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Geometry of ertain Lie-Frobenius groupsJean Mihel Dardié, Alberto Medina and Hassène SibyAbstrat. Let be Gn,p(K) = Mn,p(K) ⋊ GL(Kn), K = R or C, thesemi-diret produt of the additive group of matries Mn,p(K) by thegroup GL(Kn) where the ation is done by multipliation of matries.If n = kp,p ≥ 1 the Lie group Gn,p(K) admits an exat left invariantsympleti form [10℄. We study the geometry of this sympleti manifold.If n > p ( resp. n = p ) we prove that Gn−p,p(K) (resp Gn−1,1(K)) is the sympleti redution of the sympleti orthogonal (Mn,p(K))⊥of Mn,p(K) in Gn,p(K) and reiproally that Gn,p(K) is a sympletidouble extension, in the sense of [6℄, of Gn−p,p(K) ( resp. of Gn−1,1(K)).Moreover we show that Gn,p(K) admits two left transverse Lagrangianfoliations (with a�ne and losed leaves) . Consequently there exists (aleft invariant) a anonial torsion free sympleti onnetion on Gn,p(K).Key words :Exat sympleti Lie group , A�ne Lie group, Sympleti Redution , Sym-pleti double extension.IntrodutionThe group Gn,1(K) = Aff(Kn) where K = R or C admits left invariantsympleti strutures whih are all exat beause H2(aff(Kn), K) = 0([9℄).To give an invariant sympleti form on Gn,1(K) is to give a linear form αon the Lie algebra aff(Kn) suh that the 2-obound δα is non degenerate.That is to say α is a point with an open orbit under the oadjoint ation of
Gn,1(K). These points have been haraterized in [9℄ within the frameworkof study of a�ne group representations and in [3℄ where is arried on thestudy of left invariant sympleti strutures of a�ne group initiated in [4℄.In [10℄, it showed that oadjoint ation of Lie group semi-diret produtof Mn,p(K) and GL(Kn) by matriial produt, where Mn,p(K) indiate theadditive group of (n × p)-matries, admits open orbits if only if n = kp. Weextend to these groups denoted Gn,p(K) the result obtained in [3℄ for thelassial a�ne group : existene of a unique sympleti struture up isomor-phism (Theorem 2.7), existene of transverse sympleti foliations (Theorem2.6), as well as of a Lagrangian bi-foliation with losed leaves (Theorem 3.2).Suh a pair of Lagrangian foliations is important in the quantization pro-edure (polarization) and implies the existene of a anonial (torsion free)sympleti onnetion on Gn,p(K). The natural left ation of Gn,p(K) on it-self being hamiltonian we an provide (Theorem 2.1) a similar of struture'stheorem of simply onneted sympleti Lie group from [5℄.1



2In the third part we study up the �brations of this theorem for expliit sug-gest a onstrution of (

Gn,p(K), dα+
1

) when the generalized double extensionof [5℄ don't apply in this ase.To omplete this introdution reall that a sympleti Lie group (G,ω+) hasan a�ne struture given by the left invariant onnetion ( torsion free andzero urvature ) ∇ de�ned for all x, y, z ∈ Tε(G) by :
ω+(∇+

x+y+, z+) = −ω+(y+, [x+, z+])where x+ denotes the left invariant vetor �eld assoiated to x.Then one says that the pair (G,∇+) is an a�ne Lie group. In this ase theprodut on G, xy = (∇+
x+y+) is with assoiator left invariant and veri�es theondition xy − yx = [x, y]. This struture plays a entral rule in this study.1. Left invariant sympleti strutures on the Lie groups Gn,pIn what follows Gn(K) denotes the lassial a�ne group where K = R or

C and Gn(K) is its Lie algebra. By analogy, we denote Gn,p(K) the groupsemi-diret produt Mn,p(K) ⋊ Gl(Kn) with n = kp, p ≥ 1 and Gn,p(K
n), itsLie algebra. Obviously Gn,1(K) is isomorphi to Aff(Kn). Considering that

