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Observation of Phase Defects in Quasi-2D Bose-Einstein Condensates

Sabine Stock, Zoran Hadzibabic, Baptiste Battelier, Marc Cheneau, and Jean Dalibard
Laboratoire Kastler Brossel∗, 24 rue Lhomond, 75005 Paris, France

(Dated: 22nd June 2005)

We have observed phase defects in quasi-2D Bose-Einstein condensates close to the condensation
temperature. Either a single or several equally spaced condensates are produced by selectively
evaporating the sites of a 1D optical lattice. When several clouds are released from the lattice and
allowed to overlap, dislocation lines in the interference patterns reveal nontrivial phase defects.

PACS numbers: 03.75.Fi, 32.80.Pj, 67.40.Vs

Low dimensional bosonic systems have very different
coherence properties than their three dimensional (3D)
counterparts. In a spatially uniform one dimensional
(1D) system, a Bose-Einstein condensate (BEC) cannot
exist even at zero temperature. In two dimensions (2D)
a BEC exists at zero temperature, but phase fluctua-
tions destroy the long range order at any finite temper-
ature. At low temperatures the system is superfluid and
the phase fluctuations can be described as bound vortex-
antivortex pairs. At the Kosterlitz-Thouless (KT) tran-
sition temperature [1, 2, 3] the unbinding of the pairs be-
comes favorable and the system enters the normal state.

In recent years, great efforts have been made to study
the effects of reduced dimensionality in trapped atomic
gases [4]. Both in 1D and 2D, the density of states in a
harmonic trap allows for Bose-Einstein condensation at
finite temperature. In contrast to 1D and elongated 3D
systems [5, 6, 7, 8, 9, 10, 11, 12, 13], the coherence prop-
erties of 2D atomic BECs have so far been explored only
theoretically [14, 15, 16, 17]. In previous experiments,
quasi-2D BECs [6, 18, 19, 20] or ultracold clouds [21]
were produced in specially designed “pancake” trapping
potentials. The sites of a 1D optical lattice usually also
fulfill the criteria for 2D trapping [22, 23, 24, 25]; the
difficulty in these systems is to suppress tunnelling be-
tween the sites, and to address or study them indepen-
dently [26, 27].

In this Letter, we report the production of an array
of individually addressable quasi-2D BECs. By selec-
tively evaporating the atoms from the sites of a 1D op-
tical lattice, we can produce either a single or several
equally spaced condensates. The distinct advantage of
this approach is that it opens the possibility to study the
phase structures in quasi-2D BECs interferometrically.
We have observed interference patterns which clearly re-
veal the presence of phase defects in condensates close to
the ideal gas Bose-Einstein condensation temperature.
We discuss the possible underlying phase configurations.

Our experiments start with an almost pure 87Rb con-
densate with 4 × 105 atoms in the F = mF = 2 hy-
perfine state, produced by radio-frequency (rf) evapo-
ration in a cylindrically symmetric Ioffe-Pritchard (IP)
magnetic trap. The trapping frequencies are ωz/2π =
12 Hz axially, and ω⊥/2π = 106 Hz radially, leading to
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Figure 1: An array of individually addressable quasi-2D
BECs. (a) A 1D optical lattice splits a cigar-shaped 3D
condensate into 15 - 30 independent quasi-2D BECs. (b) A
magnetic field gradient along the lattice axis allows us to se-
lectively address the sites by an rf field. We evaporate the
atoms from all the sites except those within a frequency gap
∆. (c) Steps in the BEC atom number Nat as a function of
∆, corresponding to 0, 1 and 2 sites spared from evaporation.
Each data point represents a single measurement.

cigar-shaped condensates with a Thomas-Fermi length
of 90 µm and a diameter of 10 µm.

After creation of the BEC we ramp up the periodic
potential of a 1D optical lattice, which splits the 3D
condensate into an array of independent quasi-2D BECs
(see Fig. 1(a) and [24]). The lattice is superimposed on
the magnetic trapping potential along the long axis (z)
of the cigar. Two horizontal laser beams of wavelength
λ = 532 nm intersect at a small angle θ to create a stand-
ing wave with a period of d = λ/[2 sin(θ/2)]. The blue-
detuned laser light creates a repulsive potential for the
atoms, which accumulate at the nodes of the standing
wave, with the radial confinement being provided by the
magnetic potential. Along z, the lattice potential has the
shape V (z) = V0 cos2(πz/d), with V0/h ≈ 50 kHz.

