Fi o) kem,ocey - Indeed consider a simple cartesian mesh in 2D; on one of the
control volumes, put the flures +1 on two parallel sides and —1 on the two other sides; extend
then these fluzes to the other squares by conservativity: you get a family of flures in the kernel
of (12),(13),(14) (in fact, this gives a full description of this kernel, which is of dimension 1 in
this particular case).

Nevertheless, in the general case, u and v remain unique and satisfy the same L*(Q) estimate
and Poincaré’s inequality. However, the numerical computation of these values is quite complex,
because it demands to solve a linear system which is not invertible (though we can ensure that it
has at least one solution, by Lemma 2.6). Moreover, one of the main interests of Finite Volume
schemes is to provide meaningful discrete flures; hence, schemes for which the fluzes are not
unique (such as ((7),(12),(13),(14)) on some particular meshes, as we have seen above) are to
be avoided. This is why, on general meshes, the penalized version of the scheme given in the
next section is preferred.

3 A penalized scheme

3.1 The discretization space

Let us assume Assumption (2). Let D be an admissible discretization and v = (vg)gem be
a family of positive numbers. We denote by F the set of real numbers (Fg o)kem, oce,. We
define the set L, (D) of all (v, F,u) € H% x F x Hp such that

Vi - (Xo = XK) + VL - (XL — Xg) + vgm(K) Fr o — vpm(L)Fr , = up — ur,
VK € M, VL € Nk, with 0 = K|L, (30)
Vi - (XU - XK) + VKFKVUHI(K) =—ug, VK eM,Voce 5K,ext-

As before, we will need the following properties on this discretization space.

Lemma 3.1 [Poincaré’s Inequality] Let us assume Assumption (2). Let D be an admissible
discretization of Q0 in the sense of Definition 2.1, such that regul(D) < 6 for some 6 > 0. Let
(Vi) Kkem be a family of positive real numbers. Then there exists Ci7 only depending on d, )
and 0 such that, for all (v, F,u) € L,(D),

lullz2y < Cur (IVllza@ye + N, F)) (31)

1/2
where we have noted No(D,v, F) = <ZK€M Doty diam(K)%_QV]z(Ff(’gm(K)) .

PRrOOF.

We use the same reasoning and notations as in the proof of Lemma 2.1. After multiplying (30)
by [ Vw(z) - ng,dy(z), summing on the edges and gathering by control volumes, we find
T+ T7 = HUH%Q(Q), where T} is the same as in the proof of Lemma 2.1 and

T, = 2 Z Z/KFK,Um(K)/Vw(x)'nKﬁgdv(a:)

KeMoeli

= Z Z VKFK’UIH(K)IH(O')GKJ ‘NK -
KeMoelk
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From the proof of Lemma 2.1, we now how to bound 77. We thus have to study 7%, comparing

it with
Tg = Z Z VKFKJHI(K)HI(U)GK ‘NK -
KeMoelk

We get, using (9),

(T7—T)*
< : 2 2 2 2
< | Y. ) diam(K)m(o)vi F ,m(K) >N dlam yGK Grol
KeMoelk KeMoelk
< Nwawa Y Y diam(K)* i Fi m(K) | regul(D)Collwl[F2 (o
KeMoelgk
<

wa—1wqdiam(Q)?Na (D, v, F)?*regul(D) Calw|[32 g

On the other hand, we have

T3

IN

Yo > mo) vk From(K) | [ > Y m(K)|Gkl?

KeMoelk KeMoelyk

w2 No(D, v, F)? (regul(D) > m(K)\GK|2)

KeM
< Wi N2(D, v, F)*regul(D) || w| 71 g

IN

We then write, using the bound on 77 obtained at the end of the proof of Lemma 2.1,

lullfey = Ti+Ty
< Ti+ |T7 — T8| + |T8|

Wd— 0293 .
< \/;:ddlam(Q)HVHLQ(Q)HwHHZ(Q) + [Vl z@)allwl 1o

+v/wi—1waCaf diam(Q)No (D, v, F)||wl| g2 (0 + wa— V0 No(D, v, F)|[w| gq

and we conclude as in the proof of Lemma 2.1, using the fact that |[w||g2(q) < Csl|ul|r2(q) (with
C5 only depending on d and ). O