H2(aff(Kn), K) = 0 (see [3℄) any left invariant alternate 2-form is invari-antly exat. This result beomes general to Gn,p(K) in the following way :1.1 Lemma. Every left invariant sympleti form on Gn,p(K) is exat.Proof. If k = p = 1 ; G1,1 is isomorphi to aff(K) and the result follows.Assume that k (or p) is greater than 1.Let be ω ∈ Z2(Gn,p; K), Gn,p =
Mp,n(K) ⋊ gl(n). This means that we have

∮

ω([a, b], c) = 0 (*) for every a,b,c in Gn,p.If we take a = (x, u), b = (y, v) and c = (0, Id)(*) implies ω(x, y) = 0 for every x, y ∈ Mn,p, and onsequently ω(x, b) +
ω(a, y) = ω(I, uy − vx + [u, v]).But this is equivalent to

ω(a, b) = ω(I, ux − vy)

= −δβ(a, b) with β = ω(I, ·) �N.B In fat for all Lie algebra G having an element a ∈ G suh that adais projetor, we have H2(G, K) = 0.Remark 1. The mapping
Mp,n(K) × gl(n) −→ (Mn,p(K) × gl(n))∗

(H,M) 7−→ α(H,M)given by
α(H,M)(N,V ) = tr(N.H) + tr(M.V )is a linear isomorphism.In the following, the dual spae G∗

n,p of Gn,p is identi�ed with Mp,n(K)×gl(n).To give an invariant losed 2-form on Gn,p(K) it is equivalent to give a linearform α on Gn,p(K) . The 2-form dα+, where α+ denotes the left invariant
1-form de�ned by α is sympleti if and only if α has an open orbit underthe oadjoint representation.



3Using the Remark 1 and the natural embedding of Gn,p in GL(Kn+p) wean show1.2 Lemma. The oadjoint representations of Gn,p and Gn,p are given bythe following formulas :
(i) ad∗(0,u)(H,N) = (−H, [u,N ])

(ii) ad∗(x,0)(H,N) = (0, x.H)

(iii) Ad∗(0,U)(H,N) = (H.U−1, UNU−1)

(iv) Ad∗(X,IdKn )(H,N) = (H,N + X.H)This implies
Ad∗(X,U)(H,N) = (H.U−1, UNU−1 + XHU−1)Consequently the oadjoint orbit Ad∗Gn,p

(α) of α = (H0, N0) with H0 =

(0, Ip) ∈ Mp,n and
N0 =





0 0 0
Ip 0 0
0 Ip 0



is open. Denote by H0 the (p, n)-matrix whose p×p bloks are all null exeptfor the last, whih is the identity of K
p and denoted by N0 the (n×n)-matrixwhose p× p bloks are all null exept the sub-diagonals whih are IdKp . Theprevious formulas allow us to verify that the orbit of (H0, N0) is open sinethe isotropy subalgebra is trivial.2. Sympleti Redution - Left invariant Sympleti foliation on

Gn,p(K).Denote by ω+ = dα+, α = (H,N) ∈ G∗
n,p a left invariant sympleti form on

Gn,p.The ation of Gn,p(K) on Gn,p(K) given by
LG : Gn,p(K) × Gn,p(K) −→ Gn,p(K), (τ, σ) 7−→ τσ ( produt in Gn,p )is a sympleti ation. Morever LG is a Hamiltonian ation ; a momentummapping for the ation is given by

µ : Gn,p(K) −→ Gn,p(K)∗

σ 7−→ µ(σ) : x 7−→ 〈α+(σ), x−(σ)〉where x ∈ Gn,p and x− is the right invariant vetor �eld assoiated to x.The subgroup H := Mn,p is (totally) isotropi for ω+ beause H is an abelianLie group. Morever LH : H × Gn,p −→ Gn,p is a hamiltonian ation and amomentum mapping for LH is given by :
m : Gn,p −→ L(H)∗

