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1. INTRODUCTION

We formalize the localization of categories, as in the book of Gabriel and Zisman [9],
with the Coq computer proof assistant. The purpose of this preprint is to provide some
discussion of this work. On the other hand, the computer files themselves are attached to
the companion preprint “Files for Gabriel-Zisman localization”. The text of that preprint
consists mainly of the definitions and statements of results from the computer files (in other
words it is equal to the files with the proofs removed), plus some instructions for compiling
the files.

There are several reasons for choosing this project. A certain amount of basic category
theory was done in the files attached to my previous paper on this subject [30]. Thus it
is natural to look for some further topics to do in category theory. A long-range goal is to
be able to do the theory and practice of closed model categories. A glance at Quillen [23]
suggests that the notion of localization of categories a la Gabriel-Zisman is an important
component of the statements of some of Quillen’s main results. Also in philosophical terms
it is clear that Quillen was influenced by Gabriel and Zisman, so it is reasonable to think
that doing a computer formalization of their construction of localization would be a good
warm-up exercise.

Key words and phrases. Category, Functor, Localization, Calculus of fractions, Proof assistant, Computer
proof verification.
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2 C. SIMPSON

A little bit of investigation into the bibliographical references for this construction has
also turned up another interesting reason to formalize it on the computer. It turns out that
the full details of the construction (and specially of the calculus of fractions construction)
have never really appeared in print. Or at least, a search for these details has not turned up
any reference. Of course it wouldn’t be surprising to find a complete reference somewhere—
you might say that this would be the expected normalcy. Nonetheless it seems pretty clear
that the vast majority of the very numerous mathematicians who use this theory every day
haven’t in fact read a text with the full details written down.

The notion of localization of a category is foundational for some of the most popular tools
used by mathematicians today: the homotopy category (of spaces, simplicial sets, or other
things), and the derived category (of an abelian category, coming in various flavors). It
is surprising that the theory is so hard to find written down in its integrality. This might
contribute as part of an explanation for why the theories of homotopy categories and derived
categories are so much used and considered as “black boxes”.

One possible point of view would be to say that few have bothered to try to publish the
full details of the construction, because in a certain sense that just wouldn’t be worth it:
writing something down presupposes that there would be somebody interested in reading
it; and writing down the full details of an argument which is in essence straightforward,
presupposes that a human reader would desire to, and be capable of, verifying in a meaningful
way that the written text really did contain all of the details. Factors such as the total cost
of publication also push towards leaving out much of this type of argument.

In trying to write up the present note explaining the computer proof, it became evident
that one had to agree with the other published texts on this: the full details of the argument
just aren’t sufficiently interesting to justify the rather extensive linguistic effort which would
be required to accurately convey them to a human reader, nor interesting enough for the
reader to bother reading such an explanation. And this is with a fundamental piece of
category theory more than 40 years old. The arrival of the possibility that the “reader”
might be a computer changes this calculation. The computer is a perfect listener for an
explanation that can be given as a sort of flow of little arguments, sometimes with a necessary
global strategy behind them, but always with lots of things to remember, lots of referential
notations to refer to various objects, and so forth.

The purpose of the present preprint is to discuss our computer formulation, both of the
general localization construction and the special construction when there is a calculus of
fractions. We don’t pretend to give all the details in the text—indeed we stop at about the
same place as previous authors have. However, the details are necessarily all there in the
computer files [31].

Historically, the notion of localization appeared informally in a somewhat different form
in the Toéhoku paper of Grothendieck [11] where he formalizes (to some extent) language
which he attributes to Serre [27] of working in a category “modulo” a subcategory.

After Gabriel-Zisman, the question of localization of categories has been treated in a
number of references. Several people were helpful in pointing out some of these in response
to requests posted to the topology and category-theory mailing lists. The references include
books by L. and N. Popescu [19] [20], H. Schubert [25], and F. Borceux [3]. Curiously enough
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the localization construction doesn’t seem to appear in [14], although the underlying free
and quotient category techniques are there. A classical reference which chronologically goes
alongside Gabriel and Zisman is Verdier’s thesis but which was only recently published [32].
Verdier considers the case of localization of an additive category, inverting a multiplicative
system which satisfies a two-sided calculus of fractions. The construction is similar to the
left-fraction construction.

The above list of references is undoubtedly partial. It doesn’t include very many of what
are certainly numerous research papers since the time of [9] which may treat aspects of these
issues in some detail ([1] is an example).

Nonetheless, it is interesting to note the prevalence of formulations leaving “to the reader”
parts of the proofs of details of the localization constructions. For example (the following
all refer to the left or right fractions construction):

[32], p. 117: “La preuve est facile et laissée au lecteur qui pourra démontrer de méme la
proposition ci-apres ...”.

[25], p. 260: “Using (i), (ii), (iii) and (v), there is no difficulty in verifying that the composite
...is well defined, ...”.

[20], p. 155: “It is not difficult to see that with the equivalence relation (2) introduced above
one also has a well-defined composition law ...".

Another interesting reference is Pronk’s paper on localization of 2-categories [21], pointed
out to me by I. Moerdijk. This paper constructs the localization of a 2-category by a subset
of 1-morphisms satisfying a generalization of the right fraction condition. In this case, there
is no need to divide by an equivalence relation on the set of 1-arrows, because the appropriate
arrows (i.e. pairs or what we call “fraction symbols”) are identified by the presence of 2-cells
making them equivalent. On the other hand, knowing which 2-cells are there would tell us
which fraction-symbols need to be identified in the 1-localization. Thus it seems likely that
from the high level of detail present in [21], one could extract the complete set of necessary
arguments for the localization of a 1-category. Nonetheless, the full set of details for the
coherence relations on the level of 2-cells is still too much, so the paper ends with:

[21], p. 302: “It is left to the reader to verify that the above defined isomorphisms a, [ and
r are natural in their arguments and satisfy the identity coherence axioms.”

We take the opportunity at this point in the introduction to mention the colimit point
of view about localization, even though it isn’t treated in our proof verification files. The
contents of this discussion are touched upon by Gabriel-Zisman in 1.5.4 of Chapter I, see
also 6.2 of Chapter II, and since then has become even more well-known.

The localization C[X7!] can be viewed as a pushout or colimit in the category of categories
(one has to fix a universe Y and consider colimits in the category of U-categories). To be
precise, it is a pushout fitting into a cocartesian diagram

YxI — C

L
YxI — C[Zfl]

where here ¥ denotes the discrete set of maps to be inverted (considered as a discrete
category)_, I denotes the category with objects 0 and 1 and one non-identity arrow 0 — 1,
and I C I denotes the completion to a category with two objects 0 and 1 joined by a single
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isomorphism. In a certain sense the fact that this diagram is cocartesian just restates the
universal property of the localization.

Ross Street in [24] mentionned the above pushout point of view as well as another closely
related terminology, saying that the localization is the “coinverter” of the 2-cell o which is
the natural transformation from

dom:YX — C to cod: X — C.

The fact that the localization is a pushout implies that this operation is compatible with
colimits of categories. For example suppose

A — B
l !
c —- P

is a cocartesian diagram of categories, and >4, g, and Y are subsets of morphisms in
A, B and C respectively such that >4 maps into g and Y. Let Xp be the union of the
images of X and ¥¢. Then the diagram

AZy'l — B[ZE]

! !
CEa'] — P[Ep]

is cocartesian. Let’s stress that none of this is proven in the proof files.