Lemma 3.2 [Equicontinuity of the translations| Let us assume Assumption (2). Let D be
an admissible discretization of 2 in the sense of Definition 2.1, such that regul(D) < 6 for some

0 > 0. Let (vi)kem be a family of positive real numbers. Then there exists Cig only depending
on d, Q and 0 such that, for all (v, F,u) € L,(D) and all ¢ € RY,

- +€) = ull gy < Cas (IVllz2(@ya + Ni(D,w, F)) 18], (32)

where N1(D,v, F) = 3 recpm Dooeey diam(K)? vk |Fk o /m(K) (and u has been extended by 0
outside Q).
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PROOF. The proof is similar to that of Lemma 2.2. We introduce the same notation x(z, &, o).
Applying (30), we get, for a.e. z € R, |u(x + &) — u(x)| < To(z) + Tio(z) with

> X6 0)(villxe — xk| + [VillxL — %o)
Tg([l?) _ 0€&nt,0=K|L
+ Z X($’§7U)‘VKHXU_XK‘

Uegext 70'651{

and
> X(@,&0) (vkm(K)|Fro| +vim(L)|Fr o))
Tw(az) _ 0€&nt,0=K|L
+ > x(@.&0)vkm(K)|Fr |

O'E(‘:ext 70'€5K

The handling of Ty(z) is similar to what is done in the proof of Lemma 2.2, and we obtain
Jra To(x) dz < Cul[v]| 1 (0alé|- We have

Tio(x) = > > x(@&0)vkm(K)|Fil

KeMoelk

and, to bound this expression, we write [pq x(2,&,0)dz = m(0)[n, - €| < wy_rdiam(K)41|¢]
(for o € k), which gives

/ Tio(z) dz < wg_1[¢] Z Z diam (K)* v | Fi o m(K)

KeMoelgk

and concludes the proof. [J

Lemma 3.3 [Compactness property| Let us assume Assumption (2). Let (Dp)m>1 be
admissible discretizations of Q in the sense of Definition 2.1, such that size(D,,) — 0 as
m — oo and (regul(Dp,))m>1 is bounded. Let (Vin, Frn, U, Um)m>1 be such that (Vi, Fi, tm) €
Ly, (D), (Vin)m>1 is bounded in L*(Q)¢ and No(Dp,Vm, Fyn) — 0 as m — oo (Na has been
defined in Lemma 3.1).

Then there exists a subsequence of (Dy)m>1 (still denoted by (Dp)m>1) and 4 € HL(Q) such
that the corresponding sequence (U, )m>1 converges to 4 weakly in L*(Q) and strongly in L(Q)
for all ¢ < 2, and such that (Vi)m>1 converges to Vu weakly in L2(Q)4.

ProoOF.
Notice first that, for all discretization D, for all v = (vg)keam positive number and for all

F = (FK7J)K€M,U€5K7

M(D.v,F) = > Y diam(K)" vg|Fom(K)
KeMoelk
1/2 1/2
< Z Zdiam( 2d22FKU (K) Z ZmK
KeMoelk KeMo€elk
< Nyo(D, v, F)regul(D)?m(Q)/2.
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Hence, if Ny(D, v, F') and regul(D) are bounded, so is N1(D, v, F).

Owing to this, we can reason as in the proof of Lemma 2.3: the hypotheses and Lemmas 3.1,
3.2 allow to extract a subsequence such that vy, — ¥ weakly in L(Q)¢ and wu,,, — % weakly in
L%(Q) and strongly in L9(Q) for all ¢ < 2. To prove that 4 € H{(Q) and Vi = v, we still follow
the proof of Lemma 2.3 (omitting the index m). Since

/Lp(ac) dvy(z)e-ng | < Com(o),

we only have to prove that 711 = e v D _pee, M(0)VK|Fi o|m(K) tends to 0 (this quantity
bounds the additional term, with respect to the proof of Lemma 2.3, which appears when
multiplying (30) by [ ¢(z)dy(x)e - ngq). But, as noticed at the beginning of this proof,

Ti1 < w1 N1(D, v, F) < wg_1m(Q)?regul(D)2No(D, v, F),
which completes the proof of the lemma, by assumption on the discretizations. [

3.2 The scheme

Let D be an admissible discretization of €2 in the sense of Definition 2.1 and v = (vi)xem be
positive numbers. We consider the scheme defined by (30), the conservativity property

FKJ + F’L’(7 =0, Vo= K’L € Eint, (33)
the condition
mrgAgvEg = Z FK,U(X(7 — XK), VK € M, (34)
oefi

and the relation

- Y Fre :/ f(z)dz, VK e M. (35)
o€l K
K

We now prove the existence and uniqueness of a solution to this scheme, and give an estimate
on this solution.

