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Abstract 
 
In this paper, we consider the nonlinear system 
modelling problem for on-chip testing and diagnosis 
of embedded mixed-signal systems. A Situation-
Dependent AutoRegressive model with eXogenous 
variable (SDARX) is introduced to approximate the 
conventional Nonlinear-ARX (NARX). The 
parameter search space is divided into a linear 
weight subspace and the nonlinear parameter 
subspace. A nonlinear parameter estimation strategy 
combines the Levenberg-Marquardt method (LMM) 
for nonlinear parameter optimization and the least-
square method (LSM) for linear parameter 
estimation. The diagnosis procedure requires a 
recursive estimation of the model parameters 
corresponding to the nominal behaviour, using 
input-output data recorded on the system under test. 
Emphasis is given to the characterisation of a 
particular failure mode by choosing the best model 
structure and identification of model parameters for 
diagnostic purposes. For fault identification, the 
parameter estimation technique is associated with 
the fault dictionary approach. 
 
1. Introduction 
 
Due to the growing demands for reliability, safety, 
quality and cost efficiency, the call for fault 
tolerance in modern systems is gaining more and 
more importance. The detection and diagnosis of 
faults are necessary in order to achieve fault 
tolerance. The basic tasks of fault diagnosis are to 
detect and isolate occurring faults and to provide 
information about their size and source.   

Analogue and mixed-signal devices are required in 
many applications such as communications, 
multimedia, and signal processing. These 
applications are often subject to severe area 

constraints. The complexity of analogue and mixed-
signal cores, together with shrinking device dimensions 
limit accessibility to the internal nodes of the circuits. 
This makes circuit testing very difficult [14]. Ensuring 
high test quality at low cost for these mixed-signal 
designs has become an important test challenge [15]. In 
this context, we present a digital-compatible test and 
diagnosis scheme for analogue circuits.  Analogue and 
mixed-signal cores are generally incorporated in a chip 
including intelligent digital components as 
microprocessors. Our purpose is to propose a test and 
diagnosis scheme that can be implemented using 
embedded smart resources. 

Previous fault detection techniques have been restricted 
to check directly measurable variables for upward or 
downward transgression of fixed limits or trends. These 
techniques are automated by using a simple limit-value 
monitor. Various faults in the systems are recognised 
only when the controlled signal exceeds some 
predefined thresholds. For so called voting techniques, 
a fault occurrence was determined in a device when 
some redundant equipment allowing a comparison 
between two or more measures pointed out a possible 
mismatch. This technique, referred as hardware 
redundancy, is a powerful method but it has the 
disadvantage of requiring a lot of expensive fault-
detection devoted equipment. In the last twenty years, 
the use of computers has allowed the development of 
new methods based on advanced signal processing 
techniques. Two main approaches may be identified: 
Model-Free Methods (MFM) and Model-Based 
Methods (MBM). Generally, MFM are simpler to 
implement, but they often suffer limitations coming 
from their inability to isolate the single faulted 
components or to detect even a small failure which has 
no evident effects, but causing just a slight and 
progressive degradation of performance. The MBM are 
based on the concept of analytical redundancy that is 
the process of identifying a failed component through 



 

the comparison to an estimate which is derived by 
measurement of other functionally related 
components.  

A fault is defined as any non-permitted deviation of 
a characteristic property, which leads to the inability 
to fulfil the intended objective. So, a fault is 
understood as any kind of malfunction in the actual 
system. The problems that are the main concerns in 
system testing include: fault detection, fault location, 
identification, and finally, fault prediction. For this 
last point, the response of the system is continuously 
monitored to check whether any component in the 
system is about to fail. In safety critical applications, 
the aim is to replace the concerned elements or 
systems before the imminent failure occurs with a 
minimum loss in the lifetime of the replaced 
elements or systems. This area is commonly referred 
to as system supervision. An essential prerequisite 
for development of automatic supervision techniques 
is an early fault detection tool. An attempt is made to 
detect the fault earlier and to locate them better by 
the use of a measured signal. This paper mainly 
addresses the on chip off-line fault detection and 
identification (FDI) problem for dynamic linear and 
nonlinear systems. Since the fault location and 
identification techniques assume that the system has 
already been identified as faulty, the fault detection 
is obviously a minimum requirement for fault 
location and identification.   