An interesting case is when we take ¥ = Mor(C) to be the full set of morphisms of a
category. In this case the localization is the groupoid-completion, the universal groupoid with
a functor from C', denoted

C® .= C[Mor(C)™ .
The compatibility with colimits stated above gives the following statement for groupoid
completions: if

A — B
| |
¢ — P
is a cocartesian diagram of categories then the diagram of groupoids
As® _, B
| |
cs . per

is cocartesian (either in the category of U-categories, or in the category of U-groupoids). The
groupoid completion C*" is equivalent to the Poincaré fundamental groupoid of the realization
of the nerve of C' (denoted by |C| for short). In view of which, the above statement can
be viewed as a sort of Van Kampen theorem for fundamental groupoids in the style of R.
Brown [4]. To make this view totally precise we would have to look at when the corresponding
diagram of spaces |A|, | B|, |C|, |P| is a pushout of spaces, which is sometimes but not always
the case.

Ross Street also pointed out to me in [24], that the problem of localizing a noncommutative
ring is closely related (and somewhat similar to the Verdier case in that it brings in additive
structure). He sent me some notes treating in great detail the ring localization; it should



GABRIEL-ZISMAN LOCALIZATION 5

be relatively easy to transform those into a computer proof for this case. On the subject
of notes, Clark Barwick mentions that he had written up some notes about Lemma 1.2 of
Gabriel-Zisman; there are probably (one would hope) a number of mathematicians who have
done so.

Here is the plan of the paper. We will discuss first the general construction of the local-
ization in a mathematical fashion; this is followed by a section discussing the issues which
arise in the computer formulation. Then we come back to a mathematical discussion of the
calculus-of-fractions construction, including discussion of the subtleties which arise when we
go towards the full details of the argument. The section after that discusses the new issues
which arise in the computer formulation, notably how we deal with the commutative dia-
grams which one is tempted to use for the proof. In the last section, we mention very briefly
the contents of the remaining files in the present development.

2. THE GENERAL LOCALIZATION CONSTRUCTION

We recall in usual mathematical terms how the general construction of the localization of
a category works, taken directly from the first two pages after the introduction in Gabriel-
Zisman [9]. Fix a category C and a subset ¥ C Mor(C) of morphisms. We make no
assumption about 3. We construct the localization, denoted C[X7!], as follows. Start by
taking the disjoint union Mor(C)UX. The arrows in the first factor are thought of as going in
the forward direction, and the arrows in the second factor as going in the backward direction.
This allows us to create a directed graph whose vertices are the objects of C and whose set
of edges is Mor(C) LU X. Let F denote the free category over this graph. Recall that this
means that the objects of F are the vertices of the graph (thus, the same as the objects of
C), and the morphisms of F are directed paths in the graph.

Next introduce some relations on F, and let C[>~!], which we denote as £ for short, be
the quotient of F by these relations. The relations are trivial on the set of objects, that is to
say no different objects are put in relation and related morphisms share the same source and
target. The relations are introduced with the purpose of insuring the following properties
for the quotient L:

(1) the natural map on arrows Mor(C) — Mor(F) (which is not itself a functor) projects
to a functor C — L; and

(2) if w € X then the image in C of the backward edge corresponding to u (that is, the
element of the second factor of the disjoint union) is inverse in £ to the image of u by the
functor in (1).

The relations are chosen heuristically in a minimal way to accomplish this. In Gabriel-
Zisman this process is written in a compact way: the very process of taking the quotient
category implies that we want the set-theoretical quotient of Mor(F) by the full set of
relations, to be the set of morphisms of a category. This in itself contains some properties
of compatibility between the relations and the composition and identity operations. Call a
relation which satisfies these properties, a categorical relation. We can start by specifying
an arbitrary list of relations and then take the closure under this condition, that is the
smallest categorical relation containing our list of relations. Once we have decided to do
this, we can list the germinal relations as follows: condition (1) requires that we specify two
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types of relations, one for compatibility of the functor with the composition, and one for the
compatibility of the functor with the identity; and condition (2) requires again two types
of relations, one each for the left and right inverse properties. Thus we need to impose 4
families of relations to start with. These are listed on page 6 of Gabriel-Zisman (as well
as in our proof file, see below). Given this list of relations, the quotient £ is constructed
by first completing to the smallest categorical relation ~ containing the list, then taking
Mor(L) := Mor(F)/ ~. It is straightforward to show that this defines a category £, with
a functor F — L satisfying properties (1) and (2) above, since we constructed the relation
that way on purpose. We obtain a functor Py : C — L sending elements of ¥ to invertible
morphisms in L.

So much for the construction. The next step is to state and prove an appropriate universal
property. On the first page of the construction they give the main properties which are (I
am quoting):

“(i) Ps makes the morphisms of ¥ invertible,
(ii) If a functor F' : C — & makes the morphisms of 3 invertible, there exists one and only
one functor G : C[X7!'] — X such that ' = G- Py.”

After explaining the construction in 14 lines at the bottom of page 6 and the top of page
7 (which I have paraphrased above), Gabriel-Zisman jumped right up to a highly abstract
formulation of the universal property which we recopy here together with a few subsequent
phrases:

“1.2. Lemma: For each category X, the functor Hom(Ps, X) : Hom(C[2 7], X) — Hom(C, X)
is an isomorphism from Hom(C[X 1], X) onto the full subcategory of Hom(C,X) whose objects are
the functors F': C — X which make all the morphisms of X3 invertible.

“The proof is left to the reader. This lemma states more precisely conditions (i) and (ii). From

nowon ...”

Afterwards they pass immediately to the discussion of motivating examples like when the
multiplicative system comes from a pair of adjoint functors.

This text (which totals less than a full page) is quite interesting from the point of view
of the problem of formalizing mathematics on the computer. In a very short space the
authors have indicated, without error and indeed giving all of the necessary information, a
relatively complex mathematical construction, together with a very abstract statement of
the universal property satisfied by this construction. Starting with the information given
here, it is a straightforward (and mathematically uninteresting) exercise to fill in all of the
required details.

Creating a proof document to be read by a computer proof assistant raises a certain
number of mild difficulties. As a test, I have tried to attain the exact statement of Lemma
1.2 given above. Before getting to a discussion of some details of this process in the next
section, it is interesting to note here that the time it took to do this was about a month,
and the resulting total size of the 3 proof files involved (freecat.v, qcat.v and gzdef.v)
is about 10,000 lines.
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3. THE COMPUTER FORMULATION

In order to formalize the general localization construction, we use the Coq proof assistant
[6]. We place ourselves in an axiomatic environment which implements classical Zermelo-
Fraenkel set theory, and also relates it to the type theory of Coq. Concretely, the proof files
attached to [31] include identical copies of the proof files of my earlier set theory and category
theory developments [30]. The set-theoretical part of this starts with a file axioms.v con-
taining all of the axioms we assume (that is, no subsequent files use the Axiom or Parameter
commands). These axioms are intended to implement ZFC within Coq. However, we furnish
no formal proof of the fact that they do indeed do that, in other words that together with the
Coq “calculus of inductive constructions” type system, they furnish a mathematical system
which is consistent within the context of the usual ZFC axioms. It would be good to have
such a proof, but that seems to be complicated (due to the complicated structure of Coq)
and possibly nontrivial due to certain aspects of Coq’s type system such as cumulativity
between sorts Prop and Type. One would have to prove Conjecture 2 of Miquel and Werner
[18]. This is left to the reader!