Lemma 3.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Q2 in
the sense of Definition 2.1. Let (Vi) kem be a family of positive real numbers. Then there exists
one and only one (v, F,u) € L,(D) solution of ((30),(33),(34),(35)). Moreover, for all vy > 0,
for all By > B > 2 — 2d such that v < vodiam(K)? (YK € M) and for all @ > regul(D), this
solution satisfies
Vs + 3 S wicFE m(K) < Cuoll 1220 (36)
KeMoelgk

where Cig only depends on d, 2, g, 0, vy and By.

PRrOOF. Notice first that, since ((30),(33),(34),(35)) is square and linear in (v, F,u), it suffices
to prove the estimate in order to obtain the existence and uniqueness of the solution (because
f =0 then implies F' = 0 and v = 0, and thus u = 0 by (31)).
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Multiply (35) by ug, sum on the control volumes and gather by edges using (33); multiply (30)
by Fk o, sum on the edges and gather by control volumes still using (33). This gives, by (34),

/Qv(m)A(:c)v(a:) dz + Z Z VKFIQQUIH(K) = /Qf(x)u(a:)d:c (37)

KeMoelk
< lfllz2@llullz2@)-

Using Young’s inequality and Lemma 3.1, we deduce that, for all € > 0,

1
OCOHVH2L2(Q)d + Z Z VKFIQQJm<K) < 2_€HJ0H%2(Q) + gC%?H"H%z(Q)d
KeMoelk

+eCh > Y diam(K)* v Fi ym(K). (38)
KeMoelk

Since vk < vpdiam(K)?, we have vidiam(K)?*2 < yydiam(K)%+29-2 < ypdiam(Q)F24-2 <
v sup(1, diam(92)%+24-2) (recall that 3 + 2d — 2 > 0). Hence, (38) gives

1
OéoHszLz(Q)d + Z Z VKFiz{,am<K) < %Hf”%%ﬂ) +80127HVH%2(Q)J
KeMoelk

+evp sup(1, diam(Q)* ) CE Y N vk Fi ,m(K).
KeMoelk

g 1
2C7,? 2vg sup(1,diam(Q)Po+2d=2)C2,

Taking € = min( ) concludes the proof of the lemma. [

We now prove the convergence, as size(D) — 0 and with a suitable choice of (vi)xenm, of the
solution to ((30),(33),(34),(35)) to the weak solution of (1).

Theorem 3.1 Let us assume Assumptions (2)-(4). Let (Dy,)m>1 be admissible discretizations
of Q2 in the sense of Definition 2.1, such that size(D,,) — 0 as m — oo and (regul(Dp,))m>1
is bounded. Let vg > 0 and B € (2 — 2d,4 — 2d) be fized. For all m > 1, let (v, Frn, um) be
the solution to ((30),(33),(34),(35)) for the discretization Dy, setting vk = vodiam(K)P for all
K € My,. Let u be the weak solution to (1).

Then, as m — 00, Vp, — Vi strongly in L>(Q)¢ and u,, — @ weakly in L?>(Q) and strongly in
LY(Q) for all ¢ < 2.

PRrOOF.
For the simplicity of the notations, we omit the index m. First, thanks to Estimate (36) and
since v = vodiam(K)?, we get

No(D,w, F)? = Y ) diam(K)*2vi Ff m(K)
KeMoelk

= 1 Z Z diam(K)ﬂJrzd*QVKFIQ(’Um(K)
KeMoelk

< wysize(D)PH2472 0y,

where Cyp does not depend on the discretization D (recall that regul(D) is bounded). Since
B+ 2d — 2 > 0, this last quantity tends to 0, and so does No(D, v, F), as size(D) — 0. Hence,
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still using (36), we see that the assumptions of Lemma 3.3 are satisfied: there exists @ € H} ()
such that, up to a subsequence and as size(D) — 0, v — V& weakly in L2(Q)? and u — @
weakly in L?(Q2) and strongly in L4(Q) for ¢ < 2.

