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A mixed finite volume scheme

for anisotropic diffusion problems on any grid

J. Droniou∗ R. Eymard†

21/04/2005

Abstract

We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on
unstructured irregular grids, which simultaneously gives an approximation of the solution and
of its gradient. In the case of simplicial meshes, the approximate solution is shown to converge
to the continuous ones as the size of the mesh tends to 0, and an error estimate is given. In the
general case, we propose a slightly modified scheme for which we again prove the convergence,
and give an error estimate. An easy implementation method is then proposed, and the efficiency
of the scheme is shown on various types of grids.

Keywords. Finite volume scheme, unstructured grids, irregular grids, anisotropic diffusion
problems.

1 Introduction

The computation of an approximate solution for equations involving a second order elliptic
operator is needed in so many physical and engineering areas, where the efficiency of some
discretization methods, such as finite difference, finite element or finite volume methods, has
been proven. The use of finite volume methods is particularly popular in the oil engineering
field, since it allows for coupled physical phenomena in the same grids, for which the conservation
of various extensive quantities appears to be a main feature. However, it is more challenging
to define convergent finite volume schemes for second-order elliptic operators on discretization
grids designed for another problem, for which these grids may have been refined or distorted.

For example, in the framework of geological basin simulation, the grids are initially fitted on the
geological layers boundaries, which is a first reason for the loss of orthogonality. Then, these
grids are modified during the simulation, following the compaction of these layers (see [13]), thus
leading to irregular grids, as those proposed by [14]. As a consequence, it is no longer possible
to compute the fluxes resulting from a finite volume scheme for a second order operator, by a
simple two-point difference across each interface between two neighboring control volumes. Such
a two-point scheme is consistent only in the case of an isotropic operator, using a grid such that
the lines connecting the centers of the control volumes are orthogonal to the edges of the mesh.
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The problem of finding a consistent expression using only a small number of points, for the
finite volume fluxes in the general case of any grid and any anisotropic second order operator,
has led to many works (see [1], [2], [3], [13] and references therein; see also [15]). A recent
finite volume scheme has been proposed [10, 11], permitting to obtain a convergence property
in the case of an anisotropic heterogeneous diffusion problem on unstructured grids, which all
the same satisfy the above orthogonality condition. In the case where such an orthogonality
condition is not satisfied, a classical method is the mixed finite element method which also gives
an approximation of the fluxes and of the gradient of the unknown (see [4], [5], [6], [18] for
example, among a very large literature). Unfortunately, the Raviart-Thomas basis is not easily
available on control volumes which are not simplices or regular polyhedra (although such a basis
can be built on general irregular grids, see [8] and [12], but no easy approximation of these basis
functions are known).

We thus propose in this paper an original finite volume method, which can be applicable on any
type of grids in any space dimension, with very few restrictions on the shape of the control vol-
umes. The implementation of this scheme is proven to be easy, and no geometric complex shape
functions have to be computed. In order to show the mathematical and numerical properties of
this scheme, we study here the following problem: find an approximation of ū, weak solution to
the following problem:

−div(Λ∇ū) = f in Ω,
ū = 0 on ∂Ω,

(1)

under the following assumptions:

Ω is an open bounded connected polygonal subset of R
d, d ≥ 1, (2)

Λ : Ω → Md(R) is a bounded measurable function such that
there exists α0 > 0 satisfying Λ(x)ξ · ξ ≥ α0|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R

d,
(3)

and
f ∈ L2(Ω). (4)

Thanks to Lax-Milgram theorem, there exists a unique weak solution to (1) in the sense that
ū ∈ H1

0 (Ω) and the equation is satisfied in the sense of distributions on Ω.

The principle of our scheme, described in Section 2, is the following. We simultaneously look
for approximations uK , vK in each control volume K of ū and ∇ū, and find an approximation
Fσ at each edge σ of the mesh of

∫
σ Λ(x)∇ū(x) · nσ dγ(x), where nσ is a unit vector normal

to σ. The values Fσ must then satisfy the conservation equation in each control volume, and
consistency relations are imposed on uK , vK and Fσ. We thus show that these conditions lead
to a linear system which, in the general case, has one and only one approximate solution u and
v, and, for some particular meshes (“simplicial” meshes), also only one F . We then prove, in
this particular case, the convergence of the scheme and an error estimate. We then develop in
Section 3 a penalized version of the scheme which can apply on every type of mesh (that was
the aim of this work), and which leads to existence and uniqueness properties for (u,v, F ). We
provide the mathematical analysis of the convergence of this penalized scheme and give an error
estimate. In Section 4, we propose an easy implementation procedure for the penalized scheme,
and we use it for the study of some numerical examples. We thus obtain acceptable results on
some grids for which it would be complex to use other methods, or to which empirical methods
apply but no mathematical results of convergence nor stability have yet been obtained.
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2 A first finite volume scheme

2.1 Admissible discretization of Ω

We first present the notion of admissible discretization of the domain Ω, which is necessary to
give the expression of the finite volume scheme.

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset of R
d

(d ≥ 1), and ∂Ω = Ω \ Ω its boundary. An admissible finite volume discretization of Ω is given
by D = (M, E ,P), where:

• M is a finite family of non empty open polygonal convex disjoint subsets of Ω (the “control
volumes”) such that Ω = ∪K∈MK.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all
σ ∈ E, there exists an affine hyperplane E of R

d and K ∈ M with σ ⊂ ∂K ∩E and σ is a
non empty open convex subset of E. We assume that, for all K ∈ M, there exists a subset
EK of E such that ∂K = ∪σ∈EK

σ. We also assume that, for all σ ∈ E, either σ ⊂ ∂Ω or
σ = K ∩ L for some (K, L) ∈ M2.

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M and such that, for
all K ∈ M, xK ∈ K.

Some examples of admissible meshes in the sense of the above definition are shown in Figures 1
and 2.

Remark 2.1 Though the elements of EK may not be the real edges of a control volume K (each
σ ∈ EK may be only a part of a full edge, see figure 2), we will in the following call “edges of K”
the elements of EK .
Notice that we could also cut each intersection K ∩ L into more than one edge. This would not
change our theoretical results but this would lead, for practical implementation, to artificially
enlarge the size of the linear systems to solve, which would decrease the efficiency of the scheme.

Remark 2.2 The whole mathematical study done in this paper applies whatever the choice of
the point xK in each K ∈ M. In particular, we do not impose any orthogonality condition
connecting the edges and the points xK . However, the magnitude of the numerical error (and,
for some regular or structured types of mesh, its order) does depend on this choice.
We could also extend our definition to non-planar edges, under some curvature condition. In this
case, it remains possible to use the schemes studied in this paper and to prove their convergence.

The following notations are used. The measure of a control volume K is denoted by m(K);
the (d − 1)-dimensional measure of an edge σ is m(σ). In the case where σ ∈ E is such that
σ = K ∩ L for (K, L) ∈ M2, we denote σ = K|L. For all σ ∈ E , xσ is the barycenter of σ.
The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ;
σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For all K ∈ M, we denote by NK the subset of M of
the neighboring control volumes (that is, the L such that K ∩L is an edge of the discretization),
and we denote by EK,ext = EK ∩ Eext.
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To study the convergence of the schemes, we need the following two quantities: the size of the
discretization

size(D) = sup{diam(K) ; K ∈ M}
and the regularity of the discretization

regul(D) = sup

{
max

(
diam(K)d

ρd
K

, Card(EK)

)
; K ∈ M

}
(5)

where, for K ∈ M, ρK is the supremum of the radius of the balls contained in K. Notice that,
for all K ∈ M,

diam(K)d ≤ regul(D)ρd
K ≤ regul(D)

ωd
m(K) (6)

where ωd is the volume of the unit ball in R
d. Note also that regul(D) does not increase in a

local refinement procedure.

2.2 The discretization space

Let us assume Assumption (2). Let D be an admissible discretization in the sense of Definition
2.1. We denote by HD the set of functions Ω → R which are piecewise constant on each control
volume K ∈ M. We define the set L∇

D of all v ∈ Hd
D such that there exists u ∈ HD with

vK · (xσ − xK) + vL · (xL − xσ) = uL − uK , ∀K ∈ M, ∀L ∈ NK , with σ = K|L,
vK · (xσ − xK) = −uK , ∀K ∈ M, ∀σ ∈ EK,ext.

(7)

In the following, we will need some properties on L∇
D . The next one, that we call here“Poincaré’s

inequality”, could also be called an “inf-sup” condition connecting the values of u to that of v,
following an analogy of our scheme to a mixed finite element method [16].

Lemma 2.1 [Poincaré’s inequality] Let us assume Assumption (2). Let D be an admissible
discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for some θ > 0. Then
there exists C1 only depending on d, Ω and θ such that, for all v ∈ L∇

D and u ∈ HD satisfying
(7),

‖u‖L2(Ω) ≤ C1‖v‖L2(Ω)d . (8)

As an immediate consequence, for all v ∈ L∇
D there exists one and only one u ∈ HD such that

(7) holds; we then define ψ : L∇
D → HD by ψ(v) = u.

Proof.

Let R > 0 and x0 ∈ Ω be such that Ω ⊂ B(x0, R) (the open ball of center x0 and radius R). We
extend u by the value 0 in B(x0, R)\Ω, and we consider w ∈ H1

0 (B(x0, R))∩H2(B(x0, R)) such
that −∆w(x) = u(x), for a.e. x ∈ B(x0, R). Denoting nK,σ the unit normal to σ outward to K,
we multiply each equation of (7) by

∫
σ ∇w(x) ·nK,σ dγ(x), and we sum on σ ∈ E . Gathering by

control volumes, we find
∑

K∈M

vK ·
∑

σ∈EK

(xσ − xK)

∫

σ
∇w(x) · nK,σ dγ(x) = −

∑

K∈M

uK

∑

σ∈EK

∫

σ
∇w(x) · nK,σ dγ(x)

= −
∑

K∈M

uK

∫

K
∆w(x) dx

=
∑

K∈M

m(K)u2
K = ||u||2L2(Ω).
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We now compare the left-hand side of this equation, hereafter denoted T1, with T2 =
∫
Ω v(x) ·

∇w(x) dx (note that |T2| ≤ ‖v‖L2(Ω)d‖w‖H1(Ω)). We apply Lemma 5.1 to the vector GK =
1

m(K)

∫
K ∇w(x) dx in order to obtain

∫

K
∇w(x) dx = m(K)GK =

∑

σ∈EK

m(σ)GK · nK,σ(xσ − xK),

and therefore
T2 =

∑

K∈M

vK ·
∑

σ∈EK

m(σ)GK · nK,σ(xσ − xK).