σ 7−→ µ(σ)|L(H)where LH is the Lie algebra of H. We arrive at the following theorem :



4 2.1 Theorem . Let (Gn,p, d((H,N)+) de�ned as above. Then1. m−1(H) is a losed subgroup of Gn,p and H ⊂ m−1(H)2. The anonial exat sequene of Lie groups
(2) {ǫ} → H → m−1(H) → m−1(H)/H → {ǫ}is split. It is also an exat sequene of a�ne Lie groups.3. The redued sympleti Lie group m−1(H)/H is isomorphi to :

Gn−p,p(K) si n > p
Gp−1,1(K) si n = p > 14. In the prinipal bundle

(3) m−1(H)
i

−→ Gn,p(K)
m
−→ Θwhere Θ is the set of matries of rank p in M∗

n,p ≡ Mp,n, the �ber is ana�ne Lie subgroup and m is a�ne relative to the usual a�ne struture of
Θ ⊂ K

np.We need the following lemma for whih the proof is obvious.2.2 Lemma . The mapping m is a surjetive submersion.Furthermore,
(4) m((X,T )) = H.T−1 where (X,T ) is in Gn,p(K)Proof. The formula (4) is a diret onsequene of the de�nition of m andthe Lemma 1.2. Thus it is lear that m is a surjetive submersion on the set
Θ of matries of rank p of Mn,p(K).Proof of the theorem 2.1.Formula (4) implies that m−1(H) = {(X,T ) ∈ Gn,p(K)/HT−1 = H} is a(losed) subgroup of Gn,p(K) whih ontains H. Morever the fator group
m−1(H)/H an be identi�ed with {(0, T ) ∈ Gn,p/HT−1 = H}. Thus (2) isan split sequene of Lie groups. On the other hand, sine H is ommutativeand ω+ is exat, it follows that L(H) ⊂ L(H)⊥ and a straightforward showsthat L(m−1(H)) = L(H)⊥.Morever from the formula

ω(xy, z) = −ω(y, [x, z])de�ning the left symmetri produt in Gn,p(K) (see formula (1)) it turns outthat L(H)⊥ is a left symmetri subalgebra of Gn,p(K) and that L(H) is atwo-side ideal of L(H)⊥. Consequently (2) is an exat sequene of a�ne Liegroups i.e H, m−1(H), m−1(H)/H are a�ne Lie groups and the appliationsof formula (2) are a�ne.On the other hand a list of the elements of the matrix group {(0, T ) ∈
Gn,p(K)/HT−1 = H} allows to observe that the group m−1(H)/H is iso-morphi to the group Gn−p,p(K) if n > p and isomorphi to Gn−1,1(K) if
n = p. This proves statement 3.Now , we need to show that the manifold Θ is endowed with an a�ne stru-ture whih makes the momentum mapping a�ne.Let F be the subbundle of TGn,p(K) tangent to the LH-orbit and F⊥ itssympleti orthogonal. Denote by F and F⊥ the assoiated foliations respe-tively. Sine H is normal in Gn,p(K), the foliation F⊥ is de�ned either by theleft invariant form on Gn,p(K) given by η

′

j := i(e+
j )ω+ where (ei)'s form a



5basis of L(H) and i denote the interior produt, or by the losed forms (thusexat) ηj := i(e−j )ω+. Obviously the ηj are basi for the �bration. the forms
η̄j whih are the projetions of ηj by m de�ne a loal parallelism on Θ. Thisparallelism is global and ommutative beause the η̄j are exat. Hene m isa�ne. �Let α1 and α2 be the linear forms on Gn,p(K) de�ned respetively by α1(x, u) =
tr(H.x) and α2(x, u) = tr(N.u). We get :2.3. Theorem. ker(dα1) and ker(dα2) are supplementary sympleti Liesubalgebras of (Gn,p(K), dα). So they determine two tranverse sympleti fo-liations left invariant on Gn,p(K)Proof. Obviously ker(dαi) is a Lie subalgebra of Gn,p(K). In addition thesubspaes ker(dαi), i = 1, 2 are in diret sum beause ker(dα1)

