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1 Introduction

These lecture notes are an expanded version of the lectuegstry the second and the
fourth author in the summer school "Open Quantum Systemid"ih&renoble, June
16-July 4, 2003. We are grateful to Stéphane Attal and Alaye Jor their hospitality
and invitation to speak.

The lecture notes have their root in the recent review arfi¢P4] and our goal
has been to extend and complement certain topics coverd®#].[ In particular, we
will discuss the scattering theory of non-equilibrium stgatates (NESS) (this topic
has been only quickly reviewed in [JP4]). On the other haraywil not discuss the
spectral theory of NESS which has been covered in detaiPa][JAlthough the lecture
notes are self-contained, the reader would benefit fromimgatiem in parallel with
[JP4].

Concerning preliminaries, we will assume that the readfamsliar with the mate-
rial covered in the lecture notes [At, Jo, Pi]. On occasioawill mention or use some
material covered in the lectures [D1, Ja].

As in [JP4], we will work in the mathematical framework of aliraic quantum
statistical mechanics. The basic notions of this formalem reviewed in Section
3. In Section 4 we introduce open quantum systems and dedtwdir basic proper-
ties. Linear response theory (this topic has not been discuim [JP4]) is described
in Subsection 4.4. Linear response theory of open quantwtersys (Kubo formu-
las, Onsager relations, Central Limit Theorem) has beetiedduin the recent papers
[FMU, FMSU, AJPP, JPR2].

The second part of the lecture notes (Sections 6-8) is d&toten example. The
model we will discuss is the simplest non-trivial exampletaf Electronic Black Box
Model studied in [AJPP] and we will refer to it as tismple Electronic Black Box
Model (SEBB). The SEBB model is to a large extent exactly solvabits-NESS and
entropy production can be exactly computed and Kubo formaém be verified by
an explicit computation. For reasons of space, however, iNeet discuss two im-
portant topics covered in [AJPP]—the stability theory (@his essentially based on
[AM, BM]) and the proof of the Central Limit Theorem. The inésted reader may
complement Sections 6-8 with the original paper [AJPP] &ed¢cent lecture notes
[JKP].

Section 5, in which we discuss statistical mechanics of a Fermi gas, is the
bridge between the two parts of the lecture notes.

Acknowledgment. The research of V.J. was partly supported by NSERC. Parti®f th
work was done while Y.P. was a CRM-ISM postdoc at McGill Umgity and Centre
de Recherches Mathématiques in Montreal.

2 Conceptual framework

The concept of reference state will play an important roleun discussion of non-
equilibrium statistical mechanics. To clarify this notjdet us consider first a classical
dynamical system with finitely many degrees of freedom andpact phase space
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X c R™. The normalized Lebesgue measdreon X provides a physically natural
statistics on the phase space in the sense that initial erafigns sampled according
to it can be considered typical (see [Ru4]). Note that thisrathing to do with the fact
thatdx is invariant under the flow of the system—any measure of tha fdz)dx with

a strictly positive density would serve the same purpose. The situation is completely
different if the system has infinitely many degrees of fraadin this case, there is no
natural replacement for the Lebesglie In fact, a measure on an infinite-dimensional
phase space physically describes a thermodynamic state agfystem. Suppose for
example that the system is Hamiltonian and is in thermalligiuim at inverse tem-
peratureS and chemical potential. The statistics of such a system is described by
the Gibbs measure (grand canonical ensemble). Since twosG@ileasures with dif-
ferent values of the intensive thermodynamic parameteys are mutually singular,
initial points sampled according to one of them will be atgbirelative to the other. In
conclusion, if a system has infinitely many degrees of freedee need to specify its
initial thermodynamic state by choosing an appropriaterexice measure. As in the
finite-dimensional case, this measure may not be invariag¢uthe flow. It also may
not be uniquely determined by the physical situation we wasthescribe.

The situation in quantum mechanics is very similar. The &dimger representa-
tion of a system with finitely many degrees of freedom is (e8ally) uniquely deter-
mined and the natural statistics is provided by any striptgitive density matrix on
the Hilbert space of the system. For systems with infiniteingndegrees of freedom
there is no such natural choice. The consequences of thiariabhowever more drastic
than in the classical case. There is no natural choice oflaeHikpace in which the
system can be represented. To induce a representation, stespecify the thermo-
dynamic state of the system by choosing an appropriateamterstate. The algebraic
formulation of quantum statistical mechanics provides gheraatical framework to
study such infinite system in a representation independant w

One may object that no real physical system has an infinitebeurof degrees
of freedom and that, therefore, a unique natural referetate always exists. There
are however serious methodological reasons to considemithematical idealization.
Already in equilibrium statistical mechanics the fundataéphenomena of phase tran-
sition can only be characterized in a mathematically peswigy within such an ideal-
ization: A quantum system with finitely many degrees of fimadhas a unique thermal
equilibrium state. Out of equilibrium, relaxation towamstationary state and emer-
gence of steady currents can not be expected from the gedsdjt time evolution of
a finite system.

In classical non-equilibrium statistical mechanics thexésts an alternative ap-
proach to this idealization. A system forced by a non-Hamikn or time-dependent
force can be driven towards a non-equilibrium steady stateyided the energy sup-
plied by the external source is removed by some thermosthis ricro-canonical
point of view has a number of advantages overdaeonical infinite system idealiza-
tion. A dynamical system with a relatively small number ofjckes of freedom can
easily be explored on a computer (numerical integratienatton of Poincaré sections,
...). Alarge body of “experimental facts” is currently dedle from the results of
such investigations (see [EM, Do] for an introduction to thehniques and a lucid
exposition of the results). From a more theoretical petdgeche full machinery of



Topics in non-equilibrium quantum statistical mechanics 5

finite-dimensional dynamical system theory becomes awailim the micro-canonical
approach. Th&€haotic Hypothesismtroduced in [CG1, CG2] is an attempt to exploit
this fact. It justifies phenomenological thermodynamicagayer relations, linear re-
sponse theory, fluctuation-dissipation formulas,...) had lead to more unexpected
results like the Gallavotti-Cohen Fluctuation Theorem.e Thajor drawback of the
micro-canonical point of view is the non-Hamiltonian na&twf the dynamics, which
makes it inappropriate to quantum-mechanical treatment.

The two approaches described above are not completelyatedel For example,
we shall see that the signature of a non-equilibrium stetatg $1 quantum mechanics
is its singularity with respect to the reference state, avdich is well understood in
the classical, micro-canonical approach (see Chapter [lEMf). More speculatively,
one can expect a genemdjuivalence principldor dynamical (micro-canonical and
canonical) ensembles (see [Ru5]). The results in this tiime@re quite scarce and
much work remains to be done.

3 Mathematical framework

In this section we describe the mathematical formalism g@élataic quantum statisti-
cal mechanics. Our presentation follows [JP4] and is suitecpplications to non-
equilibrium statistical mechanics. Most of the materiathis section is well known
and the proofs can be found, for example, in [BR1, BR2, DJR R Ta]. The proofs
of the results described in Subsection 3.3 are given in Agehl.

3.1 Basic concepts

The starting point of our discussion is a péi?, 7), whereO is a C*-algebra with

a unitI andr is a C*-dynamics (a strongly continuous grol > ¢ — 7¢ of *-
automorphisms aP). The elements aP describe physical observables of the quantum
system under consideration and the graugpecifies their time evolution. The pair
(O, 1) is sometimes called @*-dynamical system.

In the sequel, by the strong topology ¢hwe will always mean the usual norm
topology of O as Banach space. Tli& -algebra of all bounded operators on a Hilbert
spaceH is denoted by3(H).

A statew on theC*-algebra0 is a normalizedy (/) = 1), positive (w(A*A) > 0),
linear functional orO. It specifies a possiblghysical stat®f the quantum mechanical
system. If the system is in the stateat time zero, the quantum mechanical expectation
value of the observabld at timet is given byw(r%(A)). Thus, states evolve in the
Schradinger picture according tg = w o 7t. The setE(O) of all states or© is a
convex, weaks compact subset of the Banach space ddabf O.

A linear functionalp € O~ is calledr-invariant ifn o 7 = 5 for all t. The set
of all T-invariant states is denoted (O, 7). This set is always non-empty. A state
w € E(O, ) is called ergodic if
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and mixing if
‘t1|im w(B*t'(A)B) = w(A)w(B*B),
forall A, B € O.

Let (H,,m,, ;) be the GNS representation associated to a positive linear fu
tionaln € O*. The enveloping von Neumann algebra(®fassociated tg is M, =
™ (0)" C B(H,). A linear functionaly € O* is normal relative ta; or n-normal,
denotedy < 7, if there exists a trace class operatgr on H,, such thatu(-) =
Tr(p,my,(+)). Any n-normal linear functionak has a unique normal extension,.
We denote byV,, the set of all)-normal statesu < 7 iff N, C N;,.