Hence, setting GK,σ = 1
m(σ)

∫
σ ∇w(x) dγ(x), we get

|T1 − T2| ≤
∑

K∈M

|vK |
∑

σ∈EK

m(σ) |GK − GK,σ| diam(K).

Thanks to the Cauchy-Schwarz inequality, we find

(T1 − T2)
2 ≤




∑

K∈M

|vK |2
∑

σ∈EK

m(σ) diam(K)







∑

K∈M

∑

σ∈EK

m(σ) diam(K)|GK − GK,σ|2

 .

We now apply Lemma 5.3, which gives C2 only depending on d and θ such that

(GK − GK,σ)2 ≤ C2
diam(K)

m(σ)
‖w‖2

H2(K) (9)

(notice that α := 1
2θ−1/d < regul(D)−1/d ≤ ρK/diam(K) is valid in Lemma 5.3). We also

have, for σ ∈ EK , m(σ) ≤ ωd−1diam(K)d−1, where ωd−1 is the volume of the unit ball in R
d−1.

Therefore, according to (6) and since regul(D) ≥ card(EK) for all K ∈ M,

(T1 − T2)
2 ≤




∑

K∈M

|vK |2
∑

σ∈EK

m(σ) diam(K)







∑

K∈M

∑

σ∈EK

C2diam(K)2||w||2H2(K)




≤
(

ωd−1regul(D)
∑

K∈M

|vK |2diam(K)d

) (
C2size(D)2regul(D)‖w‖2

H2(Ω)

)

≤ ωd−1regul(D)2

ωd
||v||2L2(Ω)dC2diam(Ω)2regul(D)‖w‖2

H2(Ω).

We can now conclude, writing

||u||2L2(Ω) = T1 ≤ |T1 − T2| + |T2|

≤
√

ωd−1C2θ3

ωd
diam(Ω)‖v‖L2(Ω)||w||H2(Ω) + ||v||L2(Ω)d ||w||H1(Ω).

Since there exists C3 only depending on d and B(x0, R) (the ball chosen at the beginning of the
proof) such that ||w||H2(Ω) ≤ C3||u||L2(Ω), this concludes the proof. ¤
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Lemma 2.2 [Equicontinuity of the translations] Let us assume Assumption (2). Let D be
an admissible discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for some
θ > 0. Then there exists C4 only depending on d, Ω and θ such that, for all v ∈ L∇

D and u ∈ HD

satisfying (7) (which means that u = ψ(v), see Lemma 2.1), for all ξ ∈ R
d,

‖u(· + ξ) − u‖L1(Rd) ≤ C4‖v‖L1(Ω)d |ξ| (10)

(u has been extended by 0 outside Ω).

Proof.

Let v ∈ L∇
D and u ∈ HD (extended by 0 outside Ω) such that (7) holds. For all σ ∈ E , let us

define Dσu = |uL − uK | if σ = K|L and Dσu = |uK | if σ ∈ EK,ext. For (x, ξ) ∈ R
d × R

d and
σ ∈ E , we define χ(x, ξ, σ) by 1 if σ ∩ [x, x + ξ] 6= ∅ and by 0 otherwise. We then have, for all
ξ ∈ R

d and a.e. x ∈ R
d (the x’s such that x and x+ ξ do not belong to ∪K∈M∂K, and [x, x+ ξ]

does not intersect the relative boundary of any edge),

|u(x + ξ) − u(x)| ≤
∑

σ∈E

χ(x, ξ, σ)Dσu.

Applying (7), we get

|u(x + ξ) − u(x)| ≤




∑

σ∈Eint,σ=K|L

χ(x, ξ, σ)(|vK ||xσ − xK | + |vL||xL − xσ|)

+
∑

σ∈Eext,σ∈EK

χ(x, ξ, σ)|vK ||xσ − xK |




and, gathering by control volumes,

|u(x + ξ) − u(x)| ≤
∑

K∈M

∑

σ∈EK

χ(x, ξ, σ)diam(K)|vK |. (11)

In order that χ(x, ξ, σ) 6= 0, x must lie in the set σ − [0, 1]ξ which has measure m(σ)|nσ · ξ|
(where nσ is a unit normal to σ). Hence,

∑

σ∈EK

∫

Rd

χ(x, ξ, σ) dx ≤
∑

σ∈EK

m(σ)|nσ · ξ| ≤ Card(EK)ωd−1diam(K)d−1|ξ|.

Thus, integrating (11) on R
d, we find

‖u(· + ξ) − u‖L1(Ω) ≤ ωd−1regul(D)|ξ|
∑

K∈M

diam(K)d|vK |

and we conclude by (6). ¤

Remark 2.3 We could prove the property ‖u(·+ξ)−u‖2
L2(Ω) ≤ C‖v‖2

L2(Ω)d |ξ| (|ξ|+size(D)), in

a similar way as in [9], by introducing the maximum value of diam(K)/ρL, for all (K, L) ∈ M2,
in the definition of regul(D). This would allow, in Theorem 2.1, to prove the strong convergence
of um in L2(Ω). Nevertheless, we chose not to do so since the quantity diam(K)/ρL cannot
remain bounded in a local mesh refinement procedure.
Note that we shall all the same prove, in a particular case, a strong convergence property in
L2(Ω) for u, as a consequence of the error estimate.
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Lemma 2.3 [Compactness property] Let us assume Assumption (2). Let (Dm)m≥1 be ad-
missible discretizations of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as m → ∞
and (regul(Dm))m≥1 is bounded. Let (vm)m≥1 such that, for all m ≥ 1, vm ∈ L∇

Dm
and such

that (vm)m≥1 is bounded in L2(Ω)d.
Then there exists a subsequence of (Dm)m≥1 (still denoted by (Dm)m≥1) and ū ∈ H1

0 (Ω) such
that the corresponding sequence (ψ(vm))m≥1 converges to ū weakly in L2(Ω) and strongly in
Lq(Ω) for all q < 2, and such that (vm)m≥1 converges to ∇ū weakly in L2(Ω)d.

Proof.

Since (vm)m≥1 is bounded in L2(Ω)d, we get the existence of a subsequence of (Dm)m≥1, again
denoted by (Dm)m≥1, and v̄ ∈ L2(Ω)d such that (vm)m≥1 weakly converges to v̄ in L2(Ω)d.
Thanks to Lemmas 2.1 and 2.2, we can apply Kolmogorov’s theorem on the family (ψ(vm))m≥1:
there exists ū ∈ L2(Ω) and a subsequence of (Dm)m≥1, again denoted by (Dm)m≥1, such that
(ψ(vm))m≥1 converges to ū weakly in L2(Ω) and strongly in L1(Ω) (this implies in particular
the strong convergence in Lq(Ω) for all q < 2).
We extend ψ(vm), ū, vm and v̄ by 0 outside Ω and we now prove that v̄ = ∇ū in the distri-
butional sense on R

d. This will conclude that ū ∈ H1(Rd) and, since ū = 0 outside Ω, that
ū ∈ H1

0 (Ω).
Let e ∈ R

d and ϕ ∈ C∞
c (Rd). For simplicity, we drop the index m for Dm, vm and u = ψ(vm).

We multiply each equation of (7) by
∫
σ ϕ(x) dγ(x)e · nK,σ. We sum all these equations and we

gather by control volumes, getting T3 = T4 with

T3 =
∑

K∈M

vK ·
∑

σ∈EK

∫

σ
ϕ(x) dγ(x) e · nK,σ(xσ − xK)

and

T4 = −
∑

K∈M

uK

∑

σ∈EK

∫

σ
ϕ(x) dγ(x) e · nK,σ = −

∫

Ω
u(x)div(ϕ(x)e) dx.

We have

lim
size(D)→0

T4 = −
∫

Ω
ū(x)div(ϕ(x)e) dx = −

∫

Rd

ū(x)div(ϕ(x)e) dx

(recall that ū has been extended by 0 outside Ω). We now want to compare T3 with T5 defined
by

T5 =
∑

K∈M

vK ·
∑

σ∈EK

1

m(K)

∫

K
ϕ(x) dx m(σ) e · nK,σ(xσ − xK).

Since there exists C5 only depending on ϕ such that
∣∣∣∣

1

m(σ)

∫

σ
ϕ(x) dγ(x) − 1

m(K)

∫

K
ϕ(x) dx

∣∣∣∣ ≤ C5size(D),

we get that

|T3 − T5| ≤ C5size(D)
∑

K∈M

|vK |
∑

σ∈EK

m(σ)|xσ − xK |.

But m(σ)|xσ − xK | ≤ ωd−1diam(K)d ≤ ωd−1regul(D)
ωd

m(K) and, since card(EK) ≤ regul(D), we
obtain

|T3 − T5| ≤ C5size(D)
ωd−1regul(D)2

ωd
‖v‖L1(Ω)
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and thus
lim

size(D)→0
(T3 − T5) = 0.

