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Abstract

This paper promotes the differential method as a new fruitful strategy

for estimating a ground-state energy of a many-body system. The case

of an arbitrary number of attractive Coulombian particles is specifically

studied and we make some favorable comparison of the differential method

to the existing approaches that rely on variational principles. A bird’s-eye

view of the treatment of more general interactions is also given.

PACS : 24.10.Cn, 12.39.Jh, 03.65.Db, 05.30.Jp

1 Introduction

There is little need to stress the great importance of the ground-state in many
domains of quantum physics. Nevertheless, computing the lowest energy of
most systems cannot be done analytically and approximations are required.
Some techniques, being very general, have been well-known for several decades.
For instance the Rayleigh-Ritz variational methods or the Rayleigh-Schrödinger
perturbative series have their roots in the pre-quantum era; much later, nu-
merical algorithms (numerical diagonalizations as well as Monte-Carlo compu-
tations), supported by the increasing power of computers, have been able to
provide a tremendous precision on the ground-state of a large variety of very
complex systems. However, it is a much more difficult task to rigorously es-
timate the discrepancies between the exact ground-state energy E0 and the
approximated one. In particular, though variational methods naturally pro-
vide upper bounds on E0, obtaining lower estimates requires more sophisti-
cated techniques (for instance the Temple-like methods [19, § XIII.2]), some of
them being very system-dependent (e.g. the moment method proposed in [10]
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for rational-fraction potentials or the Riccati-Padé method proposed in [7] for
one-dimensional Schrödinger equations).

The optimized variational methods. For a many-body system governed
by pairwise interactions, an interesting strategy is to approximateE0 from below
in terms of the ground-states of the two-body subsystems [8]. Such an approach
has been successfully applied to Coulombian (bosonic and fermionic) systems of
charged particles [12] or self-gravitating bosons [13, 1]. Clever refinements have
been proposed that provide some very accurate lower bounds of E0 for the three-
body [3] and the four-body systems [4]. Though not easily generalizable to an
arbitrary number of particles, these last optimized variational methods can be
applied to interactions that are not necessarily Coulombian and may be relevant
for quarks models [2] where some inequalities between baryon and meson masses
represent theoretical, numerical and experimental substantial information [17,
20, and references therein]. In practice, the optimized variational methods allow
to efficiently treat some models that have simple scaling properties, for instance
when the two-body interaction can be described by a purely radial potential of
the form v(r) ∝ sign(β)rβ . The main reason relies in the fact that, except the
Coulombian (β = −1) and the harmonic (β = 2) interactions, the exact form
of the ground-state energy of the two-body problem is not known. Yet, one can
still take advantage of the power-law behavior of v to obtain worthwhile lower
bounds for the ratio between the N -body and the 2-body ground-state energies.

The differential method. Besides the variational and perturbative tech-
niques that are mentioned above, there exists a third very general method for
approximating the ground-state energy of a quantum system, namely the differ-
ential method (see [15, 16, and references therein for a historical track]) whose
starting point is recalled in section 2. for the sake of completeness. As for the
variational methods, the differential method call on a family of trial functions
that supposedly mimic the ground-state and that allow for the construction of
a function (the average of the Hamiltonian in the former case, the so-called
local energy in the latter case) whose absolute extrema within the chosen trial
family provide bounds on the exact ground-state energy E0. One of the main
advantages of the differential method over the other ones is that no integral is
required and, then it allows to work, even analytically, with rather complicated
trial functions by encapsulating some rich structure of the potential. It is also
worth mentioning that the same test function leads to both upper and lower
bounds on E0 and then the estimates comes with a rigorous window. Though
applicable to many models (to systems involving a magnetic field, to discrete
systems, to non-Schrödinger equations, etc.) the major inconvenient of the dif-
ferential method is that it requires, as a crucial hypothesis, the exact eigenfunc-
tion to remain non-negative in the configuration space (it must have no node).
Therefore it excludes any ground-state whose spatial wave-function is antisym-
metric under some permutations of its arguments. As far as fermionic systems
are involved, the differential method will concern only those whose ground-state
eigenfunction remains symmetric under permutations of the spatial positions of
the identical particles.

The aim of this paper is to apply the differential method specifically to a
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system made of N non-relativistic particles of masses mi in a d-dimensional
space whose Hamiltonian has the form

H̃ =

N−1∑

i=0

p2
i

2mi

+ V (r0, . . . , rN−1) . (1)

When the N particles located at {ri}i=0,...,N−1 interact only through pairwise
potentials vij = vji , V is given by

V =

N−1∑

i,j=0
i<j

vij(rij) (2)

where rij
def
= rj − ri. The spin-dependent interactions, if any, are assumed to

be included somehow in the scalar potential V and H̃ will be supposed to act
on spatial wave-functions only; in other words the possible spin configuration
have been factorized out in one way or another. When N = 3 and N = 4 and
for power-law potentials, this is the same kind of systems to which the opti-
mized variational method applies also. We will consider the Coulombian case
in section 3 and systematically compare the estimates given by the variational
methods and the differential method. In section 4, general interactions are
considered (not necessarily power-law vij ’s). This is of course relevant for esti-
mating the ground-state energy of a system where the spin-independent strong
interactions are dominant; for heavy enough quarks for instance, it is known
[11] that the non-relativistic form (1) may be pertinent1. At atomic scales, the
method could be applied to clouds made of neutral atoms where short-range
interactions govern the dynamical properties.

2 The differential method

The necessary but sufficient condition for the differential method to work is
the following: the Hamiltonian H has one bound state |Φ0〉, associated with

energy E0, such that Φ0(q)
def
= 〈q|Φ0〉 remains non-negative in an appropriate

q-representation, say of spatial positions. For a N -body system governed by
the Hamiltonian (1), the dynamics in the center-of-mass frame corresponds to
a reduced Hamiltonian H whose ground-state2 Φ0 has precisely this positivity
property in the whole configuration space QN of the (N − 1)d relative coordi-

nates qN
def
= (r1 − r0, . . . , rN−1 − r0). This is the Krein-Rutman theorem (see

1Possible relativistic corrections may be included (for instance by considering the spinless
Salpeter equation) since the differential method does not require a quadratic kinetic energy.

