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Abstract. This paper is a report on a computer check of some positivity
properties of the Hecke algebra in type H4, including the positivity of the
structure constants in the Kazhdan-Lusztig basis, thus answering a long-
standing question of Lusztig’s.

1 Statement of the problem

1.1. Let W be a Coxeter group, S its set of distinguished generators, and
denote ≤ the Bruhat ordering on W . Denote H the Hecke algebra of W over
the ring of Laurent polynomials A = Z[v, v−1], where v is an indeterminate.
We refer to [3] for basic results about Coxeter groups and Hecke algebras;
we just recall here that H is a free A-module with basis (ty)y∈W , where the
algebra structure is the unique one which satisfies

ts.ty =

{

tsy if sy > y

(v − v−1)ty + tsy if sy < y

(here we use ty = v−l(y)Ty, where the Ty satisfy the more familiar relation
Ts.Ty = (q − 1)Ty + qTsy when sy < y, with q = v2.) Then there is a unique
ring involution i on H such that i(v) = v−1, and i(ty) = t−1

y−1 .
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The Kazhdan-Lusztig basis of H is the unique family (cy)y∈W such that
(a) i(cy) = cy and (b) cy = ty +

∑

x<y px,ytx, with px,y ∈ v−1Z[v−1]; in

particular we find that cs = ts + v−1 for all s ∈ S. It turns out that
Px,y = vl(y)−l(x)px,y is a polynomial in q, the Kazhdan-Lusztig polynomial
for the pair x, y. For any pair (x, y) of elements in W , write

cx.cy =
∑

z∈W

hx,y,zcz

(in other words, the hx,y,z ∈ A are the structure constants of the Hecke
algebra in the Kazhdan-Lusztig basis).

A number of the deeper results in the theory of Hecke algebras depend
on positivity properties of the polynomials Px,y and hx,y,z. More precisely,
consider the following properties :

P1: the polynomials Px,y have non-negative coefficents;

P2: the Px,y are decreasing for fixed y, in the sense that if x ≤ z ≤ y in
W , the polynomial Px,y − Pz,y has non-negative coefficents;

P3: the polynomials hx,y,z have non-negative coefficients.

Properties P1 and P3 are basic tools in the study of Kazhdan-Lusztig cells
and the asymptotic Hecke algebra; they have been proved in [8] for crystallo-
graphic W using deep properties of intersection cohomology. Property P2 is
proved for finite Weyl groups in [4], using the description of Kazhdan-Lusztig
polynomials in terms of filtrations of Verma modules.

None of these geometric or representation-theoretic tools are available
for non-crystallographic Coxeter groups, and the validity in general of the
positivity properties above are among the main open problems in the theory
of Coxeter groups. Let us concentrate on the case where W is finite. It is
easy to see that for the validity of P1–P3 we may reduce to the case where
W is irreducible. Leaving aside the easy case of dihedral groups, this leaves
us only with the two groups H3 and H4, and since the former is contained
in the latter, the only case we need to consider is the Coxeter group of type
H4, of order 14400, with Coxeter diagram

◦
1

5
◦
2

◦
3

◦
4

Despite its rather modest size, the group H4 poses a redoubtable compu-
tational challenge, even for present-day computers. It is all the more re-
markable that property P1 was checked already in 1987 by Dean Alvis [1] by
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explicitly computing all the Kazhdan-Lusztig polynomials. Quite a feat with
the hardware of the time! Unfortunately, Alvis’ programs have never been
made available; to my knowledge, the only publicly available computer pro-
gram capable of carrying out this computation is my own program Coxeter

[2], which does it in about one minute on a modern-day personal computer.
This still leaves open properties P2 and P3; the purpose of this paper is
to report on a computation, carried out as one of the first applications of
version 3 of Coxeter, by which we prove :

1.2 Theorem. — Properties P2 and P3 hold for the Coxeter group of

type H4.

1.3 Corollary. — (see [7] Theorem 5.4.) The a-function on the Coxeter

group of type H4 is increasing w.r.t. the ≤LR preorder; in particular it is

constant on two-sided cells.

2 Methodology

2.1. The verification of P1 and P2 is straightforward : one simply runs
through the computation of the Px,y for all x ≤ y in the group. In fact,
from the well-known property Px,y = Psx,y whenever sx > x, sy < y (cf. [5]
(2.3.g)), and the analogous property on the right, for P1 it suffices to consider
the cases where LR(x) ⊃ LR(y), where we denote L(x) = {s ∈ S | sx < x}
(resp. R(x) = {s ∈ S | xs < x}) the left (resp. right) descent set of x, and
LR(x) = L(x)

∐

R(x) ⊂ S
∐

S; we call such pairs (x, y) extremal pairs.
Taking also into account the symmetry Px,y = Px−1,y−1, there are 2 348 942
cases to consider, which are easily tabulated by the program. The non-
negativity of the polynomials is checked as they are found. For P2, one also
easily reduces to extremal pairs (x, y) and (z, y). The tough computation
is for P3; here there are a priori 14 4003 = 2985 984 000 000 (almost three
trillion!) polynomials hx,y,z to be computed, and the only obvious symmetry
is hx,y,z = hy−1,x−1,z−1 (but, as explained below, we don’t even use that.)