A statew is ergodic iff, for ally € N, andA € O,

1 T
Jim gz [ (A= w(a)
For this reason ergodicity is sometimes called return tdélibgium in mean; see [Ro1,
Ro2]. Similarly,w is mixing (or returns to equilibrium) iff

Jim (7 (4)) = w(A),
forall n € N, andA € O.

Let » andu be two positive linear functionals i@*, and suppose that> ¢ > 0
for somep-normal¢ implies¢ = 0. We then say thay and . are mutually singular
(or orthogonal), and writg | i. An equivalent (more symmetric) definition is: L
iff n>¢>0andy > ¢ > 0imply ¢ = 0.

Two positive linear functionals andy in O* are called disjoint if\V;,, N N, = 0.
If n andy are disjoint, them 1 u. The converse does not hold— it is possible that
andy are mutually singular but not disjoint.

To elucidate further these important notions, we recallftliewing well-known
results; see Lemmas 4.1.19 and 4.2.8 in [BR1].

Proposition 3.1 Let i1, uo € O* be two positive linear functionals and= 1 + us.
Then the following statements are equivalent:

(i) w1 L pa.

(i) There exists a projectio® in 7, (O)’ such that
,ul(A) = (PQ;L77T;L(A)QM)7 M2(A) = ((I - P)Quaﬂ—u(A)Qu)'

(iii) The GNS representatiof#<,, ,, €2, ) is a direct sum of the two GNS representa-
tions (Hm Ty s Q#l) and (Hltz » Tz QH2)' i'e”

Hy = Hpuy © Hps, Ty = Ty D T s Q= ©Qy,.

Proposition 3.2 Let 11, o € O* be two positive linear functionals and= 1 + us.
Then the following statements are equivalent:
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(i) w1 andpus are disjoint.

(if) There exists a projectiof® in 7, (O)’ N, (O)"” such that

pa(A) = (PR, mu(A)Qp), p2(A) = (I = P)Q, mu(A)Qy).

Letn, u € O* be two positive linear functionals. The functionahas a unique
decompositiom = n,, + ns, wheren,,,n, are positivey, < u, andns L p. The
uniqueness of the decomposition implies that i§ m-invariant, then so arg,, and;.

To elucidate the nature of this decomposition we need tdirfEanotions of the
universal representation and the universal envelopingNeumann algebra ap; see
Section 111.2 in [Ta] and Section 10.1 in [KR].

Set

HunE @ va Tun = @ Tw, munzﬂ'un(o)”-
w€eE(O) weE(O)

(Hun, Tun) is @ faithful representation. It is calleéde universal representatioof O.
Mun C B(Hun) is its universal enveloping von Neumann algebra. Forary E(O)
the map

T (0) —  7,(0)
T (4) — 7w, (4),

extends to a surjective-morphisms,, : M, — M,,. It follows thatw uniquely
extends to a normal statg-) = (Q,, 7, (-)Qw) ON My, Moreover, one easily shows
that

Ker7, = {A € My, | 7(A) =0 for any v € N, }. (3.1)

SinceKer 7, is ac-weakly closed two sided ideal B, there exists an orthogonal
projectionp,, € M,, N M., such thaier 7, = p,,M.n. The orthogonal projection

2o = I —p, € My NN, is called thesupport projectionof the statew. The
restriction of7,, to z,9MM, is an isomorphism between the von Neumann algebras
2,Mun @andNi,. We shall denote by, the inverse isomorphism.

Let nown, u € O* be two positive linear functionals. By scaling, withoutdasf
generality we may assume that they are states. Sjrisea normal state ofit,, it
follows that7 o ¢,, is a normal state oft,, and hence thaj, = 7j o ¢, o 7, defines a
p-normal positive linear functional o?. Moreover, from the relatiop,, o 7, (A) =
zumun (A) it follows that

M (A) = (Qy, Ton(2) 7y (A) ).
Setting
ns(A) = (Qy, Ty ()T (A)Q2y),

we obtain a decomposition = 7,, + ns. To show that), | u letw be ap-normal
positive linear functional o® such thayy, > w. By the unicity of the normal extension
ns one hasys(4) = f(p,A) for A € Myun. Sincem,n(O) is o-strongly dense in
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M,y it follows from the inequalityrjs o mun > @ o muy that7(p,A) > @(A) for
any positiveA € 9y,. Sincew is p-normal, it further follows from Equ. (3.1) that
w(A) = &(mun(A4)) = @(2umun(A4)) < 7(ppzumun(A)) = 0 for any positived € O,
i.e.,w = 0. Sincer, is surjective, one has,(z,) € 9, N <M, and, by Proposition
3.2, the functionalg,, andn, are disjoint.

Two statesv; andws are calledquasi-equivalenif A, = A,,. They are called
unitarily equivalent if their GNS representatioffs. ,, 7., , {1,,) are unitarily equiv-
alent, namely if there is a unitay : H,, — H., such thatUQ,, = Q,, and
Un,, (-) = 7w, (-)U. Clearly, unitarily equivalent states are quasi-equivale

If wis 7-invariant, then there exists a unigue self-adjoint operaton H,, such
that

L, =0, 7, (71 (A)) = etlr, (A)e ML,

We will call L thew-Liouvillean of r.

The statev is called factor state (or primary state) if its envelopigi\Weumann
algebradn,, is a factor, namely if0t,, N M/, = CI. By Proposition 3.2v is a factor
state iff it cannot be written as a nontrivial convex comitimaof disjoint states. This
implies that ifw is a factor state and is a positive linear functional id*, then either
w<Kporw L pu.

Two factor states); andw- are either quasi-equivalent or disjoint. They are quasi-
equivalent iff(w; + w2)/2 is also a factor state (this follows from Theorem 4.3.19 in
[BR1)).

The statew is called modular if there exists@*-dynamicso,,, on O such thatv
is a(ow, —1)-KMS state. Ifw is modular, therf2,, is a separating vector fét,,, and
we denote byA,,, J andP the modular operator, the modular conjugation and the
natural cone associated{®,. To anyC*-dynamicsr on O one can associate a unique
self-adjoint operatof. onH,, such that for alk

Ww(Tt(A)) = eithw(A)e_itL, e thp =P,

The operatol is called standard Liouvillean of associated ta. If w is r-invariant,
thenL(), = 0, and the standard Liouvillean is equal to th iouvillean of 7.

The importance of the standard Liouvillearnstems from the fact that if a state
is w-normal andr-invariant, then there exists a unique vediyy € Ker L N P such
thatn(-) = (2, 7. (-)Qy). This fact has two important consequences. On one hand, if
1 iIsw-normal andr-invariant, then some ergodic properties of the quantunadyaal
system(O, 7, n) can be described in terms of the spectral propertids see [JP2, Pi].
On the other hand, iKer L = {0}, then theC*-dynamicsr has nav-normal invariant
states. The papers [BFS, DJ, FM1, FM2, FMS, JP1, JP2, JP3, Me2, Og] are
centered around this set of ideas.

In quantum statistical mechanics one also encounté&rsiouvilleans, forp €
[1, 00] (the standard Liouvillean is equal to tiié-Liouvillean). TheLP-Liouvilleans
are closely related to the Araki-Masud&-spaces [ArM]. L' and L>-Liouvilleans
have played a central role in the spectral theory of NESSIdped in [JP5]. The use
of other LP-Liouvilleans is more recent (see [JPR2]) and they will nediscussed in
this lecture.
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3.2 Non-equilibrium steady states (NESS) and entropy prodttion

The central notions of non-equilibrium statistical meadbamre non-equilibrium stea-
dy states (NESS) and entropy production. Our definition o68Eollows closely the
idea of Ruelle that a “natural” steady state should provigestatistics, over large time
intervals|0, ¢], of initial configurations of the system which are typicathviespect to
the reference state [Ru3]. The definition of entropy proucts more problematic
since there is no physically satisfactory definition of tinérepy itself out of equilib-
rium; see [Gal, Ru2, Ru5, Ru7] for a discussion. Our defimitibentropy production
is motivated by classical dynamics where the rate of chahffgeomodynamic (Clau-
sius) entropy can sometimes be related to the phase spatradtimm rate [Ga2, RC].
The latter is related to the Gibbs entropy (as shown for exampRu3]) which is noth-
ing else but the relative entropy with respect to the natiaf@rence state; see [JPR1]
for a detailed discussion in a more general context. Theggins reasonable to define
the entropy production as the rate of change of the relatit®py with respect to the
reference state.