2We will only consider the cases where at least one bound state exists. Physically, this
can be achieved with a confining external potential (a “trap” is currently used in experiments
involving cold atoms). Formally, this can be obtained in the limit of one mass, say m0, being
much larger than the others. The external potential appears to be the v0i’s, created by such
an infinitely massive motionless device. It will trap the remaining N − 1 particles in some
bounded states if the v0i’s increase sufficiently rapidly with the r0i’s.
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[19, §XIII.12]). For each state |ϕ〉, the hermiticity of H implies the identity
〈Φ0|(H − E0)|ϕ〉 = 0. If we choose |ϕ〉 such that its representation ϕ(qN ) is a
smooth normalizable real wave-function, we obtain

∫

QN

Φ∗
0(qN )(H − E0)ϕ(qN ) dqN = 0 . (3)

Taking into account the positivity of Φ0 on QN , there necessarily exists some
qN such that (H − E0)ϕ(qN ) > 0 and some other configurations for which
(H −E0)ϕ(qN ) 6 0. Choosing ϕ > 0 on QN , we get both an upper and a lower
bound on E0:

inf
QN

(
E

[ϕ]
loc(qN )

)
6 E0 6 sup

QN

(
E

[ϕ]
loc(qN )

)
, (4)

where the local energy is defined by

E
[ϕ]
loc(qN )

def
=

Hϕ(qN )

ϕ(qN )
. (5)

In other words, the differential method provides an estimate

E
(d.m.)
0

def
=

1

2

[
sup
QN

(
E

[ϕ]
loc(qN )

)
+ inf

QN

(
E

[ϕ]
loc(qN )

)]
(6)

that comes with a rigorous windows ±∆E
(d.m.)
0 where

∆E
(d.m.)
0

def
=

1

2

[
sup
QN

(
E

[ϕ]
loc(qN )

)
− inf

QN

(
E

[ϕ]
loc(qN )

)]
. (7)

Unlike for the variational method, the determination of the absolute extrema
of the local energy does not require the computation of any integral. Even the
norm of the test function ϕ is not required provided it remains finite. The two
inequalities (4) become equalities (the local energy becomes a flat function) when
ϕ = Φ0 and therefore we will try to construct a test function that mimics Φ0 at
best. We will choose ϕ that respects the a priori known properties of Φ0: its
positivity, its boundary conditions and its symmetries if there are any. Since for
each test function the error on E0 is controlled by inequalities (4), the strategy
for obtaining decent approximations is clear: First, we must choose or construct
ϕ to eliminate all the singularities of the local energy in order to work with a
bounded function and second, perturb the test function in the neighborhood of
the absolute minimum (resp. maximum) of the local energy in order to increase
(resp. decrease) its value. Up to the end of this article, we will focus on the
first step: we will show how obtaining a bounded local energy furnishes some
sufficiently constrained guidelines for obtaining reasonable bounds on E0

3. We

3One can understand it from the extreme sensitivity of the local energy to any local per-
turbation of the test function: while, in the variational methods, the quantity 〈ϕ|H|ϕ〉/〈ϕ|ϕ〉
is quite robust to local perturbations because it represents precisely an average on the con-
figuration space, the local energy may become unbounded quite easily by canceling locally ϕ
faster than Hϕ.
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will keep for future work the systematic local improvements of the absolute
extrema of the local energy. In [15, § 6], I have shown on a simple example how
this can be done.

When the potential V has the form (2), a natural choice of trial function is
to take (for variational techniques in a few nuclear body context, such a choice
has been used by [18, 23] for instance)

ϕ(qN ) =

N−1∏

i,j=0
i<j

φij(rij) (8)

where each of the N(N − 1)/2 functions φij(r) = φji(−r) depends on d coordi-
nates4.

It is straightforward to check that this choice describes a state with a fixed
center-of-mass: indeed we have (

∑N−1
i=0 pi)|ϕ〉 = 0. Hence, H̃ϕ = Hϕ and the

local energy is given by (we will work systematically with units such that ~ = 1)

E
[ϕ]
loc(qN ) =

N−1∑

i,j=0
i<j

(
− 1

2mij

∆φij(rij)

φij(rij)
+ vij(rij)

)

−
∑

ĵ,i,k

1

mi

∇φij(rij)

φij(rij)
· ∇φik(rik)

φik(rik)

(9)

wheremij stands for the reduced massesmimj/(mi+mj). The last sum involves

all the N(N−1)(N−2)/2 angles (ĵ, i, k) between rij and rik that can be formed
with all the triangles made of three particles having three distinct labels (i 6= j,
i 6= k, j 6= k). Let us now take φij to be a positive solution of the two-body
spectral equation

− 1

2mij

∆φij + vijφij = ǫijφij . (10)

The local energy becomes

E
[ϕ]
loc(qN ) =

N−1∑

i,j=0
i<j

ǫij −
∑

ĵ,i,k

1

mi

∇Sij(rij) · ∇Sik(rik) (11)

where Sij
def
= ln(φij). The trial wave-function (8) of the global system must

be kept square-integrable but it is not necessary for all two-body subsystems

4The present paper wants mainly to stress the simplicity of the differential method. It
does not seek for a real performance at the moment and we will not try to improve the choice
of coordinates. Working with Jacobi coordinates, for instance, or constructing optimized
coordinates as done in [4] may lead to better results. Anyway, we will see that the numerical
results of section 3 are satisfactory enough for validating the approach by the differential
method.
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to have a bound state when isolated5. For instance, for two electric charges
having the same sign a positive but non-normalizable solution of (10) can be
found. When vij admits at least one bound state (see also footnote 2), thanks
to the Krein-Rutman theorem, we are certain to get a positive φij when taking
the ground-state of the two-body system and ǫij its corresponding energy. At
finite distances, if the possible singularities of vij are not too strong, we expect
that φij and then Sij to be smooth enough for Eloc to remain bounded. At
infinite distances, Eloc is expected to become infinite if vij does not tend to a
constant sufficiently quickly. To see that, one can take purely radial potentials.

i.e vij(r) = vij(r) where r
def
= ||r||, and consider the asymptotic behavior of Sij

given by the semiclassical (jwkb) theory (see for instance [14]). Its derivative
is given by S′

ij(r) ∼r→∞ −
√

2mij [vij(r) − ǫij ] and is not bound if vij is not (at
infinite distances). Strictly speaking, it is only for short-distant potentials that
we can hopefully obtain rigorous non-trivial inequalities (4) while keeping the
choice (8) with (10). However, as will be discussed in section (4), the ground-
state energy may be generally not be very sensitive to the potential at large
distances (far away where Φ0 is localized) and this physical assumption may be
implemented by introducing a cut-off length from the beginning.

For purely radial potentials (11) simplifies in

E
[ϕ]
loc(qN ) =

N−1∑

i,j=0
i<j

ǫij −
∑

ĵ,i,k

1

mi

S′
ij(rij)S

′
ik(rik) cos(ĵ, i, k) . (12)

Yet, for a multidimensional, non-separable, Schrödinger equation like (10),
a jwkb-like asymptotic expression is generally not available [14, Introduction].
Nevertheless, the differential method is less demanding than the semiclassical
approximations: we will try to keep the local energy, like the one given by (11),
bounded at infinity but we will not necessarily require it to tend to the same
limit in all directions.

