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Stability of FD–TD schemes for Maxwell–Debye

and Maxwell–Lorentz equations

Brigitte Bidégaray-Fesquet ∗

June 25, 2007

Abstract

The stability of five finite difference–time domain (FD–TD) schemes
coupling Maxwell equations to Debye or Lorentz models have been ana-
lyzed in [1], where numerical evidence for specific media have been used.
We use von Neumann analysis to give necessary and sufficient stability
conditions for these schemes for any medium, in accordance with the par-
tial results of [1]. To make this approach tractable for 2D and 3D models
we have developed a Computer Algebra environment which has a wider
range of applicability.

1 Introduction

To describe the propagation of an electromagnetic wave through a dispersive
medium some extensions to Maxwell equations are used. They involve time dif-
ferential equations which accounts for the constitutive laws of the material that
link the displacement D to the electric field E or equivalently the polarization
P to E. We focus on two of these models (Debye and Lorentz models) which
are addressed in [1] in view of specific applications to the interaction of an elec-
tromagnetic wave with a human body. In [1], specific values for the physical
and numerical constants are chosen and numeric calculations are performed to
conclude to stability or not. A survey of numerical couplings between Maxwell
equations and various matter models may be found in [2], where stability con-
ditions are given for Maxwell–Debye models but there is no proof for some of
them and Maxwell–Lorentz formulae are considered too complex to be studied.
In contrast with these two references, we are able to treat any medium which is
described by these models. To this aim we use von Neumann analysis.

∗Laboratoire Jean Kuntzmann, CNRS UMR 5224, B.P. 53, 38041 Grenoble Cedex 9, France
(brigitte.bidegaray@imag.fr).
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1.1 Maxwell–Debye and Maxwell–Lorentz models

In our context (no magnetization) we use different formulations of Maxwell
equations where Faraday equation always read

∂tB(t,x) = − curl E(t,x) (1.1)

where x ∈ RN . On the contrary, Ampère equation may be cast using variables
B and D:

∂tD(t,x) =
1

µ0
curl B(t,x), (1.2–a)

or the polarization P:

ε0ε∞∂tE(t,x) =
1

µ0
curl B(t,x) − ∂tP(t,x), (1.2–b)

where P(t,x) = D(t,x) − ε0ε∞E(t,x) and ε∞ is the relative infinite frequency
permittivity. Denoting by J the time derivative of P, we also have

ε0ε∞∂tE(t,x) =
1

µ0
curl B(t,x) − J(t,x). (1.2–c)

The system of Faraday and Ampère equations is closed by a linear constitutive
law

D(t,x) = ε0ε∞E(t,x) + ε0

∫ t

−∞

E(t− τ,x)χ(τ)dτ, (1.3)

where χ is the linear susceptibility. The discretization of the integral expression
(1.3) leads to recursive schemes (see e.g. [3], [4]). However, differentiating Eq.
(1.3) leads to a time differential equation for D which depends on the specific
form of χ. For a Debye medium

tr∂tD + D = trε0ε∞∂tE + ε0εsE, (1.4–a)

where tr > 0 is the relaxation time and εs ≥ ε∞ is the relative static permittivity.
An equivalent form of Eq. (1.4–a) using variable P is

tr∂tP + P = ε0(εs − ε∞)E, (1.4–b)

which can be coupled with Ampère equation cast as (1.2–b). For a Lorentz
medium with one resonant frequency ω1, we likewise have

∂2
t D + ν∂tD + ω2

1D = ε0ε∞∂
2
t E + ε0ε∞ν∂tE + ε0εsω

2
1E, (1.5–a)

where ν ≥ 0 is a damping coefficient, or equivalently

∂2
t P + ν∂tP + ω2

1P = ε0(εs − ε∞)ω2
1E. (1.5–b)
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1.2 Yee-based numerical schemes

A classical and very efficient way to compute the Maxwell equations is the
Yee scheme [5]. We restrict our study to existing Yee based schemes. In con-
trast to the recursive schemes, we are interested in direct integration schemes
which are based on the finite difference–time domain (FD–TD) discretization
of Eqs (1.4–a) to (1.5–b) (see [6], [7], [8]). Other space discretizations may be
found in the literature in the context of Maxwell-Debye and Maxwell-Lorentz
equations: see e.g. [9] for pseudo-spectral schemes or [10] for finite element–time
domain (FE–TD) schemes.

The Yee scheme consists in discretizing E and B on staggered grids in space
and time. This allows to use only centered discrete differential operators. We
denote by h the space step (supposed here to be the same in all directions in the
case of multi-dimensional equations) and by k the time step. In space dimension
1, we only consider the dependence in the space variable z and classically two
polarizations for the field may be decoupled. For example, the transverse electric
polarization only involves E ≡ Ex and B ≡ By. The discretized variables are

En
j ≃ E(nk, jh) (and similar notations for D ≡ Dx) and B

n+ 1

2

j+ 1

2

≃ B((n +
1
2 )k, (j + 1

2 )h), and the Yee scheme for Maxwell equation read

B
n+ 1

2

j+ 1

2

−B
n− 1

2

j+ 1

2

k
= −

En
j+1 − En

j

h
, (1.6)

coupled with one of the following

Dn+1
j −Dn

j

k
= −µ0

B
n+ 1

2

j+ 1

2

−B
n+ 1

2

j− 1

2

h
, (1.7–a)

ε0ε∞
En+1

j − En
j

k
= −µ0

B
n+ 1

2

j+ 1

2

−B
n+ 1

2

j− 1

2

h
−
Pn+1

j − Pn
j

k
, (1.7–b)

ε0ε∞
En+1

j − En
j

k
= −µ0

B
n+ 1

2

j+ 1

2

−B
n+ 1

2

j− 1

2

h
− J

n+ 1

2

j . (1.7–c)

Usual Maxwell equations consist in taking J
n+ 1

2

j ≡ 0 in Eq. (1.7–c) or
equivalently Dn

j = ε0ε∞E
n
j in Eq. (1.7–a) and leads to a stable second order

scheme under a Courant–Friedrichs–Lewy (CFL) stability condition. Namely, if
c∞ = 1/

√
ε0ε∞µ0 denotes the infinite frequency light speed, the CFL condition

reads c∞k ≤ h/
√
N .