Let (O, 7) be aC*-dynamical system and a given reference state. The NESS as-
sociated taw andr are the weak« limit points of the time averages along the trajectory
w o 7t. In other words, if

1 t
<w>t5—/ woTt%ds,
tJo

thenw, is a NESS associated to and 7 if there exists a net, — oo such that
(W), (A) — wy(A) forall A € O. We denote by, (w, 7) the set of such NESS.
One easily sees that, (w,7) C E(O, 7). Moreover, sincé(O) is weak+ compact,
Y4 (w, 7) is non-empty.

As already mentioned, our definition of entropy product®mbased on the concept
of relative entropy. The relative entropy of two density ritasp andw is defined, by
analogy with the relative entropy of two measures, by thenfda

Ent(plw) = Tr(p(logw — log p)). (3.2)

Itis easy to show thadnt(p|w) < 0. Lety; an orthonormal eigenbasis pfand byp;
the corresponding eigenvalues. There [0,1] and) ", p; = 1. Letg; = (i, w ¢i).
Clearly,q; € [0,1] and) . ¢; = Trw = 1. Applying Jensen’s inequality twice we
derive

Ent(plw) =Y pi((pi,logw i) — logpi)

<Y piloggi —logp;) <log» g = 0.

HenceEnt(p|lw) < 0. Itis also not difficult to show thaEnt(p|w) = 0 iff p = w;
see [OP]. Using the concept of relative modular operatorakithas extended the
notion of relative entropy to two arbitrary states o@"aalgebra [Arl, Ar2]. We refer
the reader to [Arl, Ar2, DJP, OP] for the definition of the Areddative entropy and
its basic properties. Of particular interest to us is fAat(p|w) < 0 still holds, with
equality if and only ifp = w.
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In these lecture notes we will define entropy production anha perturbative
context (for a more general approach see [JPR2]). Denotethg generator of the
groupr i.e., 7 = e*?, and assume that the reference stais invariant under. For
V = V* € O we setsy = J +i[V,] and denote by{, = v the corresponding
perturbedC*-dynamics (such perturbations are often callezhl, see [Pi]). Starting
with a statep € N, the entropy is pumped out of the system by the perturbafian
a mean rate

_% (Ent(p o 7 |w) — Ent(p|w)).

Suppose that is a modular state for@*-dynamicss?, and denote by, the generator
of o,. If V € Dom (4,,), then one can prove the following entropy balance equation

t
Ent(po rifo) = Bnt(plo) — [ plrpov))ds, (3.3)

where
oy = 6w (V),

is the entropy production observable (see [JP6, JP7]). &migum mechanicsy plays
the role of the phase space contraction rate of classicardigal systems (see [JPR1]).
We define the entropy production rate of a NESS

1 [te
p+:W*—1im—/ poryds€Xi(p,1v),
0

by
1
Ep(py) = —lim — (Ent(p o 7y [w) — Ent(plw)) = ps(ov).

SinceEnt(p o 7,|w) < 0, an immediate consequence of this equation is that, for
p+ € E1(p,7v),
Ep(p4) > 0. (3.4)
We emphasize that the observable depends both on the reference statnd on
the perturbatior’”. As we shall see in the next sectian; is related to the thermo-
dynamic fluxes across the system produced by the perturiddtand the positivity of
entropy production is the statement of the second law ofhtbdynamics.

3.3 Structural properties

In this subsection we shall discuss structural properti®$E5S and entropy produc-
tion following [JP4]. The proofs are given in Appendix 9.1.

First, we will discuss the dependencef (w, ) on the reference state. On
physical grounds, one may expect thavifs sufficiently regular ane is w-normal,
thenE+(’l’], TV) = E+ (w, TV).

Theorem 3.3 Assume thab is a factor state on th€*-algebra® and that, for all
neN,andA B e O,
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holds (weak asymptotic abelianness in mean). The(n, 7v) = X4 (w, 7v) for all
n e N,.

The second structural property we would like to mention is:

Theorem 3.4 Letn € O* bew-normal andry -invariant. Themy(oy ) = 0. In partic-
ular, the entropy production of the normal part of any NES&gsal to zero.

If Ent(n|w) > —oo, then Theorem 3.4 is an immediate consequence of the entropy
balance equation (3.3). The caBet(n|w) = —oo has been treated in [JP7] and the
proof requires the full machinery of Araki’s perturbatidwebry. We will not reproduce
it here.

If wy is afactor state, then either, < worw; L w. Hence, Theorem 3.4 yields:

Corollary 3.5 If w, is a factor state an@p(wy) > 0, thenw; 1 w. Ifwis also a
factor state, then, andw are disjoint.

Certain structural properties can be characterized ingeshthe standard Liou-
villean. LetL be the standard Liouvillean associatedrtand Ly, the standard Li-
ouvillean associated tg,. By the well-known Araki's perturbation formula, one has
Ly =L+V —JVJ(see[DJP, Pi]).

Theorem 3.6 Assume that is modular.

(i) Under the assumptions of Theorem 3.3Kir Ly, # {0}, then it is one-dimen-
sional and there exists a unique norma},-invariant statewy, such that

Yi(w,mv) ={wy}.

(i) If Ker Ly = {0}, then any NESS iR (w, 1) is purely singular.

(i) If Ker Ly contains a separating vector fdpt,,, then X (w, 7y ) contains a
unique statev and this state is;-normal.

3.4 (C*-scattering and NESS

Let (O, 7) be aC*-dynamical system antl’ a local perturbation. The abstract-
scattering approach to the study of NESS is based on thevMolipassumption:
Assumption (S)The strong limit

+ = st ot
ay, =s—lim77" o7y,
t—oo

exists.

The mapa‘t is an isometrick-endomorphism of), and is often called Mgller
morphism.ay; is one-to-one but it is generally not onto, namely

Oy =Ranaj, #O.
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Sinceay; o i, = 7t o o, the pair(O4, 7) is aC*-dynamical system and; is an
isomorphism between the dynamical systé@sry ) and(O4, 7).

If the reference state is r-invariant, thenw; = w o of, is the unique NESS
associated tow andry and

w* —limwor, = w,.
t—oo

Note in particular that ifv is a(r, 5)-KMS state, therv. is a(7y, 3)-KMS state.

The mapa;; is the algebraic analog of the wave operator in Hilbert sjsaagter-
ing theory. A simple and useful result in Hilbert space sraiy theory is the Cook
criterion for the existence of the wave operator. Its algabanalog is:

Proposition 3.7 (i) Assume that there exists a dense sulidgtC O such that for
all A € Oy,

[Wm@mww<m (3.5)

Then Assumptio(S) holds.
(i) Assume that there exists a dense sulidetC O such that for allA € O,

[Wm#mww<w. (3.6)

ThenO, = O anday; is ax-automorphism 0.

Proof. For all A € O we have

to
7t OT{t/z(A)—Titl OT{f/l(A) :i/ Tﬁt([VvT‘t/(A)])dtv
t1

3.7)
o (4) ~ 1t o (4) = i [ rt (Vs a
ty
and so
et o sz (4~ os(all < [ Vst (alar
" (3.8)

to
I ot (4) — g o () < [ Vst (A .
t1
To prove Part (i), note that (3.5) and the first estimate iB8)(Bnply that forA € Oy

the norm limit
o[&(A) = tlirgo T to Tf/(A),

exists. Sinc&), is dense and~* o 7{, is isometric, the limit exists for allt € O, and
a‘t is ax-morphism ofO. To prove Part (ii) note that the second estimate in (3.8) and
(3.6) imply that the norm limit

B‘J;(A) = lim T‘;t o1t(A),

t—oo
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also exists for alld € O. Sinceay; o 37 (A) = A, af; is ax-automorphism 00.0]

Until the end of this subsection we will assume that the Agstion (S) holds and
thatw is T-invariant.

Leto = w | O4 and let(Hg, 7, 2s) be the GNS-representation 6, as-
sociated tap. Obviously, if o, is an automorphism, thed = w. We denote by
(Hw, 7w, Q. ) the GNS representation @? associated to. Let Ly and L,
be the standard Liouvilleans associated, respectivelfOto, 7, ) and (O, Ty, w4 ).
Recall thatZ, is the unique self-adjoint operator &}, such that forA € O,

L;Q5 =0, 75(TH(A)) = eltleqy (A)e ithe
and similarly forL,,, .
Proposition 3.8 The map
Ura (g (A) Q0 = T, (A) s,
extends to a unitary/ : H; — H,,, which intertwines.; andL,,_, i.e.,

ULg = Ly, U.