Moreover, thanks to Lemma 5.1, we get T5 =
∫
Ω ϕ(x)v(x) · e dx and so limsize(D)→0 T5 =∫

Ω ϕ(x)v̄(x) · e dx =
∫

Rd ϕ(x)v̄(x) · e dx (v̄ has been extended by 0 outside Ω). This proves that
∫

Rd

ϕ(x)v̄(x) · e dx = −
∫

Rd

ū(x)div(ϕ(x)e) dx,

which completes the proof of the lemma. ¤

2.3 The scheme

Let D be an admissible discretization of Ω in the sense of Definition 2.1. We consider here
the following scheme: finding (v, u) ∈ Hd

D × HD satisfying (7) and a family of real numbers
F = (FK,σ)K∈M , σ∈EK

such that

FK,σ + FL,σ = 0, ∀σ = K|L ∈ Eint, (12)

mKΛKvK =
∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M (13)

(where ΛK = 1
mK

∫
K Λ(x) dx) and

−
∑

σ∈EK

FK,σ =

∫

K
f(x) dx, ∀K ∈ M. (14)

This scheme can be understood the following way: thanks to Lemma 5.1, we expect from (13)
that FK,σ ≈ m(σ)(ΛKvK) · nK,σ (i.e. that FK,σ is the flux of Λv through σ). This explains
the conservativity imposed in (12). In this setting, (14) is simply the integration on the control
volumes of −div(Λv) = f (an equation which is to be expected if we think of v as some
approximation of the gradient of the solution to (1)). The equation (7) gives then a discrete u
whose discrete gradient is v, and thus u itself stands for an approximation of the solution to (1).

We present in the sequel three types of mathematical analysis. The first one is devoted to the
proof of the convergence of this scheme on particular meshes, and to an error estimate. The
second one is the proof that, for general meshes, one can ensure the existence and the uniqueness
of u,v and the existence but not the uniqueness of F . For this reason, we develop in a next
part the study of a slightly modified version of the scheme, which applies on general meshes and
whose additional advantage is to allow an easy implementation.

2.4 Simplicial meshes: convergence of the scheme

A control volume K is a simplex (or is simplicial) if it is the interior of the convex hull of
d + 1 points of R

d such that no affine hyperplane of R
d contains all of them, and if the con-

dition Card(EK) = d + 1 holds. We then call “simplicial meshes” the meshes whose all control
volumes are simplicial. We prove here that, for simplicial meshes, there is a unique solution to
((7),(12),(13),(14)) and that this solution converges, as size(D) → 0 and regul(D) stays bounded,
to the weak solution to (1).

Let us first state an estimate on the fluxes, which holds under conditions (13)-(14).
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Lemma 2.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω in
the sense of definition 2.1, such that regul(D) ≤ θ for some θ > 0 and M is a simplicial mesh.
Let v ∈ Hd

D and a family of real numbers F = (FK,σ)K∈M , σ∈EK
be given such that (13) and

(14) hold. Then there exists C6 only depending on d, Ω, Λ and θ such that

∑

K∈M

∑

σ∈EK

diam(K)2−dF 2
K,σ ≤ C6(||f ||2L2(Ω) + ||v||2L2(Ω)d). (15)

Proof. For K ∈ M, let AK be the (d+1)×(d+1) matrix whose columns are (1,xσ−xK)T
σ∈EK

(since K is simplicial, it has d + 1 edges and AK is indeed a square matrix). The equations
(13)-(14) can be written AKFK = EK , where FK = (FK,σ)σ∈EK

and

EK =

(
−

∫
K f(x) dx

m(K)ΛKvK

)
.

We now want to estimate ||A−1
K || and, in order to achieve this, we divide the rest of the proof in

several steps.

Step 1 : this step is devoted to allow the assumption diam(K) = 1 in Steps 2 and 3.
Let K0 = diam(K)−1K. Then xK,0 = diam(K)−1xK ∈ K0 and the barycenters of the edges of
K0 are xσ,0 = diam(K)−1xσ. Notice also that, if ρK,0 is the supremum of the radius of the balls
included in K0, then

1

ρK,0
=

diam(K0)

ρK,0
=

diam(K)

ρK
≤ regul(D)1/d ≤ θ1/d. (16)

Let AK,0 be the (d + 1)× (d + 1) matrix corresponding to K0, that is to say whose columns are
(1,xσ,0 − xK,0)

T
σ∈EK

= (1, diam(K)−1(xσ − xK))T
σ∈EK

. Since

AK =




1 0 · · · 0

0 diam(K)
. . .

...
...

. . .
. . . 0

0 · · · 0 diam(K)




AK,0,

we have ||A−1
K || ≤ sup(1, diam(K)−1)||A−1

K,0||. Hence, an estimate on ||A−1
K,0|| gives an estimate

on ||A−1
K ||.

Step 2 : estimate on AK,0.
By (16), K0 contains a closed ball of radius 1

2θ−1/d. Up to a translation (which does not change
the vectors xσ,0−xK,0, and hence does not change AK,0), we can assume that this ball is centered
at 0. Since diam(K0) = 1, we have then B(0, 1

2θ−1/d) ⊂ K0 ⊂ B(0, 1).

Let Zθ be the set of couples (L,xL), where L is a simplex such that B(0, 1
2θ−1/d) ⊂ L ⊂ B(0, 1)

and xL ∈ L. Each simplex is defined by d + 1 vertices in R
d so Zθ can be considered as a

subset of P = (Rd)d+1/Sd+1 × R
d, where Sd+1 is the symmetric group acting on (Rd)d+1 by

permuting the vectors. As such, Zθ is compact in P : it is straightforward if we express the
condition “the adherence of a simplex contains B(0, 1

2θ−1/d)” as “any point of B(0, 1
2θ−1/d) is a

convex combination of the vertices of the simplex”, which is a closed condition with respect to
the vertices of the simplex.
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For (L,xL) ∈ Zθ, let M(L,xL) be the set of (d + 1) × (d + 1) matrices whose columns are, up
to permutations, (1,xσ − xL)T

σ∈EL
(EL being the set of edges of L and xσ being the barycenter

of σ). M(L,xL) can be considered as an element of Md+1(R)/Sd+1 (Sd+1 acting by permuting
the columns) and the application (L,xL) ∈ Zθ → M(L,xL) ∈ Md+1(R)/Sd+1 is continuous: to
see this, just recall that the barycenter of an edge σ ∈ EL is xσ = 1

d

∑d
i=1 xi, where xi are the

vertices of σ (i.e. all vertices but one of L).
If (L,xL) ∈ Zθ, all the matrices of M(L,xL) are invertible. Indeed, assume that such a matrix
has a non-trivial element (λ1, . . . , λd+1) in its kernel; this leads (denoting (σ1, . . . , σd+1) the
edges of L) to

∑d+1
i=1 λi = 0 and

∑d+1
i=1 λi(xσi

− xL) =
∑d+1

i=1 λixσi
= 0. Assuming λd+1 6= 0, we

then can write xσd+1
=

∑d
i=1 µixσi

with
∑d

i=1 µi = 1 (since µi = −λi/λd+1). This means that
xσd+1

is in the affine hyperplane H generated by the other barycenters of edges. Note that H is
parallel to σd+1 (this is a straightforward consequence of Thales’ theorem at the vertex which
does not belong to σd+1, and of the fact that the barycenters (xσ1 , . . . ,xσd

) of the edges are in
fact the barycenters of the vertices of the corresponding edge). Therefore H contains the whole
edge σd+1, because it contains xσd+1

∈ σd+1. Let a be the vertex of L which does not belong to
σd+1; a belongs to σ1 and we denote (b1, . . . ,bd−1) the other vertices of σ1 (which also belong
to σd+1). We have xσ1 = 1

d(a+
∑d−1

i=1 bi), and therefore a = dxσ1 −
∑d−1

i=1 bi; but d−∑d−1
i=1 1 = 1

and thus a belongs to the affine hyperplane generated by (xσ1 ,b1, . . . ,bd−1). Since all these
points belong to H, we have a ∈ H and, since σd+1 ⊂ H, all the vertices of L in fact belong to
H; L is thus contained in an hyperplane, which is a contradiction with the fact that it contains
a non-trivial ball. Thus, for (L,xL) ∈ Zθ, M(L,xL) is in fact an element of Gld+1(R)/Sd+1.
The inversion inv : Gld+1(R) → Gld+1(R) is continuous; hence, ||inv(·)|| : Gld+1(R) → R is also
continuous. Permuting the columns of a matrix comes down to permuting the lines of its inverse,
which does not change the norm; therefore ||inv(·)|| : Gld+1(R)/Sd+1 → R is well defined and
also continuous.
We can now conclude this step. The application Zθ → Gld+1(R)/Sd+1 → R defined by (L,xL) →
M(L,xL) → ||inv(M(L,xL))|| is continuous. Since Zθ is compact, this application is bounded
by some C7 only depending on d and θ. As (K0,xK,0) ∈ Zθ, this shows that ||A−1

K,0|| ≤ C7.

Step 3 : conclusion.
Using the preceding steps, we find ||FK || ≤ ||A−1

K || ||EK || ≤ C7 sup(1, diam(K)−1)||EK ||. Hence,
∑

K∈M

diam(K)2−d||FK ||2 ≤ C2
7 sup(diam(Ω)2, 1)

∑

K∈M

diam(K)−d||EK ||2.

But ||EK ||2 ≤ m(K)
∫
K |f(x)|2 dx + C8m(K)2v2

K with C8 only depending on Λ. Since m(K) ≤
ωddiam(K)d, this concludes the proof of (15). ¤

We can now state the existence and estimate on the solution of the scheme.

Lemma 2.5 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of definition 2.1, such that M is a simplicial mesh. Then there exists a unique
(v, u, F ) such that ((7),(12),(13),(14)) hold. Moreover, for all θ ≥ regul(D), there exists C9

only depending on d, Ω, Λ and θ such that

||v||2L2(Ω)d ≤ C9||f ||2L2(Ω) (17)

and ∑

K∈M

∑

σ∈EK

diam(K)2−dF 2
K,σ ≤ C9||f ||2L2(Ω). (18)
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Proof.

We first notice that, since ((7),(12),(13),(14)) is square linear in (v, u, F ), it suffices to prove
that any solution satisfies the estimate in order to obtain the existence and uniqueness of the
solution (because f = 0 then implies F = 0 and v = 0 which, in turn, gives u = 0 thanks to
(8)).

Multiplying (14) by uK , summing on the control volumes and gathering by edges, we have,
thanks to (12),

∑

σ∈Eint, σ=K|L

FK,σ(uL − uK) +
∑

σ∈Eext, σ∈EK

−FK,σuK =

∫

Ω
u(x)f(x) dx.