1.3 Scheme naming

Since we deal with many schemes, we have to distinguish between them and
name them. Numbers or names of first contributor(s) are not very meaningful
and we prefer here to have a descriptive name. Our description gives both the
variables used (e.g. coupling Eqs (1.2–a) and (1.4–a) uses variables B, E and D)
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and the location of discretized variables. Space occurs only as a parameter in
Debye or Lorentz equations. To avoid interpolation, the reasonable choice is to
always locate variables D, P and J on the same space grid as E. The different
schemes therefore differ only in the time location of variables: in equations
(1.7–a) and (1.7–b) integer times are chosen; in equation (1.7–c) half-integer
times are chosen.

Our naming is the following: we separate variables at half-integer times from
variables at integer times by an underscore sign, e.g. “B ED” when coupling
(1.6) and (1.7–a). We give in Table 1 the correspondence between the article
where the schemes have been derived first, the terminology of the survey [2] and
our description.

Contributor(s) Name in [2] Description Name in [2] Description

Debye Lorentz

Joseph et al. [7] D-DIM 3 B ED L-DIM 3 B ED
Kashiwa et al. [6] D-DIM 2 B EP L-DIM 2 B EPJ

Young [8] D-DIM 1 BP E L-DIM 1 BJ EP

Table 1: Correspondence between different namings.

1.4 Outline

The von Neumann stability analysis is recalled in Section 2. We also describe
the sketch of our proofs which is common for all the schemes. In Section 3
three one-dimensional direct integration schemes for Debye media are presented
and analyzed, pointing carefully out the physical properties needed to ensure
stability and the specific cases which have to be handled separately. Numerical
applications to physical media are also given. The same point of view is car-
ried out for Lorentz media in Section 4. To address two- and three-dimensional
schemes which have too many variables to compute by hand, we have devel-
oped a Computer Algebra environment based on Maple which is described in
Section 5. Two- and three dimensional results are given in Section 6.

2 Principles of the von Neumann analysis

The von Neumann analysis allows to localize roots of certain classes of poly-
nomials, which proves to be crucial here. We recall the main principles of this
technique. Details and proofs of theorems may be found in [12].

2.1 Schur and simple von Neumann polynomials

We define two families of polynomials: Schur polynomials and simple von Neu-
mann polynomials.
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Definition 1 A polynomial is a Schur polynomial if all its roots, r, satisfy
|r| < 1.

Definition 2 A polynomial is a simple von Neumann polynomial if all its roots,
r, lie on the unit disk (|r| ≤ 1) and its roots on the unit circle are simple roots.

If a polynomial has a high degree or sophisticated coefficients, it may be difficult
to locate its roots. However, there is a way to split this difficult problem into
many simpler ones. For this aim, we construct a sequence of polynomials of
decreasing degree. Let φ be written as

φ(z) = c0 + c1z + · · · + cpz
p,

where c0, c1 . . . , cp ∈ C and cp 6= 0. We define its conjugate polynomial φ∗ by

φ∗(z) = c∗p + c∗p−1z + · · · + c∗0z
p.

Given a polynomial φ0, we may define a sequence of polynomials

φm+1(z) =
φ∗m(0)φm(z) − φm(0)φ∗m(z)

z
.

It is clear that degφm+1 < degφm, if φm 6≡ 0.

Theorem 1 A polynomial φm is a Schur polynomial of exact degree d if and
only if φm+1 is a Schur polynomial of exact degree d− 1 and |φm(0)| ≤ |φ∗m(0)|.

Theorem 2 A polynomial φm is a simple von Neumann polynomial if and only
if

• φm+1 is a simple von Neumann polynomial and |φm(0)| ≤ |φ∗m(0)|,
or

• φm+1 is identically zero and φ′m is a Schur polynomial.

The main ingredient in the proof of both theorems is the Rouché theorem (see
[11, 12]). To analyze φ0, at each step m, conditions should be checked (leading
coefficient is non-zero, |φm(0)| ≤ |φ∗m(0)|, . . . ) until a definitive negative answer
arises or the degree is 1.

2.2 Stability analysis

The models we deal with are linear models. They may therefore be analyzed in
the frequency domain. In other words, any wave can be seen as a superposition
of plane waves which are also solution to the equations. We can thus assume that
the scheme handles a single vector-valued variable Un

j with spatial dependence

Un
j = Un exp(iξ · j),

where ξ and j ∈ RN , N = 1, 2, 3. The amplification matrix G is the matrix such
that Un+1 = GUn. We assume that G does not depend on time or on h and k
separately but only on the ratio h/k. Let φ0 be the characteristic polynomial
of G, then we have a sufficient stability condition.
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Theorem 3 A sufficient stability condition is that φ0 be a simple von Neumann
polynomial.