The next question which is left open is to convince oneself that the definitions and state-
ments of lemmas contained both in the present files as well as in the category theory files,
accurately represent what the mathematician means when he speaks of categories, functors
and so forth. This again may contain some nontrivial aspects and is left to the reader. The
accompanying preprint “Files for Gabriel-Zisman Localization” [31] is intended to help with
this task: the textual part of this preprint consists of the Coq files, with all proofs taken
out. There one can look directly at the definitions and statements of lemmas, which are the
only parts which need to be understood in order to verify the meaning of what is being said.
(However, this is done only for the files concerning localization; in principle it might be a
good idea to have the same thing for the set-theory and category-theory developments but
that would be lengthy.)

While speaking about these foundational questions for the computer formulation, it is
important to note that one could undoubtedly use any of a number of other environments
for treating this question. For example, it should be possible to proceed based on Saibi’s
category theory contribution [26] where sets are replaced by “setoids” (types plus equivalence
relations). This is particularly so in that one major element of the localization construction
is the notion of quotient category. It is likely that a setoid approach would simplify certain
aspects, at the price of introducing other complications elsewhere. We don’t venture to
predict how economical that would be on the whole. One should of course also envision
doing this type of formalization within other proof assistants (the list of which is getting
very long and we don’t attempt to reproduce it here, see [28] [16] [15]).

For the reader who, at this point, still feels that a computer formalization can add some-
thing to the question of verifying the mathematics underlying the localization construction,
we now consider some details.

3.1. Category theory. We only treat small categories, i.e. ones whose objects and mor-
phisms form sets. In this context any distinction between small and big categories would
be made by refering to a Grothendieck universe (which would itself be a set). However, in
the current development we don’t treat the question of when the localization of a category
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which is big but has small hom sets with respect to a given universe, is again big but with
small hom sets with respect to that universe. Thus, we are always working with sets and no
foundational acrobatics come into play.

Most major notational questions about categories have already been dealt with in the
category theory files. A category is a 5-uple consisting of the set of objects, the set of
morphisms, the graph of the partially defined composition operation, the graph of the identity
operation, and a fifth set which is destined to contain any eventual extra structure one might
want to include. The positions in the 5-uple are indicated by character strings (i.e. the 5-
uple is a function whose domain is a set of 5 specific character strings corresponding to the
5 places). This schema isn’t the most economical: the necessary data (excepting the last
structure variable) is contained in the graph of the composition morphism. The goal is rather
to achieve some rudimentary standardization of the procedure for considering mathematical
objects.

One feature of the category-theory encoding which is worthwhile to recall here is that the
set of morphisms is supposed to contain only objects u which themselves are triples containing
a source, a target, and a third indicative element. This property is written Arrow.like u.
Here as before, these triples are realized as functions whose domain is a set of 3 character
strings. This allows us to consider source u and target u for an arrow u, independantly
of the category for which u is a morphism. Here we have an economy of notation which has
been extremely useful throughout the category theory development. In our discussion below
we will encounter several places where a certain modification of the “obvious” approach is
made necessary by the Arrow.like hypothesis. These modifications are easy to do once
we are aware of the phenomenon—which is why I am devoting some space below to these
explanations.

Similar notational considerations hold for functors and natural transformations. We refer
to [30] for further discussion of these issues.

3.2. The free category. The first step in our current files is freecat.v where we construct
the free category on a graph. Since a morphism in the free category is a path in the graph,
we need to implement the notion of path. This touches on what G. Gonthier explained
was an important piece of their work formalizing the 4-color theorem [10]. However, the
approaches are not the same since we are much less concerned with efficient computation on
these objects and more concerned with their theoretical manipulation. The notion of path
also appears in T. Hales’ recent formalization of the Jordan curve theorem [12].

To implement a notion of “path”, we obviously need a theory of “uples”, which are imple-
mented as functions whose domain is an interval of natural numbers of the form [0,...,n—1]
where n is the length of the uple. We define the function Uple.create to create an uple of
length [ from a function f:nat -> E, and a function component to get back the ith element
of an uple. We need the length function as well as concatenate.

An important lemma is uple_extensionality which says that two uples of the same
length with the same elements are the same; this allows us to prove associativity of con-
catenation. J.S. Moore said for his ACL2 system that the first thing you would want to
prove was associativity of concatenation. In that type of system, uples or lists are inductive
objects and associativity is a statement proved by recurrence on the length. In Gonthier’s
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paper [10], the notion of path is defined structurally so that associativity is automatic by
term reduction and need not be mentionned as a lemma. In our case, the technical tool used
to simplify the proof of associativity, and most other manipulations of our uples which are
functions of natural numbers, is the omega tactic. The usefulness of this tactic, developped
by Crégut [7] based on an algorithm of Pugh [22], was pointed out to me by Marco Maggesi.
It dispatches easily any arithmetic statement involving the standard operations and inequal-
ities on natural numbers. In our proof files this powerful tactic is abbreviated as om which
could be interpreted alternatively as a reference to Buddhism or the Marseille soccer team.
Finishing the Uple module is the operation utack which corresponds to concatenation with
an uple of length one. This specific case enters often later so we treat it specifically.

The notion of graph is relatively easy to encode. A graph is a pair consisting of a set of
vertices, and a set of edges. The edges of a graph are also supposed to be arrows. This
situation is simple enough to provide a good example of our general notational procedure
which we can recopy here:

Definition Vertices := R (v_(r_(t_ DOT ))).

Definition Edges := R (e_(d_(g_ DOT))).

Definition vertices a := V Vertices a.

Definition edges a := V Edges a.

Definition create v 1=

denote Vertices v

(denote Edges e stop).

Definition Graph.like a := a = create (vertices a) (edges a).

[

Definition Graph.axioms a := Graph.like a &
(forall u, inc u (edges a) -> Arrow.like u) &
(forall u, inc u (edges a) -> inc (source u) (vertices a)) &
(forall u, inc u (edges a) -> inc (target u) (vertices a)).

We don’t do any theory of graphs beyond just the definition.

Next we look at the paths which will make up the morphisms of the free category on
a graph. These are arrows whose third term are uples; and furthermore the uples will
eventually (in the definitions arrow_chain and mor_freecat) be supposed to be sequences
of composable arrows in the graph, starting from the source of the arrow and ending at the
target. This situation requires a certain amount of specific treatment, for example we define
a version segment of the previous component function (and seg_length instead of length).
In general terms, this type of definition contracting two or some other small number of
functions which often occur together, necessitating the transposition of all of the lemmas
concerning the pieces, occurs all over the place and seems to be a general phenomenon.
The composition operation for the free category is defined by using concatenation of the
underlying uples. We also define the identity (whose uple has length 0) and prove all the
various things needed to obtain the category axioms. We then would like to consider functors
from the free category into another category. For this, we need to define the operation of
composing together a composable sequence of arrows in a category (the definition mor_chain
is very much like arrow_chain). In this way we can state a universal property of the free
category on a graph (see the results concerning the construction free_functor). To close out
this discussion we also consider (in the results concerning free_nt) natural transformations
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between functors whose sources are the free category. This is significantly easier because a
natural transformation is a function on objects, and the objects of the free category are just
the vertices of the graph.