Using (7) and gathering by control volumes, this gives

∫

Ω
u(x)f(x) dx =

∑

σ∈Eint, σ=K|L

FK,σvK · (xσ − xK) + FL,σvL · (xσ − xL)

+
∑

σ∈Eext, σ∈EK

FK,σvK · (xσ − xK)

=
∑

K∈M

vK ·
∑

σ∈EK

FK,σ(xσ − xK).

Thanks to (13), we then deduce

∫

Ω
f(x)u(x) dx =

∑

K∈M

m(K)ΛKvK · vK =

∫

Ω
Λ(x)v(x) · v(x) dx. (19)

In particular, by property of Λ, α0||v||2L2(Ω)d ≤ ||f ||L2(Ω)||u||L2(Ω) and the estimate (17) follows

from (8). We then deduce (18), applying Lemma 2.4. ¤

We can now prove the convergence result.

Theorem 2.1 Let us assume Assumptions (2)-(4). Let (Dm)m≥1 be admissible discretization
of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as m → ∞, (regul(Dm))m≥1 is
bounded and Mm is a simplicial mesh. Let (vm, um, Fm) be the solution to ((7),(12),(13),(14))
for the discretization Dm. Let ū be the weak solution to (1).
Then, as m → ∞, vm → ∇ū strongly in L2(Ω)d and um → ū weakly in L2(Ω) and strongly in
Lq(Ω) for all q < 2.

Proof.

The assumptions of Lemma 2.3 are satisfied and there exists thus ū ∈ H1
0 (Ω) such that, up to a

subsequence, vm → ∇ū weakly in L2(Ω)d and um → ū weakly in L2(Ω) and strongly in Lq(Ω)
for all q < 2.
We now prove that the limit function ū is the weak solution to (1). Since any subsequence of
(vm, um) has a subsequence which converges as above, and since the reasoning we are going to
make proves that any such limit of a subsequence is the (unique) weak solution to (1), this will
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conclude the proof, except for the strong convergence of vm. In order to simplify the notations,
we drop the index m as in the proof of Lemma 2.3.

Let ϕ ∈ C∞
c (Ω). We multiply (14) by ϕ(xK) and we sum on K. Gathering by edges thanks to

(12), we get
∑

σ∈Eint,σ=K|L

FK,σ(ϕ(xL) − ϕ(xK)) =
∑

K∈M

∫

K
ϕ(xK)f(x) dx

as long as size(D) is small enough (so that ϕ = 0 on the control volumes K such that ∂K∩∂Ω 6=
∅). We set, for σ = K|L,

ϕ(xL) − ϕ(xK) =
1

m(K)

∫

K
∇ϕ(x) dx · (xσ − xK) +

1

m(L)

∫

L
∇ϕ(x) dx · (xL − xσ) + RKL

and we have |RKL| ≤ Cϕ(diam(K)2 +diam(L)2). We thus obtain, gathering by control volumes
and using (13) (and the fact that ϕ = 0 on the control volumes on the boundary of Ω),

∫

Ω
ΛDv(x) · ∇ϕ(x) dx =

∫

Ω
f(x)ϕD(x) dx + T6, (20)

where ΛD and ϕD are constant respectively equal to ΛK and ϕ(xK) on each mesh K, and

|T6| ≤ Cϕ

∑

σ∈Eint,σ=K|L

|FK,σ|(diam(K)2 + diam(L)2) = Cϕ

∑

K∈M

∑

σ∈EK

diam(K)2|FK,σ|. (21)

We can write, using Cauchy-Schwarz inequality,

|T6|2 ≤ C2
ϕ




∑

K∈M

∑

σ∈EK

diam(K)2−dF 2
K,σ







∑

K∈M

∑

σ∈EK

diam(K)4diam(K)d−2




≤ C10size(D)2
∑

K∈M

∑

σ∈EK

diam(K)d

≤ C10size(D)2regul(D)
regul(D)

ωd
m(Ω)

where, according to Lemma 2.5, C10 does not depend on the mesh since regul(D) stays bounded
(we have also used (6)). Hence, T6 → 0 as size(D) → 0 and we can pass to the limit in (20) to
conclude that ū is a weak solution to (1).

It remains to prove that the convergence of v is strong. We use (19): this equality implies,
since u → ū weakly in L2(Ω) and ū is a weak solution to (1), that

∫
Ω Λ(x)v(x) · v(x) dx →∫

Ω f(x)ū(x) dx =
∫
Ω Λ(x)∇ū(x) ·∇ū(x) dx as size(D) → 0. But N(w)2 =

∫
Ω Λ(x)w(x) ·w(x) dx

is a norm on L2(Ω)d, coming from a scalar product (defined by (Λ + ΛT )/2) and equivalent to
the usual norm. Since v → ∇ū weakly in L2(Ω)d and N(v) → N(∇ū) as size(D) → 0, this
proves that, in fact, v → ∇ū strongly in L2(Ω)d. ¤

In the case where the solution to (1) is regular, we can also derive an error estimate.

Theorem 2.2 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of Definition 2.1, such that regul(D) ≤ θ for some θ > 0 and M is a simplicial
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mesh. Let (v, u, F ) be the solution to ((7),(12),(13),(14)) for the discretization D and ū be the
weak solution to (1). We assume that Λ ∈ C1(Ω)d×d and ū ∈ C2(Ω).
Then there exists C11 only depending on d, Ω, ū, Λ and θ such that

‖v −∇ū‖L2(Ω)d ≤ C11size(D) (22)

and
‖u − ū‖L2(Ω) ≤ C11size(D). (23)

Proof. In this proof, we denote by Ci (for all integer i) various real numbers which can depend
on d, Ω, ū, Λ and θ, but not on size(D). We denote, for all K ∈ M and σ ∈ EK , ūK = ū(xK),
ūσ = ū(xσ),

F̄K,σ =

∫

σ
Λ(x)∇ū(x) · nK,σ dγ(x),

v̄K =
1

m(K)
Λ−1

K

∑

σ∈EK

F̄K,σ(xσ − xK)

(notice that ΛK is indeed invertible since, from (3), ΛK ≥ α0). Note that, thanks to Lemma
5.1, we have

|v̄K −∇ū(x)| ≤ C12diam(K), ∀x ∈ K , ∀K ∈ M. (24)

We thus get
v̄K · (xσ − xK) = ūσ − ūK + RK,σ, ∀K ∈ M, ∀σ ∈ EK ,

with |RK,σ| ≤ C13diam(K)2 for all K ∈ M and σ ∈ EK . Since ū is a classical solution to (1),
we have

−
∑

σ∈EK

F̄K,σ =

∫

K
f(x) dx, ∀K ∈ M.

We denote, for all K ∈ M and all σ ∈ EK , ûK = uK−ūK , v̂K = vK−v̄K and F̂K,σ = FK,σ−F̄K,σ

and we get

−
∑

σ∈EK

F̂K,σ = 0, ∀K ∈ M, (25)

mKΛK v̂K =
∑

σ∈EK

F̂K,σ(xσ − xK), ∀K ∈ M, (26)

v̂K · (xσ − xK) + v̂L · (xL − xσ) + RK,σ − RL,σ = ûL − ûK ,

∀K ∈ M, ∀L ∈ NK , with σ = K|L,

v̂K · (xσ − xK) + RK,σ = −ûK , ∀K ∈ M, ∀σ ∈ EK,ext.

(27)

We then multiply (25) by ûK and (27) by F̂K,σ. Using the conservativity of the fluxes F̂K,σ and
(26), we get ∑

K∈M

mKΛK v̂K · v̂K = −
∑

K∈M

∑

σ∈EK

RK,σF̂K,σ.
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We therefore get, thanks to the Cauchy-Schwarz inequality,

α0||v̂||2L2(Ω)d ≤
∑

K∈M

mKΛK v̂K · v̂K

≤




∑

K∈M

∑

σ∈EK

diam(K)2−dF̂ 2
K,σ




1/2 


∑

K∈M

∑

σ∈EK

diam(K)d−2R2
K,σ




1/2

.

We can then apply Lemma 2.4, which holds for F̂ and v̂ (setting f = 0) and, recalling that
|RK,σ| ≤ C13diam(K)2, we get

||v − v̄||L2(Ω)d = ||v̂||L2(Ω)d ≤ C14size(D). (28)

The estimate (22) then follows from (24), which implies ||v̄ −∇ū||L∞(Ω)d ≤ C15size(D).

We now set νK = 1
m(K) for all K ∈ M. With this definition of ν, (27) implies that (v̂, R, û) ∈

Lν(D), as defined in Section 3. In order to apply Lemma 3.1, we need to compute

N2(D, ν, R)2 =
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KR2

K,σm(K).

We have

N2(D, ν, R)2 ≤
∑

K∈M

∑

σ∈EK

diam(K)2d−2m(K)
C2

13diam(K)4

m(K)2
≤ C16size(D)2. (29)

Since, by Lemma 3.1,

‖û‖L2(Ω) ≤ C17

(
‖v̂‖L2(Ω)d + N2(D, ν, R)

)
,

the estimate (23) follows from (28), (29) and an easy comparison between ūK and the values of
ū on K. Note that this also proves in this case the convergence of u to ū in L2(Ω) and not only
in Lq(Ω) for all q ∈ [1, 2). ¤

Remark 2.4 We could derive as well, in the case d ≤ 3, an error estimate in the case where
ū ∈ H2(Ω), following some ideas developed in [9] for example. This remark is also valid for
Lemma 3.2.

2.5 General meshes: existence of a discrete solution

In the case of general meshes, we do not know how to prove the convergence of the discrete
solution to the weak solution of (1) (but see the penalized scheme in Section 3). However, in
the case where Λ is symmetric, we can prove that there exists a solution to ((7),(12),(13),(14)),
and we can give some properties on this solution.

Definition 2.2 [Problem 1] Let us assume Assumption (2)-(4) and that Λ(x) is symmetric
for a.e. x ∈ Ω. Let D be a discretization of Ω in the sense of Definition 2.1. We say that v is
the solution of Problem 1 if v ∈ L∇

D and

J(v) = inf
w∈L∇

D

JD(w),

14



where JD : L∇
D → R is defined by

JD(w) =
1

2

∫

Ω
Λ(x)w(x) · w(x) dx −

∫

Ω
f(x)ψ(w)(x) dx.