This condition is not necessary. A scheme is stable if and only if the sequence
(Un)n∈N is bounded. Since we assume that G does not depend on time, Un =
GnU0 and stability is also the boundedness of (Gn)n∈N. If the eigenvalues of G,
i.e. the roots r of φ0, lie inside the unit circle (|r| < 1), then limn→∞Gn = 0
and the sequence is bounded. If any root lies outside the unit circle then Gn

grows exponentially and the scheme is unstable. The intermediate case when
some roots may be on the unit circle (and the others inside) may lead to different
situations. Consider for example the case when G is the identity. Then Un = U0

and the scheme is clearly stable. However there are other examples of matrices
with multiple roots on the unit circle that lead either to bounded or unbounded
sequences (Gn)n∈N. It is clearly a property of the amplification matrix and not
of its characteristic polynomial. If the dimension of eigen-subspace associated
to a root is equal to its multiplicity then Gn is bounded (an example for this
is the identity: Idn = Id remains bounded). In the opposite case Gn grows
linearly. A paradigm for this is

(

1 1
0 1

)n

=

(

1 n
0 1

)

which grows linearly with iterations, and only one eigenvector can be found.
Such cases (which occur for our schemes) should therefore be handled specifi-
cally.

We will stick here to locate roots in the unit circle. An other way has al-
ready been developed in e.g. [13, 14]. It consists in using a conformal map, to
locate roots in the left half plane. This changes the problem in a Routh-Hurwitz
problem, which reads as a list of sufficient conditions for the characteristic poly-
nomial to be von Neumann (|r| ≤ 1). This has been implemented in the fide

reduce package.

2.3 Sketch of proofs

In the next sections, we will not give the proofs, but only list in a table the
arguments used for each situation. We describe here the general plan and give
names to specific final arguments used. The detailed proofs may be found in [15]
for space dimensions 1 and 2. The three-dimensional case has been performed
via Computer Algebra simulations [16].

Usually the coupled system is given in a implicit form. The first step consists
in writing it in an explicit form. This yields the amplification matrixG. Then we
compute its characteristic polynomial φ0. In order to perform a von Neumann
analysis, we compute the series (φm). In the general case, under the assumption
that the stability condition cannot be better than Yee’s, we can apply either
Theorem 1 (Theorem 1 argument) or Theorem 2 (Theorem 2 argument), check
estimates at each level until φm is a one degree polynomial. Special cases arise
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when εs = ε∞, sin(ξ/2) = 0 or ±1, and sometimes for limit values of physical
coefficients. In these cases, different points of view have to be considered:

• Theorem 2 has to be used instead of Theorem 1,

• Some eigenvalues lie on the unit circle (mostly ±1 or ±i). Polynomial φ0 is
at best a simple von Neumann polynomial and we have to study the other
eigenvalues which are roots of a lower degree polynomial (sub-polynomial
argument),

• Some eigenvalues lie on the unit circle and are not simple. Besides the
study of the other eigenvalues (sub-polynomial argument), we have to com-
pare the multiplicity of the root to the number of eigenvectors found. If
they are equal (stable case) this is usually checked directly on the form of
matrix G (G form argument). The unstable case necessitates the compu-
tation of eigenvectors (eigenvectors argument).

If εs = ε∞ Maxwell equations decouple from the other equations. We study
this limit as a hint of how the numerical scheme may behave when εs is very
close to ε∞. For the same reason, we will study the undamped oscillator (ν = 0)
for Lorentz media.

3 Debye media

We address successively the three discretizations of Maxwell–Debye equations
mentioned in Table 1.

3.1 Debye B ED scheme

In [7], Joseph et al. close System (1.6)–(1.7–a) by a discretization for Eq. (1.4–a),
namely

ε0ε∞tr
En+1

j − En
j

k
+ ε0εs

En+1
j + En

j

2
= tr

Dn+1
j −Dn

j

k
+
Dn+1

j +Dn
j

2
.

The resulting system may be cast in an explicit form which handles the variable
(t denotes transposition)

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , D

n
j /ε0ε∞)t

and the amplification matrix G reads






1 −λ(eiξ − 1) 0

− (1+δ)λ(1−e−iξ)
1+δηs

(1−δηs)+(1+δ)λ2(eiξ
−2+e−iξ)

1+δηs

2δ
1+δηs

−λ(1 − e−iξ) λ2(eiξ − 2 + e−iξ) 1







where λ = c∞k/h is the CFL constant, δ = k/2tr > 0 is the normalized time
step and ηs = εs/ε∞ ≥ 1 denotes the normalized static permittivity. Moreover
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we define q = −λ2(eiξ−2+e−iξ) = 4λ2 sin2(ξ/2). The characteristic polynomial
is proportional to

φ0(Z) = [1 + δηs)]Z
3 − [3 + δηs − (1 + δ)q]Z2 + [3− δηs − (1− δ)q]Z − [1− δηs].

The proof arguments are summed up in Table 2 and we deduce that the stability
condition is q ≤ 4 if εs > ε∞ and q < 4 if εs = ε∞.

q εs argument result

]0, 4[ > ε∞ Theorem 1 stable
]0, 4[ = ε∞ Theorem 2 stable

0 ≥ ε∞ G form stable
4 > ε∞ Theorem 2 stable
4 = ε∞ eigenvectors unstable

Table 2: Proof arguments and results for the Debye B ED and B EP schemes.

3.2 Debye B EP scheme

In [6], Kashiwa et al. close System (1.6)–(1.7–b) by a discretization for Eq. (1.4–b):

tr
Pn+1

j − Pn
j

k
= −

Pn+1
j + Pn

j

2
+ ε0(εs − ε∞)

En+1
j + En

j

2
.

The system now handles the variable

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , P

n
j /ε0ε∞)t

and the amplification matrix G reads






1 −λ(eiξ − 1) 0

− (1+δ)λ(1−e−iξ)
1+δηs

(1−δηs)+(1+δ)λ2(eiξ
−2+e−iξ)+2δ

1+δηs

2δ
1+δηs

− δ(ηs−1)λ(1−e−iξ)
1+δηs

(λ2(eiξ
−2+e−iξ)+2)(ηs−1)δ

1+δηs

1+ηsδ−2δ
1+δηs







and the characteristic polynomial is proportional to the same polynomial as for
the B ED scheme. All proofs are the same except those on matrix G directly,
but even in these cases the conclusions are the same. Table 2 is also valid for
the B EP scheme.