3.3. Quotient categories. After the free category, the other main element of the construc-
tion is the notion of quotient category (qcat.v). We are in a situation which is significantly
easier than the general case: our relation has no effect on the objects. In other words, we
have a relation on the set of morphisms of a category, such that two morphisms which are
related already have the same source and target. It is convenient to distinguish two sepa-
rate notions, denoted (cat_rel a r) and (cat_equiv_rel a r). The first means that r is
an arbitrary relation on the morphisms of a category a, respecting source and target. The
second means that r is an equivalence relation and compatible with the composition of a.
One important example of a cat_equiv_rel is (coarse a) which puts in relation any two
morphisms with the same source and target. The existence of this maximal relation allows
us by intersection to define the smallest cat_equiv_rel containing a given cat_rel r. We
call this construction (cer a r) (here cer stands for the “categorical equivalence relation”
on the category a generated by r).

In order to construct the quotient category of a by r, we need a manipulation called
arrow_class. The reason for this is that in our notion of category, the morphisms are
supposed to be Arrow.like, i.e. triples having a source, a target and an arrow. Thus
we can’t just say that the set of morphisms of the quotient category is the usual quotient
(i.e. set of equivalence classes) of the set of morphisms by the relation. Thus we define
(arrow_class r u) to be the arrow with the same source and target as u, but whose third
element is the equivalence class of u for the relation r. Now the set of morphisms of the
quotient category will be the image of this construction as u runs through the morphisms
of a. The definition (is_quotient_arrow a r u) formalizes the statement that u is in the
image. We also need a construction (arrow_rep v) going in the other direction (see Lem-
mas related_arrow_rep_arrow_class and arrow_class_arrow_rep saying that the two
constructions are inverse in the appropriate sense). We then define quot_id and quot_comp,
the operations which will become the identity and composition for the quotient category.
As usual, before trying to construct the category it is a good idea to prove all of the nec-
essary properties for these constructions. Then when we construct (quotient_cat a r)
we prove destruct-create lemmas comp_quotient_cat and id_quotient_cat saying that
the identity and composition are quot_id and quot_comp. The destruct-create lemmas
ob_quotient_cat and mor_quotient_cat are proven after quotient_cat_axioms because
the properties ob and mor include the category axioms for their first variables.

The module Quotient_Functor does similar things for defining a functor qfunctor to the
quotient category, and a functor qdotted from the quotient category. The latter terminology
is intended to suggest that qdotted is the dotted arrow which is filled in in the universal
property of the quotient category. Thus if £ is a functor and r a categorical equivalence
relation on the category source f we get a functor qdotted r f such that

source (qdotted r f) = quotient_cat (source f) r
target (qdotted r f) = target f
fcompose (qdotted r f) (gprojection (source f) r) = f.
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The unicity statement for the universal property says that if £ is a functor with
source f = quotient_cat a r

then

f = qdotted r (fcompose f (gprojection a r)).

There are no particular difficulties encountered in these arguments beyond the kind we have
already discussed above.

Also contained in the file gcat.v is a module Ob_Iso_Functor dedicated to studying the
following situation. We have a functor £ and a category a. We study the pullback mor-
phism induced by f, denoted (pull_morphism a f), from (functor_cat (target f) a)
to (functor_cat (source f) a). Recall that these constructions come from the file on
functor categories functor_cat.v in the category-theory development. The purpose of
this module is to contribute to the proof of Gabriel-Zisman’s Lemma 1.2. In particu-
lar, we will want to apply this to the case where f is the functor from a category to its
localization. Thus we assume that f is an isomorphism on objects. We develop a cri-
terion for when (pull_morphism a f) is fully faithful and injective on objects (see the
definition iso_to_full_subcategory), or equivalently that it induces an isomorphism from
(functor_cat (target f) a) toa full subcategory of (functor_cat (source f) a). The
equivalence between these notions is shown in Lemma iso_to_full_subcategory_interp.

Intervening in the statement of the criterion is the construction add_inverses a s. This
is the subset of morphisms of a which are either already in s, or else are inverses in a to mor-
phisms in s. Our criterion, stated at the end of this module in Lemma
iso_to_full_subcategory_pull_morphism_criterion, says that if a functor f is an iso-
morphism on objects, and if (add_inverses (target f) (mor_image f)) generates the
category (target f), then for any category a the pullback functor pull_morphism a f is
an isomorphism onto a full subcategory. We will use this criterion, applied to the functor
from a category to its localization, to obtain half of the statement of Lemma 1.2.

Finishing out the file qcat.v is a module Associating_Quotient which substantially
recopies much of the definition of quotient category. The only difference is that we don’t start
with a category but only with a structure like a category but which doesn’t necessarily satisfy
the associativity or left and right identity axioms. The idea is that the equivalence relation
will enforce these axioms. This construction is not needed for the general construction of
localization, but it will be needed later for the construction of the category of fractions.
It didn’t seem necessary to go back and redo the whole quotient construction with this
generality in mind: it is easier to recopy the relevant parts and change them. This might
result in a file which is longer than necessary, but one should keep in mind that the variable
we are trying to economize is the energy necessary to produce (or understand) the collection
of files, not their total length.

3.4. Construction of the localization. Recall that the construction of the localization
starts by looking at the graph whose edge set is the disjoint union of the morphisms of a with
the elements of s. Since these two sets are anything but disjoint, we need some additional
notation to implement the disjoint union. To this end, the first thing one notices at the
start of the file gzdef.v is the introduction of two sets Forward and Backward. These are
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character strings (which are elements of E hence sets, see notation.v [29]). An edge of the
graph is either a “forward edge” corresponding to a morphism in a, or else a “backward
edge” corresponding to an element of the localizing system s. The obvious thing is to try
putting

forward_arrow u := pair Forward u

backward_arrow u := pair Backward u.

However, this doesn’t work. The reason is that the elements of the set of edges of the graph
are supposed to be Arrow.like. To remedy this problem, we set

forward_arrow u := Arrow.create (source u) (target u) (pair Forward u)
backward_arrow u := Arrow.create (target u) (source u) (pair Backward u).

Notice that the source and target are interchanged in the function backward_arrow. The
function original_arrow yields back the arrow we started with. Now loc_edges a s is
the set of such edges, i.e. the union of the images of forward_arrow and backward_arrow
respectively on the morphisms of a and on s. The union is disjoint because Forward and
Backward are distinct. Define the graph gz_graph a s whose vertices are the objects of a
and whose edges are loc_edges a s.

From here, the construction basically follows the ordinary one, and doesn’t really take
up too much space. The free category on gz_graph a s is called gz_freecat a s. The
definition gz_rel a s is where the defining relations for the construction of the localization
are listed. We recopy here a lemma which rewrites that definition in a slightly more readable
fashion.

