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Abstract

The basic combinatorial properties of a complete set of mutually unbiased bases (MUBs) of
a q-dimensional Hilbert space Hq, q = pr with p being a prime and r a positive integer, are
shown to be qualitatively mimicked by the configuration of points lying on a proper conic
in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r.
The q vectors of a basis of Hq correspond to the q points of a (so-called) neighbour class
and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on
the conic.
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Two distinct orthonormal bases of a q-dimensional Hilbert space, Hq, are said to be mutually
unbiased if all inner products between any element of the first basis and any element of the
second basis are of the same value 1/

√
q. This concept plays a key role in a search for a

rigorous formulation of quantum complementarity and lends itself to numerous applications
in quantum information theory. It is a well-known fact (see, e.g., [1]–[9] and references
therein) that Hq supports at most q + 1 pairwise mutually unbiased bases (MUBs) and
various algebraic geometrical constructions of such q + 1, or complete, sets of MUBs have
been found when q = pr, with p being a prime and r a positive integer. In our recent paper
[10] we have demonstrated that the bases of such a set can be viewed as points of a proper
conic (or, more generally, of an oval) in a projective plane of order q. In this short note we
extend and qualitatively finalize this picture by showing that also individual vectors of every
such a basis can be represented by points, although these points are of a different nature
and require a more general projective setting, that of a projective Hjelmslev plane [11]–[14].

To this end in view, we shall first introduce the basics of the Galois ring theory (see,
e.g., [15] for the symbols, notation and further details). Let, as above, p be a prime number
and r a positive integer, and let f(x) ∈ Zp2 [x] be a monic polynomial of degree r whose
image in Zp[x] is irreducible. Then GR(p2, r) ≡ Zp2 [x]/(f) is a ring, called a Galois ring,
of characteristic p2 and rank r, whose maximal ideal is p GR(p2, r). In this ring there exists
a non-zero element ζ of order pr − 1 that is a root of f(x) over Zp2 , with f(x) dividing
xpr−1 − 1 in Zp2 [x]. Then any element of GR(p2, r) can uniquely be written in the form

g = a + pb, (1)

where both a and b belong to the so-called Teichmüller set Tr,

Tr ≡
{

0, 1, ζ, ζ2, . . . , ζpr−2
}

, (2)

having

q = pr (3)
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elements. From Eq. (1) it is obvious that g is a unit (i.e., an invertible element) of GR(p2, r)
iff a 6= 0 and a zero-divisor iff a = 0. It then follows that GR(p2, r) has #t = q2 elements in
total, out of which there are #z = q zero-divisors and #u = q2 − q = q(q − 1) units. Next,
let “ ” denote reduction modulo p; then obviously T r = GF (q), the Galois field of order q,
and ζ is a primitive element of GF (q). Finally, one notes that any two Galois rings of the
same characteristic and rank are isomorphic.

Now we have a sufficient algebraic background to introduce the concept of a projective
Hjelmslev plane over GR(p2, r), henceforth referred to as PH(2, q).1 PH(2, q) is an inci-
dence structure whose points are classes of ordered triples (̺x̆1, ̺x̆2, ̺x̆3), where both ̺ and

at least one x̆i (i=1,2,3) are units, whose lines are classes of ordered triples (σl̆1, σl̆2, σl̆3),

where both σ and at least one l̆i (i=1,2,3) are units, and the incidence relation is given by

3
∑

i=1

l̆ix̆i ≡ l̆1x̆1 + l̆2x̆2 + l̆3x̆3 = 0. (4)

From this definintion it follows that in PH(2, q) — as in any ordinary projective plane
— there is a perfect duality between points and lines; that is, instead viewing the points
of the plane as the fundamental entities, and the lines as ranges (loci) of points, we may
equally well take the lines as primary geometric constituents and define points in terms
of lines, characterizing a point by the complete set of lines passing through it. It is also
straightforward to see that this plane contains

#trip =
#3

t − #3
z

#u

=
(q2)3 − q3

q(q − 1)
=

q3(q3 − 1)

q(q − 1)
= q2

(

q2 + q + 1
)

(5)

points/lines and that the number of points/lines incident with a given line/point is, in light

of Eq. (4), equal to the number of non-equivalent couples (̺x̆1, ̺x̆2)/(σl̆1, σl̆2), i.e.

#coup =
#2

t − #2
z

#u

=
(q2)2 − q2

q(q − 1)
=

q2(q2 − 1)

q(q − 1)
= q (q + 1) . (6)

These figures should be compared with those characterizing ordinary finite planes of order
q, which read #trip = q2 + q + 1 and #coup = q + 1, respectively (e.g., [16]).