3.3 Debye BP E scheme

In [8], Young chooses to close System (1.6)–(1.7–c) by two discretizations for
Eq. (1.4–b), namely

tr
P

n+ 1

2

j − P
n− 1

2

j

k
= −

P
n+ 1

2

j + P
n− 1

2

j

2
+ ε0(εs − ε∞)En

j ,

trJ
n+ 1

2

j = −Pn+ 1

2

j + ε0(εs − ε∞)
En+1

j + En
j

2
.



Stability of FD–TD schemes 9

Although J
n+ 1

2

j is used for the computations, this not a genuine variable for the
full system which handles the variable

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , P

n− 1

2

j /ε0ε∞)t

and the amplification matrix G reads







1 −λ(eiξ − 1) 0

−λ(1−e−iξ)
1+δα

1+δ−δα+3δ2α−(1+δ)q
(1+δ)(1+δα)

1−δ
1+δ

2δ
1+δα

0 2δα
1+δ

1−δ
1+δ







with the same notations as above and α = ηs − 1 ≥ 0. The characteristic
polynomial is proportional to

φ0(Z) = [(1 + δα)(1 + δ)]Z3 − [3 + δ + δα+ 3δ2α− (1 + δ)q]Z2

+[3 − δ − δα+ 3δ2α− (1 − δ)q]Z − [(1 − δα)(1 − δ)].

Table 3 gathers the different arguments used. The stability condition is q ≤ 4
and δ ≤ 1 if εs > ε∞ and q < 4 if εs = ε∞.

q εs δ argument result

]0, 4] > ε∞ ]0, 1[ Theorem 1 stable
]0, 4[ = ε∞ > 0 Theorem 2 stable

0 ≥ ε∞ > 0 G form stable
]0, 4] > ε∞ 1 sub-polynomial stable

4 = ε∞ > 0 eigenvectors unstable

Table 3: Proof arguments and results for the Debye BP E scheme.

3.4 Conclusion for one-dimensional Debye schemes

If εs > ε∞, the pure CFL condition q ≤ 4 is the same for both models. It is
exactly the condition for Maxwell equations. However the BP E scheme neces-
sitates another condition, δ ≤ 1, which corresponds to a sufficient discretization
of Debye equation (1.4–b). Even if we are interested here in stability properties,
such conditions are to be considered to ensure equations to be correctly taken
into account. Results are given in physical variables in Table 4.

To compare conditions on q and δ, let us consider a simple physical case.
We assume that a matter with ε∞ = 1 (and thus c∞ ≃ 3× 108 ms−1) is lighted
by a wave of say wavelength 1 cm. The space step h has to be smaller than
this wavelength, and therefore q < 4 reads at least k < 1

3 × 10−10 s. In a
Debye medium, relaxation times tr are of the order of a picosecond (or even
a nanosecond) which maybe of the same order than the previous bound. A
typical example is water for which ε∞ = 1.8, εs = 81.0 and tr = 9.4 × 10−12 s
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Scheme dimension 1 dimension 1

εs > ε∞ εs = ε∞

B ED or B EP q ≤ 4 k ≤ h/c∞ q < 4 k < h/c∞
BP E q ≤ 4, δ ≤ 1 k ≤ min(h/c∞, 2tr) q < 4 k < h/c∞

Table 4: Stability of Debye models for εs > ε∞ and εs = ε∞.

[4]. Condition k ≤ 2tr comes to k ≤ 1.88 × 10−11 s. Condition q ≤ 4 yields a
similar condition if h = 4.2 × 10−3 m. For a very coarse space grid and with
the BP E scheme, the CFL condition comes from k ≤ 2tr; otherwise, fine grid
and/or B ED or B EP schemes, it comes from q ≤ 4.

A quite different material is for example the 0.25-dB loaded foam given in
[17] for which ε∞ = 1.01, εs = 1.16 and tr = 6.497× 10−10 s. Condition k ≤ 2tr
comes to k ≤ 1.3×10−9 s and q ≤ 4 yields a similar condition if h = 3.9×10−1 m.
In practice h has to be smaller to describe a wave with 1 cm wavelength and
the stability condition for this foam is q < 4 for both schemes.

In conclusion the stability condition may depend of the material in classical
applications, leading us to prefer the B ED scheme, when tr is small (picosec-
ond). The result announced in [1] was q ≤ 4 for the B ED scheme and for water,
which is consistent with our result.

4 Lorentz media

We now address the three discretizations of Maxwell–Lorentz equations men-
tioned in Table 1.

Each of these schemes reads the same in the undamped (ν = 0) or damped
(ν > 0) cases. However the analysis will differ greatly since φ1 ≡ 0 for all the
schemes in the undamped case.

4.1 Lorentz B ED scheme

In [7], System (1.6)–(1.7–a) is closed by a discretization for Eq. (1.5–a), namely

ε0ε∞
En+1

j − 2En
j + En−1

j

k2
+ νε0ε∞

En+1
j − En−1

j

2k
+ ε0εsω

2
1

En+1
j + En−1

j

2

=
Dn+1

j − 2Dn
j +Dn−1

j

k2
+ ν

Dn+1
j −Dn−1

j

2k
+ ω2

1

Dn+1
j +Dn−1

j

2

The explicit version of the subsequent system does not use explicitly the value
of Dn−1

j and therefore this system handles the variable

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , E

n−1
j , Dn

j /ε0ε∞)t.
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The amplification matrix G reads









1 −λ(eiξ − 1) 0 0

− 2δλ(1−e−iξ)
1+δ+ωηs

2−q(1+δ+ω)
1+δ+ωηs

1−δ+ωηs

1+δ+ωηs

2ω
1+δ+ωηs

0 1 0 0
−λ(1 − e−iξ) −q 0 1









where δ = νk/2 ≥ 0 is the new normalized time step, and ω = ω2
1k

2/2 > 0
denotes the normalized squared frequency. The other notations used for the
Debye model remain valid. The characteristic polynomial is proportional to

φ0(Z) = [1 + δ + ωηs]Z
4 − [4 + 2δ + 2ωηs − (1 + δ + ω)q]Z3

+[6 + 2ωηs − 2q]Z2 − [4 − 2δ + 2ωηs − (1 − δ + ω)q]Z + [1 − δ + ωηs].

