Rigidity of amalgamated product in negative curvature - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Geometry Année : 2008

Rigidity of amalgamated product in negative curvature

Gérard Besson
Sylvain Gallot
  • Fonction : Auteur

Résumé

Let $\Gamma$ be the fundamental group of a compact n-dimensional riemannian manifold X of sectional curvature bounded above by -1. We suppose that $\Gamma$ is a free product of its subgroup A and B over the amalgamated subgroup C. We prove that the critical exponent $\delta(C)$ of C satisfies $\delta(C) \geq n-2$. The equality happens if and only if there exist an embedded compact hypersurface Y in X , totally geodesic, of constant sectional curvature -1, with fundamental group C and which separates X in two connected components whose fundamental groups are A and B. Similar results hold if $\Gamma$ is an HNN extension, or more generally if $\Gamma$ acts on a simplicial tree without fixed point.
Fichier principal
Vignette du fichier
amalgame32.pdf (403.1 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00005444 , version 1 (17-06-2005)

Identifiants

Citer

Gérard Besson, Gilles Courtois, Sylvain Gallot. Rigidity of amalgamated product in negative curvature. Journal of Differential Geometry, 2008, 79 (3), pp.335-387. ⟨hal-00005444⟩
228 Consultations
124 Téléchargements

Altmetric

Partager

More