Over the two last decades, the field of model-based 
fault detection and diagnosis has progressed 
significantly. At the present time, a significant body 
of results exists on off-line and on-line fault 
detection in linear systems (see for example [10], 
[12] and [13]). But the research results remain 
limited in the area of fault detection and diagnosis 
for linear systems. Even for this case, the few results 
existing in the area of fault location are limited to 
the particular case of faults that do not affect the 
linear structure of the faulty system. Unfortunately, 
it is well known that many real faults in a linear 
system can change its initial linear behaviour to a 
nonlinear one. If the classical detection scheme is 
generally sufficient to ensure the coverage of this 
type of faults, their efficient isolation is more 
problematic and requires the use of nonlinear 
modelling and identification procedure. A new type 
of models known as NARX (Nonlinear 
AutoRegressive with eXogenous input) has been 
discussed in [7] and [8] for discrete-time modelling 
of nonlinear systems.  In the case of linear systems, 
parameter estimation based methods were proposed 
[5] for fault detection and isolation.  

The main contribution of this paper is the development 
of a generic identification strategy applicable for both 
linear and nonlinear systems. Instead of conventional 
NARX modelling, the scheme proposed in this work 
uses a situation-dependent ARX (SDARX). This 
scheme represents not only the nonlinear behaviour of a 
nonlinear fault free system, but also to model the 
nonlinear faulty behaviour even if the nominal fault free 
system is linear. The parameter optimization algorithm 
separates the set of the model parameters into a linear 
part and a nonlinear part and applies different 
approaches for the estimation of both parts. Special 
attention has been given to numerical algorithms for the 
modelling and identification of nonlinear systems. The 
system under test will inherit the structure and the 
nonlinear parameters from the nominal model. Our 
claim is that a fault in the system under test will affect 
the estimated model in both its linear and nonlinear 
parameters. Hence, in our testing scheme, the nonlinear 
parameters of the system under test are assumed to be 
identical to those of the nominal model previously 
estimated.  

The paper is organised as follows. Section 2 deals with 
linear and nonlinear system modelling using a 
regression model and introduces the SDARX modelling 
scheme. A parameter optimization algorithm for the 
generation of a nominal model by means of parameter 
identification is presented in Section 3. For an actual 
system under test, Section 4 considers parameter 
identification for fault detection and isolation on the 
basis of observed input/output data. Section 5 presents 
experimental results obtained using fault simulation on 
a microaccelerometer model. Finally, we will present 
some conclusions and directions for future work.   
 
2. Regressive models for linear and nonlinear 
systems   
  
2.1 The linear regressive model (ARX) 
 
Although most processes in the real world display 
nonlinear dynamics, the linear modelling methods are 
often used in common practice. When the non-linearity 
of the process dynamics are not too severe, a linear 
approximation of this model in a neighbourhood of an 
operating point is generally satisfactory. It is well 
known that any single input single output (SISO) linear 
discrete-time dynamic system can be described by a 
regressive equation of the following form:   
                       

)()()( ttty T νθγ +=    (1) 
where : 



 

• y(t) is the output of the system, 
• [ ]Tuy ntututuntytytyt )(,),2(),1(),(,),2(),1()( −−−−−−= LLγ  

is the regression vector and its components 
include the previous input/output signal data 
(available at time t), required to calculate y(t),  
where ny and nu are the orders of the system 
defined respectively by the maximal output and 
input delays required in the expression of y(t).   

• [ ]Tnθθθθθ ,,, 21 L=  is the vector of constant 
parameters that characterises the system. Where 
nθ = ny+nu is the total number of parameter to be 
estimated. 

• The additive term v t( ) accounts for the fact that 
the next output y(t) will not be an exact function 
of past data.  However, a goal must be that v t( ) is 
small, so that we may think of γ T(t)θ as a valid 
prediction of y(t) given past data. v t( )  is a white 
noise assumed independent of input, output and 
system parameters. 