Since (35) is similar to (14), (33) is similar to (12) and (34) is similar to (13), we can reason as in
the proof of Theorem 2.1 and we arrive at (20). It remains to prove that Tg — 0 as size(D) — 0
(to see that w is a weak solution to (1)), and that v strongly converges.

We have, from (21),

2

Ts)® < | Cp Y D diam(K)?|Fx,
KeMoelk
diam(K)*
2 2
< G| Dl D vkFRemE) | | Yo > Dem(K)
KeMoelk KeMoelk
diam(K)*
< - ~ 7
< Cn >y me(K)Zm(K) (39)
KeMoelk

where, according to (36), C2; does not depend on the mesh since regul(D) stays bounded. But
v = vpdiam(K)? and diam(K)? < %m([ﬁ, so that

diam(K)* < regul(D)?diam(K)*7  regul(D)?

— di K 472d7[3.
vem(K)?2 —  wiyydiam(K)?? wivy lam(K)

Since 4 — 2d — 3 > 0, we deduce from (39) that

2 3
T2 < Coy "BUND) o (pyt-2d—5 (i) < CoremlDPm(@) oy g
2 2
wWao w21y
d KEM ol d

and this quantity tends to 0 as size(D) — 0, which concludes the proof that @ is a weak solution
to (1).

The strong convergence of v to Vu is a consequence of (37). From this equation, and defining
N(w)? = [, A(z)w(z)-w(z)dz as in the proof of Theorem 2.1, we have N (v)? < [, f(z)u(z) dz
and thus

limsup N(v)2 < lim | f(x)u(z)ds = / F@)a(z)dz = N(Va)? (40)
0JOQ Q

size(D)—0 - size(D)—

(we use the fact that u — # weakly in L?(f2) and that @ is the weak solution to (1)). But
N is a norm on L2(Q)% and v — Va weakly in L?(Q)? as size(D) — 0, so that N(Va) <
lim infgj,0py_o NV (v). We conclude with (40) that N(v) — N(Va) as size(D) — 0 and, there-
fore, the weak convergence of v to Va in L2(Q)? is in fact strong. [J

Remark 3.1 As a consequence of (37) and the strong convergence of v to Vu, we see that

dKeM Doesx VKFIQ(,Um(K) — 0 as size(D) — 0. This strengthens Lemma 3.4 which only
states that this quantity is bounded.
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Remark 3.2 In a similar way as above, we could get the convergence of un, to u in L*(Q) by
assuming a uniform reqularity property for the mesh. Thanks to the error estimate below, we
nevertheless get this strong convergence in some particular cases, with no additional hypothesis
on the discretization.

We now derive an error estimate, which also could be extended to the case d < 3 and @ € H?(Q)
following some arguments of [9)].

Theorem 3.2 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of
in the sense of Definition 2.1, such that size(D) < 1 and regul(D) < 0 for some § > 0. We take
vg > 0 and 3 € (2—2d,4—2d) and, for all K € M, we let vig = vodiam(K)P. Let (v, F,u) be the
solution to ((30),(33),(34),(35)). Let u be the weak solution to (1). We assume that A € C(£2)
and u € C*(Q).

Then there exists Coo only depending on d, 2, u, A, 0 and vy such that

HV — V'ELHLQ(Q)d < CQQSize('D)imin(ﬁ+2d*274*2d*ﬁ) (41>
and .
|u — 1|2y < Cagsize(D)1 min(f+2d-2,4-2d=f) (42)

(note that the mazimum value of + min(B +2d — 2,4 —2d — j3) is 1, obtained for 3 = 3 — 2d).