Lemma related_gz_rel : forall a s e £, localizing_system a s —>
related (gz_rel a s) e f =

((exists x, (ob a x &

e = (forward_edge (id a x)) &

f = (freecat_id x))) \/

(exists q, (inc q s &

e = (freecat_comp (forward_edge q) (backward_edge q)) &

f = (freecat_id (target q)))) \/

(exists q, (inc q s &

e = (freecat_comp (backward_edge q) (forward_edge q)) &

f = (freecat_id (source q)))) \/

(exists u, exists v, (mor a u & mor a v & source u = target v &
e = (freecat_comp (forward_edge u) (forward_edge v)) &

f = (forward_edge (comp a u v))))).

The size of this text is comparable to the size of the paragraph of [9] where the relations are
listed. Then gz_cer a s is the associated categorical equivalence relation, and gz_loc a s
is the quotient category. The functor from a to gz_loc a s is called gz_proj a s.

The module GZ_Thm is where we prove Gabriel-Zisman’s Lemma 1.2. From the file qcat . v,
the module Ob_Iso_Functor furnishes the results necessary to prove the part of Lemma 1.2
which says that pullback is an isomorphism onto a full subcategory. As pointed out above,
one of the delicate points is that the statement of Lemma 1.2 involves the pullback morphism
pull_morphism between functor categories. Functor categories were treated in the category
theory development [30], and the place where we made use of that theory was in the module
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Ob_Iso_Functor so we don’t actually encounter it too much anymore here. This conclusion
is stated in the present file as iso_to_subcategory_pull_gz_proj, a corollary of the fact
that gz_loc is generated by adding available inverses to the morphism image of the functor
gZ_proj.

The main part of the work done in the present module is to prove the versal part of the
universal property. Furthermore, rather than just giving a proof we would like to have some
useful notation. We start by introducing this notation for the free category: the operation
fr_dotted corresponds to filling in the dotted line in a diagram expressing the versality of the
universal property. Similarly gdotted did the same thing in the file qcat . v, and putting them
together we get a construction called gz_dotted which expresses versality in the following
way. Given a, s and a functor £ with source f = a, we say loc_compatible a s f if
f sends elements of s to invertible morphisms in target f. Then gz_dotted a s f is a
functor with

source (gz_dotted a s f) = gz_loc a s
target (gz_dotted a s f) = target £
fcompose (gz_dotted a s f) (gz_proj a s) = £

The last property here, which is Lemma fcompose_gz_dotted_gz_proj, corresponds to
the versality property (ii) of [9], page 6. The uniqueness property (i) on page [9] was our
Lemma gz_proj_epimorphic. These are actually the properties which are the most useful
in practice.

Our version of Lemma 1.2 is given by two statements,iso_to_subcategory_pull_gz_proj
as noted above, and for identification of the full subcategory image of pull_gz_proj, the
lemma ob_image_pull_gz_proj.

It might eventually be useful to have a more concrete description of natural transformations
between functors starting from the localization, but apart from the fact that it is implicitly
contained in the statement of Lemma 1.2, we don’t treat this further here.

4. CALCULUS OF LEFT (OR RIGHT) FRACTIONS

When I gave a talk in Nice about the computer formulation of the general localization con-
struction, Charles Walter suggested that it would be interesting to compare the formalization
of the general construction of localization, with what would have to be done to construct
the localization in the presence of the habitual calculus of fractions conditions. With this
motivation I set out a while later to formalize the fractions construction from Chapter 2 of
Gabriel-Zisman.

Contrarily to the general construction, it turned out (in my own opinion at least) that
filling in the details of the left-fractions construction involved some nontrivial (if easy) math-
ematical thought, and drawing lots of diagrams. We don’t draw diagrams in the computer
formulation (that might someday be possible but it is beyond the reach of most computer
proof assistants for the moment). As a replacement, we set up definitions of situations in-
volving several arrows of a category, which correspond to the diagrams we would want to
draw. This will be discussed in the next section.
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In the present section we go into some detail about the mathematics of the problem, which
stems from the fact that Gabriel-Zisman state their fraction construction under a somewhat
weak collection of hypotheses about the localizing system.

The dual notions of left and right calculus of fractions are intended to be analogues of the
notion of multiplicative system for a commutative ring, which as was well-known leads to a
description of the localization as a set of “fractions”. In the case of categories, one would
like to represent elements of the localizations as “fractions” or diagrams

TSy Loz,

where by convention the arrows going backward are supposed to be in . This diagram is
viewed as representing the morphism ¢ ~1v of C[X7!] so it is called a left fraction symbol. We
would like to have a nice set of conditions guaranteeing first of all that every morphism of
the localization can be written as a fraction; and second guaranteeing that the equivalence
relation on formal symbols (#,v) whose quotient the set of morphisms ¢ 'v is easy to un-
derstand. This collection of conditions is the calculus of left fractions. There will be a dual
notion of calculus of right fractions obtained by conjugating everything with the ‘opposite’
construction. Aside from the problem of implementing this conjugation in the computer
formulation, we will focus on the left-fraction case.

The conditions for a calculus of left fractions are given on [9] page 12, (2.2 a,b,c,d). For
convenience we reproduce them here:
(a) ¥ contains the identity morphisms of all objects of C;
(b) 3 is closed under composition;

(c) If
X XLy
is a diagram with s € X then there exists a commutative square
X — Y
! l
X/ N Y/

such that the right downward map in the square is in ¥; and
(d) If f and g are two maps from X to Y such that there exists s € ¥ with fs = gs, then
there is a morphism ¢ : Y — Y’ in ¥ such that tf = tg.

Condition (c) says that every right fraction symbol can be completed to a left fraction
symbol (in the commutative square, X’ — Y’ « Y is a left fraction), that is dividing by an
element of ¥ on the right can be changed to division on the left. Condition (d) says that
equalization on the right can be changed to equalization on the left.

Most notable about this definition, specially in light of common practice in more recent
times, is what is left out. It is natural to require the following condition, which we call three
for two:

(e) if X %y L Zisa composable pair of morphisms, then if any two of f, g and fg are
in X, the third one is too.

In general we can define the saturation of a set of morphisms to be the set X% of all
morphisms in C which become invertible in C[X7!]. It is clear from the universal property
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that the functor
CIlE™ — (=) 7]

is an isomorphism, that is a set X and its saturation share the same localization. It is also
clear that for any set of morphisms, the saturation satisfies conditions (a), (b) and (e). Thus
from a certain perspective there would be no loss of generality in requiring that our set of
morphisms satisfy condition (e). For example, Quillen will later incorporate this condition
as an important part of his notion of “closed model category”.

Nonetheless, Gabriel-Zisman don’t make this requirement (and indeed they don’t even
speak of the three-for-two condition (e) near here in the text). When you start to look
closely at the details it becomes clear that stating and proving the construction of the left-
fraction localization in the absence of the three-for-two condition is a bit of a challenge, one
which they happily ask the reader to meet almost without saying anything about it, just
subtlely giving the correct definition of the equivalence relation so as to make it work.