Equation (1) represents the well-known 
AutoRegressive with eXogenous variables (ARX) 
models for linear systems, often called input/output 
equation. The autoregressive property is due to the 
use of previous output values as components in the 
regression vector and the exogenous (external) 
variables are the input signals of the system that are 
also included as components in the regression vector 
γ(t).  

  
2.2 The nonlinear regressive model (NARX) 

When large deviations from operating point are 
possible, or when the dynamic non-linearity 
(eventually induced by faults) is severe, a linear 
modelling scheme is not efficient. In this case, the 
design of a nonlinear MBFDI scheme may be 
allowed by an accurate knowledge of a nonlinear 
model. A nonlinear model is then required to 
achieve efficient prediction of the system behaviour. 
For nonlinear systems, one difficult problem in 
MBFDI is the system modelling from a set of input-
output observed data. Often, this is the only 
approach to modelling since just external data is 
available, given the difficulty to access internal data 
and the need to avoid any slight perturbation in the 
system. Wiener [1] was the first to use Volterra 
series to analyse the response of nonlinear systems 
to random excitation. Since then, intensive research 
effort has been directed toward the use of Volterra 
series and some other typical functions (e.g Laguerre 
expansions) for input-output modelling of nonlinear 

systems. Different approaches have been proposed in 
the specialised literature and interesting theoretical 
developments are available ([3]) but the practical 
aspects remain very limited. This is mostly due to the 
difficulty of obtaining the Volterra kernels for practical 
systems. In order to avoid this problem, a general 
realisation theory for nonlinear systems was proposed 
by Sontag in [4].  

An extension of the ARX model of Equation (1) to 
nonlinear models, which predict the present output as a 
nonlinear function of the past inputs and outputs (as 
shown in Figure 1) is proposed and investigated by 
Billings et al. [8], [9]. It has been proved in [7] that a 
very large class of nonlinear discrete-time systems can 
be represented by the following nonlinear difference 
equation of form: 

 ( )
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where f(.) is a nonlinear function.  

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Example of NARX modelling of a mixed-
signal system. 

Because of its resemblance to ARX model (1), this 
model has been called NARX (as Nonlinear-ARX). 
Obviously, function f(.) may have a complex (and often 
unknown a priori) structure. 
 

2.3 The Situation dependent regressive model 
(SDARX) 

The main problem in the NARX approach is the choice 
of a suitable expression for function f(.). Various kinds 
of functions have been applied to approximate the 
unknown nonlinear function that maximizes the 
likelihood of the model. To simplify the fault detection 
procedure, our approach consists to use a situation-
dependent ARX (SDARX) model described as follows:               
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data-dependent coefficients of the model. 

In many practical cases, the data vector γ(t) at time t 
contains only a few number of past outputs, inputs 
or any measurable signal. The basic idea of the 
SDARX model (3) is to achieve the local 
linearization of the general NARX model (2) by 
introducing a locally linear ARX model with 
situation-dependent coefficients. Although the 
SDARX model (3) provides a useful framework for 
general nonlinear system modelling, the problem lies 
in specifying the functional form of its coefficients. 
In model (3), the signal γ(t) on which the time 
varying model coefficients depend may be the 
output signal, the input signal, or any other 
measured signal that is part of the system to be 
considered.  

In the particular case where ( ) 0.0 =φ  and where 

( )
yni

y
i ≤≤1

.φ and ( )
uni

u
i ≤≤1

.φ are all constant functions, the 

ARX model (1) is obtained with 
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proves that the classical linear ARX model is a 
particular case of situation-dependent ARX model 
that is more general. 

We have used a set of radial basis functions (RBF) 
to approximate the SDARX coefficients of the 
model (3), because an RBF network may 
approximate any functions by using members of a 
family of basis functions. Moreover, the locality of 
the basis functions makes the RBF much more 
suitable for modelling local variations [11]. 
Gaussian RBFs are selected as approximations of the 
coefficients of the model (3). The model coefficients 
derived are then given by: 
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constant parameters and ||.|| denotes the vector 

Euclidean norm. ny, nu and m are the model orders, with 
m the number of centers of each RBF function.  