3 The Coulombian problem

The purely Coulombian problem in d > 1 dimensions corresponds to the situa-
tion where all vij ’s are radial potentials and have the form

vij(r) =
eij

r
(13)

for N(N − 1)/2 coupling constants eij that may be or may be not constructed
from individual quantities like charges. Provided a N -body ground-state exists,
we can solve exactly (10) making use of ∆φ(r) = φ′′(r) + (d − 1)φ′(r)/r. We

5But for some pairing, (10) must have a normalizable solution. The cases of Borromean
states where no two-body binding is possible[21] cannot be described by the form (8) if we
keep (10).
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obtain a bounded local energy given by

E
[ϕ]
loc(qN ) =

N−1∑

i,j=0
i<j

−
2mije

2
ij

(d− 1)2
− 4

(d− 1)2

∑

(ĵ,i,k)

mijmikeijeik

mi

cos(ĵ, i, k) . (14)

For obtaining upper and lower bounds on E0, one has just to calculate the ab-
solute extrema of such a function. It can be done by standard optimization
routines up to quite large N and even analytically in some cases (see below).
The recipe is therefore simple and systematic: as far as only Coulombian inter-
actions are involved, we can work with generic masses and coupling constants
for which (8) is normalizable. The remaining of this section will concern the
quality of these bounds and then we will accord our attention to cases that have
been treated by other methods, mainly those treated in the references cited in
the second paragraph of the introduction. More specifically, in order to leave
aside the problem of the existence of a ground-state we will consider the case of
attractive interactions only (all eij ’s being negative). For an immediate appli-
cation in the case of charged electric particles see [15] where the Helium atom
is discussed.

3.1 Arbitrary number of identical attractive particles

In this section we consider one species of particles only: for all i and j we
denote mi = m and eij = −g2. The local energy (14) becomes

Eϕ(qN ) = − ǫ0
(d− 1)2

(
1

2
N(N − 1) + FN (qN )

)
(15)

where ǫ0
def
= mg2. The function

FN (qN )
def
=

∑

(ĵ,i,k)

cos(ĵ, i, k) (16)

is invariant under translations and rotations but also under dilations of the
particle configuration. For N = 3, the appendix 5 proofs that supQ3

F3 = 3/2 is
reached when the three particles make an equilateral triangle and infQ3 F3 = 1 is
obtained when they are aligned. From this last result we are able to provide the
lower bounds for FN for any N : by a decomposition of FN into a sum on N(N−
1)(N − 2)/6 triangle contributions, when all the particles are aligned, all the
terms of the sum reach their minimum simultaneously and for this configuration
we have infQN

FN = N(N−1)(N−2)/6. From (15), we deduce that for each N

E0 6 − ǫ0
6(d− 1)2

N(N − 1)(N + 1) . (17)

For d = 3, the same exponential test-functions lead to the better variational
estimate [13, eq. (17)]

E0 6 −ǫ0
25

512
N(N − 1)2 (18)
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(25/512 ≃ 0.0488 & 1/24 ≃ 0.0417). This was expected from the general
identity valid for any normalized function ϕ,

∫

Q

ϕ∗(q)Hϕ(q) dq =

∫

Q

|ϕ(q)|2E[ϕ]
loc(q) dq 6 sup

Q

(
E

[ϕ]
loc(q)

)
. (19)

The differential method always gives worse upper bounds than the variational
method with the same test-functions but, in the last case, one still has to be able
to compute the integrals and one cannot generally estimate how far from the
exact value the average Hamiltonian is. For a different choice of test functions,
a better variational upper-bound has been obtained [1, eq. (16)],

E0 < −.0542N(N − 1)2 . (20)

As far as lower estimates are concerned, bounding FN from above will allow
us to improve the existing results, namely (for d = 3)

E0 > − 1

16
N2(N − 1) (21)

obtained in [1, eq. (12)].
First, when N is not too large for the numerical computation to remain

tractable, the direct calculation of supQN
FN shows (see figure 1) that it gives

better lower estimates than (21). For very large N , we can nevertheless ben-
efit from the maximum of FM for smaller M . Indeed, for M 6 N we can
decompose FN into contributions of M -clusters as follows:

FN (qN ) =
∑

M−subclusters

(M − 3)! (N −M)!

(N − 3)!
FM (qM ) (22)

where the sum is taken on all the M -subclusters, labeled by the coordinates qM ,
that can be formed with the given configuration qN . This sum involves exactly
N !/M !/(N −M)! terms and we have

sup
QN

FN 6
N(N − 1)(N − 2)

M(M − 1)(M − 2)
sup
QM

FM . (23)

This leads to define

αM
def
=

supQM
FM

M(M − 1)(M − 2)
(24)

and from (15) we find

E0 > − ǫ0
(d − 1)2

N(N − 1)

(
1

2
+ αM (N − 2)

)
. (25)

Since, from (23), αM is decreasing when M increases, the larger M the better
the lower estimate of E0.

For M = 3 we have already seen that α3 = 1/4; for d = 3, (25) repro-
duces exactly (21). No better estimate is obtained when considering M = 4.
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5 10 15 20 25 30N

−0.06

−0.05

−0.04

−0.03
E

/N
3

Figure 1: Estimations of ground-state energy for N identical attractive
Coulombian particles (rescaled by a factor N3). The differential method pro-

vides E
(d.m.)
0 defined by (6) (black disks) with exact error bars whose half-

width are given by (7). Each solid line starting at M corresponds to the lower
bounds (25). For M = 3 and M = 4, there is only one solid curve given by (21).
The dashed line corresponds to the upper bound (18) given by [13, eq. (17)].
The dot-dashed line corresponds to the upper bound (20) given by [1, eq. (16)]
that tends, when N → ∞, to the thin dotted horizontal line located at −.0542.

Indeed, the configuration of particles that maximizes F4 corresponds to the reg-
ular tetrahedron because its faces, that are equilateral triangles, maximize the
contributions of all the 3-subclusters simultaneously. We obtain supQ4

F4 = 6
and hence α4 = α3.

For M = 5, 6, 7, 8 and d = 3, the configurations that maximize FM can be
seen in figure 2. Crossed numerics and analytical studies lead to very plausi-
ble conjectures on the geometrical description of the configuration for M = 5
and M = 8 for which explicit analytical value of αM can be proposed [16]. The
lower bound for (25), for N > M , is strictly improved when increasingM from 5
and in particular is better than (21).