Throughout the discussion of the left-fraction condition—as was the case for the general
construction too—Gabriel-Zisman make reference to the construction of the sets of mor-
phisms as being a direct limit construction. We ignore this aspect here: it isn’t treated in
the formal proof development and we don’t discuss it in the informal presentation either. In
fact it goes beyond the concrete character of the construction and it isn’t clear whether it rep-
resents a useable piece of information (although that doesn’t mean that it isn’t conceptually
important).

We now get to the description of the equivalence relations. We define a preliminary set of
formal symbols (¢, f) consisting of two arrows having the same target, the first of which is
in ¥. A left fraction symbol (¢, f) is drawn as a diagram

fooot
T =y 2.

We would like to define the set of morphisms of the left-fraction category to be the quotient
of this preliminary set by an equivalence relation ([9], the top of page 13). Before stating the
relation, notice that the “source” of the formal symbol (¢, f) is the source of f, whereas the
“target” of (¢, f) is defined to be the source of . We call the common target of ¢ and f the
vertex of the symbol. The equivalence relation will preserve source and target. Two symbols
(s, f) and (t, g) are said to be equivalent if there are maps a and b such that the source of a
is the vertex of (s, f) and the source of b is the vertex of (¢,¢g), and af = bg, as = bt, and
furthermore as = bt is in ¥. Note that these conditions automatically say that the targets
of a and b are the same. See the second diagram on page 13 of Gabriel-Zisman.

We can think of these conditions as giving a symbol (as,af) = (bt, bg) which is “beyond”
both (s, f) and (¢, g), and indeed this notion is what we use in the proof development. We
say that a symbol (r,u) is beyond (s, f) if there exists a morphism a whose source is the
vertex of (s, f) and target the vertex of (r,u), such that r = as and u = af. In this case we
say that the morphism a is an intermediary from (s, f) to (r,u).

A natural impulse would be to ask that the morphism a (or the morphisms a and b in the
definition of the equivalence relation) be in X. This would be automatic from the conditions
that s and as are in 3, if we had the three-for-two condition (e). However, if we try to do
the construction in the absence of (e), we shouldn’t ask that the intermediary morphism a
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be in ¥ because then the construction wouldn’t work. A counterexample is discussed in the
file 1fcx.v.

If we have condition (e), then the proof that this defines an equivalence relation is relatively
straightforward. Without it, things are somewhat more tricky. The details necessary to
overcome this problem must be considered as subsumed in the phrase “It follows from (a),
(b), (c), (d) that this defines an equivalence relation ...” in the middle of page 13 [9]. We
will now explain how to see that.

The main difficulty lies in proving that the equivalence relation is transitive. This may be
rewritten in terms of the notion of “beyond” as trying to show™ that if two different symbols
(r,u) and (r,u’) are both beyond (s, f), then there is a symbol (¢, v) which is beyond both
(r,u) and (r',u’). In this case we have morphisms a and o’ serving as intermediaries between
(s, f)and (r,u) or (r',u’) respectively. We would like to complete a and @’ to a commutative
square. For this we would hope to use condition (c¢), which requires one of the morphisms
to be in 3. If we had condition (e) then this would be OK; in general an additional step is
necessary.

Say that (r,u) is under (s, f) if there is a morphism « intermediary from (s, f) to (r,u)
such that a € X. Note that “under” implies “beyond” but not necessarily vice-versa. The
main observation is the following lemma, which gives a sort of weak replacement for the 3
for 2 property, and its corollaries.

Lemma 4.1. Suppose s € ¥ and a is a morphism composable with s, such that r := as s
in 3. Then there exists a morphism b such that ba € 3.

Proof: Consider the diagram

T S

It is a right-fraction symbol because r € . By condition (c) it can be transformed into a
left-fraction symbol: there exist morphisms x and ¢ with ¢ € ¥ and xr = ts. We would like
to factorize ¢ into a product ba, however we may need to go farther yet using condition (d).
Our morphism a goes from the target of s to the target of r, and we have

xras = xr =ts.

In particular, we have two morphisms za and ¢ with the same source and target, equalized
on the right by s € ¥. By condition (d) there is a morphism ¢ € ¥ such that cra = ct.
Recall that t € ¥ so ¢t € ¥, and we can set b = cx to obtain the lemma. O

In the proof files, the argument of Lemma 4.1 is integrated into the proof of Lemma
exists_1f_under as in the following corollary.

Corollary 4.2. Suppose (r,u) is beyond (s, f). Then there is another left fraction symbol
(t,v) such that (t,v) is beyond (r,u) and under (s, ).

Proof: (see exists_1f_under in the proof files). Let a be the intermediary morphism
going from (s, f) to (r,u). Recall that r and s are in ¥, and r = as. The lemma says there
is another morphism b such that ba € ¥. Let t = br = (ba)s and v = bu = (ba) f. O

*Curiously enough, this type of reasoning closely resembles the notions of reduction and normalization for
A-calculus; it might be interesting to explore the analogy.
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Corollary 4.3. If (r,u) and (t,v) are both beyond (s, f) then there is a symbol (q, w) which
is beyond (r,u) and (t,v).

Proof: By the previous corollary (and transitivity of “beyond” which is easy) we may
assume that (r,u) is under (s, f). Then (and this part is Lemma exists_1f_further in
the proof files) applying condition (c) to the intermediate morphisms we obtain intermediate
morphisms going from (r,u) and (¢,v) to a single (¢, w). O

Transitivity of the relation follows easily from Corollary 4.3. See 1f_equiv_trans in the
proof files.

A well-thought out direct argument for transitivity (which doesn’t occupy too much space)
is given in Borceux [3] Proposition 5.2.4. The essential information is reduced to a single
diagram (Diagram 5.4, page 185) containing 9 objects and 13 arrows.

For the definition of the composition, Borceux writes (p. 185):

“...Moreover this definition is independent of the choices of f, s, g, t, h, . This is lengthy but
straightforward: the arguments are analogous to those for proving the transitivity of the equivalence
relation defined on the arrows. We leave those details to the reader as well as the checking of the
category axioms ....”

This analysis is basically sound: once one has gotten over the hurdle discussed above,
which first shows up at the proof of transitivity, the remainder of the argument necessary
for checking well-definedness of the composition, associativity and identity axioms and so
forth, presents no further difficulties. Nonetheless, it might be the case that the simplified
presentation of the proof of the transitivity of the equivalence relation, could have as a
consequence that checking the facts about the composition law becomes more involved (we
needed to use techniques similar to those for transitivity, in the proof of well-definedness
of the composition for example). Similarly in [25] and [20], the composition representative
is constructed but well-definedness and associativity of the composition are not verified in
detail.

For completeness, we describe here some of the main points. Suppose we are given two
left-fraction symbols which are composable:

f t g r
T =Y 2= U .

Then the middle arrows give a right-fraction symbol which we can fill in to a square with a
left-fraction symbol going in the other direction:

z

. N
(4.1) y u
N /

Z/

which in turn fits into the previous collection to yield a composite left-fraction symbol (¢’ o

f,t'or):
f g v T
xSy — 2 —u<— .
In order to define the composition, we make a choice of fill-in square and set the composition
equal to the composite symbol (¢'o f,#'or). This composition rule is not associative, nor does
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it satisfy the left and right identity relations. On the other hand, modulo the equivalence
relation established above, the composition will become associative and unitary.