PROOF.
The proof is similar to that of Theorem 2.2, and we use the same notations. We have the same
relations as in the proof of Theorem 2.2, except for (27) which becomes

Vi - (XU — XK) + vy, - (XL — Xg) + VKIH(K)FKVU + RKJ
—vim(L)Fp . — Ry o = UL, — Uk,

VK € M, VL € Ny, with o = K|L, (43)
VK - (XU — XK) + VKFK’UHI(K) + RK,U =—-ug, VK eM, Voe 5K,ext~
We then get, multiplying (25) by ug, (43) by ﬁK,U and using (26),
S mkArVi Vi + > Y vgFR m(K) = Tiy — Tis + T, (44)

KeM KeMoelk

where

Tip = Z Z Vi F o From(K),

KeMoelk
Tis= Y Y RioFko
KeMoelyk
Ty = Z Z Ry oFk o
KeMoelyk

Since ]FK’U| < Cyzm(o) < Cozwg_1diam(K)?1 and |RKk | < Cizdiam(K)?, it is straightforward
to see that |Th4| < Cigsize(D). Thanks to the Cauchy-Schwarz inequality, we get

T122 < Z Z VKFIQ(,Um(K) Z Z VKFIQ(,Um(K)

KeMoelk KeMoelk
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Using Lemma 3.4 with 3y = 4 — 2d > 3, we thus obtain T3 < C’lngHL2 Cg4Slze(D)ﬁ+2d_2.
We also have

RKO’

o< | 0 X wFiom(R) | | 30 30 m(K), S
KeM O'GSK Kem o.egK K
< Cl9||f‘|L2 Cz5Slze(’D)4—2d—[3'
Gathering these estimates in (44) leads to
||9||%2(Q) < O (size(D) + siZe(D)%(ﬁHd—Q) n siZe(D)%(4—2d—ﬁ)> )

and (41) follows, using the fact that size(D) < 1 and that ||V — V|| jec(qya < Crssize(D).

We now set FK,J = Fgq+ for all K € M and o € £ and we estimate Na(D, v, F) the
following way:

RK,U
vim(K)

No(D,v, F)? = Y N diam(K)*2vi Ff m(K)
KeMoelk
< 2) ) diam(K)* R F ,m(K)
KeMoelk
C%diam(K)*
+2 Z Z diam (K)??~2,2 m(K)(f’m(K))z
KeMoelk K
< Cor(size(D)° 12472 4 size(D)?) (46)

(we have used (36)). We can apply Lemma 3.1, since (43) implies that (v, F,a) € L, (D): we
obtain
lillz2(@) < Cur (1] 2y + Na(D,, F))

and (42) follows from (45), (46) and an easy estimate between ux and the values of © on K. [

Remark 3.3 This error estimate is not sharp, and the numerical results below show a much
better order of convergence.

4 Implementation

We present the practical implementation in the case where A(x) is symmetric for a.e. z € ,
though it is valid for any A.

4.1 Resolution procedure

The size of System ((30),(33),(34),(35)) is equal to (d 4+ 1)Card(M) + 2Card(Ein) + Card(Eext)-
However, it is possible to proceed to an algebraic elimination which leads to a symmetric positive
definite sparse linear system with Card (&) unknowns, following the same principles as in the
hybrid resolution of a mixed finite element problem (see for example [17]). Indeed, for all (v, F, u)
such that (30) and (34) hold, we define (us)sce, by

VK - (X6 —xXK) + vk Fr om(K) = uy —ug, VK e M, Voe€&.
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We thus have that u, = 0 for all 0 € Excxs. We can then express (v, F) as a function of
(ug)oegy and of u, since we have

1 —
m(K) Z FK,O”AKI(XG'/ —XK) - (X —XK) + VK Fx om(K) = uy — ug,
o'efk

VK € M, Vo €€,

which is, for all K € M, an invertible linear system with unknown (Fg s)sce, , under the form
Bk (Fk.o)ocex = (Uo — UK )oce, Where By is a symmetric positive definite matrix (thanks to
the condition vx > 0). We can then write

FKO’ = Z (B[_(l)aa’(ucr’ - UK)7 VK € M? Vo € SK (47)

)
o'efk

We then obtain from (35), denoting bg , = ZO’ESK (BI_(l)M/ and by = ZG/ESK bko, that ug
satisfies the relation
— > broruer +brug = / f(x)da. (48)
o' €€k K

We have (bg o/ )orce, = B;(I(l)aleg}( and therefore we get bx = (1),7eg, -BKl(l)U/egK > 0 since
B[_(1 is symmetric positive definite. Reporting the previous linear relations in (33), we find

br bk o br.obr o
-1 K,0VK,o 1 L,oYL,0 o
5 (3o = P Yot S (1B~ P =

o'€Ex b o'efr, (49)

br o br o
o [ pw)de+ 22 [ fa)de, Vo= KIL € S,
b JK br Ji

which is a symmetric linear system, whose unknowns are (uq)scs,,,. Let us show that its matrix

M is positive. We can write, for all family of real numbers (uq)qee,

int ?