However the sequence of improvements obtained this way seems to saturate

9



N=8N=7N=6

N=3 N=4 N=5

Figure 2: The configurations that maximize FN defined by (16) for identical
Coulombian attractive particles.

up to α∞ = 2/9:

α3 = α4 =
1

4
> α5 ≃ .2432 > α6 ≃ .2414 > α7 ≃ .2382 > α8 ≃ .2366 > · · ·

· · · > α30 ≃ .2266 · · · > α∞ =
2

9
≃ .2222 . (26)

From the optimized configuration obtained with N about several tens (see fig-
ure 3a), we can hopefully guess that the limit N → ∞ leads to a continuous
and uniform distribution of the particles on the same sphere. The continuous
limit of supQN

FN varies as N3 with N . If, on the unit sphere S, the N par-
ticles get distributed uniformly with density σ = N/4π, the continuous limit
of supQN

FN is given by (dSi is an infinitesimal portion of the sphere near the
point Pi, i = 0, 1, 2; see figure 3b)

sup
QN

FN ∼
∫

S

σ dS0
1

2

∫

S

σ dS1

∫

S

σ dS2 cos( ̂P1, P0, P2) ;

∼ 1

2
σ3 8π2

∫ π

0

dα1

∫ π

0

dα2

∫ 2π

0

dψ2 sin(α1) sin(α2) cos( ̂P1, P0, P2).

When cos( ̂P1, P0, P2) = P0P1

||P0P1||
· P0P2

||P0P2||
is expressed as a function of α1, α2

and ψ2, we straightforwardly get supQN
FN/N

3 ∼N→∞ 2/9 = α∞. For infinite
N , this last result supplement the upper bound given by (20) and we have

N → ∞; − 1

18
≃ −.0556 .

E0

N3
. −.0542 . (27)
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a) b)

P2

N = 30 P0

P1

ψ2

α2α1

Figure 3: For large N , FN is maximized for a configuration where the N points
seems, numerically, to distribute uniformly on a sphere (with the well-know
caveat concerning the ambiguity of such a notion [22]). Such an optimal config-
uration forN = 30 is shown in a). The continuous limit of FN/N

3 whenN → ∞
can be computed with the help of figure b).

3.2 Three particles with one different from the two others

Without loss of generality, we can choose units where e12 = e13 = e23 = −1,
m1 = m2 = 1, m0 = m. For d = 3 the local energy (14) simplifies into

E
[ϕ]
loc(q3) = − 5m+ 1

4(m+ 1)
− m

2(m+ 1)

(
cos θ1 + cos θ2 +

2

m+ 1
cos θ3

)
. (28)

The general study of appendix 5 applied for (a1, a2, a3) = (1, 1, 2
m+1 ) allows to

get the following analytic bounds on E0:

0 6 m 6 1; −1

4
− m

8
− m(m+ 2)

(m+ 1)2
6 E0 6 −1

4
− m(2m+ 1)

(m+ 1)2
; (29a)

1 6 m 6 3; −1

4
− m

8
− m(m+ 2)

(m+ 1)2
6 E0 6 −1

4
− m(m+ 2)

(m+ 1)2
; (29b)

3 6 m; −1

4
− m(2m+ 1)

(m+ 1)2
6 E0 6 −1

4
− m(m+ 2)

(m+ 1)2
. (29c)

For m 6 3, the lower bound on E0 corresponds to a configuration where the
particles make a non-degenerate isosceles triangle whose three angles are given
by cos θ1 = cos θ2 = (m+ 1)/4 and cos θ3 = 1 − (m+ 1)2/8. The other bounds
correspond to configurations where the particles are aligned. For m ≫ 1,
the bounds saturates to −9/4 . E0 . −5/4 which is quite rough compared
to the numerical value E0 > −1.8 obtained for m = 20 with the optimized
variational method; yet it is better than the results given by the improved
(Hall-Post) variational method [3, Table 2] with which it coincides for m 6 1.
For small m both upper and lower bounds tend to the 2-body exact energy
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and provide acceptable bounds: For instance, when m = 0.05, the differen-
tial method gives −.34922 6 E0 6 −.29989 while the other ones [3, Table 2]
give −.59525 6 E0 (naive variational method) , −.34922 6 E0 (improved varia-
tional method), −.34666 6 E0 (optimized variational method) and E0 6 −.3375
(variational with hyperspherical expansion up to L = 8).

As already mentioned, the differential method, though being less precise for
N = 3 than the improved or hyperspherical variational approaches, has several
advantages: it is much simpler, it provides analytic upper and lower bounds that
furnish an explicit estimation of the errors and, at last but not least, can be
easily extended to larger N (see below) ; though possible in principle, the gener-
alization of the improved variational method has not been done beyond N = 4.

3.3 Several examples of four-body systems

The optimized variational method has been successfully proposed for N = 4 in
[4] for potentials with scaling-law behavior. For Coulombian interactions with
a common coupling constant set to −1, tables and figures 5 and 6 compare the
variational results to those obtained from the differential method when d = 3.
The same conclusion as in the previous section can be drawn and here are some
examples of explicit analytic bounds that are obtained by partitioning F4 in
subclusters made of 3 particles:

Let us take m1 = m2 = m3 = 1 and m0 = m. We have

0 6 m 6 1; −9

8
− 3m(m2 + 6m+ 13)

8(m+ 1)2
6 E0 ; (30a)

1 6 m 6 2
√

3 − 1;

− 9

8
− 3m(m2 + 6m+ 13)

8(m+ 1)2
6 E0 6 −5m2 + 13m+ 2

2(m+ 1)2
; (30b)

2
√

3 − 1 6 m;

− 9

8
− 3m(m2 + 6m+ 13)

8(m+ 1)2
+

3m(m+ 1 − 2
√

3)2

8(m+ 1)2
6 E0 6 −5m2 + 13m+ 1

2(m+ 1)2
.

(30c)

The configuration that minimizes E
[ϕ]
loc(q4) given by (14) corresponds to a

tetrahedron with an equilateral basis made by particles 1, 2 and 3. The three
other faces, with particle 0 at one vertex, are identical isosceles triangles, namely
those which maximize (28) when m 6 3. Such a tetrahedron can indeed be
constructed provided the angles at particle 0 are lower than 2π/3 which re-
quires m 6 2

√
3 − 1 ≃ 2.464. For m > 2

√
3 − 1, the configuration that mini-

mizes E
[ϕ]
loc(q4) seems numerically to correspond to an equilateral triangle made
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m Naive Hall-Post Optimized Variational E
(d.m.)
0 ∆E

(d.m.)
0 E

(d.m.)
0 −∆E

(d.m.)
0

0.05 -0.59525 -0.34922 -0.34666 -0.3375 -0.3246 0.02467 -0.3492
0.1 -0.6818 -0.436055 -0.43434 -0.423465 -0.3926 0.04344 -0.4361
0.2 -0.8333 -0.58055 -0.58045 -0.55915 -0.5125 0.06806 -0.5806
0.5 -1.16667 -0.86805 -0.86705 -0.8242 -0.7813 0.08681 -0.8681
1 -1.5 -1.125 -1.125 -1.067 -1.0625 0.06250 -1.1250
2 -1.83333 -1.3889 -1.37135 -1.30225 -1.2639 0.12500 -1.3889
5 -2.16667 -1.8472 -1.61705 -1.53935 -1.5000 0.27778 -1.7778
10 -2.3182 -2.49175 -1.731 -1.6495 -1.6136 0.37190 -1.9855
20 -2.40475 -3.74775 -1.7972 -1.7134 -1.6786 0.43084 -2.1094

0.1 1.0 10.0 m
−0.7

−0.5

−0.3

−0.1

0.1

0.3

E
−

E
0(d

.m
.)

