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Abstract

Consider a list of files whose popularities are random. These files are updataiding to the move-to-
front rule and we consider the induced Markov chain at elgiilm. We give the exact limiting distribution of

the search-cost per item adends to infinity. Some examples are supplied.
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1 Introduction and mode

Consider a list of: files which is updated as follows: at each unit of discretestienfile is requested independently
of the previous requests and is moved to the front of theTisis heuristic is called the move-to-frontrule and was
first introduced by [14] and [10] to sort files. Such strategy$ed when the request probabilities are unknown,
otherwise we would list the files in order to have decreastogiest probabilities. The move-to-frontrule induces a
Markov chain over the permutationsioElements which has a unique stationary distribution, (3g&d reference

to the work of Hendricks, Dies and Letac therein). This disttion turns out to be the size-biased permutation of

the request probabilities.

Here, we consider that these request probabilities aredblers random, as in a Bayesian analysis. diet
(w;)iemv+ be a sequence of iid positive random variables. The Laplacesform of a weight will be denoted by
¢ and its expectation by. For anyi € N*, w; represents the weight of the file We can construct request

probabilitiesp = (p1, .., p,) as follows:

Vie{l,..,n}, pi = I;j; where Wn:Zwi.

n i=1
Such random vectgs is called a random discrete distribution [8].
Let us denote by, the search cost of an item (i.e. the position in the list ofdtgpiested item) when the underlying
Markov chain is in steady state (the first position will be 6pr this model, [2] obtained exact and asymptotic
formulae for the Laplace transform 6f, (some results were also extended to the case of indeperateidm
weights). In particular, they found the limit of the expdida and the variance of,,. Moreover, in the case of
i.i.d. gammaweights, [1], obtained the exact and asymptiisiribution ofS,,, using an exact representation of the
size-biased permutation arising from Dirichlet partisofote that [5] found the limiting distribution &f,, when
weights are deterministic but non-identical, in some césesorm, Zipf’s law, generalized Zipf’s law, power law

and geometric).

In section 2, we shall give a general formula for the dendithe limiting search cost distributiofi, provided that

the expected weight is finite. Then we derive the moment fan@nd the cumulative distribution function 6t

We also discuss the relationship between the move-to-ftd@tand the least-recently-used strategy. In section 3
we study some examples for which computations can be dorigidypboth continuous and discrete distributions

are considered.

2 Limiting search cost distribution

The early analysis of the heuristic move-to-front focusadite expected search cost, see [10], [8] and [7], for
instance. Later, researchers paid much attention to thagjgnt and stationary) distribution of the search cost
([6]). Some of them investigated the limiting behavior as ttumbem of items tends to infinity (see [5]). In a
more recent article, [2] obtained an integral represematf the Laplace transform &, in the Bayesian model

described in the introduction. Their main theorem is thofeing:



Theorem 2.1 For a sequence of iid positive random variables,

Vs >0, <m4@némlmw@maw+eswww¢mu”lwm.

In the same article the integral representation for the tvah fnoments of5S,, were derived. Moreover, they
obtained a point-wise asymptotic equivalent for the Lapkaansform of5,, and the limit of the first two moments
of S,,/n when the numben of items tends to infinity. From theorem 2.1, we can obtairfaflewing closed-form

expression for the density function of the limiting distriton of Sn/n:

Theorem 2.2 For a sequence of iid positive random weights with finite expectatjon

Sn d,S,

n n—oo

whereS' is a continuous random variable with the following densitydtion fs:

14 (57 —) )
fS(IL') - 1 ¢/ (¢_1(1 — l’)) :I]'[O,l—po]( ) ) (1)

wherepy = P(w; = 0) and¢~1 is the inverse function af.

Remark 2.1 The quantityp, can be interpreted as followsy, is the probability that an item is never requested. At
stationarity, one expects that any such item will be at th&dno of the list:npg is the mean number of unrequested
items. So it is not surprising that the support%is not the entire unit interval. Note that if the distributiof the

weight is continuous, them, = 0.

Proof We have to prove that, /n converges in distribution, as tends to infinity, to a certain random variable

that will be denote bys. First, observe that:

VS>07 ¢Sn/n(s):¢5n (%) .

So we are now interested in the limitof , (s/n).