Proof. Setr’ (4) = 7z (a3, (4)) and note that’, (0)Qs = m5(04)s, so that;, is
cyclic for 7 (O). Since

Wi (A) = w(af(A)) = D(ag(A)) = (0, ma(0f (4)2%) = (U, 7

w

(A)%),

(He, 75, Q%) is also a GNS representation 6f associated ta,.. Since GNS rep-
resentations associated to the same state are unitarilyaéent, there is a unitary
U:Hs — He, suchthal/Q; = Q,, and

Un,(A) = mo, (A)U.
Finally, the identities

Vet (4)0a = Una (7' (o (4))0a = Una(aif (i (4)) 2%

= Ty (T (A) Q. = e my, (A)0

W+
= e Url (A)Q0,
yield thatU intertwinesL; andL,,+. [
We finish this subsection with:
Proposition 3.9 (i) Assume that € E(O,., 1) is 7-ergodic. Then
Sp(mmv) =A{wil,
foralln € N,.
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(i) If & isT-mixing, then
lim o, = wy,
t—o0

forall n e N,,.

Proof. We will prove the Part (i); the proof of the Part (i) is simildf n € N, then
n | O4 € N, and the ergodicity af yields

i 2 [ 0 (e (A) dt = B(ah(A)) = w, (4
Jin = [ (e (4) at = Sl (4)) = wi(4)

This fact, the estimate
[n(ri(A)) = n(r* (af, ()| < I77" o 7, (A) — o (A)]),

and Assumption (S) yield the statement.

4 Open quantum systems
4.1 Definition

Open quantum systems are the basic paradigms of non-eguitiquantum statistical
mechanics. An open system consists of a “small” systeinteracting with a large
“environment” or “reservoir'R.

In these lecture notes the small system will be a "quantu-datquantum me-
chanical system with finitely many energy levels and no maéstructure. The system
S is described by a finite-dimensional Hilbert spa¢e = CV and a Hamiltoniar s.
Its algebra of observablg8;s is the full matrix algebral/y (C) and its dynamics is
given by

ng(A) _ eitHSAe—itHs _ etég (A),

whereds(-) = i[Hs,-]. The states of are density matrices oHs. A convenient
reference state is the tracial statg,(-) = Tr(-)/ dim Hs. In the physics literature s
is sometimes called the chaotic state since it is of maximabey, giving the same
probability1/ dim Hs to any one-dimensional projection His.

The reservoir is described by@*-dynamical systeniOx, 7=z ) and a reference
statewr . We denote by the generator of.

The algebra of observables of the joint syst8m- R is O = Os ® Og and its
reference state is = ws®@wx. Its dynamics, still decoupled, is given by = tt @7k .
LetV = V* € O be alocal perturbation which couplésto the reservoifR. Thex-
derivationdy = dg + ds + i[V, -] generates the coupled dynamigs on O. The
coupled joint systen$ + R is described by thé€*-dynamical systeniO, /) and the
reference state. Whenever the meaning is clear within the context, we wintify
Os and O with subalgebras o0 via A ® 1o, los ® A. With a slight abuse of
notation, in the sequel we dendtg,, andip by I.

We will suppose that the reserv@rhas additional structure, namely that it consists
of M partsRq,--- , Ry , Which are interpreted as subreservoirs. The subressrvoir
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are assumed to be independent—they interact only througlsriiall system which
allows for the flow of energy and matter between various sdx®irs.

The subreservoir structure & can be chosen in a number of different ways and
the choice ultimately depends on the class of examples osleewito describe. One
obvious choice is the following: thgth reservoir is described by thg*-dynamical
system(Or,, Tr,) and the reference statez ;, andOr = ®0Og,, TR = ®Tr,,

w = Quwr, [JP4, Rul]. In view of the examples we plan to cover, we witbase a
more general subreservoir structure.

We will assume that thg-th reservoir is described by@-subalgebrédr;, C Or
which is preserved byz. We denote the restrictions o andwr to O, by 7,
andwr,. Different algebragdr, may not commute. However, we will assume that
Or, NOgr, = CIfori # j. If A;, 1 < k < N, are subsets aDr, we denote by
(Aq,- -+, An) the minimalC*-subalgebra 0% that contains all4;,. Without loss
of generality, we may assume ttf@k = (Or,, - ,Or,,)-

The systemS is coupled to the reservoiR; through ajunction described by a
self-adjoint perturbatiolr; € Os ® Or,. The complete interaction is given by

M

V=> V. (4.9)

Jj=1

Figure 1: Junction¥, V, between the systed and subreservoirs.

An anti-linear, involutive-automorphism: O — O is called aime reversalf it
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satisfies(Hs) = Hs, v(V;) = V; andro T7tzj = 77%? ot If vis atime reversal, then

tort =71""or, tor, =1, or,
and a statey on O is time reversal invariant ib o t(4) = w(A*) forall A € O. An
open gquantum system described (@9, ) and the reference staieis called time
reversal invariant (TRI) if there exists a time reversauch thatw is time reversal
invariant.

4.2 (*-scattering for open quantum systems

Except for Part (ii) of Proposition 3.7, the scattering ayguh to the study of NESS, de-
scribed in Subsection 3.4, is directly applicable to opeangum systems. Concerning
Part (ii) of Proposition 3.7, note that in the case of opemtua systems the Mgller
morphismay> cannot be onto (except in trivial cases). The best one mag fapis
thatO; = Og, namely thaty; is an isomorphism between th&-dynamical systems
(O, 1v) and(Ogr, 7= ). The next theorem was proved in [Rul].

Theorem 4.1 Suppose that Assumption (S) holds.
(i) If there exists a dense s€;o C Ox such that for allA € Oxy,

| vt cana < s, (4.10)
thenOr C O4. i
(i) If there exists a dense sé&l, C O such that for allX € Os and A € O,
Jim [1X, 7 (4)]] =0, (4.12)
thenO4 C Ox.

(iii) If both (4.10) and (4.11) hold theny; is an isomorphism between th&-dyna-
mical systems$O, 1) and (Og, 7= ). In particular, if wg is a (tr, 3)-KMS for
some inverse temperatufe thenw is a(7v, 5)-KMS state.

Proof. The proof of Part (i) is similar to the proof of the Part (i) abosition 3.7. The
assumption (4.10) ensures that the limits

B (4) = lim 7l 0 771(A),

existforallA € Og. Clearly,a;, 03], (4) = Aforall A € Og and scOx C Rana.

To prove Part (i) recall tha®s is a N2-dimensional matrix algebra. It has a
basis{Ey |k = 1,---,N?} such thatr!(Ey) = "+ E}, for somef, € R. From
Assumption (S) and (4.11) we can conclude that

0= Jim_ 7! (Be,ml (A)) = Jim [Fe,m" ol (4)] = [Bi, i (4)],

forall A € Oy and hence, by continuity, forall € O. It follows thatRan oz{; belongs

to the commutant a®s in O. SinceO can be seen as the algefdta; (Oz) of N x N-

matrices with entries iK%, one easily checks that this commutant is precis&by.
Part (iii) is a direct consequence of the first two palds.
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4.3 The first and second law of thermodynamics

Let us denote by; the generator of the dynamical grotp, . (Recall that this dynami-
cal group is the restriction of the decoupled dynamics tetiieeservoiR ;). Assume
thatV; € Dom (d,). The generator ofy is dy = ég + i[Hs + V, -] and it follows
from (4.9) that the total energy flux out of the reservoir igegi by

M
Lr (s + V) = 7 (0w (Hs + V) = 4 (5= (V) = 37 (55(0)))
j=1

Thus, we can identify the observable describing the heatdiwof thej-th reservoir
as

D =06;(V) = 6;(V;) = o= (V).
We note that it is a time-reversal, thet{(®,) = —®;. The energy balance equation

M
> @ =bv(Hs+ V),

Jj=1

yields the conservation of energy (the first law of thermayits): for anyry -inva-
riant state;,

> n(@;) =0. (4.12)

Besides heat fluxes, there might be other fluxes across thensgs+ R (for ex-
ample, matter and charge currents). We will not discussthergeneral theory of such
fluxes (the related information can be found in [FMU, FMSU, [JMn the rest of this
section we will focus on the thermodynamics of heat fluxesarGé currents will be
discussed in the context of a concrete model in the seconafidis lecture.

We now turn to the entropy production. Assume that theret®®@§'*-dynamics
0% on Og such thatwg is (or, —1)-KMS state and such thatz preserves each
subalgebrddr ;. Let Sj be the generator of the restriction ok to Oz, and assume

thatV; € Dom (4;). The entropy production observable associated to the bation
V and the reference state= ws ® wg, wherews(-) = Tr(-)/ dim Hs, is

M
ov =Y 5;(Vy).
j=1

Until the end of this section we shall assume that the resexy ; are in thermal
equilibrium at inverse temperaturegl. More precisely, we will assume thatz; is

theunique(rx, , 3;)-KMS state orOx . Thend; = —3;6;, and

M
ay = — Zﬁjq)j.
j=1
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In particular, for any NESS. € ¥ (w,7v), the second law of thermodynamics
holds:

M
> Bjwi(®;) = —Ep(wy) <0. (4.13)
j=1

In fact, it is not difficult to show thaEp(w. ) is independent of the choice of the
reference state of the small system as longas> 0; see Proposition 5.3 in [JP4]. In
the case of two reservoirs, the relation

(B1 = B2)w(P1) = frw (P1) + fawi (P2) <0,

yields that the heat flows from the hot to the cold reservoir.