Figure 4: Estimations for the ground-state energy E0 of an attractive Coulom-
bian system made of three particles with masses (m, 1, 1). Naive (△), Hall-Post
(also called improved, dashed-dotted link) and Optimized (×) provide lower
bounds on E0 while Variational (open circles with a dashed link) provides an
upper bound. The corresponding data are taken from[3]. In the graph, the

value of E
(d.m.)
0 has been subtracted. The error-bars are centered at zero (filled-

circles) and have a width 2∆E
(d.m.)
0 .

by particles 1, 2 and 3 with particle 0 at its center (the flat tetrahedron obtained
when m = 2

√
3−1). This simple configuration allows to conjecture the analytic

lower bound in (30c). For m > 1, the upper bound is obtained when the four
particles are aligned with the 0th at one extremity. For m 6 1, I am not able to
propose an analytic expression for the upper bound.

For m2 = m3 = 1 and m0 = m1 = m, a tetrahedron that maximizes all

13



m Naive Hall-Post Optimized Variational E
(d.m.)
0 ∆E

(d.m.)
0 E

(d.m.)
0 −∆E

(d.m.)
0

0.01 -2.29455 -1.17301 -1.17283 -1.108281 -1.10 0.07 -1.1730
0.1 -2.65909 -1.54679 -1.54167 -1.45802 -1.39 0.16 -1.5468
0.5 -3.75 -2.47917 -2.47618 -2.28857 -2.20 0.28 -2.4792
1 -4.5 -3 -3 -2.78762 -2.7500 0.2500 -3.0000
3 -5.625 -3.9375 -3.73167 -3.45553 -3.3024 0.6149 -3.9173
10 -6.3409 -6.48655 -4.20877 -3.90826 -3.6691 1.0575 -4.7266
100 -6.70545 -40.1395 -4.4673 -4.154310 -3.8412 1.3266 -5.1678
500 -6.741 -190.128 -4.49338 -4.17914 -3.8574 1.3545 -5.2119
+∞ -6.75 −∞ -4.5 -4.19259 -3.8615 1.3615 -5.2231

0.0 0.1 1.0 10.0 100.0 m

−3

−2

−1

0

1

E
−

E
0(d

.m
.)

Figure 5: Same conventions as in figure 4 for an attractive Coulombian system
made of four particles with masses (m, 1, 1, 1).

the contributions of its faces simultaneously can be constructed for m−1
⋆ 6

m 6 m⋆
def
= (−1 +

√
17 +

√
14 − 2

√
17)/2. Two identical faces (see figure 7)

corresponding to particles with masses (1, 1,m) have their three angles given
by cos θ1 = cos θ2 = (m + 1)/4 and cos θ3 = 1 − (m + 1)2/8. The angles
(θ′1 = θ′2, θ

′
3) of the two other faces corresponding to particles with masses

(m,m, 1) are obtained replacing m by m−1 in the previous expressions. For
1/3 6 m 6 3 such faces can indeed be constructed but the pairs of identical faces
can be put together to construct one tetrahedron provided only that θ3 6 2θ′1.
This last condition leads to m4+2m3−14m2+2m+1 6 0. m⋆ and m−1

⋆ are the

14



two positive roots of the four-degree-polynomial, the two others being negative.
We get

m−1
⋆ ≃ .3622 6 m 6 m⋆ ≃ 2.7609; −m

2 + 10m+ 1

2(m+ 1)
6 E0 . (31)

m Naive Hall-Post Optimized Variational E
(d.m.)
0 ∆E

(d.m.)
0 E

(d.m.)
0 −∆E

(d.m.)
0

0.001 -0.756745 -0.504495 -0.25557 -0.25492 -0.2543 0.0021 -0.2564
0.002 -0.763475 -0.508985 -0.26114 -0.25985 -0.2587 0.0042 -0.2629
0.005 -0.7836 -0.5224 -0.277805 -0.2746 -0.2717 0.0104 -0.2820
0.01 -0.816905 -0.544605 -0.305465 -0.32403 -0.2931 0.0204 -0.3135
0.05 -1.07322 -0.715475 -0.519635 -0.50503 -0.4581 0.0913 -0.5494
0.1 -1.37045 -0.913635 -0.76439 -0.7308 -0.6492 0.1594 -0.8086
0.2 -1.9 -1.26666 -1.17921 -1.10975 -0.9893 0.2448 -1.234

0.5 -3.125 -2.08333 -2.06426 -1.91867 -1.7847 0.2986 -2.0833†

0.8 -4.01666 -2.67778 -2.67552 -2.48094 -2.4034 0.2744 -2.6778†

1 -4.5 -3 -3 -2.78736 -2.7500 0.2500 -3.0000†

10
−3

10
−2

10
−1

10
0

m

−0.9

−0.7

−0.5

−0.3

−0.1

0.1

E
−

E
0(d

.m
.)

Figure 6: Same conventions as in figure 4 for an attractive Coulombian system
made of four particles with masses (m,m, 1, 1). Numbers signaled with a † are
the lower bounds (31).
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1

θ1

θ1

θ3

θ′3

θ1

θ′1

1

m

m

Figure 7: For a special range of m, a four-body configuration with masses
(m,m, 1, 1) that minimizes the local energy can be constructed from the optimal
configurations of each of its three-body subsystems.

3.4 Arbitrary number of identical particles plus one dif-

ferent from the others

As we have already seen for identical particles, the possibility of partitioning
the local energy in contributions involving more than two particles allow to
get some bounds on the ground-state energy of systems made of an arbitrary
number N of particles. For N > 5, this is beyond the scope of the existing
optimized variational methods. To see one more last example, let us generalize
both cases of sections 3.1 and 3.2 and consider a system made of one particle
with mass m0 = m and N −1 identical particles of mass m1 = · · · = mN−1 = 1.
All the identical particles interact with the same coupling constants eij = −1
and the 0th interact with e0,i = −g2. The local energy is given by (14) as

E
[ϕ]
loc(qN ) = − 1

(d− 1)2

{
2mg4

m+ 1
(N − 1) +

1

2
(N − 1)(N − 2) + FN−1(qN−1)

+ a(m−1)

N−1∑

i,j=1
i<j

[
cos(0̂ij) + cos(0̂ji) + a(m) cos(î0j)

]}
(32)

where now qN−1 stands for the configuration of the N − 1 identical particles.

a(m)
def
= 2g2/(m + 1). By simultaneously bounding the contributions of the

triangles that include the 0th particle and the contribution of the remaining
cluster of the identical particles, we immediately have analytic expressions for
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bounds on E0. For instance the lower bound is given by

E0 > − 1

(d− 1)2

{
2mg4

m+ 1
(N − 1) +

1

2
(N − 1)(N − 2) + sup

QN−1

FN−1

+
1

2
a(m−1)(N − 1)(N − 2)Fmax

3

(
1, 1, a(m)

)
}

(33)

where Fmax
3 is given by (60) and supQN−1

FN−1 has been explicitly estimated
in section 3.1.