The complete system is given by the combination of the 
SDARX model of Equation (3) and the set of the 
coefficients defined in Equation (4). For embedded test 
and diagnosis purposes, our parameter estimation 
algorithm requires the separation of the set of 
parameters into a linear part and a nonlinear part and 
applies different approaches for the estimation of both 
parts. For the SDARX model defined by Equations (3) 
and (4), the linear parameters are given by:  
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and the nonlinear parameters are given by: 
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For estimation purposes, we can rewrite model (3) as: 

( ) )()(,,)( tvtfty LN += γθθ   (7) 

where θN is the vector including all nonlinear 
parameters, θL is the vector including all linear weights, 
and the regression form of model (7), which is linear 
with respect to θL, is given by : 

( ) )()(,)( tvtty L
T

N += θγθϕ   (8) 

3. Optimization algorithm for generation of the 
CUT nominal regressive model 

The main idea in our identification approach is to divide 
the parameter search space into two subspaces (i.e., the 
linear weight subspace and the nonlinear parameter 
subspace). During the system design process, the search 
for finding the nominal model will concern the whole 
space including optimization in both linear and 
nonlinear parameter subspaces. To reduce the 
computational cost necessary during the testing process, 
optimization is applied in the linear parameter search 
subspace only. 

The off-line identification procedure for the RBF model 
includes both order selection and estimation of all the 
parameters. Using a classical nonlinear parameter 
optimization algorithm, such as the Levenberg–
Marquardt method (LMM) [2], to estimate all the 
parameters would involve extensive computation 
because the number of parameters to be estimated is 
usually quite large. In this paper, we propose a 
parameter estimation algorithm including both LMM 



 

and the linear least square method (LSM). The first 
method optimizes the nonlinear parameters by using 
a nonlinear optimization iterative algorithm, which 
is based on an exhaustive search in the solution 
space and therefore requires extensive computation. 
The linear weights are estimated at each iteration, by 
the standard linear LSM, using the actual estimation 
of the nonlinear parameters.   

First, the initial values 0
Nθ  for  Nθ  are chosen from 

prior knowledge of the system under test. At the kth 
iteration, fixing k

Nθ  and estimating k
Lθ  by LSM, 

yields: 
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γ  is the measured dataset,  τ is the 
largest time lag of any estimable variable in the 
model (7) or (8) and M  is the number of measured 
data observations. 

To optimize the nonlinear parameters, efficient 
search routines are based on iterative local search in 
a “downhill” direction from the current point.  We 
have chosen an iterative scheme of the following 
kind: 

kkk
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k
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Here k
Nθ   is the nonlinear parameter estimate after 

iteration number k.  The search scheme is thus made 
up from the three entities: 

• ηk is a scalar step length; 
• KĴ∇  is an estimate of the gradient of the 

objective function ( )LNJ θθ ,  
• Rk is a matrix that defines the search direction. 

The objective function is taken to be: 
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where ( ))(,ˆ,ˆ)/1(ˆ tftty LN γθθ=+  is the one-step-
ahead prediction of the output based on model (7). 
Hence:  
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It is well known that gradient search for the minimum is 
inefficient, especially for ill-conditioned problems close 
to the minimum. The true Newton direction will thus 
require that the second derivative be computed. In order 
to increase the robustness and the quickness of the 
search process, alternative search directions are more 
common in practice. In the LMM algorithm, the search 
direction Rk of Equation (11) is given by:  

IHR kk δ+= .   (15) 
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δ may be used instead of a step size. A large δ gives a 
small step in the gradient direction and a small (zero) δ 
gives a Gauss-Newton step. 
 
4. Recursive LSM for fault detection and 
diagnosis  
 
In our approach, we will suppose that embedded smart 
resources (such as microprocessors and memories) can 
be used to implement the test and diagnosis of the 
mixed signal cores or systems. Using the previous 
algorithm (9) and (11) to estimate all the parameters of 
the system under test during the test application would 
involve a large amount of computation that could not be 
implemented on the embedded resources. The 
computation time would soon be incompatible with the 
practical constrains of test application. In order to 
reduce the amount of computation necessary during the 
testing process, the search centers on the optimization 
of the linear parameter subspace only. The system 
under test will inherit the structure and the nonlinear 
parameters from the nominal model. Our claim is that a 
fault in the system under test will affect the estimate 
model in both its linear and nonlinear parameters.   