The proofs are summed up in Table 5 for the damped and the undamped case.

q εs argument result argument result

damped: ν > 0 undamped: ν = 0

]0, 2[ > ε∞ Theorem 1 stable Theorem 2 stable
]0, 2] = ε∞ Theorem 2 stable sub-polynomial unstable

0 ≥ ε∞ G form stable G form stable
2 ≥ ε∞ sub-polynomial stable sub-polynomial stable

Table 5: Proof arguments and results for the Lorentz B ED scheme.

In the damped case the stability condition is q ≤ 2 for all εs ≥ ε∞. The
εs = ε∞ undamped case, needs some explanation. For q ∈]0, 2], φ0 may be cast
as the product of two second order polynomials. The roots are two couples of
conjugate complex roots of modulus 1. For the specific value q = 2ω/(1 + ω),
which always lies in the interval ]0, 2], the two couples degenerate in one double
couple with only two eigen-directions, which is the unstable case. To avoid this
instability one may think to bound q and say that the scheme is stable provided
q ∈ [0, 2ω/(1 + ω)[. But if we come back to the original variables, we see that
this is not an upper bound on k but rather a lower bound on h, which we surely
do not want. It is therefore better to avoid using the B ED scheme in this very
specific case, εs = ε∞ and ν = 0. A better scheme for this case is provided next.

4.2 Lorentz B EPJ scheme

In [6], Kashiwa et al. close System (1.6)–(1.7–b) by a discretization for Eq. (1.5–b),
namely

Pn+1
j − Pn

j

k
=

Jn+1
j + Jn

j

2
,

Jn+1
j − Jn

j

k
= −ν

Jn+1
j + Jn

j

2
+ ω2

1(εs − ε∞)ε0
En+1

j + En
j

2
− ω2

1

Pn+1
j + Pn

j

2
.
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The explicit version of the obtained system handles the variable

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , P

n
j /ε0ε∞, kJ

n
j /ε0ε∞)t

and the amplification matrix G reads











1 −λ(eiξ − 1) 0 0
−λ(1−e−iξ)(∆−

1

2
ωα)

∆

∆−q∆−(2−q) 1

2
ωα

∆
ω
∆

−1
∆

−λ(1−e−iξ) 1

2
ωα

∆

(2−q) 1

2
ωα

∆
∆−ω

∆
1
∆

−λ(1−e−iξ)ωα

∆
(2−q)ωα

∆
−2ω
∆

2−∆
∆











where together with the previously defined notations, ∆ = 1 + δ + ωηs/2. The
characteristic polynomial is proportional to

φ0(Z) = [1 + δ +
1

2
ωηs]Z

4 − [4 + 2δ − (1 + δ +
1

2
ω)q]Z3

+[6 − ωηs + (ω − 2)q]Z2 − [4 − 2δ − (1 − δ +
1

2
ω)q]Z + [1 − δ +

1

2
ωηs].

The proofs are summed up in Table 6. Both in the damped and undamped
cases, the stability condition is q < 4 which is much better than the previous
scheme since we gain a factor 2 on k and we have no problem when εs = ε∞
and ν = 0 as for the previous model.

q εs argument result argument result

damped: ν > 0 undamped: ν = 0

]0, 4[ > ε∞ Theorem 1 stable Theorem 2 stable
]0, 4[ = ε∞ Theorem 2 stable Theorem 2 stable

0 ≥ ε∞ G form stable G form stable
4 ≥ ε∞ eigenvectors unstable eigenvectors unstable

Table 6: Proof arguments and results for the Lorentz B EPJ scheme.

4.3 Lorentz BJ EP scheme

In [8], System (1.6)–(1.7–c) is closed by a discretization for Eq. (1.5–b), namely

Pn+1
j − Pn

j

k
= Jn+ 1

2 ,

J
n+ 1

2

j − J
n− 1

2

j

k
= −ν

J
n+ 1

2

j + J
n− 1

2

j

2
+ ω2

1(εs − ε∞)ε0E
n
j − ω2

1P
n
j .

The explicit version the system handles the variable

Un
j = (c∞B

n− 1

2

j+ 1

2

, En
j , P

n
j /ε0ε∞, kJ

n− 1

2

j /ε0ε∞)t
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and the amplification matrix G reads









1 −λ(eiξ − 1) 0 0

−λ(1 − e−iξ) (1−q)(1+δ)−2ωα

1+δ
2ω
1+δ

− 1−δ
1+δ

0 2ωα
1+δ

1+δ−2ω
1+δ

1−δ
1+δ

0 2ωα
1+δ

−2ω
1+δ

1−δ
1+δ









.

The characteristic polynomial is proportional to

φ0(Z) = [1 + δ]Z4 − [4 + 2δ − 2ωηs − (1 + δ)q]Z3

+2[3 − 2ωηs + (ω − 1)q]Z2 − [4 − 2δ − 2ωηs − (1 − δ)q]Z + [1 − δ].