For the work presented here we have used two lattice
periods, d1 = 2.7 µm and d2 = 5.1 µm. The respec-
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tive oscillation frequencies along z are ω1/2π = 4.0 kHz
and ω2/2π = 2.1 kHz. At the end of the experimen-
tal cycle (described below), the BEC atom numbers in
the most populated, central sites are N1 ≈ 104 and
N2 ≈ 2× 104. We numerically solve the Gross-Pitaevskii
equation to get the corresponding chemical potentials
µ1/h = 2.2 kHz and µ2/h = 2.5 kHz, where the ~ω1,2/2
zero-point offset is suppressed in our definition of µ. In
the smooth crossover from 3D to 2D, the condensates in
the shorter period lattice are thus well in the 2D regime
with µ1/(~ω1) = 0.6, while for the clouds in the longer
period lattice this ratio is 1.2.

Since the radial trapping is purely magnetic, we can
remove atoms from the lattice by rf induced spin-flips to
untrapped Zeeman states. In order to address the lat-
tice sites selectively, we apply a magnetic field gradient
b′ along z [27, 28]. This creates an energy gradient along
the lattice direction, and splits the resonant frequencies
for evaporation of atoms from two neighboring sites by
∆ν1,2 = µBb′d1,2/(2h), where µB is the Bohr magneton
(Fig. 1(b)). We use gradients up to 26 G/cm, correspond-
ing to ∆ν1 = 5 kHz and ∆ν2 = 9 kHz. These splittings
are larger than the chemical potentials µ1,2, and the rf
Rabi frequency (≈ 2 kHz). The lattice sites can thus be
addressed individually.

The experimental routine to produce an adjustable
number of condensates starts with a slow, 200 ms ramp-
up of the magnetic field gradient. As illustrated in
Fig. 1(b), we then evaporate the atoms from both ends
of the cigar, sparing only the central sites within a vari-
able rf frequency gap ∆. We complete the evaporation in
100 ms, and ramp b′ back to zero in another 200 ms [29].

To verify that we can address the lattice sites individu-
ally, we measure the total number of condensed atoms left
in the trap as a function of ∆. An example of such a plot
is shown in Fig. 1(c) for d2 = 5.1 µm and b′ = 22 G/cm.
The magnetic and optical trap were switched off simulta-
neously and the atomic density distribution was recorded
by absorption imaging along z after 18 ms of time-of-
flight (TOF) expansion. The atom number increases in
steps of N2 = 2×104 every 8 kHz, in agreement with the
expected ∆ν2. We see three clear plateaus correspond-
ing to 0, 1 and 2 sites spared from evaporation. For
the shorter lattice period the frequency splitting is com-
parable to the chemical potential. This results in some
rounding off of the steps, but the plateaus remain visible.

In the first set of experiments, we have characterized
the free expansion of a single quasi-2D BEC [30]. The
clouds were released from the 5.1 µm period lattice and
imaged after up to 18 ms of TOF. We extract the axial (l)
and the radial (w) rms size of the cloud from gaussian fits
to the density distribution. As might be expected, the
observed expansion is predominantly one-dimensional,
along the axial direction. For short expansion times, t ≤
3 ms, the apparent axial size is limited by our imaging res-
olution, but for longer times it follows the linear scaling
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Figure 2: Phase defects in quasi-2D condensates. Interference
of four (a-c) and seven (d) independent BECs is observed
12ms after release from the 2.7 µm period lattice. Dislocation
lines in the interference patterns (b-d) reveal the presence of
phase defects in quasi-2D condensates.

l = vt, with v = 2.7 mm/s. This value is comparable to
the calculated velocity in the harmonic oscillator ground
state along z, vg =

√

~ω2/(2m) = 2.1 mm/s, where m is
the atomic mass. We find that the radial expansion can
be described by the empirical law w = w0

√

1 + (t/t0)2,
with w0 = 4.4 µm and t0 = 5.7 ms. The same law de-
scribes the radial expansion of a cigar-shaped 3D conden-
sate, with t0 = ω−1

⊥
[31], where ω−1

⊥
= 1.5 ms for our trap.