Hence, in our testing scheme, the nonlinear parameters 
Nθ  of the system under test are assumed to be identical 

to those of the nominal model previously estimated.  

4.1. On chip estimation of CUT linear parameters   

A simple LSM can be used to estimate the linear 
parameters of the system under test. An application of 



 

conventional LSM requires large size matrix 
inversion. To avoid the intensive computation 
required by this operation, we have implemented a 
recursive least square (RLS) algorithm for 

Lθ estimation: 
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The initial value of matrix P(0) and )0(ˆ
Lθ  are 

chosen identical to those of the nominal model when 
the same sequence of input data is applied. Hence 
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Lθ~ is the estimation of the linear parameters for the 
nominal system. 
 
4.2. Fault dictionary composition 
 
The fault dictionary technique for isolation is based 
upon the comparison of the failed system parameters 
with a set of fault signatures previously stored in a 
dictionary [6]. The first step in the fault dictionary 
building procedure is the fault definition. This step 
is a very critical aspect of the entire approach since 
only the most likely faults anticipated in this step 
could be identified. Large number of potential faults 
must be included; obviously, this will have an 
impact on the dictionary seize. For each faulty 
hypothesised case (fi), the circuit under test is 
simulated and the corresponding input/output data 
are recorded. The corresponding faulty parameter 
vector ( )iLiNi ,,

ˆ,ˆˆ θθθ =  is determined with the LSM 
and LMM defined by (9) and (11) respectively, 
using the model structure of the fault free system. θi 
is stored in the fault dictionary as signature of fault fi 
for use in the identification of this fault. 

4.3.  Fault  detection  

The linear parameter vector Lθ̂ of the actual system 
is determined by the least square method described 
above (17), using the model structure defined in the 
previous system identification phase. Lθ̂  may take 
the value Lθ~  in the nominal case and LL θθ ~ˆ ≠ when 

the fault fi has occurred. The detection problem consists 
of the decision between the following two hypotheses: 

H0 : LL θθ ~ˆ =  (no fault) ;    H1 : LL θθ ~ˆ ≠  (fault). 

The test can then be performed using a residual measure 
of the form: 

 )~ˆ()~ˆ( LL
T

LLr θθθθ −−=                      (19) 

Finally, in any case, the residual is compared with a 
fixed threshold λmax and hypothesis H1 is accepted if  
λ< λmax. 

4.4. Fault isolation 
 

Since the physical parameters which indicate the faults 
of the system under test are generally not directly 
available for measurement, their change may be 
determined via the changes in the process model 
parameters. Under hypothesis H1, the fault isolation is 
based on the idea of comparing the observed value of 
( ) ( )LL

T

LL θθθθ ˆ~ˆ~
−−  with his fault free expected value for 

each class of fault. Fault isolation is performed using 
the following measures: 
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where σi is the fault free expected covariance matrix 
relative to fault class fi, calculated as: 

( ) ( )( )TLiLLiLLiLi Cov θθθθθθσ
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,,, −−=−=     (21) 

In either case the residual corresponding to each class 
of fault is compared with a particular fixed threshold λi. 
An occurring fault belongs to fault class fi if and only if  
ri < λi. 

5. Application to microsystems testing  
As a case study, we consider a simple accelerometer 
based on a seismic mass suspended by a microbeam 
structure as shown in Figure 2.  

Thanks to the high piezoresistivity of mono-crystalline 
silicon, an external acceleration is transformed into a 
proportional electrical signal through a piezoresistive 
bridge. A dynamic model of the accelerometer is of the 
form:  

m
d x

dt
b

dx
dt

kx m u
2

2

( ) ( )
( ) . ( )

τ τ
τ τ= − − +    (22) 

where m is the seismic mass, u(τ) is the external 
acceleration, x(τ) is the seismic mass displacement, and 
b and k are the air damping and the beam spring 
constants, respectively.  
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Figure 2. Piezoresistive accelerometer based on a 
suspended seismic mass. 
 
The resistance variation ∆R(x) corresponding to a 
seismic mass position x(τ) is defined by:  

    ∆
Γ

R x
R

x
( )

. ( )
0

= τ    with   Γ =
−π l p re L l k

I
( . ).