For any reals: andb such that) < a < b < oo, let:

n—1

b
I )= [ 6 [+ /(6 ~ )~ o) dr.
If b = oo, then we will omit this parameter, i.€,,(a) = I,,(a, o). Using these notations, theorem 2.1 gives:
¢s, (£) = n/ L,(t)dt . )
0

We now decomposg, (t) into two parts:l,, (t) = I, (t,t +¢) + I, (t + ). We will prove that],, (t + ¢, o0o) tends

to 0 whenn tends to infinity:

nIn(ﬁ + E,OO) = n too ¢,/(r) |:e—s/n(¢(r _ ﬁ) + (1 . e_s/n)(b(r)) n—1 dr ,
+e
< n o Q‘)N(T)(ﬁ(T - t)nfl dr ,
t+e

< —ng(e)" M (t+e),

since¢ is decreasing. Thelim,, ., nl,(t + &,00) = 0, foralle > 0.



Now we will estimatel,, (,t + ¢). Leth,(r,t) = ¢(r) + e=5/"(¢p(r — t) — ¢(r)). For a fixed value of, the
function ., (-, t) behaves ag. In particular%i;l is an increasing function far € [t,t + £]. Then we obtain the

following bounds:
Ohy,
S (1) <

Ohy, Ohn,
-_n < "
a,r (7’, t) =N (t+€5t)7

or or

and:
¢'(t+e) < ¢"(r) < ¢"(1).
Hence, we can bound, (¢, t + ¢) by:

tte n—1 Ohn Ohy,
In(tat+€) = ¢H(r) (hn(r7 t)) ! W(ra t)?(ra t)_l dr
t

ahn -1 tte n—1 8hn
G [ Gy G dr

< ¢ OL 0 L [t +6.0)" — (it 1)) -

or n

N

¢"(t)

Proceeding similarly, we can find a lower bound:

(R (8 +£,8)" = (hn(t,))"] -

S|

Tt 142) > 60+ 2) T2 1 1)
T

Then, for any > 0, one can prove the following limits hold:

lim (ha(t+e,1)" = 0,
Tim (ha(t,1)" = exp[-s(1—o(1))] ,
i G0 = 46
Ohy, /
nliigcﬁ(t—f'ff,t) = ¢(0)

Replacing these limits in the equations above, we have ctedppper and lower bounds 6f(t,t + ¢). In other

words, if the limit ofnI, (¢, t + ) exists, then it is bounded by:

% exp (—(1 — ¢(1))s) < nlin;o nl,(t,t+e) < (Z’/((;)) exp (—(1 — ¢(t))s) .
This is true for any > 0; then lettinge tends ta), we have:
llm nl,(t) = @ exp (—(1 — ¢(t))s) .

Replacing this limit in equation (2) we obtain

lim ¢Sn/n(5) — l/ d)//(t)e*(l*d)(t))s dt , (3)
n—oo M 0

which will be denoted by s(s). Although this limit a priori is not necessarily the Laplacansform of a random
variable, according to the Continuity theorem (page 431)GH.in [4]), one has to check thdim,_.q ¢s(s) = 1,

which can be proved by using the dominated convergencegheor
A suitable change of variable= 1 — ¢(r) in equation (3) gives:

S N e U ) S
Ps(s) = /0 Ty ¢



where for the integral limits we used the property thato) = p, (see [4] remark in theorem 1(a) page 439 Ch.
XI1). Therefore, we have that:
1 ¢// ( —
fs) == 5 ﬂwlpd
is the probability density of. ]

As a corollary to this theorem, we can computedftt moment and the cumulative distribution function (c)d.f
of S:

Corollary 2.1 Foranyq € R

EWﬂ=§Ama—¢wwwaML

and, for anyz € [0, 1],
1 ¢ =)
P(S<z)= (;/0 ¢"(t) dt) ]1[0,1—;)0](1’) + ]1(17;00.,1] (2)

One could be interested in the cumulative distribution fiomcof .S (or more precisely in the survival function),
since the move-to-front rule is related to the least-rdgamged strategy (see [7] for instance). Indeed, many
operating systems or softwares use a memory (also calléwrttat could be quickly addressed (think of a web
browser, for instance). Hence, one needs to define a straiegganize it. Let us consider that the cache is made
of k files. The least-recently-used strategy is the followirtgeach unit of discrete time, a file is requested and is
moved in front of the cache; if the file was not just previouslyhe cache, then the last file is deleted from the
cache and all other files are shifted by one position to thjrifthe file was just previously in the cache, then the
file is moved exactly as in the move-to-front rule. So, the extav-front rule can be viewed as a special case of the
least-recently-used strategy for which the length of treheas equal to the number of filels £ n). An important
question arises: what is the probability that the requeSiteds not in the cache? The probability of this event
is called the page default; we will denote it by in the sequel. Because of the link between the move-to-front
rule and the least-recently-used strategy (as underlibedeg, we clearly have that, = P(S,, > k). So, if we
assume that the cache length is proportional to the numbiédesf sayk = an with a € [0, 1] fixed, for a large
collection of files, the following approximation holds:

1 ¢~ (1-a)
Tan =~ —/ @ () dt
KJo

if a < pg andr,, ~ 1 otherwise.