4 Arbitrary two-body interaction

4.1 Behavior at large distances

Considering attractive Coulombian interactions is relevant for heavy quarks
models at short distances but, of course, other kinds of effective potentials are
required in most models. Since in general no analytic expressions are known
for the two-body ground-state energies ǫij , no method is expected to provide
explicit non-trivial bounds on E0. However, if one has some experimental clues
about ǫij (by measuring 2-body masses or dissociation energies) or numerical
estimates as well, it is always interesting to obtain some relations between the ǫ’s
and the ground-state energies of larger systems. As mentioned in the introduc-
tion, this have been achieved in [2] for N = 3 and in [4] for N = 4 when the
interactions are of the form vij(r) ∝ sign(β)rβ .

For β > 0, the semiclassical argument given at the end of section 2 shows
that (12) is expected to be unbounded; then (4) gives no information. If we want
to take the advantage of the simple form (12) (that is, to keep the choice (8)
with (10) for the test functions), we have to work with finite range potentials.
When at large distances, the potential is still confining (β = 2 for harmonic
forces or β = 1 for interquark force in quantum chromodynamics [9] and [5,
for an up-to-date review]), some different ansatz for ϕ must be constructed
in order to eliminate the singular behavior of the vij ’s at infinite distances.
Actually, the Coulombian case considered in the previous section can be seen as
an example of a problem where simple poles at finite distances can be eliminated.
Anyway, in many situations, the 2-body ground-state is expected to depend on
the behavior of the potential at large distances by exponentially small terms
only. If, in the integral (3), we decide to keep only those configurations qN
whose size remains in a physical domain bounded by a cut-off length Λ, then we
expect to make an exponentially small error on the estimates of E0; this is due
to the exponential decay of Φ0 when two or more particles separate off. Like
the ǫij ’s, Λ is typically obtained from a 2-body dynamics but its precise value
is irrelevant if the extremal values of the local energy do not depend on it. It
is precisely the case of the Coulombian interactions (more exactly, interactions
that can be modeled by Coulombian potential at the energy scale where the
ground-state exists) for which the local energy (14) is invariant under dilations.
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Since, in the present section, we just want to sketch some main guidelines
without working through the details neither being exhaustive, we will consider
only the cases where

v(r) −→
r→+∞

0 . (34)

4.2 Fitting the 2-body ground-state wavefunction

What is new, here, is that the differential method allows us to choose directly the
2-body ground-state wave-functions, or rather their logarithms Sij . Once some
numerical estimate of ǫij is obtained in one way or another, we can completely
bypass the problem of modeling the 2-body potential uniformely. Being free of
any integration, the differential method can deal with rather complicated, and
therefore rather realistic two-body test functions. An explicit choice of Sij ’s
provides an explicit form for the local energy (12).

It frequently happens that we know from experiments the behavior of the
two-body potential in some specific regimes (most generally at short and large
distances) but not uniformly. We can therefore, in each of these regimes, tenta-
tively obtain, with the help of the differential equation (10), the local functional
form of the two-body ground-state wave-function. Matching these local solu-
tions together, and then dealing with quite complicated global expression for S
and v, do not represent a serious obstacle for the computation of (12).

To be a little less speculative, let us consider N identical particles with unit
mass, interacting with a two-body radial potential v(r) such that v(r) → 0 when
r → ∞ and

v(r) −→
r→0+

v0 r
β (35)

for some v0 and with considering only one case, say β > 0. The two-body
stationary Schrödinger equation (10) becomes

−
(

d2

dr2
+

d− 1

r

d

dr

)
φ+ vφ = ǫ0φ (36)

where ǫ0 < 0 will denote an estimate of the two-body ground-state energy; it can
be considered as another parameter that should fit the experiments involving

two bodies. Let us guess the behavior of S(r)
def
= lnφ(r) at short distances by

writing for σ 6= −1:

S(r) −→
r→0+

s0
σ + 1

rσ+1 . (37)

Identifying the leading orders after having reported (37) in (36), we necessarily
get (for d > 1) σ = 1 and s0 = −ǫ0/d. The next term in the development of S
can also be determined. For 0 < β < 2, it depends only on the leading term
(35) and we have

S(r) −→
r→0+

− ǫ0
2d

r2 +
v0

(d + β)(2 + β)
r2+β + o(r2+β) . (38)
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This local asymptotic series must be matched with the semiclassical behavior
at large r

S(r) −→
r→+∞

−
√
−ǫ0 r (39)

since we have supposed (34). The additive constant in S is irrelevant since the
local energy does not depend on the normalization of φ. A simple choice that
ensures the local energy to remain uniformly bounded is to take for S′ a fraction
like

S′(r) =
− ǫ0

d r + v0

d+β
r1+β −√−ǫ0 r1+2β

1 + r1+2β
. (40)

Figure 8 show the corresponding φ for an arbitrary choice of parameters
together with the corresponding v whose complicated analytic expression on
[0,+∞[ is not needed.

4.3 Crude bounds

From equation (12), an immediate upper bound on E0 is given by:

1

2
N(N − 1) ǫ0 −

1

2
N(N − 1)(N − 2)σ2 6 E0

6
1

2
N(N − 1) ǫ0 +

1

2
N(N − 1)(N − 2)σ2 (41)

where
σ

def
= sup

[0,+∞[

|S′| . (42)

Because the constraints between the angles ĵ, i, k are not taken into account,
these inequalities are expected to be rather rough and their quality deteriorate
for largeN : when positive, the upper bound becomes irrelevant since we already
know that E0 6 0. Indeed, the decreasing of the σ2 term with N does not
guarantee that the lower bound is better than the Hall-Post bound N(N−1)ǫ̃0/2
or even than the naive one N(N − 1)˜̃ǫ0/2 [4, § 2.1 and 2.2] where ˜̃ǫ0 (resp. ǫ̃0
and ǫ0) is the ground-state energy for a particle of mass (N − 1)/2 (resp. N/4
and 1/2) in the central potential v (recall ˜̃ǫ0 < ǫ̃0 < ǫ0).