4.4 Linear response theory

Linear response theory describes thermodynamics in theneegshere the “forces”
driving the system out of equilibrium are weak. In such amegito a very good ap-
proximation, the non-equilibrium currents depend lingarh the forces. The ultimate
purpose of linear response theory is to justify well knowempbmenological laws like
Ohm’s law for charge currents or Fick’s law for heat currentge are still far from
a satisfactory derivation of these laws, even in the frammkwb classical mechanics;
see [BLR] for a recent review on this matter. We also refeiG¥'Y/6] for a rigorous
discussion of linear response theory at the macroscopat. lev

A less ambitious application of linear response theory eometransport properties
of microscopic and mesoscopic quantum devices (the adsanaeanotechnologies
during the last decade have triggered a strong interesteirirémsport properties of
such devices). Linear response theory of such systems ik better understood, as
we shall try to illustrate.

In our current setting, the forces that drive the system R out of equilibrium
are the different inverse temperatuggs- - - , 55 of the reservoirs attached & If
all inverse temperatures; are sufficiently close to some valuk,, we expect linear
response theory to give a good account of the thermodynamfitise system near
thermal equilibrium at inverse temperatuig,.

To emphasize the fact that the reference siate ws ® wg depends on thg;
we setX = (Xi,---,Xnm) With X; = [.q — §; and denote bwx this reference
state. We assume that for some> 0 and all|X| < e there exists a unique NESS
wx+ € Y4 (wx,mv) and that the function¥ — wx(®;) areC?. Note thatv is
the (unique) 7y, Beq)-KMS state onO. We will denote it simply by, .

In phenomenological non-equilibrium thermodynamics, duality between the
driving forcesF,,, also calledaffinities,and the steady currends, they induce is ex-
pressed by the entropy production formula

EPZZFa¢a7

(see [DGMY]). The steady currents are themselves functibrikeoaffinities ¢, =
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oo (F1,--+). Inthe linear response regime, these functions are givehéyelations
¢a = Z L(!VF’W
Y

which define théinetic coefficientd. ..
Comparing with Equ. (4.13) and using energy conservatidi?jdve obtain in our
case

M
Epwxi) =Y Xjwx+(®;).
j=1
ThusX; is the affinity conjugated to the steady heat fliXX) = wx 4 (®;) out of

R ;. We note in particular that the equilibrium entropy proderctvanishes. The kinetic
coefficientsL ;; are given by

0¢;
Lji = (aXJl_)X_O = Ox,wx+(®;)|x=0-

Taylor’s formula yields

M
¢ (X) = wxy(®)) =D LjiXi+ O(e?), (4.14)
=1
M
Epwxi) = Y LjiXiX; +o(e). (4.15)

ij=1

Combining (4.14) with the first law of thermodynamics (ré¢dl12)) we obtain that

for all ¢,
M

> Lji=o. (4.16)
j=1

Similarly, (4.15) and the second law (4.13) imply that thedpatic form

M
Z L XX,

3,J=1

onRM is non-negative. Note that this does not imply that Mex M-matrix L is
symmetric !

Linear response theory goes far beyond the above elememations. Its true
cornerstones are th@nsager reciprocity relationéORR), the Kubdluctuation-dissi-
pationformula (KF) and th&Central Limit TheorenCLT). All three of them deal with
the kinetic coefficients. The Onsager reciprocity reladiassert that the matrik;; of
a time reversal invariant (TRI) system is symmetric,

Lj; = Ly;. (4.17)
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For non-TRI systems, similar relations hold between thegpart coefficients of the
system and those of the time reversed one. For example, éf taversal invariance
is broken by the action of an external magnetic figld then the Onsager-Casimir
relations
Lji(B) = Lij(—B),

hold.

The Kubo fluctuation-dissipation formula expresses thesjart coefficients of a
TRI system in terms of thequilibriumcurrent-current correlation function

1
Cii(t) = 5 Wpea (T (25) i + DTy (), (4.18)
namely
1 oo
L = 5/_ Cji(t) dt. (4.19)

The Central Limit Theorem further relatds;; to the statistics of the current fluctu-
ations in equilibrium. In term of characteristic functidhe CLT for open quantum
systems in thermal equilibrium asserts that

lim wg,, (ei(Zfil & Jo T{?(¢j)d5)/\/f) — e 3 X Dii &6 (4.20)

t—o0o

where the covariance matri;; is given by
Dji =2 Lﬂ

If, for a self-adjointA € O, we denote byl(, ; (A) the spectral projection on the
interval[a, b] of 7,  (A), the probability of measuring a value gfin [a, b] when the
system is in the stateg, is given by

Prob,, {A € [a,b]} = (Qu,,, Ljan(A) Qg )

It then follows from (4.20) that

. 1 ¢ s a b 1 b 22 2L?,.
tlirgoProbwﬁeq {¥/0 v (®;)ds € [%7 %} } = \/Q_TLJJ/a e~ /2555 dy.

(4.21)
This is a direct translation to quantum mechanics of thesatak central limit theo-
rem. Because fluxes do not commujg;, ®,] # 0 for j # ¢, they can not be mea-
sured simultaneously and a simple classical probabilistarpretation of (4.20) for
the vector variabled = (®4,---,®ys) is not possible. Instead, the quantum fluc-
tuations of the vector variabl® are described by the so-callédctuation algebra
[GVV1, GVV2, GVV3, GVV4, GVV5, Ma]. The description and styaf the fluctua-
tion algebra involve somewhat advanced technical toold@mithis reason we will not
discuss the quantum CLT theorem in this lecture.

The mathematical theory of ORR, KF, and CLT is reasonably wedlerstood in
classical statistical mechanics (see the lecture [Re])théncontext of open quan-
tum systems these important notions are still not completetierstood (see however
[AJPP, JPR2] for some recent results).
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We close this subsection with some general comments aboRtaDie KF.

The definition (4.18) of the current-current correlatiomdtion involves a sym-
metrized product in order to ensure that the functign(t) is real-valued. The corre-
sponding imaginary part, given by

1.

5 107 (@),
is usually non-zero. However, sinag, . is a KMS state, the stability condition (see
[BR2]) yields

| wntiiwrt @ =o 4.22)

— 00

so that, in this case, the symmetrization is not necessatpaa can rewrite KF as

1 o0
le- = 5/ u}gcq(q)ﬂ"t/(q)j))dt.

Finally, we note that ORR follow directly from KF under the TRssumption.
Indeed, if our system is TRI with time reversale have

t(¢1) = _¢7:’ t(T‘t/ (¢])) = _T‘;t(¢])7 wﬁeq or= wﬁeq’

and therefore

Cytl#) = 5w (7 (@)1 + Birip (@) = Cra( 1),

Sincewpg,, is Ty-invariant, this implies

1
Cji(t) = 5 Whoq (BT (Bi) + Ty (i) ®5) = Cij(t),
and ORR (4.17) follows from KF (4.19).
In the second part of the lecture we will show that the Onsagjations and the
Kubo formula hold for the SEBB model. The proof of the Centriahit Theorem for
this model is somewhat technically involved and can be fanjdJPP].

4.5 Fermi Golden Rule (FGR) thermodynamics

Let A € R be a control parameter. We consider an open quantum systdnsavipling
AV and writer), for yy, w4 forwy, etc.

The NESS and thermodynamics of the system can be describsel;dnd order of
perturbation theory ir\, using the weak coupling (or van Hove) limit. This approach
is much older than the "microscopic" Hamiltonian approaigicussed so far, and has
played an important role in the development of the subjette @lassical references
are [Dal, Da2, Haa, VH1, VH2, VH3]. The weak coupling limitalso discussed in
the lecture notes [D1].

In the weak coupling limit one “integrates” the degrees eéftom of the reservoirs
and follows the reduced dynamics®&fon a large time scale/\2. In the limit A — 0
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the dynamics o becomes irreversible and is described by a semigroup, oétked
the quantum Markovian semigrou@MS). The generator of this QMS describes the
thermodynamics of the open quantum system to second orgertfrbation theory.
The “integration” of the reservoir variables is performeadf@llows. As usual, we
use the injectioM — A ® I to identify Os with a subalgebra of. For A € Os and
B € Or we set
Ps(A® B) = Awg(B). (4.23)

The mapPs extends to a projectio®s : O — Os. The reduced dynamics of the
systemsS is described by the family of mafs : Os — Os defined by

T{(A) = Ps (15 "o Ti(A@ 1))

Obviously, T¥ is neither a group nor a semigroup. Let be an arbitrary reference
state (density matrix) of the small system ang- ws ® wr. Then for anyA € Og,

w(rg "o (A ® I)) = Trys (ws TA(A)).