.
0 5

2
          (23) 

where πl is the longitudinal piezoresistive 
coefficient, I and ep are the inertia moment and the 
thickness of the beam, L and lr are the lengths on 
seismic mass and resistor, respectively.  When a 
reference voltage VDD is applied to the bridge 
circuit, the measure of the output voltage ∆V is 
given by: 
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So the input/output behaviour of the 
microaccelerometer is described by a nonlinear 
dynamic continuous-time model defined by 
Equations (22) and (24). This model was used for 
both nominal and faulty system simulation. In the 
discrete time context, since the system is nonlinear, a 
NARX model is normally required. But in practice 
satisfactory modelling results were obtained with a 
simple second order three parameter ARX model of 
form: 

  )()2()2()1()( 321 tvtutytyty +−+−+−= θθθ    (25) 

Parameter vector θ=(θ1, θ2, θ3) was estimated for 
each fault belonging to the fault dictionary. The 
difference with the nominal parameter vector and the 
corresponding distance were evaluated and stored as 
a fault signature. For a sample period of 10-4s, the 
estimated nominal parameter vector is 

( )952.0,983.0,251.1  -  =nomθ . Faults affecting the 
damping b, the beam spring k, the beam inertia I and 
the seismic mass m have been considered in the 
dictionary. In Table 1, the results obtained for a 
seismic mass fault simulation are presented.   

All the parametric failures on the seismic mass value 
greater than 10% are detected with a threshold of 

01.0max =λ . We can also notice that the first component 
of the parameter vector is more sensitive to seismic 
mass fluctuations than the two last components.  

Faulty value 
∆m/m  (%) 

Signature 
∆θ T = (θnom-θfault)T 

∆θT∆θ 

+ 50 [0.239, -0.006, 0.020] 0.058 
+ 40 [0.203, -0.005,  0.027] 0.042 
+ 30 [0.164, -0.004,  0.020] 0.027 
+ 20 [0.1194, -0.003, -0.001] 0.0143 
+ 10 [0.064, -0.002,  0.008] 0.0042 

0 [0.0, 0.0, 0.0] 0.0 
-10 [-0.075,  0.002, -0.005] 0.006 
-20 [-0.167,  0.005,  -0.017] 0.0283 
-30 [-0.286, 0.008, -0.030] 0.083 
-40 [-0.432,  0.015,  -0.060] 0.190 
-50 [-0.634,  0.022,  -0.077] 0.410 

Table 1. Seismic mass related fault dictionary. 

The tolerance on parameter values is not yet taken into 
account in the actual version of our fault dictionary. 
This problem will be considered in our future works.  

6. Conclusion 
 
Fault detection and isolation for dynamic analogue 
systems is a very complex task. Even in the linear 
system case, this problem can not be solved by means 
of a unique method, but requires several different 
complementary techniques. When the systems to be 
monitored can be described by a linear model, a 
parameter identification procedure is proved to be very 
suitable to afford some diagnostic tasks particularly 
when there is little or none a priori knowledge about the 
system analytical characteristics. The purpose in this 
paper has been to show that existing parameter 
estimation techniques for linear systems can be 
extended to the general nonlinear dynamical case by the 
use of a suitable modelling structure. The SDARX 
model structure introduced leads to an implementation 
that is less costly in terms of computation time and 
resources than a conventional NARX model. From a 
computational point of view, a noticeable advantage 
offered by SDARX modelling is that it requires 
reasonable computational and memory resources, in 
such away that their implementation on PC, or even on 
a simple intelligent module using a standard 
microcontroller is realistic. An example of parameter 
estimation for modelling and testing of a simple 
microsystem has been presented. It is our intention to 
study the use of theses techniques for the testing of 



 

more complex devices. When using the RLS 
algorithm in Section 4.1 to estimate the parameters 
of a system, some conditions are needed on the input 
signal u(k) to guarantee that the parameters 
estimated will converge to their unknown actual 
values. Moreover, this convergence must be robust 
to small disturbances such as measurement or 
calculation noises. Typically, such conditions are 
called “persistence of excitation” conditions.  This 
paper did not deal with this issue that will be 
addressed in our future works.     
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