Any projective Hjelmslev plane, PH(2, q) in particular, is endowed with a very impor-
tant, and of crucial relevance when it comes to MUBs, property that has no analogue in
an ordinary projective plane — the so-called neighbour (or, as occasionally referred to, non-
remoteness) relation. Namely (see, e.g., [12]–[14]), we say that two points A and B are
neighbour, and write A ⊙ B, if either A = B, or A 6= B and there exist two different lines
incident with both; otherwise, they are called nonneighbour, or remote. The same symbol
and the dual definition is used for neighbour lines. Let us find the cardinality of the set
of neighbours of a given point/line of PH(2, q). Algebraically speaking, given a point ̺x̆i,
i=1,2,3, the points that are its neighbours must be of the form ̺ (x̆i + py̆i), with y̆i ∈ Tr; for
two points are neighbour iff their corresponding coordinates differ by a zero divisor [12]–[14].
Although there are q3 different choices for the triple (y̆1, y̆2, y̆3), only q3/q = q2 of the classes
̺ (x̆i + py̆i) represent distinct points because ̺ (x̆i + py̆i) and ̺ (x̆i + p(y̆i + κx̆i)) represent
one and the same point as κ runs through all the q elements of Tr. Hence, every point/line
of PH(2, q) has q2 neighbours, the point/line in question inclusive. Following the same line
of reasoning, but restricting only to couples of coordinates, we find that given a point P and
a line L, P incident with L, there exist exactly

(

q2/q =
)

q points on L that are neighbour
to P and, dually, q lines through P that are neighbour to L.

Clearly, as A⊙A (reflexivity), A⊙B implies B⊙A (symmetry) and A⊙B and B⊙C im-
plies A⊙C (transitivity), the neighbour relation is an equivalence relation. Given “⊙” and a
point P/line L, we call the subset of all points Q/lines K of PH(2, q) satisfying P ⊙Q/L⊙K

1This is, of course, a very specific, and rather elementary, kind of projective Hjelmslev plane; its most
general, axiomatic definition can be found, for example, in [12]–[14].
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Figure 1: A schematic sketch of the structure of the simplest projective Hjelmslev plane,
PH(2, 2). Shown are all the 28 of its points (represented by small filled circles), grouped into
seven pairwise disjoint sets (neighbour classes), each of cardinality four, as well as 24 of its
lines (drawn as solid, dashed, dotted and dot-dashed curves), forming six different neighbour
classes. In order to make the sketch more illustrative, different neighbour classes of lines
have different colour. Also shown is the associated Fano plane, PG(2, 2), whose points are
represented by seven big circles, six of its lines are drawn as pairs of line segments and
the remaining line as a pair of concentric circles. Notice the intricate character of pairwise
intersection of the lines of PH(2, 2); two lines from distinct neighbour classes have just one
point in common, while any two lines within a neighbour class share (q=)2 points, both of
the same neighbour class.

the neighbour class of P/L. And since “⊙” is an equivalence relation, the aggregate of neigh-
bour classes partitions the plane, i.e. the plane consists of a disjoint union of neighbour
classes of points/lines. The modulo-p-mapping then “induces” a so-called canonical epimor-
phism of PH(2, q) into PG(2, q), the ordinary projective plane defined over GF (q), with the
neighbour classes being the cosets of this epimorphism [14]. Loosely rephrased, PH(2, q)
comprises q2 + q + 1 “clusters” of neighbour points/lines, each of cardinality q2, such that
its restriction modulo the neighbour relation is the ordinary projective plane PG(2, q) every
single point/line of which encompasses the whole “cluster” of these neighbour points/lines.
Analogously, each line of PH(2, q) consists of q + 1 neighbour classes, each of cardinality
q, such that its “ ” image is the ordinary projective line in the PG(2, q) whose points are
exactly these neighbour classes.

Let us illustrate these remarkable properties on the simplest possible example that is
furnished by PH(2, q = 2), i.e. the plane defined over GR(4, 1) whose epimorphic “shadow”
is the simplest projective plane PG(2, 2) — the Fano plane. As partially depicted in Fig. 1,
this plane consists of seven classes of quadruples of neighbour points/lines, each point/line
featuring three classes of couples of neighbour lines/points. When modulo-two-projected,
each quadruple of neighbour points/lines goes into a single point/line of the associated Fano
plane.