4.4 Reduction to a finite number of Coulombian cases

In fact, we can find some bounds of (12) by reducing the problem to a finite
number of Coulombian-like cases, that is, where the function to be bound in-
volves constant factors in front of the cosine (compare (14) to (12)). To see this,
split the coordinates qN into a scaling factor λ > 0 and some angle variables θ
among which (N − 1)d− 1 are independent. Each distance writes rij = λρij(θ)
where the ρij ’s are functions that do not depend on the global size of the con-
figuration but on its shape only. Now, from (12), we define (recall mi = 1)
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r

φ

.135

-2.546

S′

v

Figure 8: d = 3, ǫ0 = −1, v0 = 1, β = 1.5, the function S′ given by (40)
is plotted as well as the corresponding wavefunction φ = expS which is the
ground-state of the potential v for energy ǫ0. The latter can be reconstructed
from φ with the Schrödinger equation.

GN (qN )
def
=

∑

(ĵ,i,k)

S′(rij)S
′(rik) cos(ĵ, i, k) (43)

and we have
inf
qN

(
GN (qN )

)
= inf

θ

(
G̃N (θ)

)
(44)
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where
G̃N (θ) = inf

λ

∑

(ĵ,i,k)

S′[λρij(θ)]S
′[λρik(θ)] cos(ĵ, i, k) . (45)

Analogous relations are obtained for the maxima. For fixed θ, when λ varies
from 0 to +∞, the map λ 7→

(
S′[λρij(θ)]

)
06i<j6N−1

defines a curve Cθ in a n-

dimensional space with n = N(N − 1)/2. Cθ is bounded if S′ is bounded. More

precisely, Cθ is inside the n-dimensional hypercube B def
= [σmin, σmax]

n where

σmin
def
= inf

[0,+∞[
S′ (46a)

and
σmax

def
= sup

[0,+∞[

S′ . (46b)

If S′ has the form shown in figure 8, Cθ starts at the origin (S′(0) = 0) and ends
at the point (−1, . . . ,−1). Taking all the points in B rather than the points
of Cθ leads to a lower bound of G̃N :

inf
~s∈B

∑

(ĵ,i,k)

sij sik cos(ĵ, i, k) 6 G̃N (θ) (47)

where ~s = (sij)06i<j6N−1. Now, whatever the values of the cosines may be,
the quadratic function in ~s appearing in the left-hand side of (47) reaches its
minimum at a vertex of B6. Let us denote by V , the finite set of the 2n vertices
~s of B (i.e. for all ~s in V , each sij is either σmin or σmax). We have

inf
~s∈V

[
inf
θ

(
F

(~s )
N (θ)

)]
6 inf

qN

(
GN (qN )

)
. (48)

where
F

(~s )
N (θ)

def
=

∑

(ĵ,i,k)

sijsik cos(ĵ, i, k) . (49)

In fact, what we have done by obtaining the left-hand side of (48) is to make the
values of S′(rij) independent from those of θ. It follows that the inequality (48)
will be strict if the value of ~s at the minimizing vertex are incompatible with the
geometrical constraints on the configuration of the N points. We will illustrate
this point in the next subsection. We have obtained

E0 6
1

2
N(N − 1)ǫ0 − inf

~s∈V

[
inf
θ

(
F

(~s )
N (θ)

)]
. (50a)

6For any constant A, any n-dimensional vector ~B and any symmetric n×n-matrix C with
vanishing diagonal coefficients, the critical points of fn(~s ) = ~s · C~s + ~B · ~s + A are always
saddle points: the direction s2 = ±sign(C12)s1 and si = 0 for i > 2 makes f increase/decrease
as ±|C12|s2

1 from its critical value. Therefore the extrema of f are reached on the boundary
of the domain of ~s. For ~s restricted to a n-dimensional squared box whose faces are given
by fixing one si, the restriction of fn to one face, i.e, to a (n − 1)-dimensional box, leads to
a function fn−1 to which the above argument may be applied again. By repetition down to
n = 1, we see that the maximum and the minimum of f is necessarily reached at one of the
vertices of the original n-box.
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and similarly

1

2
N(N − 1)ǫ0 − sup

~s∈V

[
sup

θ

(
F

(~s )
N (θ)

)]
6 E0 . (50b)

The function F
(~s )
N (θ) has the same form as the second sum of the right-hand

of (14). Therefore, the computation of the bounds in (50) is equivalent to a finite
number of Coulombian problems (with not necessarily attractive interactions
since the sign of sij may change) where we must consider all the possible ~s
whose components are either σmin or σmax.

4.5 Three bodies

As we have seen in section 3, even in the purely attractive Coulombian cases,
an analytic expression of the extrema of FN is not known in general. Anyway,
one can always group in clusters the terms involved in (49) like in (22), then use
inequalities like (23) and reduce the number of particles. Let us then consider
N = 3. It can be shown7 that

inf
~s∈V

[
inf
θ

(
F

(~s )
3 (θ)

)]
= 2σminσmax − σ2 (51)

with definitions (42) and (46). infθ F
(~s )
3 (θ) is obtained for an aligned configura-

tion which is generically incompatible with ~s being a vertex of the cube [σmin, σmax]
3.

For instance, suppose that S′ has the shape depicted in figure 8 where σ =
−σmin > σmax > 0; the value 2σminσmax−σ2

min is obtained for ~s = (s01, s02, s12) =
(σmin, σmin, σmax) and should be realized for r01 ≫ 1, r02 ≫ 1 and r12 ≃ rmax

(the unique finite distance at which S′′ vanishes); but this is incompatible with

the alignment condition cos(1̂, 0, 2) = −1 where particle 0 is in between the two
others which implies r12 = r01 + r02. The inequality (48) is therefore strongly
strict. It can be improved by reducing the size of the cube B to make its mini-
mizing vertices compatible with the aligned configuration. It can be shown that
for S′ of the form shown in figure 8, we have

2σmaxS
′(2r0) − σ2

max 6 inf
q3

(
G3(q3)

)
(52)

where r0 is the unique strictly positive distance where S′ vanishes8. Even though
the inequality is still strict because r12 = 2r0 6= r01 + r02 = 2rmax in general,

7 The extrema of F
(~s )
3 (θ) when θ varies can be calculated with the help of the appendix with

a3 = s01s02, a2 = s02s12 and a1 = s01s12. From (59), we get f(a1, a2, a3) = 1
2
(s2

01 + s2
02 + s2

12)
which is always positive and larger than a1 + a2 − a3, −a1 + a2 + a3 and a1 − a2 + a3

corresponding to the three aligned configurations for different ordering of the particles. From

(60), the minimum of F
(~s )
3 (θ) must therefore correspond to an aligned configuration. Its

maximum is reached for the configuration described just after equation (55).
8Any aligned configuration with r01 ≃ r02 . r0 and r12 = r01 + r02 > r0 corresponds

to a negative G3. Therefore, as far as its minimum is concerned, the configurations leading

to a positive infθ F
(~s )
3 can be forgotten (see note 7). It is straightforward to check that

all the possible relative positions of rij with respect to rmax and r0 that are compatible
with r12 = r01 + r02 provide a G3 such that (52).
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the bound is much better than (51). For instance, if we take the value of the
parameters corresponding to figure 8 we have