The proofs are summed up in Table 7. This scheme combines three drawbacks

q εs ω argument result

damped: ν > 0

]0, 2[ > ε∞ ≤ 2/(2ηs − 1) Theorem 1 stable
2 > ε∞ < 2/(2ηs − 1)

]0, 2] = ε∞ < 2 Theorem 2 stable
]0, 2] = ε∞ = 2 sub-polynomial stable

2 > ε∞ = 2/(2ηs − 1) Theorem 2 stable
0 ≥ ε∞ ≤ 2/(2ηs − 1) G form stable

q εs ω argument result

undamped: ν = 0

]0, 2[ > ε∞ ≤ 2/(2ηs − 1) Theorem 2 stable
2 > ε∞ < 2/(2ηs − 1)

]0, 2] = ε∞ < 2 eigenvectors unstable
]0, 2] = ε∞ = 2 Theorem 2 stable

2 > ε∞ = 2/(2ηs − 1) eigenvectors unstable
0 > ε∞ ≤ 2/(2ηs − 1) G form stable
0 = ε∞ < 2/(2ηs − 1)
0 = ε∞ = 2/(2ηs − 1) eigenvectors unstable

Table 7: Proof arguments and results for the Lorentz BJ EP scheme.

we have already encountered. First as for the Debye model, there is an extra
condition on the time step: ω < 2/(2ηs − 1). This will have to be compared
to the condition on q for physical examples. Second, as for the Lorentz B ED
scheme we need a twice smaller k than for raw Maxwell equations: q ≤ 2 instead
of q ≤ 4. Last, and also as for the Lorentz B ED scheme, the εs = ε∞ and ν = 0
leads to an instability. This is exactly the same story. This time q = 2ω leads to
double couples of conjugate complex roots of modulus 1, with only two eigen-
directions. If ω > 1 this value of q is however never reached. Else q = 2ω is
rather a condition on h and therefore not a proper stability condition. As for
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the Lorentz B ED it seems better to avoid using this scheme if εs = ε∞ and
ν = 0.

4.4 Conclusion for one-dimensional Lorentz schemes

We summarize all our results for Lorentz schemes in Table 8. For the un-
damped BJ EP scheme if εs > ε∞ the condition is slightly better since q = 2
and ω < 2/(2ηs − 1), or q < 2 and ω = 2/(2ηs − 1) also yield stable schemes.

Contrarily to Debye materials, for which all schemes compete, the B EPJ
scheme seems to overcome others for Lorentz material. First, there is a gain in
CFL condition (q < 4 is twice better as q ≤ 2), second, there are no instabilities
for limiting values of the physical coefficients, and last there is no extra condition
on the time step. In practice, an extra condition is however needed to account
for the dynamics of the Lorentz equation, but not for stability reasons.

However we can compare the relative strength of the different conditions on
k for the B ED and BJ EP schemes, and for optical waves of say wavelength
1µm. The values used in [1] are ε∞ = 1, εs = 2.25, ω1 = 4 × 1016 rad s−1 and
ν = 0.56 × 1016 rad s−1. Condition ω ≤ 2/

√
2ηs − 1 comes to k ≤ 2.7 × 10−17 s

which is very small and corresponds to h = 1.13×10−8 m in the q < 2 condition.
This space step is more than sufficient to discretize optical waves. For such a
material the extra condition imposed by the B ED scheme is stronger than the
basic CFL condition. The B EPJ model is then more advisable.

Scheme dimension 1

damped: ν > 0, and εs ≥ ε∞

B ED q ≤ 2 k ≤ h/
√

2c∞
B EPJ q < 4 k < h/c∞

BJ EP
q ≤ 2,

ω ≤ 2/(2ηs − 1)
k ≤ min(h/

√
2c∞, 2/ω1

√
2ηs − 1)

undamped: ν = 0, and εs > ε∞

B ED q ≤ 2 k ≤ h/
√

2c∞
B EPJ q < 4 k < h/c∞

BJ EP
q < 2,

ω < 2/(2ηs − 1)
k < min(h/

√
2c∞, 2/ω1

√
2ηs − 1)

undamped: ν = 0, and εs = ε∞

B ED q < 2ω/(1 + ω) condition on h
B EPJ q < 4 k < h/c∞

BJ EP
q < 2,

ω < 2/(2ηs − 1)
k < h/

√
2c∞, 2/ω1

√
2ηs − 1) if ω > 1

condition on h else

Table 8: Stability of damped and undamped Lorentz models for εs > ε∞ and
εs = ε∞.
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In [8] there is a totally different material for which ε∞ = 1.5, εs = 3, ω1 =
2π × 5 × 1010 rad s−1 and ν = 1010 rad s−1 (these round values certainly refer
to a model material). In this case ω ≤ 2/

√
2ηs − 1 comes to k ≤ 3.6 × 10−12 s

which corresponds to h = 1.9×10−3 m in the q < 2 condition. For this material
condition q < 2 is the strongest for optical waves. The B EPJ scheme is however
more advisable, since it allows q < 4 instead of q ≤ 2.

The results obtained in [1] where obtained for our first cited material and
for the B ED and BJ EP schemes. He observed instabilities for ξ > π

2 . We note

that if ξ ≤ π
2 then sin(ξ/2) ≤ 1/

√
2 and q ≤ 2 instead of q ≤ 4. This is exactly

our result. He found also the B EPJ scheme to stable for q ≤ 4.

5 Automation via Computer Algebra

For a 3D Lorentz medium, φ0 is typically a 12th degree polynomial with poly-
nomial coefficients of degree 6 in the different parameters. The above procedure
becomes awful if made by hand. A Computer Algebra environment based on
Maple has been developed with the specific aim to automate all the compu-
tational steps which may be source of errors [16]. It is still only dedicated to
electromagnetic models but could be extended in the future to other applica-
tions.