(EJGSK bK,aUU)Z
bk

(U/U)O'ngnt M (UU)UE&M = Z Z Z (Bf}l)aa’uaua’ -

KeM \o€fk o'eli

Thanks to the fact that B[_(1 is symmetric positive definite, we get, using the Cauchy-Schwarz
inequality,

((1)0651( 'BI_{I(UU)UESK)Q < ((1)0'651( ’ BI_(1<1)065K) ((UU)UE&K 'BI_{I(UU)UegK) )

which is exactly

2
Z bK,a'ua < bk Z Z (B[_(l)aa’uaua"

o€k o€l o'€€k

In order to show that M is definite, we simply remark that the preceding reasoning shows that
the systems ((30),(33),(34),(35)) and (49) are equivalents. Hence, since ((30),(33),(34),(35)) has
a unique solution, so must (49), which means that M is invertible.

We then solve System (49) in the practical implementation of the penalized scheme, using a
direct solver. We then compute (u, F') thanks to relations (48) and (47). Moreover, even in the
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case of simplicial meshes where the non-penalized scheme could be used, we nevertheless use the
penalized scheme in order to obtain the approximate solution using System (49). Note that, in
the case of simplicial meshes, letting v tends to 0 leads to a limit of System (49) corresponding
to the inversion of each local matrix A, which is not the case otherwise since, in the case of
a general mesh, Ax can be rectangular. Note that the non-penalized scheme provides a unique
solution for (u, v), for which we did not prove the convergence. Nevertheless, we expect that the
non-penalized solution is more precise than a significantly penalized one, and therefore we let
vk = 1072 /m(K) for all the following computations (we used a direct method for the inversion
of matrices B ). In all the cases, the points xx have been located at the center of gravity of
the control volumes.

4.2 Numerical results

All the following numerical results have been obtained for the case d = 2, Q@ = (0,1) x (0, 1),
A =1z and a(z) = (1 — M)z (1 = 2?)) for all z = (2, 2?)) € Q.

Remark 4.1 We have also successfully used the scheme for the numerical study of some aniso-
tropic heterogeneous problems. However, we do not present these results here (which are roughly
similar to the ones below), preferring for shortness reasons to focus on the application of the
scheme to various types of grids.

We first present in Figure 1 two different simplicial (i.e. triangular) discretizations Dy and Dy
(in the sense presented above in this paper) used for the computation of an approximate solution
for the problem. We also show in Figure 1 the error ep, defined by

_ Juk —a(xk)|

e = — , VK eM,
4] Lo (02)

using discretizations Dy and Dys. Note that these discretizations do not respect the Delaunay
condition on a sub-domain of 2, and that the 4-point finite volume scheme (see [9]) cannot be
used on these grids. The grids Dy and Dy3 (which is not represented here) have been obtained
from Dy; (containing 400 control volumes) by the respective divisions by 2 and 4 of each edge
(there are 1600 control volumes in Dyp and 6400 in Dy3). The errors in L? norms obtained with
these grids are given in the following table.

[ —allz20) [ IV = Vall o)
Dn 5.1 107% 1.8 1072
Dy 191074 9.0 1073
Dy3 82 107° 451073
order of convergence >1 1

We observe that the numerical orders of convergence for [[u — 1| p2(q) and [|v — V[ 2(q)a seem
to be equal to 1, and therefore no super-convergence property can reasonably be expected in
this case.