In [Dal, Da2] Davies proved that under very general condgtithere exists a linear
mapKy : Os — Og such that

lim 73/ (4) = !4 (4).
The operatoi(y is the QMS generator (sometimes called the Davies gengmatitre
Heisenbergicture. A substantial body of literature has been devaiettié study of
the operatoiy (see the lecture notes [D1]). Here we recall only a few bassalis
concerning thermodynamics in the weak coupling limit (fdd&ional information see
[LeSp]). We will assume that the general conditions desctih the lecture notes [D1]
are satisfied.

The operatoiXy generates a positivity preserving contraction semigrau@g.
Obviously, Ky (I) = 0. We will assume that zero is the only purely imaginary eigen-
value of Ky and thatiKer K1 = CI. This non-degeneracy condition can be naturally
characterized in algebraic terms, see [D1, Sp]. It imples the eigenvalue of Ky is
semi-simple, that the corresponding eigenprojection hasdrm A — Tr(ws +A)I,
wherews . is a density matrix, and that for any initial density matrix,

tli)rgo Tr(wse™1(A)) = Tr(ws + A) = ws 4 (A).
The density matrixws + describes the NESS of the open quantum system in the weak
coupling limit. One further shows that the operaf6y has the form

M
Kyn = ZKH,ja

J=1

whereKy ; is the QMS generator obtained by considering the weak cogfifinit of
the coupled syster§ + R, i.e.,

etKij (A) — )1\1_)1% PS (Tgt/A2 ° T;\/;\z (A ® I)) , (424)
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wherer, ; is generated by; +i[Hs + AV}, - ].

One often considers the QMS generator in the Schrédingarrpicdenotedss.
The operatorKs is the adjoint of Ky with respect to the inner produ¢X,Y) =
Tr(X*Y). The semigroup!” s is positivity and trace preserving. One similarly de-
finesKg_ ;. Obviously,

M
Ks(ws) =0, Ks=) Ks.
=1

Recall our standing assumption that the reservOirs are in thermal equilibrium at
inverse temperature;. We denote by

wy = e s [ Tr(e~ M),

the canonical density matrix & at inverse temperatur@ (the unique(rs, 3)-KMS
state onOg). Araki's perturbation theory of KMS-states (see [DJP, BRZelds that
for A € Og,

ws, ®wr, (15t o 7h ;(A®T)) = wg, (4) + O(N),
uniformly in t. Hence, for allt > 0,
wa; (etKH’j (A)) = Wp; (A)a

and soKs j(wg;) = 0. In particular, if all 3;'s are the same and equal th then
WS+ = wg.

LetOq C Ogs be thex-algebra spanned by the eigenprojectiong/gf 04 is com-
mutative and preserved byy, Ky ;, Ks andKsg ; [D1]. The NESSws; commutes
with Hs. If the eigenvalues offs are simple, then the restrictiddy [ Oq4 is a gen-
erator of a Markov process whose state space is the specfriify.orhis process has
played an important role in the early development of quanfietd theory (more on
this in Subsection 8.2).

We now turn to the thermodynamics in the weak coupling limtjch we will call
Fermi Golden Rule (FGR) thermodynamicBhe observable describing the heat flux
out of thej-th reservoir is

Digr,j = K, j(Hs)-

Note that®g,, ; € Oq4. SinceKs(ws +) = 0 we have

M
Zws+(‘1’t'gr,j) =ws+(Ku(Hs)) =0,

j=1

which is the first law of FGR thermodynamics.
The entropy production observable is

M
Ofgr = — Z B Prgr. s (4.25)
=1
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and the entropy production of the NE&g , is

Epgy,(wst) = ws+(0tg).-

Since the semigroup generated Ky ; is trace-preserving we have

d .
 Ent(e Hsiws 4 |wg, im0 = =B wst(Prer,j) — Tr(Ks j(ws+) logws+),

where the relative entropy is defined by (3.2). The function
t— Ent(e™Siwg 4 |wg,),

is non-decreasing (see [Li]), and so

Epgy, (ws+) = Z Ent(e"555ws ¢ |wp, )]1=0 > 0,
=1

which is the second law of FGR thermodynamics. Moreovergeunke usual non-
degeneracy assumptiort8p;,, (ws +) = 0 ifand only if 3, = --- = (B (see [LeSp]
for details).

Let us briefly discuss linear response theory in FGR thermandycs using the
same notational conventions as in Subsection 4.4. Thei&icatfficients are given by

Ligr ji = Ox,ws +(Prgr j) | x=0-

For|X| < e one has

M
ws 4 (Drar) = Y Lige.ji Xi + O(e?),

=1

M
Ept(ws+) = Y Ligrji XiX; + o(€?).

ij=1

The first and the second law yield that for all

M
§ Lfgr.,ji = Oa
Jj=1

and that the quadratic form
M

Z Ltgr jis Xi X,

t,j=1

is non-negative. The Kubo formula

Lfgr,ji = A wﬁcq (etKH ((I)J) (I)z) dt, (426)
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and the Onsager reciprocity relations
Ligr,ji = Ligr,ijs (4.27)

are proven in [LeSp].

Finally, we wish to comment on the relation between micrpscand FGR thermo-
dynamics. One naturally expects FGR thermodynamics toym®the first non-trivial
contribution (in\) to the microscopic thermodynamics. For example, the fatig
relations are expected to hold for smail

Wr4+ = WS+ + O(A)v
(4.28)
Wt (D)) = Nwsy (Pggr ;) + O(N?).

Indeed, it is possible to prove that if the microscopic thedgnamics exists and is
sufficiently regular, then (4.28) hold. On the other handalgshing existence and
regularity of the microscopic thermodynamics is a formidahsk which has been so
far carried out only for a few models. FGR thermodynamicses/wobust and the
weak coupling limit is an effective tool in the study of the dets whose microscopic
thermodynamics appears beyond reach of the existing tggesi

We will return to this topic in Section 8 where we will discubs FGR thermody-
namics of the SEBB model.

5 Free Fermi gas reservoir

Inthe SEBB model, which we shall study in the second partiefléitture, the reservoir
will be described by an infinitely extended free Fermi gasr @ascription of the free
Fermi gas in this section is suited to this application.

The basic properties of the free Fermi gas are discussee iec¢ture [Me3] and in
Examples 18 and 51 of the lecture [Pi] and we will assume tiate¢ader is familiar
with the terminology and results described there. A moraibiet exposition can be
found in [BR2] and in the recent lecture notes [D2].

The free Fermi gas is described by the so called CAR (canbaidEzommutation
relations) algebra. The mathematical structure of thieladg is well understood (see
[D2] for example). In Subsection 5.1 we will review the rasue need. Subsection
5.2 contains a few useful examples.

5.1 General description

Let h andh be the Hilbert space and the Hamiltonian of a single Fermidf. will
always assume thatis bounded below. Leff _ (h) be the anti-symmetric Fock space
overlh and denote by.*(f), a(f) the creation and annihilation operators for a single
Fermion in the stat¢ < . The corresponding self-adjoint field operator

_ 1 *
o(f) = E(a(f)Jra ()
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satisfies the anticommutation relation

o(e(g) + v(g)p(f) = Re(f, 9)1.

In the sequek™ stands for eithen or a*. Let CAR(h) be theC*-algebra generated
by {a?(f)| f € b}. We will refer toCAR(h) as the Fermi algebra. Th*-dynamics

induced byh is
Tt(A) — itdl(h) go—itdD(h)

The pair(CAR(h), 7) is aC*-dynamical system. It preserves the Fermion number in
the sense that’ commutes with the gauge group

0t(A) = eitdl—‘(I)Ae—itdl—‘(I).

Recall thatV = dI'(]) is the Fermion number operator &n (h) and thatr andd are
the groups of Bogoliubov automorphisms

T (f)) = (")), 9 (f)) = a¥ (e ]).

To every self-adjoint operatd? on such thath < 7' < [ one can associate a state
wr on CAR(h) satisfying

wr(a*(fn)---a*(fr)a(gr) - algm)) = Onmdet{(g:, T f;)}. (5.29)

This ¥-invariant state is usually called the quasi-free gaugeriant state gener-
ated byT'. It is completely determined by its two point function

wr(a*(f)a(g)) = (9, Tf).