⋂ker(dα2)=
{0}.If we take α = (H0, N0) we diretly observe that we have dim(ker(δα1))=
p2(k− 1)k and dim(ker(δα2))= 2p2k. We extends these results about the di-mension for all α ∈ G∗

n,p(K) with open oadjoint orbit. onsequently ker(δα1)and ker(δα2) are sympleti Lie subalgebras of (Gn,p(K), dα). �Let C(N0) be the subalgebra of gl(Kn) given by :










A0

A1
. . .... . . . . . .

Ak−1 · · · A1 A0









2.4. Sholie. The Lie algebra ker(dα1) is isomorphi to the Lie algebra
Gn−p,p(K) if n > p and Gp−1,1(K) if n = p while ker(dα2) is isomorphi tothe semi-diret Mn,p(K) ⋊ C(N0) if n > p and to the semi-diret produt
Mp,p(K) ⋊ C(N0) if n = p.The following result is the in�nitesimal version of Theorem 2.1. It gives amore preise and omplete statement of Theorem 2.1.2.5 Proposition. With the notations of Therem 2.1., if I = L(H), theanonial sequene of vetoriel spaes

0 → I → I⊥ → I⊥/I → 0is a split exat sequene of Lie algebras. It is also an exat sequene of leftsymmetri algebras.Furthermore the Lie algebra Gn,p(K) deomposes as a diret sum of Liesubalgebras I⊥ and C(N0) .2.6 Theorem. The sympleti Lie group (Gn,p, dα+) is endowed withtwo transversal left invariant sympleti foliations whose leaves are a�nesubmanifolds of Gn,p(K).The following assertion spei�es the number of open orbits in G∗
n,p(K) aswell as the left invariant sympleti strutures on Gn,p(K).2.7 Theorem.a. There exist two open orbits of the oadjoint representation of Gn,p(K) if

K = R and only one if K = C



6b. Up isomorphism there is only one left invariant sympleti struture on
Gn,p i.e if ω and ω

′ are two left invariant sympleti forms on Gn,p(K), thenthere exists an automorphism ϕ of Lie algebra Gn,p(K) suh that :
ωε(., .) = ω

′

ε(ϕ., ϕ.).The following lemmas set up the main steps of the demonstration of The-orem 2.7. This lemma allow to ount the Ad∗Gn,p
-orbits2.8 Lemma. If Orb(H,M) is the oadjoint orbit of (H,M) ∈ G∗

n,p ≡

Mp,n(K) × gl(n) then Orb(H,M) has an element (H
′

0,M
′

0) ∈ G∗
n,p suh that

H
′

0 = (0, · · · , Ap) ∈ Mp,n.Morever, if Orb(H,M) is open, then H
′

0 an be taken as H
′

0 = (0, · · · , Ip) =
H0.Proof. It su�es to remark that there exists U ∈ GLo(K

n) suh that
HU−1 = H0 , that is obvious if we look at H as the matrix of a mappingfrom K

n into K
p and U−1 as the matrix of a hange of basis in K

n. Thenthe last formula of lemma 1.2 show the �rst assertion.Now suppose that Orb(H,M) = Orb(H
′

0
,M

′

0
) is a open orbit. This implies thatwe have

(x, u) ∈ Gn,p; ad∗(x,u)(α) = 0 ⇒ (x, u) = 0In partiular
ad∗(x,0)(H

′

0,M
′

) = 0 ⇒ x = 0In other words
(∗∗) tr(xH0u) = 0, u ∈ gl(n) ⇒ x = 0with H0 = (0, Ap)But a straight alulation shows that (**) implies Ap is invertible.Finally there exists U ∈ GLo(K

n) suh that H
′

0U
−1 = H0, but this relation�x only the last diagonal blok of U to the value A−1. Therefore if k ≥ 2 weable to take an other diagonal blok egals to detA−1.IdKp and ompletingthe diagonale by the 1, to onstrut a suh matrix U in SL(Kn).2.9 Lemma. An open orbit Orb(H0,M) ontains only one element (H0,M