The radial expansion of our 2D gas is slower by a factor
of ≈ 4 compared to the 3D case, because the fast axial
expansion results in an almost sudden (ω−1

2
= 76 µs) de-

crease of the atomic density, and only a small fraction of
the interaction energy is converted into radial velocity.

In the second set of experiments, we have studied inter-
ference of independent quasi-2D BECs. Between two and
eight clouds were released from the 2.7 µm period lattice
and allowed to expand and overlap [32]. The resulting in-
terference patterns were recorded by absorption imaging
along the radial direction y. Due to the finite imaging
resolution we observe only the first harmonic of the in-
terference pattern with period ht/(md1). Each image is
thus the incoherent sum of the pairwise interferences of
nearest-neighbor condensates.

Interference of equally spaced, independent BECs pro-
duces straight interference fringes (Fig. 2(a)) as long as
each BEC has a spatially uniform phase [24, 33]. The
main result of this paper is the observation of topo-
logically different patterns, which reveal the presence of
phase defects in quasi-2D condensates. Striking examples
are “zipper” patterns (Fig. 2(b)), where the fringe phase
changes abruptly by π across a dislocation line parallel
to z. On both sides of the dislocation, the fringe con-
trast is as high as in Fig. 2(a). We also observe “comb”
patterns (Fig. 2(c)), which show a dislocation with high
fringe contrast on one side of the line, and vanishing on
the other. Finally, we sometimes see “braid” structures
with two dislocation lines (Fig. 2(d)). Single dislocations
(zippers and combs) are clearly visible in about 15% of
200 experiments with four interfering clouds [34].

The simplest phase configuration which can produce
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a sharp dislocation line is a single vortex in one of the
condensates [35, 36, 37, 38, 39]. In the case of two in-
terfering BECs, one can show that a centered vortex al-
ways leads to a zipper pattern (see a simulation of the
expected pattern in Fig. 3 (a)). The zipper is indeed
the only type of dislocation we clearly observe with two
clouds. When more than two BECs interfere, the pres-
ence of a single vortex can result both in a zipper and
in a comb pattern, depending on the phases of the other
condensates. In Fig. 3 (b) we show a numerical sim-
ulation with four BECs leading to a comb. Increasing
the number of interfering BECs enhances the probability
that some of them contain defects [40], but the inter-
pretation of images also becomes increasingly difficult.
Further, for a large number of clouds, a single defect will
not produce a clear dislocation line in the first harmonic
of the interference pattern, because it affects only the in-
terference with the two neighboring BECs. Already with
four clouds, only half of 100 simulations with a vortex
show clear zipper- or comb-type dislocations. The other
half shows weaker dislocations which are not easily dis-
tinguishable from straight interference fringes.

Despite the agreement between simulations involving
a vortex and the observed patterns, we point out that
it is in general not possible to unambiguously deduce
the underlying phase configuration from an interference
image. For example, a dislocation line could also come
from a dark soliton, where the phase of one of the BECs
changes by π across a line parallel to the imaging axis. In
future experiments simultaneous imaging along a second
radial direction could allow us to discriminate between
different possible phase structures leading to the observed
interference patterns.

So far we could not observe a clear signature of vortices
in images of single condensates taken along the axial di-
rection z. We suspect that this is difficult because of the
expansion properties of a 2D gas. Rotating 3D BECs,
in which vortices are readily detected after TOF [41],
expand mostly radially, while our clouds expand mostly
axially. In Fig. 2(b), the aspect ratio of the dislocation
line is & 15, so that any small misalignment with the
imaging axis will significantly reduce the contrast. In-
terferometric detection along a radial direction offers a
fundamentally superior signal, because a localized defect
affects the appearance of the whole image.