The schemes are defined by four parameters:

1. the space dimension Dim (1, 2 or 3),

2. the polarization Polar (TE or TM in dimension 2),

3. the physical model Model (e.g. Debye),

4. the variables used Formula (e.g. B EP).

Maxwell equations have been written once and for all and have just to be
“called”

> Faraday(Eq, Dim, Polar):

> Ampere(Eq, Dim, Polar, Formula):

For our applications, in the other equations space is only a parameter. Such
equations are written once with no spatial dependence

> NewEq := tr*(P[n+1]-P[n])/dt

+ 1/2*(P[n+1]+P[n])

- eps0*(epss-epsinfini)*(E[n+1]+E[n])/2:

> CreateEq(Eq, NewEq, Dim, Polar):

and propagated to all the useful coordinates with the right indexes on the stag-
gered grid, according to the space dimension and polarization.

Then change of variables are automatically performed to have dimensionless
variables (specific to the model), no redundant variables (specific to the scheme)
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and an explicit scheme in the frequency domain. This yields the amplification
matrix G. The computation of polynomial φ0 is then performed as well as the
computational part of the von Neumann analysis: computation of the sequence
of polynomials and factorizations. On these forms the user of the toolbox can
easily see which are the specific cases to consider separately.

The comparisons |φm(0)| ≤ |φ∗m(0)| are the real difficult point from the
computer algebra point of view. It comes to evaluate the sign of a polynomial
in many variables (4 for a Lorentz medium) and of total degree of order say 6
for φ0, about 10 for φ1, . . . knowing some variables are positive (like ηs − 1 or
δ) and other lie within an interval (like q). This is also automated

> SignCheck(phi, Z, [0 < delta, 1 < etas, 0 < q, q < 4]);

but sometimes Maple does not yield a totally explicit answer. This might
lead us to migrate the whole toolbox in a C code to make use of some existing
softwares specific for the solving of interval arithmetic problems.

Finally tools are defined to compare the number of eigenvectors and the
multiplicity of eigenvalues in the degenerate cases.

6 Two- and three dimensional results

6.1 Equation setting

In a two-dimensional context where unknowns depend only on space variables
x and y, Maxwell system may be split in two decoupled systems correspond-
ing to the transverse electric (TE) (Bx, By, Ez) and the transverse magnetic
(TM) (Bz, Ex, Ey) polarizations. In the one-dimensional case, Maxwell–Debye
equations were represented by three equations and Maxwell–Lorentz by four
equations. In the TE polarization, one more Faraday equation is added and we
have four equations for Maxwell–Debye and five equations for Maxwell–Lorentz.
In the TM polarization for the Maxwell–Debye model, one Ampère equation and
one Debye equation have to be added, leading to five equations systems. For
the Maxwell–Lorentz model, there are one Ampère equation and two Lorentz
equations more, and the system consists of seven equations.

In the three-dimensional context, equations do not decouple any more, and
systems consist in nine equations for the Maxwell–Debye schemes and twelve
equations for the Maxwell–Lorentz schemes.

The principle of the stability analysis is exactly the same, but we now have
larger polynomials to study. We however found out that the one-dimensional
polynomials (which we denote by φ1D

0 (Z)) are a factor in two- and three-
dimensional polynomials, which reduces the formal calculations. More precisely
we now denote by hx, hy and hz the space steps in the x-, y- and z-directions
respectively and by q the quantity

q = qx + qy = 4c2
∞

(

k2

h2
x

sin2(ξx/2) +
k2

h2
y

sin2(ξy/2)

)



Stability of FD–TD schemes 17

or

q = qx + qy + qz = 4c2
∞

(

k2

h2
x

sin2(ξx/2) +
k2

h2
y

sin2(ξy/2) +
k2

h2
z

sin2(ξz/2)

)

according to the space dimension (recall q = 4c2
∞

k2

h2
x

sin2(ξx/2) in 1D).

6.2 Results

In the two-dimensional TE polarization, the characteristic polynomial reads

φ2D,TE
0 (Z) = [Z − 1]φ1D

0 (Z),

for all the Maxwell–Debye and Maxwell-Lorentz schemes we study here. This
could be a problem, if 1 is already a root of φ1D

0 (Z), i.e. if q = 0, but it
happens that it is never a problem: minimal stable sub-spaces are always one-
dimensional.

In the TM polarization, the same factorization occurs but the remaining
polynomial is slightly more complicated, namely

φ2D,TM
0 (Z) = [Z − 1]ψ0(Z)φ1D

0 (Z),

where ψ0(Z) is equal to:

• Debye B ED and B EP: [(1 + δηs)Z − (1 − δηs)],

• Debye BP E: [(1 + α)(1 + δα)Z − (1 − α)(1 − δα)],

• Lorentz B ED: [(1 + δ + ωηs)Z
2 − 2Z + (1 − δ + ωηs)],

• Lorentz B EPJ: [(1 + δ + 1
2ωηs)Z

2 − (2 − ωηs)Z + (1 − δ + 1
2ωηs)],

• Lorentz BJ EP: [(1 + δ)Z2 − 2(1 − ωηs)Z + (1 − δ)].

As for the TE polarization the extra eigenvalue 1 is never a source of instability.
The other extra eigenvalues always lie inside or on the unit circle (conjugate
complex roots). The only problem is when modulus 1 eigenvalues are also
eigenvalues of the one-dimensional polynomial. This only occurs for the Lorentz
B ED scheme is εs = ε∞, and q = 2ω/(1+ω), which is a resonant value we have
already pointed out in the undamped case for this scheme.