If v ∈ L∇
D is such a solution, then it satisfies:

∀w ∈ L∇
D ,

∫

Ω
Λ(x)v(x) · w(x) dx =

∫

Ω
f(x)ψ(w)(x) dx.

Notice that, since JD is strictly convex and coercitive (ψ is linear) on a finite dimensional vector
space (L∇

D), the existence and uniqueness of a minimizer is obvious.

Lemma 2.6 Let us assume Assumptions (2)-(4) and that Λ(x) is symmetric for a.e. x ∈ Ω.
For all discretization D, let v ∈ L∇

D be the solution of Problem 1. Then there exists at least one
family of real numbers (FK,σ)K∈M,σ∈EK

such that (12),(13),(14) hold.

Proof. The solution of Problem 1 is a pair (v, u) ∈ Hd
D × HD which satisfies the minimum

value of 1
2

∫
Ω v(x) · Λ(x)v(x) dx −

∫
Ω f(x)u(x) dx under the constraints

vK · (xσ − xK) + vL · (xL − xσ) = uL − uK , ∀K ∈ M, ∀L ∈ NK ,
vK · (xσ − xK) = −uK , ∀K ∈ M, ∀σ ∈ EK,ext.

Let us choose, for all σ ∈ Eint, one of the two pairs (K, L) ∈ M2 such that σ = K|L, denoted
by (K(σ), L(σ)), and for all σ ∈ Eext, let us denote by K(σ) the element K ∈ M such that
σ ∈ EK,ext. Let us introduce, for all (v, u, (Fσ)σ∈E) the Lagrangian

L(v, u, (Fσ)σ∈E) =
1

2

∫

Ω
Λ(x)v(x) · v(x) dx −

∫

Ω
f(x)u(x) dx

−
∑

σ∈Eint

Fσ(uK(σ) − uL(σ) + vK(σ) · (xσ − xK(σ)) + vL(σ) · (xL(σ) − xσ))

−
∑

σ∈Eext

Fσ(uK(σ) + vK(σ) · (xσ − xK(σ))).

We now define FK,σ, for all K ∈ M, and all σ ∈ EK . If σ ∈ Eint, we set FK,σ = Fσ if K = K(σ),
else FK,σ = −Fσ. If σ ∈ Eext, we set FK,σ = Fσ. For all K ∈ M, we then obtain

∂L
∂uK

(v, u, (Fσ)σ∈E) = −
∑

σ∈EK

FK,σ −
∫

K
f(x) dx,

and, defining wK ∈ R
d by w

(i)
K = ∂L

∂v
(i)
K

(v, u, (Fσ)σ∈E), for all i = 1, . . . , d,

wK = mKΛKvK −
∑

σ∈EK

FK,σ(xσ − xK).

We now remark that there exists at least one family of Lagrange multipliers (Fσ)σ∈E such
that these partial derivatives vanish (it suffices to consider an extremal family of independent
constraints, and to complete the multiplier by 0 on the remaining ones). Then (FK,σ)K∈M,σ∈EK

is such that (12),(13),(14) hold, which concludes the proof of the Lemma. ¤
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Remark 2.5 (Non-uniqueness of (FK,σ)K∈M,σ∈EK
) In the general case, there is no unique-

ness property of (FK,σ)K∈M,σ∈EK
. Indeed consider a simple cartesian mesh in 2D; on one of the

control volumes, put the fluxes +1 on two parallel sides and −1 on the two other sides; extend
then these fluxes to the other squares by conservativity: you get a family of fluxes in the kernel
of (12),(13),(14) (in fact, this gives a full description of this kernel, which is of dimension 1 in
this particular case).
Nevertheless, in the general case, u and v remain unique and satisfy the same L2(Ω) estimate
and Poincaré’s inequality. However, the numerical computation of these values is quite complex,
because it demands to solve a linear system which is not invertible (though we can ensure that it
has at least one solution, by Lemma 2.6). Moreover, one of the main interests of Finite Volume
schemes is to provide meaningful discrete fluxes; hence, schemes for which the fluxes are not
unique (such as ((7),(12),(13),(14)) on some particular meshes, as we have seen above) are to
be avoided. This is why, on general meshes, the penalized version of the scheme given in the
next section is preferred.

3 A penalized scheme

3.1 The discretization space

Let us assume Assumption (2). Let D be an admissible discretization and ν = (νK)K∈M be
a family of positive numbers. We denote by F the set of real numbers (FK,σ)K∈M , σ∈EK

. We
define the set Lν(D) of all (v, F, u) ∈ Hd

D ×F × HD such that

vK · (xσ − xK) + vL · (xL − xσ) + νKm(K)FK,σ − νLm(L)FL,σ = uL − uK ,

∀K ∈ M, ∀L ∈ NK , with σ = K|L,

vK · (xσ − xK) + νKFK,σm(K) = −uK , ∀K ∈ M, ∀σ ∈ EK,ext.

(30)

As before, we will need the following properties on this discretization space.

Lemma 3.1 [Poincaré’s Inequality] Let us assume Assumption (2). Let D be an admissible
discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for some θ > 0. Let
(νK)K∈M be a family of positive real numbers. Then there exists C17 only depending on d, Ω
and θ such that, for all (v, F, u) ∈ Lν(D),

‖u‖L2(Ω) ≤ C17

(
‖v‖L2(Ω)d + N2(D, ν, F )

)
, (31)

where we have noted N2(D, ν, F ) =
(∑

K∈M

∑
σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)
)1/2

.

Proof.

We use the same reasoning and notations as in the proof of Lemma 2.1. After multiplying (30)
by

∫
σ ∇w(x) · nK,σ dγ(x), summing on the edges and gathering by control volumes, we find

T1 + T7 = ‖u‖2
L2(Ω), where T1 is the same as in the proof of Lemma 2.1 and

T7 =
∑

K∈M

∑

σ∈EK

νKFK,σm(K)

∫

σ
∇w(x) · nK,σ dγ(x)

=
∑

K∈M

∑

σ∈EK

νKFK,σm(K)m(σ)GK,σ · nK,σ.
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From the proof of Lemma 2.1, we now how to bound T1. We thus have to study T7, comparing
it with

T8 =
∑

K∈M

∑

σ∈EK

νKFK,σm(K)m(σ)GK · nK,σ.

We get, using (9),

(T7−T8)
2

≤




∑

K∈M

∑

σ∈EK

diam(K)m(σ)ν2
KF 2

K,σm(K)2







∑

K∈M

∑

σ∈EK

m(σ)

diam(K)
|GK − GK,σ|2




≤


ωd−1ωd

∑

K∈M

∑

σ∈EK

diam(K)2dν2
KF 2

K,σm(K)


 regul(D)C2||w||2H2(Ω)

≤ ωd−1ωddiam(Ω)2N2(D, ν, F )2regul(D)C2||w||2H2(Ω).

On the other hand, we have

T 2
8 ≤




∑

K∈M

∑

σ∈EK

m(σ)2ν2
KF 2

K,σm(K)







∑

K∈M

∑

σ∈EK

m(K)|GK |2



≤ ω2
d−1N2(D, ν, F )2

(
regul(D)

∑

K∈M

m(K)|GK |2
)

≤ ω2
d−1N2(D, ν, F )2regul(D)‖w‖2

H1(Ω).

We then write, using the bound on T1 obtained at the end of the proof of Lemma 2.1,

||u||2L2(Ω) = T1 + T7

≤ T1 + |T7 − T8| + |T8|

≤
√

ωd−1C2θ3

ωd
diam(Ω)‖v‖L2(Ω)||w||H2(Ω) + ||v||L2(Ω)d ||w||H1(Ω)

+
√

ωd−1ωdC2θ diam(Ω)N2(D, ν, F )‖w‖H2(Ω) + ωd−1

√
θ N2(D, ν, F )‖w‖H1(Ω)

and we conclude as in the proof of Lemma 2.1, using the fact that ||w||H2(Ω) ≤ C3||u||L2(Ω) (with
C3 only depending on d and Ω). ¤

Lemma 3.2 [Equicontinuity of the translations] Let us assume Assumption (2). Let D be
an admissible discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for some
θ > 0. Let (νK)K∈M be a family of positive real numbers. Then there exists C18 only depending
on d, Ω and θ such that, for all (v, F, u) ∈ Lν(D) and all ξ ∈ R

d,

‖u(· + ξ) − u‖L1(Rd) ≤ C18

(
‖v‖L1(Ω)d + N1(D, ν, F )

)
|ξ|, (32)

where N1(D, ν, F ) =
∑

K∈M

∑
σ∈EK

diam(K)d−1νK |FK,σ|m(K) (and u has been extended by 0
outside Ω).
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Proof. The proof is similar to that of Lemma 2.2. We introduce the same notation χ(x, ξ, σ).

Applying (30), we get, for a.e. x ∈ R
d, |u(x + ξ) − u(x)| ≤ T9(x) + T10(x) with

T9(x) =




∑

σ∈Eint,σ=K|L

χ(x, ξ, σ)(|vK ||xσ − xK | + |vL||xL − xσ|)

+
∑

σ∈Eext,σ∈EK

χ(x, ξ, σ)|vK ||xσ − xK |




and

T10(x) =




∑

σ∈Eint,σ=K|L

χ(x, ξ, σ) (νKm(K)|FK,σ| + νLm(L)|FL,σ|)

+
∑

σ∈Eext,σ∈EK

χ(x, ξ, σ)νKm(K)|FK,σ|


 .