It is important to assess the temperature of the clouds
in which the observed phase defects appear. Precise ther-
mometry at the end of the experimental cycle is diffi-
cult, because the thermal cloud is very dilute. However,
we can estimate lower and upper bounds for the tem-
perature. During the 500 ms selective evaporation rou-
tine, the clouds are heated due to three-body recombi-
nation, and the only constant source of cooling is the
finite lattice depth; atoms with an energy larger than
V0 are accelerated away by the magnetic field gradient
(Fig. 1(b)). Assuming the largest realistic evaporation

Figure 3: Examples of numerical simulations of two (a) and
four (b) interfering condensates. In both cases one randomly
chosen BEC has a phase factor eiϕ corresponding to a centered
vortex, and the others have randomly chosen uniform phases.
For simplicity, we model the clouds as gaussian wave packets
and neglect interactions during the expansion. The images
are convolved with a gaussian of 4 µm rms width to simulate
the finite imaging resolution.

parameter η = V0/(kT ) = 10, we get a lower bound for
the temperature Tmin ≈ 250 nK. To get an upper bound
we note that at the beginning of the experiment our
clouds have a condensed fraction above 50% and during
the experimental cycle the number of condensed atoms
drops by a factor of ≈ 2. This means that, even if we ne-
glect losses in the total atom number, the final condensed
fraction cannot be less than 25%. Using the measured
number of condensed atoms and integrating the Bose dis-
tribution over the density of states in the lattice, we get
Tmax ≈ 500 nK. Since the number of thermal atoms is
different at Tmin and Tmax, the two bounds correspond
to different condensation temperatures Tc, and the es-
timated temperature range is more clearly expressed as
0.7 ≤ T/Tc ≤ 0.9. In this temperature range kT & ~ω1,2,
so the thermal clouds are not fully in the 2D regime.

The fact that the clouds are close to Tc is probably
essential for the understanding of our observations, and
a systematic temperature study will be the subject of
future work. The probability for a thermal excitation
of the system into a vortex state is ∝ e−F/kT , where
F = E − TS is the free energy associated with the exci-
tation, E the energy, and S the entropy. Here we es-
timate the conditions for F/kT to be of order unity.
For a vortex in the center of the condensate, E ∼
N

[

(~ω⊥)2/µ
]

ln (R/ξ) [37], where N is the BEC atom
number, R the size of the condensate, and ξ = ~/

√
2mµ

the size of the vortex core. Equivalently, E/(kT ) ∼
(1/2)n0λ

2 ln (R/ξ), where n0 is the peak 2D atom den-
sity and λ is the thermal wavelength h/

√
2πmkT . The

number of distinguishable positions for a straight vortex
of size ξ in a region of size R is ∼ R2/ξ2, and the as-
sociated entropy is S/k ∼ 2 ln (R/ξ). In this estimate
F/kT ∝

(

n0λ
2 − 4

)

vanishes for n0λ
2 = 4. In our ex-

periment n0λ
2 ∼ 10 − 20 is a few times higher than this

value. However already this crude agreement suggests
that the thermal excitation of vortices might be possi-
ble in our system. A more realistic calculation should
take into account vortex bending, which can increase the
entropy and reduce the free energy.

Thermal excitation of a tightly bound vortex-
antivortex pair [17] is more likely than that of a sin-
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gle vortex. In that case the entropy is comparable and
the energy is typically lower by the logarithmic factor
ln (R/ξ), in our case ∼ 4. However, such pairs should
create only small phase slips in the interference pattern,
and it is not clear whether we can detect them.

The fact that ln (R/ξ) is not large compared to 1 un-
derlines the mesoscopic nature of our system. In a ho-
mogeneous 2D system with R → ∞, both the energy and
the entropy of a free vortex diverge as ln(R), and the two
contributions to the free energy cancel at the KT transi-
tion temperature TKT. Below TKT only vortex-antivortex
pairs are present, while above TKT a large density of
free vortices appears and suppresses superfluidity. In our
case, we expect this phase transition to be replaced by
a gradual increase of the average number of free vortices
with temperature. For F ∼ kT , the vortex number can
show large fluctuations and two condensates produced
under identical experimental conditions can have quali-
tatively different wave functions.

In conclusion, by selectively addressing individual sites
of a 1D lattice, we have produced both a single and sev-
eral equally spaced quasi-2D BECs. We have character-
ized the free expansion of a single BEC, and have inter-
ferometrically observed clear evidence for the presence
of phase defects in about 10% of eight hundred conden-
sates. While our observations can be explained by the
presence of thermally excited vortices in the system, this
does not exclude other scenarios and we hope that our
experiments will stimulate further theoretical work.
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