In the three-dimensional context, the characteristic polynomial reads

φ3D
0 (Z) = [Z − 1]2ψ0(Z)

(

φ1D
0 (Z)

)2
,

for all the schemes we have studied. In addition to extra eigenvalues 1, we have
to check cases when we found out that φ1D

0 (Z) is a von Neumann polynomial
but not a Schur polynomial. If εs = ε∞ we systematically have instabilities.
Other extra instable cases depend on the scheme: q = 4 for the Debye B ED
and B EP schemes, δ = 1 for the Debye BP E scheme; q = 2 for the Lorentz
D ED and BJ EP schemes, ν = 0 for all Lorentz schemes.
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We do not have any explanation for these factorizations. This is a property
of the characteristic polynomial and not necessarily of the amplification matrix,
i.e. this may occur even if variables are not decoupled. However, there is
probably some underlying block-triangular structure, which is still to be found.

We shall not duplicate Tables 4 and 8 for two- and three-dimensional schemes.
In the two-dimensional case, if hx = hy = hz ≡ h, condition q ≤ 4 becomes
k ≤ h/(

√
2c∞) and condition q ≤ 2 becomes k ≤ h/(2c∞) in the physical vari-

ables. Besides, Lorentz B ED model which was leading to a lower bound on h
in the undamped case, leads also to such a bound in the damped case. These
are the only differences with Tables 4 and 8.

In short, 3D conditions are also essentially the same as 1D conditions but
inequalities have always to be strict and limiting (non-physical) cases εs = ε∞
and ν = 0 cannot be dealt properly with a 3D model.

7 Conclusion

We have studied a class of FD–TD schemes for dispersive materials based on the
Yee scheme for Maxwell equations and compared them from the stability point
of view. This study was inspired by Petropoulos [1] who performs the same
analysis but using specific values for the physical and numerical constants and
using numeric routines to locate eigenvalues of the amplification matrix. Here
we have general results which yield the constraint on numerical constants (k and
h) for any Debye or Lorentz material. Our results confirm those of Petropoulos.

For usual Debye media, both studied schemes are stable under the same
condition as the Yee scheme for nanosecond delay materials. The B ED and
B EP schemes overcomes the BP E scheme in terms of stability condition for
picosecond delay materials. Among the studied schemes for Lorentz media, the
B EPJ scheme clearly ranks first as far as stability is concerned. Its stability
condition is also that of the Yee scheme. However to take properly into account
the Lorentz model, a smaller time step may have to be chosen, independently of
stability issues. The two examples do not help us to deduce a general strategy
to locate variables in time, in order to treat other physical models.

The Computer Algebra system that has been developed to handle the three-
dimensional schemes has a much wider range of application. First it can be
extended with very small effort to other electromagnetic linear models such as
cold plasmas, collisionless warm plasmas or magnetic ferrites. With some more
work (no computation skill but knowledge of dimensionless variables), it can
be practically extended to the analysis of any linear finite-difference scheme
occurring in other areas than electromagnetism.

Acknowledgments

The author thanks Françoise Jung and Jean-Guillaume Dumas for their assis-
tance in mastering tricks of Maple.



Stability of FD–TD schemes 19

References

[1] P. Petropoulos, Stability and phase error analysis of FD–TD in disper-
sive dielectrics, IEEE Trans. Antennas Propagat., 42 (1994), pp. 62–69.

[2] J. Young, Finite difference time–domain methodologies for electromag-
netic wave propagation in complex media, in Frontiers in electromagnetics,
D. Werner, R. Mittra eds., IEEE Press, 2000, pp. 666–707.

[3] R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, M. Schnei-

der, A frequency-dependent finite-difference time–domain formulation
for dispersive materials, IEEE Trans. Electromagnetic Compatibility, 32
(1990), pp. 222–227.

[4] J. Young, A. Kittichartphayak, Y. Kwok, D. Sullivan, On the
dispersion errors related to FD2TD type schemes, IEEE Trans. Antennas
Propagat., 43 (1995), pp. 1902–1910.

[5] K. Yee, Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat.,
14 (1966), pp. 302–307.

[6] T. Kashiwa, N. Yoshida, I. Fukai, A treatment by the FD–TD method
of the dispersive characteristics associated with orientation polarization,
IEICE Trans., E73 (1990), pp. 1326–1328.

[7] R. Joseph, S. Hagness, A. Taflove, Direct time integration of
Maxwell’s equations in linear dispersive media with absorption for scat-
tering and propagation of femtosecond electromagnetic pulses, Opt. Lett.,
16 (1991), pp. 1412–1414.

[8] J. Young, Propagation in linear dispersive media: Finite difference
time–domain methodologies, IEEE Trans. Antennas Propagat., 43 (1995),
pp. 422–426.

[9] M. Feise, J. Schneider, P. Bevelacqua, Finite-difference and pseu-
dospactral time–domain methods applied to backward-wave metamaterials,
IEEE Trans. Antennas Propagat., 52 (2004), pp. 2955–2962.

[10] N. Stoykov, T. Kuiken, M. Lowery, A. Taflove, Finite-element
time–domain algorithms for modeling linear Debye and Lorentz dielec-
tric dispersions at low frequencies, IEEE Trans. Biomed. Eng., 50 (2003),
pp. 1100–1107.

[11] J.J.H. Miller, On the location of zeros of certain classes of polynomials
with applications to numerical analysis, IMA J. Appl. Math., 8 (1971),
PP. 397–406.

[12] J. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, Wadworth & Brooks/Cole, 1989.



Stability of FD–TD schemes 20

[13] R. Liska, L. Drsda, FIDE; a REDUCE package for automation of FInite
difference method for solving pDE, in Int. Conf. on Symbolic and Algebraic
Computation, ACM Press, 1990, pp. 169–176.

[14] S. Steinberg, R. Liska, Stability analysis by quatifier elimination, Math-
ematics and Computers in Simulation, 42 (1996), pp. 629–638.
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