The handling of T9(x) is similar to what is done in the proof of Lemma 2.2, and we obtain∫
Rd T9(x) dx ≤ C4||v||L1(Ω)d |ξ|. We have

T10(x) =
∑

K∈M

∑

σ∈EK

χ(x, ξ, σ)νKm(K)|FK,σ|

and, to bound this expression, we write
∫

Rd χ(x, ξ, σ) dx = m(σ)|nσ · ξ| ≤ ωd−1diam(K)d−1|ξ|
(for σ ∈ EK), which gives

∫

Rd

T10(x) dx ≤ ωd−1|ξ|
∑

K∈M

∑

σ∈EK

diam(K)d−1νK |FK,σ|m(K)

and concludes the proof. ¤

Lemma 3.3 [Compactness property] Let us assume Assumption (2). Let (Dm)m≥1 be
admissible discretizations of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as
m → ∞ and (regul(Dm))m≥1 is bounded. Let (vm, Fm, um, νm)m≥1 be such that (vm, Fm, um) ∈
Lνm(Dm), (vm)m≥1 is bounded in L2(Ω)d and N2(Dm, νm, Fm) → 0 as m → ∞ (N2 has been
defined in Lemma 3.1).
Then there exists a subsequence of (Dm)m≥1 (still denoted by (Dm)m≥1) and ū ∈ H1

0 (Ω) such
that the corresponding sequence (um)m≥1 converges to ū weakly in L2(Ω) and strongly in Lq(Ω)
for all q < 2, and such that (vm)m≥1 converges to ∇ū weakly in L2(Ω)d.

Proof.

Notice first that, for all discretization D, for all ν = (νK)K∈M positive number and for all
F = (FK,σ)K∈M , σ∈EK

,

N1(D, ν, F ) =
∑

K∈M

∑

σ∈EK

diam(K)d−1νK |FK,σ|m(K)

≤




∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)




1/2 


∑

K∈M

∑

σ∈EK

m(K)




1/2

≤ N2(D, ν, F )regul(D)1/2m(Ω)1/2.

18



Hence, if N2(D, ν, F ) and regul(D) are bounded, so is N1(D, ν, F ).

Owing to this, we can reason as in the proof of Lemma 2.3: the hypotheses and Lemmas 3.1,
3.2 allow to extract a subsequence such that vm → v̄ weakly in L2(Ω)d and um → ū weakly in
L2(Ω) and strongly in Lq(Ω) for all q < 2. To prove that ū ∈ H1

0 (Ω) and ∇ū = v̄, we still follow
the proof of Lemma 2.3 (omitting the index m). Since

∣∣∣∣
∫

σ
ϕ(x) dγ(x)e · nK,σ

∣∣∣∣ ≤ Cϕm(σ),

we only have to prove that T11 =
∑

K∈M

∑
σ∈EK

m(σ)νK |FK,σ|m(K) tends to 0 (this quantity
bounds the additional term, with respect to the proof of Lemma 2.3, which appears when
multiplying (30) by

∫
σ ϕ(x) dγ(x) e · nK,σ). But, as noticed at the beginning of this proof,

T11 ≤ ωd−1N1(D, ν, F ) ≤ ωd−1m(Ω)1/2regul(D)1/2N2(D, ν, F ),

which completes the proof of the lemma, by assumption on the discretizations. ¤

3.2 The scheme

Let D be an admissible discretization of Ω in the sense of Definition 2.1 and ν = (νK)K∈M be
positive numbers. We consider the scheme defined by (30), the conservativity property

FK,σ + FL,σ = 0, ∀σ = K|L ∈ Eint, (33)

the condition
mKΛKvK =

∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M, (34)

and the relation

−
∑

σ∈EK

FK,σ =

∫

K
f(x) dx, ∀K ∈ M. (35)

We now prove the existence and uniqueness of a solution to this scheme, and give an estimate
on this solution.

Lemma 3.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω in
the sense of Definition 2.1. Let (νK)K∈M be a family of positive real numbers. Then there exists
one and only one (v, F, u) ∈ Lν(D) solution of ((30),(33),(34),(35)). Moreover, for all ν0 > 0,
for all β0 ≥ β ≥ 2 − 2d such that νK ≤ ν0diam(K)β (∀K ∈ M) and for all θ ≥ regul(D), this
solution satisfies

‖v‖2
L2(Ω)d +

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ C19||f ||2L2(Ω) (36)

where C19 only depends on d, Ω, α0, θ, ν0 and β0.

Proof. Notice first that, since ((30),(33),(34),(35)) is square and linear in (v, F, u), it suffices
to prove the estimate in order to obtain the existence and uniqueness of the solution (because
f = 0 then implies F = 0 and v = 0, and thus u = 0 by (31)).
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Multiply (35) by uK , sum on the control volumes and gather by edges using (33); multiply (30)
by FK,σ, sum on the edges and gather by control volumes still using (33). This gives, by (34),

∫

Ω
v(x) · Λ(x)v(x) dx +

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) =

∫

Ω
f(x)u(x) dx (37)

≤ ||f ||L2(Ω)||u||L2(Ω).

Using Young’s inequality and Lemma 3.1, we deduce that, for all ε > 0,

α0||v||2L2(Ω)d +
∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ 1

2ε
||f ||2L2(Ω) + εC2

17||v||2L2(Ω)d

+εC2
17

∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K). (38)

Since νK ≤ ν0diam(K)β , we have νKdiam(K)2d−2 ≤ ν0diam(K)β+2d−2 ≤ ν0diam(Ω)β+2d−2 ≤
ν0 sup(1, diam(Ω)β0+2d−2) (recall that β + 2d − 2 ≥ 0). Hence, (38) gives

α0||v||2L2(Ω)d +
∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ 1

2ε
||f ||2L2(Ω) + εC2

17||v||2L2(Ω)d

+εν0 sup(1, diam(Ω)β0+2d−2)C2
17

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K).

Taking ε = min( α0

2C2
17

, 1
2ν0 sup(1,diam(Ω)β0+2d−2)C2

17
) concludes the proof of the lemma. ¤

We now prove the convergence, as size(D) → 0 and with a suitable choice of (νK)K∈M, of the
solution to ((30),(33),(34),(35)) to the weak solution of (1).

Theorem 3.1 Let us assume Assumptions (2)-(4). Let (Dm)m≥1 be admissible discretizations
of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as m → ∞ and (regul(Dm))m≥1

is bounded. Let ν0 > 0 and β ∈ (2 − 2d, 4 − 2d) be fixed. For all m ≥ 1, let (vm, Fm, um) be
the solution to ((30),(33),(34),(35)) for the discretization Dm, setting νK = ν0diam(K)β for all
K ∈ Mm. Let ū be the weak solution to (1).
Then, as m → ∞, vm → ∇ū strongly in L2(Ω)d and um → ū weakly in L2(Ω) and strongly in
Lq(Ω) for all q < 2.

Proof.

For the simplicity of the notations, we omit the index m. First, thanks to Estimate (36) and
since νK = ν0diam(K)β , we get

N2(D, ν, F )2 =
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)

= ν0

∑

K∈M

∑

σ∈EK

diam(K)β+2d−2νKF 2
K,σm(K)

≤ ν0size(D)β+2d−2C20

where C20 does not depend on the discretization D (recall that regul(D) is bounded). Since
β + 2d − 2 > 0, this last quantity tends to 0, and so does N2(D, ν, F ), as size(D) → 0. Hence,
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still using (36), we see that the assumptions of Lemma 3.3 are satisfied: there exists ū ∈ H1
0 (Ω)

such that, up to a subsequence and as size(D) → 0, v → ∇ū weakly in L2(Ω)d and u → ū
weakly in L2(Ω) and strongly in Lq(Ω) for q < 2.
Since (35) is similar to (14), (33) is similar to (12) and (34) is similar to (13), we can reason as in
the proof of Theorem 2.1 and we arrive at (20). It remains to prove that T6 → 0 as size(D) → 0
(to see that ū is a weak solution to (1)), and that v strongly converges.

We have, from (21),

|T6|2 ≤


Cϕ

∑

K∈M

∑

σ∈EK

diam(K)2|FK,σ|




2

≤ C2
ϕ




∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K)







∑

K∈M

∑

σ∈EK

diam(K)4

νKm(K)




≤ C21

∑

K∈M

∑

σ∈EK

diam(K)4

νKm(K)2
m(K) (39)

where, according to (36), C21 does not depend on the mesh since regul(D) stays bounded. But

νK = ν0diam(K)β and diam(K)d ≤ regul(D)
ωd

m(K), so that

diam(K)4

νKm(K)2
≤ regul(D)2diam(K)4−β

ω2
dν0diam(K)2d

=
regul(D)2

ω2
dν0

diam(K)4−2d−β .

Since 4 − 2d − β > 0, we deduce from (39) that

|T6|2 ≤ C21
regul(D)2

ω2
dν0

size(D)4−2d−β
∑

K∈M

∑

σ∈EK

m(K) ≤ C21regul(D)3m(Ω)

ω2
dν0

size(D)4−2d−β

and this quantity tends to 0 as size(D) → 0, which concludes the proof that ū is a weak solution
to (1).

The strong convergence of v to ∇ū is a consequence of (37). From this equation, and defining
N(w)2 =

∫
Ω Λ(x)w(x)·w(x) dx as in the proof of Theorem 2.1, we have N(v)2 ≤

∫
Ω f(x)u(x) dx

and thus

lim sup
size(D)→0

N(v)2 ≤ lim
size(D)→0

∫

Ω
f(x)u(x) dx =

∫

Ω
f(x)ū(x) dx = N(∇ū)2 (40)

(we use the fact that u → ū weakly in L2(Ω) and that ū is the weak solution to (1)). But
N is a norm on L2(Ω)d and v → ∇ū weakly in L2(Ω)d as size(D) → 0, so that N(∇ū) ≤
lim infsize(D)→0 N(v). We conclude with (40) that N(v) → N(∇ū) as size(D) → 0 and, there-

fore, the weak convergence of v to ∇ū in L2(Ω)d is in fact strong. ¤

Remark 3.1 As a consequence of (37) and the strong convergence of v to ∇ū, we see that∑
K∈M

∑
σ∈EK

νKF 2
K,σm(K) → 0 as size(D) → 0. This strengthens Lemma 3.4 which only

states that this quantity is bounded.
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Remark 3.2 In a similar way as above, we could get the convergence of um to ū in L2(Ω) by
assuming a uniform regularity property for the mesh. Thanks to the error estimate below, we
nevertheless get this strong convergence in some particular cases, with no additional hypothesis
on the discretization.

We now derive an error estimate, which also could be extended to the case d ≤ 3 and ū ∈ H2(Ω)
following some arguments of [9].