2.2. The algorithm used in the computation is straightforward. For a fixed
y, we compute the various cx.cy by induction on the length of x, starting
with ce.cy = cy, where e denotes the identity element of W . To carry out
the induction, we choose any generator s ∈ S such that sx < x, and write :

cx = cs.csx −
∑

z<sx
sz<z

µ(z, sx)cz (1)
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where as usual µ(x, y) denotes the coefficient of v−1 in px,y (which is also
the coefficient of degree 1

2(l(y) − l(x) − 1) in Px,y, and in particular is zero
when the length difference of x and y is even.)

Then we may assume that csx.cy is already known, and similarly for the
various cz.cy, so we are reduced to multiplications of the form cs.cu, for s ∈ S

and u ∈ W . When su > u this is read off from formula (1) with x = su;
and when su < u one simply has cs.cu = (v + v−1)cu (see for instance [5]).

The information which is required for this computation is encoded in
the W -graph of the group; once this graph is known, everything else just
involves elementary operations on polynomials. Actually, it is obvious that
the hx,y,z are in fact polynomials in (v+v−1), so they are determined by their
positive-degree part; it is this part that we compute and keep in memory.
The only complication arises from the fact that we need to be careful about
memory overflow; it turns out in fact that for H4 all the coefficients of the
hx,y,z fit into a 32-bit unsigned (and even signed) integer, but not by all
that much: the largest coefficient which occurs is 710 904 968, which is only
about six times smaller than 232 = 4 294 967 296.

2.3. From the computational standpoint, this procedure has a number of
desirable features. First and foremost, once the W -graph of the group has
been determined, the problem splits up into 14400 independent computa-
tions, one for each y, so we can forget about the computation for a given
y when passing to the next (this would not be true if we tried to use the
symmetry hx,y,z = hy−1,x−1,z−1.) This is advantageous in terms of memory
usage, could be used to parallelize the computation if necessary (it turns
out that it hasn’t been), and also means that the computation can be harm-
lessly interrupted (either voluntarily or involuntarily), at least if its progress
is recorded somewhere : basically, the only penalty to pay for picking up
an interrupted computation is the recomputation of the W -graph, which
takes about half a minute. This is very valuable for computations running
over several days, where there is always the risk of a system crash or power
failure.

On the other hand, it is essential that for a fixed y, the full table of hx,y,z

be stored in memory. In practice, there are many repetitions among these
polynomials; so we store them in the form of a table of 144002 = 207 360 000
pointers. Initially, this is the main memory requirement of the program; it
is interesting to note that the cost doubles, from about 800 MB to about 1.6
GB, when we pass from a 32-bit to a 64-bit computer. It turns out that for
a fixed y, the additional memory required to store the actual polynomials is
small, and never exceeds 300 MB. So the full computation runs confortably
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in 2 GB of memory, and barely exceeds 1 GB on a 32-bit machine.
It is much more difficult to try to write down a full table of all the

polynomials that occur as hx,y,z. I have done this a number of times, but
with the memory available on the machines to which I have had access, it
has been necessary to split up the computation in about a hundred pieces to
avoid memory overflow in the polynomial store, to keep the corresponding
files in compressed form to avoid overflowing the hard disk, and then to
merge those one hundred compressed files into a single compressed file. At
some point I have needed to store about 30 GB of compressed files—not
something administrators are very happy about! In view of these difficulties,
I have chosen not to make that version of the program available for the time
being.

2.4. The computation has been done a number of times (writing files of
all the distinct polynomials): at the Ecole Polytechnique, Centre de Calcul
Médicis, Laboratoire STIX, FRE 2341 CNRS, on several computers, includ-
ing a Compaq Alpha EV68 and an AMD Opteron server with 4 and 8 GB
of main memory respectively, where it has taken about 5 days of CPU time,
and twice at the Université Lyon I, Maply, UMR 5585 CNRS, on a Xeon
processor with 4 GB of main memory, where it took 80 hours (not counting
the final file merging pass, which took another 80 hours or so.) The pro-
gram as presented here has run on our 2.7 GHz AMD Opteron server at the
Institut Camille Jordan, using less than 2 GB of memory, in a little under
85 hours.

On the technological side, it seems that the time was just right for this
computation : it makes full use of the 3Ghz processors, at least 2GB central
memories, and 100+ GB hard disks that are found on typical low-end servers
today. It would still be beyond the grasp of most present-day personal
computers, however, although that, too, is changing fast!