′

),where the blok deomposition of M
′ an be written :

M
′

=

(

M1 0
H1 0

)with (H1,M1) ∈ G∗
n−p,p.Proof. Beause

Ad∗(X,Id)(H0,M) = (H0,M + X.H)it is lear that there is only one X ∈ Mp,n suh that M
′

= M + MH0.2.10 Lemma. The linear forms (H0,M
′

) and (Ho, P
′

) on Gn,p with M
′

=

(H1,M1) and P
′

= (K1, P1), de�ned as in Lemma 2.9, belong to the same
Ad∗Gn,p

-orbit if and only if (H1,M1) and (K1, P1) are in the same Ad∗Gn−p,p
-orbit.



7Proof. (H0,M
′

) and (Ho, P
′

) are in the same orbit if and only if ∃U ∈

GLo(K
n) suh that UM

′

U−1 = P
′ and H0U

−1 = Ho.The seond ondition implies
U =

(

U
′

0
X1 Id

)

, with U1 ∈ GL0(K
n−p)On other hand UM

′

U−1 = P
′ in gl(Kn) is equivalent to Ad∗(X1,U1)

(H1,M1) =

(K1, P1) in Gn−p,p(K) �Proof of the theorem 2.7.Following the previous Lemmas we haveardinal{open Ad∗Gn,p
− orbit

} = ardinal{open Ad∗Gp,p
− orbit

}On the other hand, using similar arguments as those of the lemmas we anshow thatardinal{open Ad∗Gp,p
− orbit

} = ardinal{open Ad∗G1,1
− orbit

} =
{

2 if K = R

1 if K = CIf K = C there is only one sympleti struture on Gn,p.In the ase K = R, it follows from the lemmas that every Ad∗Gn,p
-open orbitontains an element (H0, N0) where

N0 =

















0

Ap
. . .
Ip

. . .. . . . . .
Ip 0

















with Ap invertibleNevertheless two matries as N0 are onjugate by an element P of GL(n).However the mapping
G∗

n,p −→ G∗
n,p, (g,M) 7−→ (P t−1

g, P−1MP )is dual of the mapping
θ : Gn,p −→ Gn,p (x,N) 7−→ (P−1x, P−1NP )and these later is an automorphism of the Lie algebra Gn,p.Consequently if ω+

1 , ω+
2 are two left invariant sympleti forms on Gn,p, wehave :

ω+
1 = θ∗(ω+

2 ). �Remark 2. Notie that the only one left invariant a�ne struture on Gn,pis given by (H0, N0).The following result is an important onsequene of the previous study.2.11 Proposition. The identity omponent of Gn,p is di�eomorphi to anopen Ad∗Gn,p
-orbit. Consequently Gn,p and {

α ∈ G∗
n,p; α is Poisson-regular}are di�eomorphi.Proof.(By indution) We must prove that the orbital mapping in (H0, N0)

(Gn,p)o −→ G∗
n,p, (X,U) 7−→ (H0U

−1, UN0U
−1 + XH0U

−1)



8has a trivial isotropy.The result is obvious for G1,1 and this implies that it is also true for Gp,p (thanks to a sequene double extension ).Consider the ase Gn,p with n = kp, k ≥ 2. The equality
(H0U

−1, UN0U
−1 + XH0U

−1) = (H0, N0)implies that UN0U
−1 and N0 have the same p blok-type ( in partiulartheir last olumns are zero). Hene X = 0.On the other hand, U indues an element of Gn−p,p belonging to the Ad∗Gn−p,p