Theorem 3.2 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of Definition 2.1, such that size(D) ≤ 1 and regul(D) ≤ θ for some θ > 0. We take
ν0 > 0 and β ∈ (2−2d, 4−2d) and, for all K ∈ M, we let νK = ν0diam(K)β. Let (v, F, u) be the
solution to ((30),(33),(34),(35)). Let ū be the weak solution to (1). We assume that Λ ∈ C1(Ω)
and ū ∈ C2(Ω).
Then there exists C22 only depending on d, Ω, ū, Λ, θ and ν0 such that

‖v −∇ū‖L2(Ω)d ≤ C22size(D)
1
4

min(β+2d−2,4−2d−β) (41)

and
‖u − ū‖L2(Ω) ≤ C22size(D)

1
4

min(β+2d−2,4−2d−β) (42)

(note that the maximum value of 1
4 min(β + 2d − 2, 4 − 2d − β) is 1

4 , obtained for β = 3 − 2d).

Proof.

The proof is similar to that of Theorem 2.2, and we use the same notations. We have the same
relations as in the proof of Theorem 2.2, except for (27) which becomes

v̂K · (xσ − xK) + v̂L · (xL − xσ) + νKm(K)FK,σ + RK,σ

−νLm(L)FL,σ − RL,σ = ûL − ûK ,

∀K ∈ M, ∀L ∈ NK , with σ = K|L,

v̂K · (xσ − xK) + νKFK,σm(K) + RK,σ = −ûK , ∀K ∈ M, ∀σ ∈ EK,ext.

(43)

We then get, multiplying (25) by ûK , (43) by F̂K,σ and using (26),
∑

K∈M

mKΛK v̂K · v̂K +
∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) = T12 − T13 + T14, (44)

where
T12 =

∑

K∈M

∑

σ∈EK

νKFK,σF̄K,σm(K),

T13 =
∑

K∈M

∑

σ∈EK

RK,σFK,σ,

T14 =
∑

K∈M

∑

σ∈EK

RK,σF̄K,σ.

Since |F̄K,σ| ≤ C23m(σ) ≤ C23ωd−1diam(K)d−1 and |RK,σ| ≤ C13diam(K)2, it is straightforward
to see that |T14| ≤ C12size(D). Thanks to the Cauchy-Schwarz inequality, we get

T 2
12 ≤




∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K)







∑

K∈M

∑

σ∈EK

νK F̄ 2
K,σm(K)


 .
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Using Lemma 3.4 with β0 = 4 − 2d ≥ β, we thus obtain T 2
12 ≤ C19||f ||2L2(Ω)C24size(D)β+2d−2.

We also have

T 2
13 ≤




∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K)







∑

K∈M

∑

σ∈EK

m(K)
R2

K,σ

νKm(K)2




≤ C19||f ||2L2(Ω)C25size(D)4−2d−β .

Gathering these estimates in (44) leads to

||v̂||2L2(Ω) ≤ C26

(
size(D) + size(D)

1
2
(β+2d−2) + size(D)

1
2
(4−2d−β)

)
(45)

and (41) follows, using the fact that size(D) ≤ 1 and that ||v̄ −∇ū||L∞(Ω)d ≤ C15size(D).

We now set F̃K,σ = FK,σ +
RK,σ

νKm(K) for all K ∈ M and σ ∈ E and we estimate N2(D, ν, F̃ ) the
following way:

N2(D, ν, F̃ )2 =
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
K F̃ 2

K,σm(K)

≤ 2
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)

+2
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
Km(K)

C2
13diam(K)4

(νKm(K))2

≤ C27(size(D)β+2d−2 + size(D)2) (46)

(we have used (36)). We can apply Lemma 3.1, since (43) implies that (v̂, F̃ , û) ∈ Lν(D): we
obtain

‖û‖L2(Ω) ≤ C17

(
‖v̂‖L2(Ω)d + N2(D, ν, F̃ )

)

and (42) follows from (45), (46) and an easy estimate between ūK and the values of ū on K. ¤

Remark 3.3 This error estimate is not sharp, and the numerical results below show a much
better order of convergence.

4 Implementation

We present the practical implementation in the case where Λ(x) is symmetric for a.e. x ∈ Ω,
though it is valid for any Λ.

4.1 Resolution procedure

The size of System ((30),(33),(34),(35)) is equal to (d + 1)Card(M) + 2Card(Eint) + Card(Eext).
However, it is possible to proceed to an algebraic elimination which leads to a symmetric positive
definite sparse linear system with Card(Eint) unknowns, following the same principles as in the
hybrid resolution of a mixed finite element problem (see for example [17]). Indeed, for all (v, F, u)
such that (30) and (34) hold, we define (uσ)σ∈EK

by

vK · (xσ − xK) + νKFK,σm(K) = uσ − uK , ∀K ∈ M, ∀σ ∈ E .
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We thus have that uσ = 0 for all σ ∈ EK,ext. We can then express (v, F ) as a function of
(uσ)σ∈EK

and of u, since we have

1

m(K)

∑

σ′∈EK

FK,σ′Λ−1
K (xσ′ − xK) · (xσ − xK) + νKFK,σm(K) = uσ − uK ,

∀K ∈ M, ∀σ ∈ E ,

which is, for all K ∈ M, an invertible linear system with unknown (FK,σ)σ∈EK
, under the form

BK(FK,σ)σ∈EK
= (uσ − uK)σ∈EK

where BK is a symmetric positive definite matrix (thanks to
the condition νK > 0). We can then write

FK,σ =
∑

σ′∈EK

(B−1
K )σσ′(uσ′ − uK), ∀K ∈ M, ∀σ ∈ EK . (47)

We then obtain from (35), denoting bK,σ′ =
∑

σ∈EK
(B−1

K )σσ′ and bK =
∑

σ′∈EK
bK,σ′ , that uK

satisfies the relation

−
∑

σ′∈EK

bK,σ′uσ′ + bKuK =

∫

K
f(x) dx. (48)

We have (bK,σ′)σ′∈EK
= B−1

K (1)σ′∈EK
and therefore we get bK = (1)σ′∈EK

·B−1
K (1)σ′∈EK

> 0 since
B−1

K is symmetric positive definite. Reporting the previous linear relations in (33), we find

∑

σ′∈EK

(
(B−1

K )σσ′ − bK,σbK,σ′

bK

)
uσ′ +

∑

σ′∈EL

(
(B−1

L )σσ′ − bL,σbL,σ′

bL

)
uσ′ =

bK,σ

bK

∫

K
f(x) dx +

bL,σ

bL

∫

L
f(x) dx, ∀σ = K|L ∈ Eint,

(49)

which is a symmetric linear system, whose unknowns are (uσ)σ∈Eint . Let us show that its matrix
M is positive. We can write, for all family of real numbers (uσ)σ∈Eint ,

(uσ)σ∈Eint · M (uσ)σ∈Eint =
∑

K∈M




∑

σ∈EK

∑

σ′∈EK

(B−1
K )σσ′uσuσ′ −

(
∑

σ∈EK
bK,σuσ)2

bK


 .

Thanks to the fact that B−1
K is symmetric positive definite, we get, using the Cauchy-Schwarz

inequality,

(
(1)σ∈EK

· B−1
K (uσ)σ∈EK

)2 ≤
(
(1)σ∈EK

· B−1
K (1)σ∈EK

) (
(uσ)σ∈EK

· B−1
K (uσ)σ∈EK

)
,

which is exactly 


∑

σ∈EK

bK,σuσ




2

≤ bK

∑

σ∈EK

∑

σ′∈EK

(B−1
K )σσ′uσuσ′ .

In order to show that M is definite, we simply remark that the preceding reasoning shows that
the systems ((30),(33),(34),(35)) and (49) are equivalents. Hence, since ((30),(33),(34),(35)) has
a unique solution, so must (49), which means that M is invertible.

We then solve System (49) in the practical implementation of the penalized scheme, using a
direct solver. We then compute (u, F ) thanks to relations (48) and (47). Moreover, even in the
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case of simplicial meshes where the non-penalized scheme could be used, we nevertheless use the
penalized scheme in order to obtain the approximate solution using System (49). Note that, in
the case of simplicial meshes, letting νK tends to 0 leads to a limit of System (49) corresponding
to the inversion of each local matrix AK , which is not the case otherwise since, in the case of
a general mesh, AK can be rectangular. Note that the non-penalized scheme provides a unique
solution for (u,v), for which we did not prove the convergence. Nevertheless, we expect that the
non-penalized solution is more precise than a significantly penalized one, and therefore we let
νK = 10−9/m(K) for all the following computations (we used a direct method for the inversion
of matrices BK). In all the cases, the points xK have been located at the center of gravity of
the control volumes.

4.2 Numerical results

All the following numerical results have been obtained for the case d = 2, Ω = (0, 1) × (0, 1),
Λ = Id and ū(x) = x(1)(1 − x(1))x(2)(1 − x(2)) for all x = (x(1), x(2)) ∈ Ω.

Remark 4.1 We have also successfully used the scheme for the numerical study of some aniso-
tropic heterogeneous problems. However, we do not present these results here (which are roughly
similar to the ones below), preferring for shortness reasons to focus on the application of the
scheme to various types of grids.

We first present in Figure 1 two different simplicial (i.e. triangular) discretizations Dt1 and Dt2

(in the sense presented above in this paper) used for the computation of an approximate solution
for the problem. We also show in Figure 1 the error eD, defined by

eK =
|uK − ū(xK)|
‖ū‖L∞(Ω)

, ∀K ∈ M,

using discretizations Dt1 and Dt2. Note that these discretizations do not respect the Delaunay
condition on a sub-domain of Ω, and that the 4-point finite volume scheme (see [9]) cannot be
used on these grids. The grids Dt2 and Dt3 (which is not represented here) have been obtained
from Dt1 (containing 400 control volumes) by the respective divisions by 2 and 4 of each edge
(there are 1600 control volumes in Dt2 and 6400 in Dt3). The errors in L2 norms obtained with
these grids are given in the following table.

‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

Dt1 5.1 10−4 1.8 10−2

Dt2 1.9 10−4 9.0 10−3

Dt3 8.2 10−5 4.5 10−3

order of convergence ≥ 1 1

We observe that the numerical orders of convergence for ‖u− ū‖L2(Ω) and ‖v−∇ū‖L2(Ω)d seem
to be equal to 1, and therefore no super-convergence property can reasonably be expected in
this case.
We then present in Figure 2 discretizations Dq1 and Dq2 and error eD using these grids. Such grids
could be obtained using a refinement procedure: for example, in the case of coupled systems, the
grid might have been refined in order to improve the convergence on another equation (thanks
to some a posteriori estimates maybe) and must then be used to solve (1) which is the second
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Figure 1: Top: discretizations used for the numerical tests (left: Dt1, right: Dt2), bottom:
error eD obtained with Dt1 (left: black=0, white = 2.2 10−2) and Dt2 (right: black=0, white =
8.9 10−3).

part of the system. The grid Dq2 has been obtained from Dq1 by a uniform division of each edge
by 2, and similarly Dq3 (not represented here) has been obtained from Dq2 in the same way. The
respective errors in L2 norms obtained with these grids are given in the following table.

‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

Dq1 8.7 10−4 5.8 10−3

Dq2 1.7 10−4 1.3 10−3

Dq3 3.9 10−5 4.0 10−4

order of convergence ≥ 2 ≥ 1

We then observe that the numerical order convergence is better than 2 for ‖u − ū‖L2(Ω), which
corresponds to a case of a mainly structured grid (there is no significant additional error located
at the internal boundaries between the differently gridded subdomains, see Figure 2).
Finally, in Figure 3, we represent grids D♭ and D♯ and the error eD thus obtained. These meshes
(which have the same number of control volumes) could correspond to the case of moving meshes
(for example, due to a phenomenon of compaction, see [13]). The respective errors in L2 norms
obtained with these grids are given in the following table.

‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

D♭ 2.0 10−4 6.7 10−4

D♯ 4.6 10−4 1.8 10−3

We observe that the error is mainly connected to the size of the control volumes, and maybe to
some effect of loss of regularity of the mesh.
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Figure 2: Top: discretizations used for the numerical tests (left: Dq1, right: Dq2), bottom:
error eD obtained with Dq1 (left: black=0, white = 2.7 10−2) and Dq2 (right: black=0, white =
5.3 10−3).

Figure 3: Top: discretizations used for the numerical tests (left: D♭, right: D♯), bottom: error eD
obtained with D♭ (left: black=0, white = 5.4 10−3) and D♯ (right: black=0, white = 1.5 10−2).
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5 Appendix

Lemma 5.1 Let K be a non empty open convex polygonal set in R
d. For σ ∈ EK (the edges of

K, in the sense given in Definition 2.1), we let xσ be the center of gravity of σ; we also denote
nK,σ the unit normal to σ outward to K. Then, for all vector e ∈ R

d and for all point xK ∈ K,
we have

m(K)e =
∑

σ∈EK

m(σ)e · nK,σ(xσ − xK).

Proof.

We denote by a superscript i the i-th coordinate of vectors and points in R
d. By Stokes formula,

we have

m(K)ei =

∫

K
div((xi − xi

K)e) dx =
∑

σ∈EK

∫

σ
(xi − xi

K)e · nK,σ dγ(x)

and the proof is concluded since, by definition of the center of gravity,
∫
σ(xi − xi

K) dγ(x) =∫
σ xi dγ(x) − m(σ)xi

K = m(σ)xi
σ − m(σ)xi

K . ¤

The following lemma is quite similar to Lemma 7.2 in [7], but since we need this result with
slightly more general hypotheses than in this reference, we include the full proof for sake of
completeness.

Lemma 5.2 Let K be a non empty open polygonal convex set in R
d. Let E be an affine hyper-

plane of R
d and σ be a non empty open subset of E contained in ∂K ∩E. We assume that there

exists α > 0 and pK ∈ K such that B(pK , αdiam(K)) ⊂ K. We denote △K,σ the convex hull
of σ and pK . Then there exists C28 only depending on d and α such that, for all v ∈ H1(K),

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(ξ) dγ(ξ)

)2

≤ C28dist(pK , E)2

m(△K,σ)

∫

△K,σ

|∇v(x)|2 dx.

Proof.

The regular functions being dense in H1(K) (since K is convex), it is sufficient to prove the
lemma for v ∈ C1(RN ). By translation and rotation, we can assume that E = {0} × R

d−1,
σ = {0} × σ̃ with σ̃ ⊂ R

d−1 and that pK = (p1, 0) with p1 = dist(pK , E).
Notice that, since K is convex and ∂K ∩E contains a non empty open subset of E, K is on one
side of E. In particular, B(pK , αdiam(K)) is also on one side of E (it is contained in K) and

p1 = dist(pK , E) ≥ αdiam(K). (50)

For a ∈ [0, p1], we denote σ̃a = {z ∈ R
d−1 | (a, z) ∈ △K,σ}. By definition, (a, z) ∈ △K,σ if and

only if there exists t ∈ [0, 1] and y ∈ σ̃ such that t(p1, 0)+(1− t)(0, y) = (a, z); this is equivalent

to t = a
p1

and z = (1 − t)y =
(
1 − a

p1

)
y. Thus, σ̃a =

(
1 − a

p1

)
σ̃.

For all y ∈ σ̃ and all a ∈ [0, p1], we have

v(0, y) − v

(
a,

(
1 − a

p1

)
y

)
=

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dt.
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Integrating on y ∈ σ̃ and using the change of variable z =
(
1 − a

p1

)
y, we find

∫

σ
v(ξ) dγ(ξ) − 1

(
1 − a

p1

)d−1

∫

σ̃a

v(a, z) dz =

∫

σ̃

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdy.

Multiplying by
(
1 − a

p1

)d−1
and integrating on a ∈ [0, p1], we obtain

∫

σ
v(ξ) dγ(ξ)

∫ p1

0

(
1 − a

p1

)d−1

da −
∫ p1

0

∫

σ̃a

v(a, z) dzda

=

∫ p1

0

(
1 − a

p1

)d−1 ∫

σ̃

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda.

But
∫ p1

0

(
1 − a

p1

)d−1
da = p1

d and m(△K,σ) = m(σ)p1

d ; therefore, dividing by m(△K,σ), we find

1

m(σ)

∫

σ
v(ξ) dγ(ξ) − 1

m(△K,σ)

∫

△K,σ

v(x) dx

=
1

m(△K,σ)

∫ p1

0

(
1 − a

p1

)d−1 ∫

σ̃

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda. (51)

For all y ∈ σ̃, we have |y| = |(0, y)| ≤ |(0, y) − pK | + |pK | ≤ diam(K) + p1 (because (0, y) and
pK belong to K). By (50), this implies |y| ≤ ( 1

α + 1)p1 and thus
∣∣∣∣∣

∫ p1

0

(
1 − a

p1

)d−1 ∫

σ̃

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda

∣∣∣∣∣

≤ C29

∫ p1

0

(
1 − a

p1

)d−1 ∫

σ̃

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ adtdyda

≤ C29

∫ p1

0

∫

σ̃

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a

(
1 − ta

p1

)d−1

dtdyda (52)

where C29 only depends on α (we have used the obvious fact that, for t ∈]0, 1[, 1− a
p1

≤ 1− ta
p1

).
But, for all a ∈]0, p1[, the change of variable

ϕa : (t, y) ∈]0, 1[×σ̃ → z =

(
ta,

(
1 − t

a

p1

)
y

)
∈ ϕa(]0, 1[×σ̃)

has Jacobian determinant equal to a
(
1 − ta

p1

)d−1
and therefore

∫

σ̃

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a

(
1 − ta

p1

)d−1

dtdy =

∫

ϕa(]0,1[×σ̃)
|∇v(z)|dz.

Moreover, (ta, (1− t a
p1

)y) = ta
p1

(p1, 0)+(1− ta
p1

)(0, y) with ta
p1

∈]0, 1[; hence, ϕa(]0, 1[×σ̃) ⊂ △K,σ

and we obtain
∫ p1

0

∫

σ̃

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a

(
1 − ta

p1

)d−1

dtdyda ≤ p1

∫

△K,σ

|∇v(z)|dz.
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We introduce this inequality in (52) and use the resulting estimate in (51) to obtain

∣∣∣∣∣
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(ξ) dγ(ξ)

∣∣∣∣∣ ≤
C29p1

m(△K,σ)

∫

△K,σ

|∇v(x)|dx

and the conclusion follows from the Cauchy-Schwarz inequality, recalling that p1 = dist(pK , E).
¤

Lemma 5.3 Let K be a non empty open polygonal convex set in R
d such that, for some α > 0,

there exists a ball of radius αdiam(K) contained in K. Let E be an affine hyperplane of R
d and

σ be a non empty open subset of E contained in ∂K ∩ E. Then there exists C30 only depending
on d and α such that, for all v ∈ H1(K),

(
1

m(K)

∫

K
v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C30diam(K)

m(σ)

∫

K
|∇v(x)|2 dx.

Proof.

Let B(pK , αdiam(K)) ⊂ K and △K,σ be the convex hull of pK and σ. By Lemma 5.2, we have

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C28dist(pK , E)2

m(△K,σ)

∫

K
|∇v(x)|2 dx.

But m(△K,σ) = m(σ)dist(pK ,E)
d and dist(pK , E) ≤ dist(pK , σ) ≤ diam(K). Therefore,

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C28d diam(K)

m(σ)

∫

K
|∇v(x)|2 dx. (53)

Using Lemma 7.1 in [7], we get C31 only depending on d such that

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C31diam(K)d+2

m(△K,σ)m(K)

∫

K
|∇v(x)|2 dx,

which implies

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C31d diam(K)d+2

m(σ)dist(pK , E)m(K)

∫

K
|∇v(x)|2 dx.

But, as in the proof of Lemma 5.2, we have dist(pK , E) ≥ αdiam(K) (see (50)). Since m(K) ≥
ωdα

ddiam(K)d, we deduce that

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C31d diam(K)

ωdαd+1m(σ)

∫

K
|∇v(x)|2 dx. (54)

The lemma follows from (53) and (54). ¤
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