3 Verification

3.1. Let’s come now to the thorny issue of verification : what is the amount
of trust that can be put in a result like this ? An obvious prerequisite is the
availablility of the source code of the program that carries out the computa-
tion; this may be downloaded at http://igd.univ-lyon1.fr/~ducloux/

coxeter/coxeter3/positivity

This is actually the source code of an especially modified version of
Coxeter3. All the extra code is contained in the file special.cpp; all the
other files are identical to the ones in Coxeter3.
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3.2. In addition to those already available in Coxeter3, the following com-
mands are defined :

– klplist : prints out a list of all the distinct Kazhdan-Lusztig polyno-
mials which occur in the group (so that in particular, one may re-check
property P1, although this was done already by the computer in the
course of the computation);

– decrklpol : checks property P2;

– positivity : checks the non-negativity of the hx,y,z;

– cycltable : prints out the table of the cx.cy for a fixed y;

– cprod : prints out a single product cx.cy;

For type H4, on a decent server, the cycltable command should not
take more than two minutes; cprod should usually take less than a minute
(Note that the first call will take longer than subsequent ones, because the
W -graph must be computed the first time.) So these commands give local
access to the multiplication table of the Hecke algebra, thus opening up the
“black box” a little.

The positivity command for type H4 can also be executed through
the little stand-alone command coxbatch that I have included; this will
run the computation in the background. It writes any errors in error log,
and records the progress of the computation in positivity log. After a
successful run, error log should be empty, and positivity log should end
with the line :

14399: maxcoeff = 710904968

(elements of the group are numbered from 0 to 14399.)

3.3. As was explained in 2.2, the computation is entirely elementary once
the W -graph of the group is known. The trust that one may place in this
ingredient should be rather high, in my opinion, as it is computed with an
algorithm which in simpler cases has been checked against other programs,
and which even for H4 has been checked against other algorithms for the
same computation. (The latter check is perhaps more convincing than the
former, for it may very well happen that some of the nastiest configurations
occur for the first time in type H4, or even only in type H4, as it is such an
exceptional group.)

For the actual non-negativity check, we are as far as I know in entirely
uncharted territory. However, the code for the computation of the hx,y,z

from the W -graph is really quite simple, so it can rather convincingly be
checked by inspection. Another check is as follows : the order in which the
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computations are performed depends on the choice of a descent generator
for x. By default, we always choose the first such generator in the internal
numbering of Coxeter; however, it is easy enough to replace this by other
“descent strategies” (for instance, choosing the first generator in some other
ordering.) This will lead to a very different flow of recursion. I have done
this replacing the first descent generator by the last one, and obtained the
same output file, which is as it should be.

3.4. There is one check that I have not been able to perform, namely to
verify the statement of Corollary 1.3 by a direct computation of the values
of the a-function. The problem is that this involves the knowledge of all
hx,y,z for a fixed value of z, instead of y, and this does not seem to be a
local computation. The validity of Corollary 1.3 stems from the fact that
its proof in [7] uses only the non-negativity of the coefficients of the hx,y,z.

4 Questions

4.1. On looking at the lists of polynomials which occur as hx,y,z, one imme-
diately notices that they are not only non-negative, but have a much stronger
positivity property : if we denote d the degree of hx,y,z, then vdhx,y,z is a
polynomial in q = v2, which is unimodal (recall that this means that the
coefficients increase up to a point, which in our case has to be the middle
because of the symmetry of the hx,y,z, and decrease from there.)

4.2. For Weyl groups, there is one case where it is easy to prove that the
unimodality property from 4.1 holds : viz., the case where y = w0 is the
longest element in the group. From the properties of the ≤LR preorder it is
clear that A.cw0

is a two-sided ideal in H; so we may write cx.cw0
= hxcw0

,
where hx = hx,w0,w0

. Now it is clear that ts.cw0
= v.cw0

for all s, hence
tx.cw0

= vl(x)cw0
, and

cx.cw0
=

∑

z≤x

pz,xv
l(z)

from which it follows immediately, using the expression of the intersection
homology Poincaré polynomial in terms of Kazhdan-Lusztig polynomials ([6]
Theorem 4.3.) that vdhx is equal to the Poincaré polynomial of the intersec-
tion (hyper)cohomology of the Schubert variety Xx. The unimodality then
follows from the so-called hard Lefschetz theorem.

4.3. Clearly, all the results about the Hecke algebra of type H4 which are
stated in this paper point to the fact that there is a hidden geometry here
that is begging to be discovered. Hopefully, the facts about this geometry
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which the program opens up will help us understand what is going on, and
serve as a guide towards the solution. I should be very happy if this turns
out to be the case!
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