The first and main step is to show that the composition is well-defined modulo the equiva-
lence relation. This has two parts: first that if we make two different choices of fill-in square
then the resulting composite symbols are equivalent; and secondly if we choose different rep-
resentatives for the symbols which are being composed, then the composites are equivalent.
These proofs make use of the same kind of arguments as we have described above, invoking
things like Corollary 4.2 when necessary. The reader can by now imagine why no authors
have attempted to write down the full text of these proofs in a forum destined for human
readers. Those who are interested may refer directly to the proof files.

Once the well-definedness is established, the associativity is significantly easier at least on
a conceptual level. It suffices to look at the following diagram:

(4.2) NSNS

where, along the top, are the three left-fraction symbols we want to compose. Choose the top
two fill-in squares denoted 1 and 2 first, which gives the middle row of arrows; then choose
the bottom fill-in square 3. Now the two different associated products may be obtained as
follows (here we use the invariance under choice of fill-in square):

—one is obtained by using square 1 to compose the first two symbols; then the composite
rectangle 2 + 3 is a fill-in square for multiplying this first composite with the rightmost
symbol,

—the other is obtained by using square 2 to compose the second two symbols; and the
composite rectangle 1 + 3 is a fill-in square for multiplying the leftmost symbol with this
first composite.

Both methods give as result the left-fraction symbol obtained using the composites along
the bottom edges of the big diagram. Thus, with the choices made as described above, the
composition becomes associative “on the nose”; and because of the invariance of choices
up to equivalence, we get that composition is associative up to equivalence when we make
arbitrary choices for the fill-in squares.

The left and right unit conditions are proved similarly.

We obtain a category of “left fractions”. Defining the functor from our original category
into the left fraction category, and proving that the images of elements of the localizing
system are invertible, involve again some lemmas of a similar nature, whose proofs basically
consist of setting up the appropriate diagrams and using good choices for the fill-in squares
to define the compositions in question. For all of these things, we are in agreement with all
of the authors found so far, that it isn’t worthwhile to write a mathematical text for these
proofs. The proofs may be found directly in the proof files attached to [31].
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The construction of the localization by left fractions can be considered as the statement
of a nontrivial theorem about any localization (for example, about the general localization
constructed previously).

Theorem 4.4. Suppose C is a category and > is a multiplicative system satisfying the left-
fraction conditions (a)-(d) above. Let C[X7'| be a localization. Then the morphisms of
C[X7Y have the following description. Every morphism can be written as a composition
t=' o u where u comes from C and t comes from ¥ (and their targets coincide). If, for two
such pairs t—tou = r~Low, then there exist morphisms a and b in C such that: a is composable
with w and t; b is composable with v and r; au = bv; and at = br and this is in 2.

The proof is that this description holds by definition for the left-fraction localization we
are discussing in the present section. Then the universal properties show that any two
localizations are isomorphic, so the same description holds in any other localization. This
theorem is treated in the file gzloc.v (it is only there that we treat the fact that different
localizations are isomorphic). It might be interesting to try to prove this description directly
for the general construction of the localization. The left-fractions conditions imply fairly
directly that morphisms in the localization can be written as simple products. However, to
verify the statement about the equivalence relation seems difficult.

As a conclusion to this section, it is interesting to note that the mathematics behind the
fraction construction is not one hundred percent straightforward, as was the case for the
mathematics behind the general construction. On the other hand, it is commonly believed
that the “calculus of fractions” construction is much more concrete and easy to understand.
A possible reason for this is that mathematicians are very attached to considering the “size”
of the mathematical objects which they manipulate, rather than the size of the associated
mathematical theories. Since the arrows in the fraction construction are paths of length two
whereas the arrows of the general construction are paths of arbitrary length, people prefer
to think about the fraction construction (for example D. Pronk generalized the fraction
construction to the case of 2-categories [21] but didn’t mention generalizing the general
construction). This tendancy is similar to the constructionist or intuitionist philosophy:
even while admitting reasoning based on less constructive arguments, mathematicians of all
philosophies gravitate towards smaller and more constructive objects when they are available.

5. FORMALIZING THE LEFT-FRACTION CONSTRUCTION

The formalization is contained in the file left_fractions.v, where Left_Fractions is
the first module treating all of the essential constructions and properties. It starts with what
is by now a fairly standard kind of definition, 1f_symbol f t is an object (Arrow.like, in
fact) containing the pair (f,t) and corresponding to the left-fraction symbols used in the
informal discussion above. The construction 1f_choice a s r g represents a choice of fill-
in left-fraction symbol creating a commutative square whose upper sides are the right-fraction
symbol (7, g).

A left-fraction symbol has an additional object besides its source and target, which we
call 1f_vertex u. This is the common target of the two morphisms involved. The operation
1f_extend a s p u corresponds to composing both arrows of the left-fraction symbol w,
with a morphism p whose source is source p = 1f_vertex u.
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The 1f_extend enters into the definitions of the notions 1f_beyond and 1f_under as
defined in the previous section. In turn we define 1f_equiv as existence of a common
symbol which is 1f_beyond the two in question. Then comes the main part of the proof
which is Lemma 1f_equiv_trans. This proof is done as described in the previous section
(the division into sublemmas is slightly different from what is done informally above; we
have referred above to the corresponding places in the proof files).

The main thing I would like to talk about in this section is the method we use for rep-
resenting situations which, in informal argument, would be represented by a commutative
diagram drawn in the text. Consider for example the definition

Definition fills_ina s uv w :=

has_left_fractions a s &

is_1f_symbol a s u & is_1f_symbol a s v & is_1f_symbol a s w
& source u = target v & source w = 1f_vertex v &

target w = 1f_vertex u &

comp a (1f_forward w) (1f_backward v) =

comp a (1f_backward w) (1f_forward u).

This represents the diagram 4.1 we have drawn in the previous section for defining compo-
sition. The variables u, v and w are the three left-fraction symbols occuring in the diagram
(the first two on the upper row and the last one completing the bottom).

In a similar way, the definition assoc_board a s u v w x y z represents the diagram
4.2 we have drawn above for the associativity of composition. Another important pair of dia-
grams are 1f_lean_to a s e f gh i jandcloses_1f_lean_to as e f ghi jk 1
These correspond to diagrams, vaguely shaped like “lean-to’s”, which we haven’t drawn above
(due mostly to my lack of TEX-nique), and which enter into the proof that the composition
is well-defined up to equivalence.

The idea in all of these cases is to make a definition involving all of the objects occurring in
the diagram, which corresponds to commutativity of the diagram plus all of the other basic
information it is supposed to satisfy (for example saying what the elements are, and that
the sources and targets match up). In the cases £ills_in and assoc_board we have chosen
to represent the elements as being the left-fraction symbols (i.e. they are pairs of arrows)
whereas in the diagrams 1f_lean_to and closes_1f_lean_to the elements are morphisms
of a. In both cases the first variable a is the category and the second variable s is the
multiplicative system we are considering.

Given this way of manipulating diagrams, we can then state the main steps in the proof.
For example, the main step of the well-definedness of composition is

Lemma 1f_lean_to_closure : forall as e f gh i j,
lf _ lean.toasef ghij —>
(exists k, exists 1,(closes_lf_lean_ toas e f ghi jk 1)).