-isotropy subgroup in N0. Then, if the result is true in Gp,p it is also true in
G2p,p and Gkp,p p ≥ 2.�3. Left invariant Lagrangian foliations and Hess onnetion .3.1. Let's speify a little bit the Lie algebra isomorphisms indiated by theprevious proposition. The isomorphism between Rad(dα1) and Gn−p,p(K) isdetermined by the hoie of a supplementary subspae ofK(H0) = {X ∈ Mn,p(K),H0.X = 0}in Mn,p(K).Denote by X0, the element of Mn,p(K) formed by one olumn of zero-bloks exept the last blok whih is idKp . Then the mapping Rad(dα1) =
{(0, u) ∈ Gn,p(K),H0.u = 0} −→ Gn−p,p(K) suh that (0, u) 7−→ (U.u0, π0(u))de�nes suh a isomorphism, where π0(u) denotes the matrix of the linear mapgiven by u restrited to K(H0). Furthermore the image of the redued sym-pleti form is the 2-oboundary assoiated to (H1, N1) ∈ G∗

n−p,p(K) where
H1 and N1 are de�ned by tr(N0u) = tr(H1.u.X0) + tr(N1π0(u)) . We re-mark that (H1, N1) has the same blok type as (H0, N0), so we an repeatthe proess of sympleti redution in the same onditions. One obtains adeomposition of the spae Gn,p(K) as a diret sum of Lie subalgebras :

Gn,p(K) = Kp−1 ⊕ · · · ⊕ K0 ⊕ C(N0) ⊕ · · · ⊕ C(Np−1)where Ki omes from the totally isotropi ideal and Gn−ip,p(K) = {Ki ×
Gn−(i+1)p,p(K)} ⊕ C(Ni) for 0 ≤ i ≤ p − 1 (orthogonal diret sum). Usingthe anonial embedding of Gn,p(K) in gl(Kn+p), the subspae L = Kp−1 ⊕
· · · ⊕K0 is identi�ed to the subalgebra of stritly upper triangular (p + 1)×

(p + 1)-matries by p × p-bloks and L
′

= C(N0) ⊕ · · · ⊕ C(Np−1) to thesubalgebra of lower triangular (p × p)-matries by (p × p)-bloks. As the Kiand C(Ni) appear as the totally isotropi subspaes at every step of thesuessive redutions the subalgebras L and L′ are lagrangian relative to dαwhere α ≡ (H0, N0) .Denote by Λ and Λ
′ the onneted Lie subgroups of Gn,p(K) with Lie algebra

L and L′ respetively. The natural left ations of Λ and Λ
′ on (Gn,p(K), dα+)being hamiltonnians, Theorem 3.1. of ([3℄) allows us to assert that Λ and Λ

′are losed. So we have proved the following result :3.2 Theorem. The sympleti Lie group (Gn,p, dα+) is endowed with twotransversal left invariant lagrangian foliations with losed and a�nes leaves. Let (Gn,p(K), ω+) be endowed with its a�ne struture ∇ de�ned by (1)We reall that a onnetion on (Gn,p(K), ω+) is said to be sympleti if and



9only if ∇ω = 0 where ω := ω+
ε , in other words :

∇a(ω(b, c)) = ω(∇ab, c)+ω(b,∇ac) ∀a = (x, u), b = (y, v), c = (z, r) ∈ Gn,p(K)In that follows one identi�es an element a of Gn,p(K) with (x, u), where
x ∈ Mn,p and u ∈ gl(n).Let L and L

′ be two lagrangian subalgebras of Gn,p(K) suh that G = L⊕L
′.Then we an write a = a1+a2 where a1 = (x1, u1) ∈ L and a2 = (x2, u2) ∈ L
′. Then the left symmetri produt on Gn,p(K) is given by :