We will often call T' the density operatoor simply thegeneratorof the statewr.
Alternatively, quasi-free gauge-invariant states candsxdbed by their action on the
field operators. For any integerwe defineP,, as the set of all permutations of
{1,...,2n} such that

725 —1) < 7(25), and m(2j —1) < m(2j+ 1),

for everyj € {1,...,n}. Denote bye(r) the signature ofr € P,,. wr is the unique
state onCAR(h) with the following properties:

wr(p(f1)e(f2)) %(flan) —ilm(f1, T fa),

wr(p(fi) - p(fon)) = Z e(m) H wr(e(fr2j-1))e(fr2i)):

TEPn
wr(e(fi)---e(fant1)) = 0.

If h =bhy @ hyandT =T @ Ty, then forA € CAR(h;) andB € CAR(h2) one has

wr (A B) = Wwn (A) W, (B) (530)
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wr is a factor state. It is modular iffer 7' = Ker (I — T') = {0}. Two statesvr,
andwy, are quasi-equivalent iff the operators

T11/2 - 21/2 and (I - T1)1/2 - (I - T2)1/25 (5‘31)

are Hilbert-Schmidt; see [De, PoSt, Ri]. Assume tHat T; = Ker (I — T;) = {0}.
Then the states,, andwy, are unitarily equivalent iff (5.31) holds.

If T = F(h) for some function?': o(h) — [0, 1], thenwy describes a free Fermi
gas with energy density per unit volunige).

The statevr is 7-invariant iff 7 commutes withe'*” for all ¢. If the spectrum of,
is simple this means that = F(h) for some functionF': o(h) — [0, 1].

For anyj3, 1 € R, the Fermi-Dirac distributiops,, (¢) = (1 + ¢%=#)~!induces
the unique3-KMS state onCAR(h) for the dynamics o 9~#*. This state, which
we denote bywg,,, describes the free Fermi gas at thermal equilibrium in ttead
canonical ensemble with inverse temperatgignd chemical potential.

The GNS representation 6fAR(h) associated ta; can be explicitly computed
as follows. Fix a complex conjugatigh— f onh and extend it td"_ (). Denote by
() the vacuum vector andy the number operator ifi_ (h). Set

Hor =T-(h) @ '_(h),
Uy =R Q,

Tur(a(f)) = a((I =T)2f) @ I+ (D) @ a*(TV/2]).

The triple (Hw, , Tw,, Qwr ) IS the GNS representation of the algelitAR(h) asso-
ciated towr. (This representation was constructed in [AW] and if oftafiex Araki-
Wyss representation.) i is 7-invariant, the correspondingr-Liouvillean is

L=dr(h)®I—I&dr(h).

If h has purely (absolutely) continuous spectrum so dgexcept for the simple eigen-
value0 corresponding to the vectér,,,.. On the other hand) becomes a degenerate
eigenvalue as soon ashas some point spectrum. Thus (see the lecture notes [Bi]) th
ergodic properties of-invariant, gauge-invariant quasi-free states can beriestin
terms of the spectrum df. The statevr is ergodic iffh has no eigenvalues. i has
purely absolutely continuous spectrum, thenis mixing.

If wr is modular, then its modular operator is

log A, =dI'(s) ® I — I @ dI'(5),

wheres = log T'(1 — T)~!. The corresponding modular conjugation/igh @ ¥) =
u¥ ® ud, wherey = (—I)NWN+)/2,
Let § be thex-automorphism o€ AR(f) defined by

b(a(f)) = —a(f). (5.32)

A € CAR(b) is called even ifd(A) = A and odd ifd(4) = —A. Every element
A € CAR(h) can be written in a unique way as a sulm= At 4+ A~ whereA* =
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(A £ 6(A))/2 is even/odd. The set of all even/odd elements is a vectopsighsof
CAR(h) andCAR(bh) is a direct sum of these two subspaces. It follows from (5.29)
thatwr(A) = 0if Ais odd. Therefore one has-(A) = wr (A1) and

wr o6 = wr. (5.33)

The subspace of even elements §"asubalgebra o€ AR(h). This subalgebra is
called even CAR algebra and is denotedbyR " (). Itis generated by

{a®(f1)---a*(fan) | n €N, f; € b}.

The even CAR algebra plays an important role in physics. préserved by andd
and the paifCAR™ (h), 7) is aC*-dynamical system.
We denote the restriction af; to CAR™ (h) by the same letter. In particulasg,,
is the unique3-KMS state onCAR™ (h) for the dynamics* o 9 ~+.
Let
A=ad(fi)---a®(fa),  B=a"(g1)- a®(gm),

be two elements af AR (h), wherem is even It follows from CAR that

1A, 7 (B)]Il < CZ |(fis e g))l,

where one can tak€ = (max(||fi|], |lg;]|))"t™~2. If the functions|(f;,e'*"g;)| be-
long to L*(R, dt), then

o0

I[A, 78(B)]|| dt < . (5.34)
Let ho C b be a subspace such that for afiy; € by the functiont — (f,ef*"g) is
integrable. LeOy = {a¥(f1)---a”(fn)|n € N, f; € ho} and letO7 be the even
subalgebra o®y. ThenforA € Oy andB € Of (5.34) holds. Ify, is dense irh, then
Oy is dense ICAR(h) andOy is dense irCAR™ (h).

Let h; andh, be two Hilbert spaces, and 18, , 2, be the vaccua i’ _ () and
I'_(h2). The exponential law for Fermions (see [BSZ] and [BR2], Epéarb.2.20)
states that there exists a unique unitary iapI'_ (b1 @ h2) — I'—(h1) ® T_(h2)
such that

Uth@h2 = th & thv
Ua(f @)U =a(f) @I+ (-D)N ®alg),

(5.35)
Ua*(fe U™ =a*(f) o I+ (-)N @ a*(g),

Udl'(hy @ ho)U ™' =dTl(hy) @ I + I ® dT(hy).
The presence of the factofs 7)" in the above formulas complicates the description

of a system containing several reservoirs. The followirggdssion should help the
reader to understand its physical origin.
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Consider two boxe®, R, with one particle Hilbert spacés = L*(R;). Denote
by R the combined boxe., the disjoint union ofR; andR,. The corresponding one
particle Hilbert space i§ = L?(R). Identifying the wave functiom; of an electron
in Ry with ¥; & 0 and similarly for an electron iR, we can replacg with the direct
sumh; & bs.

Figure 2: Thermal contact and open gate betwBerandR,.

Assume that each bdR,; contains a single electron with wave functiobis (see
Fig. 2). If the boxes are in thermal contact, the two electrcan exchange energy,
but the first one will always stay ifk; and the second one iR,. Thus they are
distinguishable and the total wave function is just ® ¥,. The situation is com-
pletely different if the electrons are free to move from ow& nto the other. In this
case, the electrons are indistinguishable and Pauli'ciplenrequires the total wave
function to be antisymmetric—the total wave functionlis A ¥5. Generalizing this
argument to many electrons states we conclude that thedecamtized Hilbert space
isT_(h1) ® T'_(h2) in the case of thermal contact afid (h; & bh2) in the other case.
The exponential law provides a unitary mébetween these two Hilbert and one eas-
ily checks that

UV ANy = Ua*(\lJl ©® O)G*(O D \IJQ)thGth
= (a"(T)(-D)Y ® a*(¥2))Q, ® Q,
= UV,
Denoting byOx,, Oz, andOx the CAR (or more appropriately the CAR al-
gebras of the boxeR;, R, andR, the algebra of the combined system in the case of

thermal contact i)z, ® Ox,, while it is Ox in the other case. We emphasize that
the unitary mag/ does not yield an isomorphism between these algelaras

UOrRU™" # Or, ® Og,.

This immediately follows from the observation that7)N ¢ Og, (unless, of course,
Og, is finite dimensional, see Subsection 6.3), which implies

Ua* (0@ U)U* = (=N @ a*(Vy) € Op, ® Og,.

Note in particular that* (V) ® I and] ® a*(¥2) commute whilea*(¥; & 0) and
a*(0 @ ¥y) anticommute. The factdr—1)? is required in order fou*(¥;) ® I and
(=N ® a*(¥,) to anticommute.
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5.2 Examples

Recall that the Pauli matrices are defined by

_fo 1 _fo i 1o
Te=11 o0 Y=l ool %= |0 —1|°

We seto. = (0, +ioy)/2. Clearly,o} = 0 = 02 = I ando,0, = —0y0, = i0..
More generally, with? = (0, 0y, 0.) andi, v € R? one has

Example 1. Assume thatlimh = 1, i.e.,thath = C and thath is the operator of
multiplication by the real constant ThenI'_ () = C & C = C? anddI'(h) = wN

with ) .

N=dr'(1l) = 0 1} == —o0,).