2σminσmax − σ2
min ≃ −1.2705 < 2σmaxS

′(2r0) − σ2
max ≃ −.205 . (53)

to be compared with the result of the numerical minimization of G3

inf
q3

(
G3(q3)

)
≃ −.1150 . (54)

obtained for the aligned configuration where r01 = r02 = r12/2 ≃ .6107.
The other bound

sup
q3

(
G3(q3)

)
= sup

~s∈V

[
sup

θ

(
F

(~s )
3 (θ)

)]
=

3

2
σ2 (55)

is actually obtained at the vertex ~s = (σ, σ, σ) for an equilateral configuration
where the common distance r01 = r02 = r12 is where |S′| reaches its maximum.
For S′ like in figure 8, it corresponds to a very large triangle (r01 ≫ 1) where σ ≃
1. For d = 3, ǫ0 = −1, v0 = 1, β = 1.5, from (48) and results (54), (55), the
inequalities (50) give

−3 − 3/2 = −4.5 6 E0 6 −3 + .1150 = −2.885 (56)

corresponding to a relative error of ∆E
(d.m.)
0 /E

(d.m.)
0 ≃ 22%. This not really

impressive (again we emphasize that we are not looking for numerical perfor-
mance at this stage of development of the differential method) but can be seen
as an encouraging starting point since the interactions involved so far in the
three-body system are highly not trivial. It would have required much more
numerical work to obtain a rigorous window for E0 with variational methods
(specially a lower bound since the potential considered here does not follow a
power-law behavior).

5 Conclusion

The differential method appears to offer a completely new strategy for estimat-
ing a ground-state energy. For many-body systems, we have seen on several ex-
amples how this approach can be fruitful. For attractive Coulombian particles,
it can compete with existing others methods (that are based on the variational
principle) on several levels: it provides upper and lower bounds with compara-
ble numerical precision, its simplicity renders the analytic calculations tractable
even for large N and/or allows a low cost of numerical computation. Beyond
purely Coulombian systems, the differential method, being so general, offers a
remarkable flexibility. As have been sketched in the previous section, one can
deal with systems where interactions can be very rich (possibly short-ranged
with an a priori cut-off); several regimes which are valid at different scales can
be implemented at once. There is some hope that future works successfully
apply the differential methods for proper realistic potentials.

23



Unfortunately, I have not been able to generalize the differential method to
fermionic systems where the ground-state spatial wave-function is antisymmet-
ric. In such cases, the presence of non-trivial nodal lines [6] breaks down the
proof of inequalities (4).

There is a lot of work to be done regarding a systematic improvement of the
bounds, once some finite ones have been found with a ϕ given at first attempt.
In this paper, we have not considered some free parameters on which a (fam-
ily) of test functions, say ϕζ , may depend. As shown for a one-dimensional
system [15], the locality of the differential method may require a very few
number of λ’s at each optimization step (unlike for the variational test func-
tions) for obtaining substantial improvements of the bounds by calculating, say

supζ

[
infq

(
E

[ϕζ]
loc (q)

)]
. A precise proof that this approach is efficient for several

dimensions remains an open interesting problem.
I thank Jean-Marc Richard for a critical reading of the first proof of this

manuscript and acknowledge the generous hospitality of Dominique Delande
and Benôıt Grémaud of the group “Dynamique des systèmes coulombiens” at
the Laboratoire Kastler-Brossel.

Appendix: Extrema for the three-body Coulom-

bian problem

For the three-body Coulombian problem, as can be seen from the second sum
in the right-hand side of (14), we must find

Fmax
3 (a1, a2, a3)

def
= sup

triangles
[a1 cos θ1 + a2 cos θ2 + a3 cos θ3] (57)

and
Fmin

3 (a1, a2, a3)
def
= inf

triangles
[a1 cos θ1 + a2 cos θ2 + a3 cos θ3] (58)

where the θ’s are the angles at the three vertices of the triangle made of the
three particles. The a’s are some real parameters that depend on the masses
and the coupling constants. Let us define

f(a1, a2, a3)
def
=

1

2

(
a1a2

a3
+
a1a3

a2
+
a2a3

a1

)
, (59)

then we have

F
max
min
3 (a1, a2, a3) = max

min{a1+a2−a3, a1−a2+a3,−a1+a2+a3, f(a1, a2, a3)} (60)

f is considered in the list (60) if and only if the following three conditions are
satisfied simultaneously

1

2

∣∣∣∣
a2

a3
+
a3

a2
− a2a3

a2
1

∣∣∣∣ 6 1 ;
1

2

∣∣∣∣
a1

a2
+
a2

a1
− a1a2

a2
3

∣∣∣∣ 6 1 ;
1

2

∣∣∣∣
a3

a1
+
a1

a3
− a1a3

a2
2

∣∣∣∣ 6 1 .

(61)
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Here is the proof: We will restrict the values of the θ’s to [0, π] and the con-
straint θ1 + θ2 + θ3 = π is implemented by the Lagrange multiplier method.

We are led to extremalise the function G3(θ1, θ2, θ3)
def
= a1 cos θ1 + a2 cos θ2 +

a3 cos θ3 + ℓ(θ1 + θ2 + θ3 − π) for unconstrained (θ1, θ2, θ3) ∈ [0, π]3, ℓ being
the Lagrange multiplier. The three conditions ∂θi

G3 = 0 for i = 1, 2, 3 lead
to ℓ = a1 sin θ1 = a2 sin θ2 = a3 sin θ3. The case ℓ = 0 corresponds to the
alignment of the three particles and gives the three first values in the list (60)
corresponding to (θ1, θ2, θ3) = (0, 0, π) and its circular permutations.

Taking into account the constraint on the angles, we have ℓ = a3 sin θ3 =
a3 sin θ1 cos θ2+a3 sin θ2 cos θ1 = ℓ(a3 cos θ2/a1+a3 cos θ1/a2). Therefore when ℓ 6=
0, we find a1 cos θ1 + a2 cos θ2 = a1a2/a3 as well as the other relations that
are obtained by circular permutations of the indices. From the decomposition
F3 = 1

2 (a1 cos θ1 + a2 cos θ2) + 1
2 (a2 cos θ2 + a3 cos θ3) + 1

2 (a1 cos θ1 + a3 cos θ3),
we obtain the value (59) that must be considered in (60) if and only if there
exists some θ’s such that

a1 sin θ1 = a2 sin θ2 = a3 sin θ3 and θ1 + θ2 + θ3 = π . (62)

Solving these three equations leads to the values for the three | cos θi| that are
precisely given by the left-hand sides of the inequalities (61).
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