(i) (x, 0).(y, 0) = (l, f)where l ∈ Mn,p is formed from a olumn of bloks suh that the last belongsto sl(p) and f ∈ gl(n) is an element whose last line of bloks is zero.
(ii) (0, u).(0, v) = (l,−vu)where l is de�ned as above.
(iii) (x, 0).(0, v) = (l1, f1)

(iv) (0, u).(y, 0) = (l2, f2)where l1,l2 ∈ Mn,p, f1,f2 ∈ gl(n) are de�ned as in (i).The following result is a onsequene of the previous disussion3.3. Corollary. There exists only one (torsion free ) left invariant sym-pleti onnetion ∇̃ ( alled the Hess'onnetion ) suh that
∇̃aL ⊂ L, ∇̃a′L

′

⊂ L
′

.where a ∈ L et a′ ∈ L
′This onnetion is de�ned by the produts :

∇̃(x,0)+(y, 0)+ = (l, 0)+ , ∇̃(0,u)+(0, v)+ = (0,−vu)+

∇̃(x,0)+(0, v)+ = 0 , ∇̃(0,u)+(y, 0)+ = (uy, 0)+Given the kind of results that we have desribed above, it is natural toask ourself in what sense the group Gn,p(K) is not the sympleti doubleextension desribes in ([6℄).The answer is learly no if k > 1 ; in fat to have Gn,p(K) be the sympletidouble extension of Gn−p,p(K) in the sense of [6℄ it is neessary that I⊥ bea Lie ideal of Gn,p(K). Considering the proposition 2.3 involve the existeneof a Lie ideal of gl(Kn) isomorphi to Gn−p,p(K).4. Gn,p(K) as sympleti double extension of Gn−p,p(K)We have shown in the previous paragraph that the tehniquess of sympletidouble extension developed in ([5℄) do not apply to Gn,p(K) for k > 1.We reonsider the study of the anonial �brations (2) and (3 ) to try tounderstand how work this example. We have observed in 2.5. that for thesympleti Lie algebra (Gn,p, dα) where α ∼= (H0, N0), a setion of the anon-ial exat sequene
0 → I → I⊥ → I⊥/I → 0is determined by the hoie of an element X0 in Mn,p(K)\K(H0) where K(H0)is the kernel of H0.



10Conversely, we onsider the redued algebra (Gn−p,p, dα
′

) with α
′

≡ (H1, N1)where H1 = (0, · · · , 0, Ip) and
N1 =

















0

Ip
. . .
Ip

. . .. . . . . .
Ip 0















Let i be the anonial inlusion from Mn−p,p to Mn,p obtained by puttingzero in the n − p + 1, · · · , n rows, and let Z ∈ Mn,p\Mn−p,p have rank p (e.g. Z = H0)).Denote by r : Mn−p,p −→ Mn,p the linear mapping given by
r ◦ i = idMn−p,p

and r(Z) = 0and let H ∈ M∗
n,p satisfy

(5) H ◦ i = 0 and H.Z = IdpWe onsider the regular representation :
(6) η : Gn−p,p → gl(n), (x, u) 7→ (i ◦ u ◦ r + H.i(x))From η we dedue a representation of Lie groups :
(7) ρ : Gn−p,p → GL(n), (X,U) 7→ (i ◦ U ◦ r + i(X).H)verifying,

ρ∗,ǫ = ηMorever onsider the inlusion :
R : M∗

n,p × gl(n − p) → gl(n)given by
(8) R(H,N) = i ◦ N ◦ r + Z.(H ◦ r)Then we an state the following result.4.1 Theorem. Consider the sympleti Lie group (Gn−p,p, d(H1, N1)