The most relevant geometrical object for our model [10] is, of course, a conic, that is a
curve Q of PH(2, q) whose points obey the equation

Q :
∑

i≤j

cij x̆ix̆j ≡ c11x̆
2
1 + c22x̆

2
2 + c33x̆

2
3 + c12x̆1x̆2 + c13x̆1x̆3 + c23x̆2x̆3 = 0, (7)

with at least one of the cij
′s being a unit of GR(p2, r). In particular, we are interested in a
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Figure 2: The forms of five different proper conics located in PH(2, 2): x̆1x̆3 − x̆2
2 = 0 (solid

curve), x̆1x̆2 − x̆2
3 = 0 (dashed), x̆2x̆3 − x̆2

1 = 0 (dotted), x̆1x̆2 + x̆2
3 = 0 (dot-dashed) and

x̆1x̆2 + x̆1x̆3 + x̆2x̆3 = 0 (dash-doubledotted). Note the intricacies of pairwise intersections
between the conics.

proper conic, which is a conic whose equation cannot be reduced into a form featuring fewer
variables whatever coordinate transformation one would employ. It is known (see, e.g., [17])
that the equation of a proper conic of PH(2, q) can always be brought into a “canonical”
form

Q⋆ : x̆1x̆3 − x̆2
2 = 0 (8)

from which it readily follows that any such conic is endowed, like a line, with q2+q = q(q+1)
points; q2 of them are of the form

̺x̆i = (1, σ, σ2), (9)

where the parameter σ runs through all the elements of GR(p2, r), whilst the remaining q
are represented by

̺x̆i = (0, δ, 1), (10)

with δ running through all the zero-divisors of GR(p2, r). And each point of a proper conic,
like that of a line, has q neighbours; for the neighbours of a particular point σ = σ0 of (9)
are of the form

̺x̆i = (1, σ0 + pκ, (σ0 + pκ)2) = (1, σ0 + pκ, σ2
0 + p2κ) (11)

and there are obviously q of them (the point in question inclusive) as κ runs through Tr,
and all the q points of (10) are the neighbours of any of them. All in all, a proper conic, like
a line, of PH(2, q) features q + 1 pairwise disjoint classes of neighbour points, each having q
elements, these classes being the single points of its modular image in PG(2, q). To illustrate
the case, several proper conics in PH(2, 2) are shown in Fig. 2.

At this point our algebraic geometrical machinery is elaborate enough to generalize and
qualitatively complete the geometrical picture of MUBs proposed in [10] where we have
argued that a basis of Hq, q given by (3), can be regarded as a point of an arc in PG(2, q),
with a complete set of MUBs corresponding to a proper conic (or, in the case of p=2, to
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a more general geometrical object called oval). This model, however, lacks a geometrical
interpretation of the individual vectors of a basis, which can be achieved in our extended
projective setting à la Hjelmslev only. Namely, taking any complete, i.e. of cardinality
q+1, set of MUBs, its bases are now viewed as the neighbour classes of points of a proper
conic of PH(2, q) and the vectors of a given basis have their counterpart in the points of the
corresponding neighbour class. The property of different vectors of a basis being pairwise
orthogonal is then geometrically embodied in the fact that the corresponding points are all
neighbour, whilst the property of two different bases being mutually unbiased answers to the
fact that the points of any two neighbour classes are remote from each other. It is left to
the reader as an easy exercise to check that “rephrasing these statements modulo p” one
recovers all the conic-related properties of MUBs given in [10], irrespective of the value of
p. The (p=2) case of “non-conic” MUBs is here, however, much more complex and intricate
than that in the ordinary projective planes and will properly be dealt with in a separate
paper.

To conclude, it must be stressed that this remarkable analogy between complete sets
of MUBs and ovals/conics is worked out at the level of cardinalities only and thus still
remains a conjecture. Hence, the next crucial step to be done is to construct an expliciting
mapping by associating a MUB to each neighbour class of the points of the conic and a
state vector of this MUB to a particular point of the class. This is a much more delicate
issue, as there are (at least) two non-isomorphic kinds of projective Hjelmslev planes of order
q = pr that have exactly the same “cardinality” properties, viz. the plane defined over the
Galois ring GR(p2, r) and the one defined over the ring of “dual” numbers, GF (q)[x]/(x2) ∼=
GF (q)+eGF (q), where e2 = 0. Even for the simplest case (p=2 and r=1) there is an intricate
difference in geometry between the two planes, as the former contains (q2 + q + 1 =)7-arcs,
while the latter not (see, e.g., [18]). A thorough exploration of the fine structure of these
two Hjelmslev geometries, as well as of a number of other finite Hjelmslev and related ring
planes, is therefore a principal theoretical task for making further progress in this direction.
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