This lemma is then used in Lemma weak_rep_1f_equiv (this fact doesn’t show up in the
text as recopied in the preprint [31] because it is inside the proof—which shows a limitation
to the idea of just copying definitions and lemma statements as a simplified presentation).

Often the diagram definition will occur as a hypothesis of a lemma. This is particularly true
of the hypothesis assoc_board a s u v w x y z which occurs as a hypothesis in a few dif-
ferent intermediate lemmas before the main statement of Lemma make_comp_assoc_board.
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The definitions £fb_symbol and fbb_symbol correspond to the two operations of juxtapos-
ing two fill-in squares to get a rectangle which composes to a new fill-in square giving the
outer compositions in the associativity statement (in the previous section this was where we
looked at rectangles denoted 1+ 3 or 2 + 3).

As a general matter, writing mathematics for the computer requires that we go to a no-
tation which is completely precise. Different strategies might be used for trying to keep
a lid on the length of such notation. It is interesting to note that in situations such
as the present one, precise definitions such as ffb_symbol a s y z replace vague state-
ments such as “juxtapose the squares denoted 1 and 3 in the above diagram”. One ma-
jor problem in both cases is the problem of refering to pieces of the diagram in question.
The fact that we have included the various pieces as variables in our diagram definition
assoc_board a s u v w x y z means that we can give small variable letters to each piece.
Thus the y and z in £ffb_symbol a s y z refer to places in assoc_board. In a mathemat-
ical text this referentiation operation becomes cumbersome when we start to manipulate
large numbers of objects: we are led to circumlocutions like “the arrow on the upper left”
and generally get lost in the meanders of referencing conventions of natural language (which
are not totally precise nor sufficiently powerful). Another tempting solution would be to
create a distinct mathematical object for the whole diagram. This is pretty much what we
have done with the notion of 1f_symbol for example. The drawback is that we then need
long names for the component pieces of the diagrams. In the case of 1f_symbol these were
the functions 1f_forward and 1f_backward. This approach was called for in the case of
1f_symbol because of the frequency and diversity of manipulations we have to do with these
objects. On the other hand, with big diagrams which occur basically only once or a few
times, it seems better to avoid allocating specific long names to their component pieces,
and let the components be variables in a propositional representation of the diagram as a
functional property. The observations in this paragraph are not intended as strict edicts but
rather as ideas for one possible way to approach the language problems which are posed by
computer formulation.

Rather than going on in detail about the remainder of the construction (the module
Left_Fraction_Category is where we use the Associating_Quotient module to actually
construct the category of left fractions; then we need to establish its universal properties and
so forth), we close this section with an observation about proof technique. The proofs of the
main lemmas referred to above are often rather long, because they involve manipulations of
large amounts of information. Since steps such as rewriting tend to produce residual goals,
one arrives at a situation where there is an impossibly large number of residual goals to treat
at the end of a proof. Furthermore the treatment of these goals tends to be highly repetitive.
In this situation it is essential to maintain a certain level of discipline in the following sense:
when one comes upon a rewriting situation which generates an additional goal, one must go
back to the start of the proof and add in that goal as an Assert statement. This can be
done without changing the numbering of hypotheses (which would be painful to correct at
each occurence of this phenomenon) by considering the Assert statements as “sublemmas’
in the proof and naming them as such. Thus, rather than writing

Assert (...)
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it is better to write
Assert (lemA : ...).

The proof itself becomes a location where there are many sublemmas. One can even recopy
the sublemma texts with their proofs, from one proof to another (when the proof contexts
are going to be similar in both cases). Once the required sublemmas are there, a combined
rewriting tactic (such as our abbreviations rw or wr) which does a rewrite and then tries
assumption and trivial on the subgoals, gives a proof where the number of auxiliary
subgoals is reduced significantly enough to be only “very annoying” rather than “impossibly
painful”.

6. FURTHER FORMALIZATIONS

After the file on the left fraction construction, we include a few more files in the present
development. In gzloc.v, we start by going back to some general considerations about local-
ization. Lemmas whose names finish with _recall are statements meant to recall definitions
from earlier files, so as to make reading of this part a little bit more self-contained. The first
main corollary of the section is that two different localizations are isomorphic. Recall that
are_finverse a b means that two functors are inverse (which is to say that their composi-
tions are equal to the identity—hence they establish an isomorphism between their sources
and targets). Thus the lemma are_finverse_dotted_choice says that any two localiza-
tion functors are isomorphic (refer to source_dotted_choice and target_dotted_choice
as well as fcompose_dotted_choice to complete this statement).

The next step is to investigate the relationship between all of our various definitions, and
the opposite category and opposite functor structures. The main point here is to define the
calculus of right fractions, by conjugating left fractions with “opposite”. This is of course
completely straightforward, but many statements require lengthy proofs, which is certainly
evidence that our overall setup is not really optimal.

In the part of the gzloc.v file starting with the definitions 1f_vee, 1f_vee_image and
1f_vee_equivalent, we treat Theorem 4.4. As pointed out above, the proof is based on
the fact that our left-fraction construction of a localization is isomorphic to any other lo-
calization due to the universal property. The statement of Theorem 4.4 is contained in
Lemmas left_fraction_description_for_loc (for the case of an arbitrary localization)
and left_fraction_description_gz_proj (for the case of the original general construc-
tion). Dualizing (by applying the opposite construction discussed in the previous paragraph)
we obtain the corresponding results for right fractions.

The last file of the localization discussion is 1fcx.v. Here we construct a little counterex-
ample to one of the technical points encountered in the left-fractions construction. This
part of the formalisation takes us back to one of the basic points of our approach to types
and set-theory, namely that we integrate the inductive creation of types in C0OQ into our
axiomatization of set theory. This allows us to manipulate small finite sets by creating them
as inductive objects. In this way we can do a relatively large amount of case analysis by
defining recursive tactics using the Ltac tactic language. In this way many of the proofs of
properties of our constructed objects are very short lists of tactics (which take some time
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for the computer to digest). This could perhaps be thought of as a very very baby ver-
sion of Gonthier-Werner’s techniques which they have applied to the 4-color theorem. The
conclusion of the file is existence of a category a and localizing system s, satisfying left
fractions, but with two left-fraction symbols u and v with 1f_beyond a s u v (thus u and
v project to equivalent arrows in the localization), however there is no symbol w such that
1f_under a s u wand 1f_under a s v w. This shows that we need to use the condition
1f_beyond rather than 1f_under (see the discussion of this point above).

The last file of the development is infinite.v. This is a complete digression from the
subject: here we prove the fundamental properties of cardinal arithmetic for infinite cardi-
nals, namely that the union or product of two infinite cardinals has the maximum of the two
cardinalities. By Russell’s paradox on the other hand, the powerset of an infinite cardinal
is strictly bigger. Along the way we do a certain number of basic properties of finite and
infinite sets, cardinals, and ordinals. It is beyond the scope of the present preprint to go
into further detail about the strategy of proof; and (contrarily to the case of localization of
categories as we have seen) this is a subject in which there is no lack of different treatments
in the literature—which we have not tried at all to index in the references.
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