3 Examples

In this section, we study some examples for which we are alde explicitly all computations. We will consider

both continuous and discrete distribution for the randorigtits.

Example 3.1 Suppose that the weights have the Dirac distribution attpomssl (in other words, weights are

deterministic and are equally requested). Thér) = e~ ", the expectatiop = 1 andp, = 0, we deduce that:

fs:(z ]1[0 (@



Thus,S; has the uniform distribution ovéd, 1]: this result was already proved in (theorem 4.2, p. 198 of [Bhe
k-th moment (witht € R,) and the c.d.f. of is:

1

BISi = 5

and Vzel0,1], Fs,(x)=P(Si1<z)=x.

Example 3.2 Suppose that the weights have the Gamma distribution witanpatera. > 0. In this example,
the random vectofp, . . ., p,) has the symmetric Dirichlet distributioB,,(«) (see [15] or [9]). In such a case,

po =0, = aandgp(r) = (14 r)~*. Computations give:

o) = (14 1) =0Ty (o).

which is the density function of the Beta distribution withrpmeter$l, 1+ 1/«). Note that this result has already
been proved by [1] with a specific technique using propedfdsirichlet distribution (in this case we were able
not only to find the limiting search cost distribution butathe transient search cost distribution for any finije
Thek-th moment (withk € Ry) of Sy is:

I(k+1)r2+ 1)

k
B =—rarry 1)
In particular, we hav&[S;] = 5.7+ and VafSs] = % One can also compute the c.d.f$f and, for

anyz € [0,1], we get:
FSQ(x) = P(SQ < ;p) =1 (1 _ $)1+1/a .

We can easily deduce that, for amye [0,1], Fs,(z) < Fs,(z), whereFs, () = 1 — Fs,(-). So we have

So =<4 S1 (Where=,; denotes the usual stochastic ordering; see [12] or [13]n&iance).

Example 3.3 Suppose that the weights have the Geometric distributioN evith parametep € (0,1). In such
casepo =p, = (1 —p)/pande(r) = p/(1 — (1 — p)e~"). Elementary computations give:

2(1 —x)

fss (@) = 1fpip]]-[og—p](ﬂﬁ) :

Thek-th moment (witht € R;) of Ss is:

(2+pk)(1 —p)*
E+D(k+2)

E[S3] =
In particular, we hav&|[Ss] = W and VafS;] = %. One can also compute the c.d.f$)f
and, for anyr € [0, 1], get:
z(2—p—x)
Fsy(@) = P(Ss <o) = =T (@) + Ty (@)
Hence, from the above expression, one can checkSthat; S .
Example 3.4 Suppose that the weights have the Poisson distributionaithmeten. In such casepy = e,

w=Aando(r) = exp (Ae™" — 1). Simple computations give:

foulo) = PEZDFATIG ).

Using formula 1.6.5.3 of [11] (page 244), one can computetiiemoment (withk € N) of Sy:

k+1 —\\4
1 C (1—e M)

k = A\k+1
E[S}] = YOFEY At (1—e?) ;le ——



1_6—2>\

In particular, we hav&[S,] = 1 — 1=¢5—. One can also compute the c.d.f®f and, for anyz € [0, 1], we get:

1
Fs,(z) = P(Ss <2) = (2~ 3(1 - 2)In(1 — o) Wip v (@) + Wy oon y(2)
Thus, from the expression above, one can deducesthat,; S;.

From the study of these four examples, one can observe thashpS; andS, are stochastically smaller than

S1. Hence, the following conjecture looks appealing:

Conjecture3.1 Let S be the limiting distribution of the search cost associateditsequencer of iid positive
random variables. Ther§y <,; S1 whereS; is a random distribution having the uniform distribution thre unit

interval.

This conjecture is compatible with some remarks in [2], mumexisely with proposition 3.1 therein. Indeed, if
the conjecture is right, then as a consequence we Eave < E[S;] = 3. And this is precisely what is stated
in proposition 3.1. This conjecture can be interpreted #svis: the case with Dirac weights corresponds to the

worst case. Despite our conjecture seems to be true, it$ peems to be difficult.
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