+) .If H is the linear form given by (4), and N = R(H1, N1) with R given by (7),then (Gn,p, d(H,N)+) is a sympleti Lie group suh that (Gn−p,p, d(H1, N1)
+)is the redued sympleti Lie group as desribed in theorem 2.1.Proof. By de�nition of H we have

m−1(H) = Mn,p × ρ(Gn−p,p)It remains to prouve that d(H1, N1)
+) is the redued sympleti form of

d(H,N)+)|m−1(H). Consider the deomposition Mn,p(K) = i(Mn−p,p(K)) ⊗
K.ZOn the other hand a straight veri�ation proves that
tr(H1x) + tr(N1u) = tr(R(H1, N1) · (η(x, u)) for all (x, u) of Gn−p,p(K).Finally as N = R(H1, N1) and d((H, 0)+) vanish on m−1(H) it follows that
d((H1, N1))

+) is the redued form .This ends the proof. �



11Remark 4. A similar argument proves that for p ≥ 2 : Gp,1 = Aff(Kp)is a sympleti redution of Gp,p and Gp,p is a sympleti double extensionof Gp,14.2 Study of the �bration :
(3) m−1(H)

i
−→ GAn,p(K)

m
−→ ΘAording to Theorem 1.2. we an onsider the ase where α ≡ (H0, N0).Let C = C(N0)

⋂

GL(Kn) or, if we prefer C is the Lie subgroup of GL(Kn)formed by matries of type










A0

A1
. . .... . . . . . .

Ak−1 · · · A1 A0









with A0 is invertible.Aording to Lemma 2.2. m(C) = {(Ak−1, · · · , A1, A0) : A0 invertible }, de-note by V0 this open set of Θ.Let be Vγ = V0.σγ where γ = (i1, · · · , ip) and σγ is the element of GL(Kn)whih realizes the permutation of the k last olumns with the olumns in-dexed by γ in Mp,n(K). The sets Vγ are learly the open set of × and mde�nes a di�eomorphism of C.σγ on Vγ . Denote Sγ the embedding of Vγ in
GL(Kn) suh that Sγ(Vγ) = C.σγ and m ◦ Sγ = idUγ

for all multi-indies γ.We have the following result :4.3 Lemma. The Vγ as de�ned above , with γ = (i1, · · · , ip) for 1 ≤ i1 <
i2 < · · · < ip ≤ n, form an open trivializing over for the �bration (2).Proof.The elements Vγ reover Θ sine Θ is formed by matries of rank p in Mp,n(K)whose �rst p olumns are independent in K

p. By ontrast V0 is formed ofmatries for whih the last p olums are independent.To show that the Vγ are trivialising for the �bration (3) amounts to provingthat we have m−1(Vγ) = Sγ(Vγ).m−1(H0). For all σ of Gn,p(K) we have theidentity m−1(m(σ)) = σ.m−1(H0). Indeed if σ
′

∈ m−1(m(σ)) we have byde�nition of m the formula,
〈Ad∗σ(H, 0); (X, 0)〉 = 〈Ad∗

σ
′ (H, 0); (X, 0)〉 for all X in Mn,p(K)or what amounts to the same thing

〈Ad∗
σ−1σ

′ (H, 0); (X, 0)〉 = 〈(H, 0); (X, 0)〉 for all X in Mn,p(K)This last relation means that σ−1σ
′

∈ m−1(H0) by the identity below andthe fat that the Vγ are open and trivialising.The trivialisations are thengiven by the map φγ : m−1(Vγ) → Vγ × m−1(H0); Sγ(α).σ 7→ (α, σ) for allmulti-indies γ = (i1, · · · , ip) with ≤ i1 < i2 < K < ip ≤ n. The oylede�ning the �bration (2) is given by
(9) Γγ1γ2

: Vγ1

⋂

Vγ2
→ m−1(H0); α 7→ S−1

γ1
(α).Sγ2

(α)Thus we have proved the following result.



12 4.4 Proposition.The manifold Gn,p(K) is di�eomorphi to ∐

Vγ×m−1(H0)/ ∼where (α, σ) ∼ (β, τ) if and only if α = β and σ = Γγ1γ2
(τ) for (α, σ) in

Vγ1
×m−1(H0) and (β, τ) in Vγ2

×m−1(H0). The oyle Γγ1γ2
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