We then present in Figure 2 discretizations D, and Dy and error ep using these grids. Such grids
could be obtained using a refinement procedure: for example, in the case of coupled systems, the
grid might have been refined in order to improve the convergence on another equation (thanks
to some a posteriori estimates maybe) and must then be used to solve (1) which is the second
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Figure 1: Top: discretizations used for the numerical tests (left: Dy, right: Dys), bottom:
error ep obtained with Dy (left: black=0, white = 2.2 1072) and Dy (right: black=0, white =
8.9 1073).

part of the system. The grid Dy has been obtained from D, by a uniform division of each edge
by 2, and similarly Dy3 (not represented here) has been obtained from D in the same way. The
respective errors in L? norms obtained with these grids are given in the following table.

lu —allr2) | [V = Vil r2q)
Dy 8.71071 5.8 1073
Dyo 1.71071 1.3 1073
Dys 3.9107° 4.0 1074
order of convergence > 2 >1

We then observe that the numerical order convergence is better than 2 for ||u — i[|12(q), which
corresponds to a case of a mainly structured grid (there is no significant additional error located
at the internal boundaries between the differently gridded subdomains, see Figure 2).

Finally, in Figure 3, we represent grids D, and Dy and the error ep thus obtained. These meshes
(which have the same number of control volumes) could correspond to the case of moving meshes
(for example, due to a phenomenon of compaction, see [13]). The respective errors in L? norms
obtained with these grids are given in the following table.

|u =2 | IV = Va2
D, | 2010°* 6.71074
Dy | 46107* 1.81073

We observe that the error is mainly connected to the size of the control volumes, and maybe to
some effect of loss of regularity of the mesh.
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H’

Figure 2: Top: discretizations used for the numerical tests (left: Dy, right: Dg2), bottom:
error ep obtained with Dy; (left: black=0, white = 2.7 1072) and Dys (right: black=0, white =
5.3 1073).
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Figure 3: Top: discretizations used for the numerical tests (left: D,, right: Dy), bottom: error ep
obtained with D, (left: black=0, white = 5.4 1073) and D (right: black=0, white = 1.5 1072).
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5 Appendix

Lemma 5.1 Let K be a non empty open convex polygonal set in RY. For o € Ex (the edges of
K, in the sense given in Definition 2.1), we let X, be the center of gravity of o; we also denote
ng . the unit normal to o outward to K. Then, for all vector e € R? and for all point xx € K,
we have

m(K)e= Y m(o)e-ngq(x, — Xx).

celk

PRrROOF.
We denote by a superscript i the i-th coordinate of vectors and points in R%. By Stokes formula,
we have

m(K)e' = /K div((z’ —xj)e)dz = Y [ (2’ —x%)e ng o dy(z)

cefk g

and the proof is concluded since, by definition of the center of gravity, fg(:vz — xb)dy(z) =
[, 2" dvy(z) — m(0)x} = m(o)x, — m(o)xk. O

The following lemma is quite similar to Lemma 7.2 in [7], but since we need this result with
slightly more general hypotheses than in this reference, we include the full proof for sake of
completeness.

Lemma 5.2 Let K be a non empty open polygonal convex set in R%. Let E be an affine hyper-
plane of R and o be a non empty open subset of E contained in 0K N E. We assume that there
exists « > 0 and pxg € K such that B(pk,adiam(K)) C K. We denote Ak, the convex hull
of o and px. Then there exists Cag only depending on d and o such that, for allv € H'(K),

2 is 2
(—m@lm) /. e s / v(&)(h(é)) < Cnde ) | BLCCES

PROOF.

The regular functions being dense in H'(K) (since K is convex), it is sufficient to prove the
lemma for v € C*(RY). By translation and rotation, we can assume that £ = {0} x R4,
o = {0} x & with & C R%"! and that px = (p1,0) with p; = dist(px, E).

Notice that, since K is convex and 0K N E contains a non empty open subset of E, K is on one
side of E. In particular, B(px, adiam(kK)) is also on one side of E (it is contained in K') and

p1 = dist(pg, E) > adiam(K). (50)

For a € [0,p1], we denote 5, = {z € R¥™! | (a,2) € Ak, }. By definition, (a,z) € Ak, if and
only if there exists t € [0,1] and y € 7 such that t(p1,0) + (1 —1¢)(0,y) = (a, z); this is equivalent

tot:pilandz:(l—t)y:@—p%)y. Thus,Ea:(l_pil)a

For all y € ¢ and all a € [0, p1], we have
a ! a a
v(0,y)—v|a,[1——|y]) = Volta,(1—t— |y | | —a,—y| dt.
b1 0 p1 p1
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Integrating on y € ¢ and using the change of variable z = (1 — p%) y, we find

/Uv(g) dvy(€) — ﬁ[ a,z)dz _// Vo (ta (1 —t—) y) - (—a,pﬁly) dtdy.

p1

d—1
Multiplying by (1 — p%) and integrating on a € [0, p1], we obtain

/Uv(f)dv(g) /m <1d1>d 1 da—/pl/ (a, 2) dzda
L L b)) (o) s

d—1
But [ (1 - ﬂ) da =2 and m(Agq) = %; therefore, dividing by m(Ag ), we find

P

1 1
e / YO BE) ~ i /A )

_ m(Alm/opl< )d 1// Vo <ta <1t> y> . <a,;1y> dtdyda. (51)

For all y € &, we have |y| = [(0,y)| < [(0,y) — px| + |pk| < diam(K) + p; (because (0,y) and
pk belong to K). By (50), this implies |y| < (1 + 1)p; and thus

[ 62 L 7o o)) (o) s

D1 d—1
< 029/ <1 - —) // Vv (ta <1 —t—> y> adtdyda
P1 ta d—1
< ng Vo <ta <1 — t—> y) a <1 - —> dtdyda (52)
b1

where C9 only depends on o (We have used the obvious fact that, for ¢ €]0,1[, 1 —
But, for all a €]0, p1[, the change of variable

0o (ty) €]0,1[x5 — 2z = <ta, <1 - tp%) y> € ¢a(]0,1[x7)

d—1
has Jacobian determinant equal to a (1 — ;—‘I) and therefore

d—1
// Vo (ta (1 - t—> y) a <1 - t_a> dtdy = / |[Vo(z)|dz.
P1 ©a(]0,1[x7)

Moreover, (ta, (1 —t-)y) = ;—‘I(pl,O) +(1- ;—‘;)(O,y) with ;—‘ll €]0, 1[; hence, ¢4(]0,1[x0) C Ak s

and we obtain
Vv <ta (1 — t—) y>

Ll

p1

d-1
t
a (1 — _a) dtdyda < pl/ [Vu(z)|dz.
AK,G
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We introduce this inequality in (52) and use the resulting estimate in (51) to obtain

‘IH(%K,U)/AK,J“(:”) dw—ﬁ/a v(6) dv(ﬁ)‘ (Cfila) /AK,G Vo(x)| dz

and the conclusion follows from the Cauchy-Schwarz inequality, recalling that p; = dist(px, F).
O

Lemma 5.3 Let K be a non empty open polygonal convex set in R% such that, for some a > 0,
there exists a ball of radius adiam(K) contained in K. Let E be an affine hyperplane of R® and
o be a non empty open subset of E contained in 0K N E. Then there exists Csg only depending
on d and o such that, for allv € H'(K),

<ﬁ/[{v(:ﬁ)dx—$/‘70(@dfy(w)>2 < Cm’fni?if)(m/[{yvu(x)ﬁdm.
PRrOOF.

Let B(pk,adiam(K)) C K and Ak, be the convex hull of px and o. By Lemma 5.2, we have

2
(F(Al;(a) /A v(z)dz — ﬁ/v(a:) d’y(:c)) < CQSdlStAI:: / |Vo(zx \de.

But m(Agy) = w and dist(px, F) < dist(px, o) < diam(K). Therefore,

2 .
(@/A o() dx—ﬁ/v(x) d’y(m)) < %ﬁ;(m/l{m(z)\?dz. (53)

Using Lemma 7.1 in [7], we get C3; only depending on d such that

2
1 1 Cspdiam (K )4+2 )
(m(AK#’) /AK,g vle)de = m(K) /KU(:U) dx) : m(Ak o )m(K) /K [Vole)f dz,

which implies

2
b 1 o(z) da Cs31d diam(K)¥+2 ()2
(m(AKﬂ) /AK’dv(x)d:Jc m(K)/K (z)d ) < m(a)dist(pK,E)m(K)/KW ()| da.

But, as in the proof of Lemma 5.2, we have dist(px, E) > adiam(K) (see (50)). Since m(K) >
wgaddiam(K)?, we deduce that

2
1 1 Cs1d diam(K )2
L do — —— de | < d 4
(m(AK,c,) /AK,U”(” v ) m) < ity L@ 6

The lemma follows from (53) and (54). O
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