Moreover, one easily checks that
0 0] ey 1001

(5.36)

cwaw = [o o] avew= 1[5 9.

which shows thatCAR(h) is the algebra o2 x 2 matricesM,(C) and CAR™ (h)
its subalgebra of diagonal matrices. A self-adjoint opmrat < 7" < I onH is
multiplication by a constant, 0 < v < 1. The associated stater on CAR(h) is
given by the density matrix

1—v 0

[ 0 7} '

Example 2. Assume thatlim h = n. Without loss of generality we can sgt= C™
and assume thatf; = w, f; for somew; € R, where{ f;} is the standard basis @f".
Then,

I (h)=C"@C"AC"a- - (C")'" ~(K)C?,
i=1

andCAR(bh) is isomorphic to the algebra af* x 2™ matricesM». (C). This isomor-
phism is explicitly given by

a(fj) ~ (®'z;1102) ®oy ® (®?:j+11) ;
forj =1,...,n. Itfollows that

@ (falfy) = 5 (S1501) © (- o) @ (91 T)
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The map described by the above formulas is called the Jondgner transformation.
It is a useful tool in the study of quantum spin systems (s@dgLAB, Ar3]). For
B, 1 € R, the quasi-free gauge-invariant state associatefd o (I + e?("=1)~1 is
given by the density matrix
efﬁ(Hilu‘N)
Tr e_B(H_I"N) ’
with

H=dI'(h) = ij a*(fj)a(f;),  N=dI'(l)= Z a*(fj)a(f;)-

It is an instructive exercise to work out the thermodynaroicthe finite dimensional
free Fermi gas following Section 3 in [Jo].

Example 3. In this example we will briefly discuss the finite dimensioaglprox-
imation of a free Fermi gas. Assume thatis a separable Hilbert space and let
A,, € Dom h be an increasing sequence of finite dimensional subspabesal@ebras
CAR(A,,) are identified with subalgebras 6fAR(h). We also assume that, A, is
dense im. Letp,, be the orthogonal projection ak,. Seth,, = p,hp,, and letr,, be
the corresponding*-dynamics orlCAR(A,). Sincep,, converges strongly té one
has, forf € H,

Jim [la®(pnf) = a® () =0, lim ||l (a% (paf)) — 7" (£)] = 0.

Let wr be the gauge-invariant quasi-free state(bhR (h) associated t@. LetT,, =
pnTpyn. Then

Tim_wr, (@ (puf)a(pag)) = wr(a*(fa(g)).
Assume thap, andn are two faithfulvr-normal states and I@nt(u|n) be their Araki

relative entropy. Let,, andn,, be the restrictions gf andn to CAR™(A,,). Then the
function

n = Ent(pin |nn) = Tra,, (i (l0g in —logn)),
is monotone increasing and

Jim_ Ent(pn|na) = Ent(uln).

Additional information about the last result can be founfBR2], Proposition 6.2.33.

Example 4. The tight binding approximation for an electron in a singled band of
ad-dimensional (cubic) crystal is defined hy= ¢2(Z?) with the translation invariant
Hamiltonian

(h)@) = 55 S v) (5.37)

|z—y|=1

where|z| = Y, |z;|. In the sequed, denotes the Kronecker delta functiorat Z.
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Writing a,, = a(d;), the second quantized energy and number operators are given
by
1 . .
dr(h) = ﬁ‘ > 1%%, dr(I) =>_aa,.
T—yY|= T

The Fourier transforng (k) = >, ¢(z) e~ mapsh unitarily onto

b= L2, o

The set[—, «]¢ is the Brillouin zone of the crystal ankl is the quasi-momentum
of the electron. The Fourier transform diagonalizes the #Hanian which becomes
multiplication by the band function(k) = % 3", cos(k;). Thush has purely absolutely
continuous spectrum(h) = [—1, 1], and in particular is bounded.

A simple stationary phase argument shows that

(f.e""g) =0("),

for arbitraryn providedf andg are smooth and vanish in a neighborhood of the critical
set{k||Vie(k)| = 0}. Since this set has Lebesgue measyrsuch functions are
dense imh. If f andg have bounded support &, then

(f.etg) =0t~ ?).

Example 5. The tight binding approximation of a semi-infinite wire istaimed by
restricting the Hamiltonian (5.37), far = 1, to the space of odd functions < ¢?(Z)

and identifying such) with elements off?(Z, ), whereZ, = {1,2,---}. Thisis
clearly equivalent to imposing a Dirichlet boundary couglitatz = 0 and

oo

Z ((61, ' )§m+1 + (51+1, . )61) .

r=1

h =

N~

The Fourier-sine transform(k) = > zez, ¥(@)sin(kx) maps unitarily’(Z..) onto
the spacel?([0, 7], %) and the Hamiltonian becomes multiplication bys k. By

a simple change of variable = cos k we obtain the spectral representation of the
Hamiltonianh:

(h)*(r) = r™ (r),
where
2 7 Q
T W(arccos(r)),

maps unitarily the Fourier spade?([0, 7], 22%) onto L*([—1,1],dr). A straightfor-
ward integration by parts shows that

(f.e""g) =0(™"),

OE
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if 7,97 € CZ((—1,1)). A more careful analysis shows that
(f,eg) = O(t~*/?),
if f andg have bounded support i, .

Example 6. The non-relativistic spinless Fermion of maass described in the posi-
tion representation by the Hilbert spat&R¢, d=) and the Hamiltoniah = —A /2m,
whereA is the usual Laplacian iiR?. The cases of physical interest ate= 1,2, 3.
In the momentum representation the Hilbert space of the ®eris L?(R¢, dk) and
its Hamiltonian (which we will again denote ) is the operator of multiplication by
|k|?/2m.

The spectrum of, is purely absolutely continuous. Integration by partsdsehat

(f.e"g) =0(™"),

for arbitraryn provided f and § are smooth, compactly supported and vanish in a
neighborhood of the origin. Such functions are densg itf f, g € h are compactly
supported in the position representation, then

(f.e'g) = Ot~ ¥2).

6 The simple electronic black-box (SEBB) model

In the second part of this lecture we shall study in detailrtbr-equilibrium statisti-
cal mechanics of the simplest non-trivial example of thetetmic black box model
introduced in [AJPP]. The electronic black-box model is agyal, independent elec-
tron model for a localized quantum deviceconnected tal/ electronic reservoirs
Ri1,---,Run. The device is called black-box since, according to thetsday ap-
proach introduced in Subsection 4.2, the thermodynamidhefcoupled system is
largely independent of the internal structure of the devitkke NESS and the steady
currents are completely determined by the Mgller morphisnickvin our simple model
further reduces to the one-particle wave operator.

6.1 The model

The black-box itself is a two level system. Its Hilbert spac® s = C?, its algebra of
observables i©s = M,(C), and its Hamiltonian is

o o
HS:|:O €O:|.

The associated*-dynamics isth(A) = etfs Ae~itHs  The black-box has a one-
parameter family of steady states with density matrices

1-— 0
WSE|: O’Y 7:|7 ’76[011]1
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which we shall use as the reference states.

According to Example 1 of Subsection 5.2, we can also think a6 a free Fermi
gasovelC, namelyHs =T'_(C), Hs = dI'(gg) = gpa*(1)a(1l) andOs = CAR(C).
In this picture, the black-bo$ can only accommodate a single Fermion of energy
€o- We denote byVs = a*(1)a(1l) the corresponding number operator. In physical
terms,S is a quantum dot without internal structure. We also notediyas the quasi-
free gauge-invariant state generatedifdy= ~. Therefore, we can interpretas the
occupation probability of the box.

Let hr be a Hilbert space antlz a self-adjoint operator ohrz. We setOr =

CAR(hr) and
T’]tQ(A) = eitdr(hR)Ae_itdF(hR).

The reference state of the reservaig, is the quasi-free gauge-invariant state associ-
ated to the radiation density operafigs. We assume thatyz is bounded from below
and thatl'; commutes withh.

To introduce the subreservoir structure we shall assunte tha

hR = @jj\ile]‘a hR = @?ilhﬂzj, TR = @J]\ilTRJ

The algebra of observables of tjuth reservoir isOz, = CAR(hr;) and its dynamics
R, = Tr | Og, is generated by the Hamiltoniaii’(hr;). The statevr, = wr |
Og, is the gauge-invariant quasi-free state associatdc:to If p; is the orthogonal
projection onh ;, thenNz, = dI'(p;) is the charge (or number) operator associated
to thej-th reservoir. The total charge operator of the reservaWis= ij\i 1 Nz,

The algebra of observables of the joint syst&mR is O = OsOg, its reference
state isv = ws ® wr, and its decoupled dynamicsig = 7s ® 7r. Note that

Té(A) — eitHeriitH()’
where
Hy=Hs®I+I®dl'(hg).

The junction between the bak and the reservoiR ; works in the following way:
The box can make a transition from its ground state to itstedatate by absorbing an
electron ofR; in statef; /|| f;||. Reciprocally, the excited box can relax to its ground
state by emitting an electron in statg/|| f;]| in R,;. These processes have a fixed rate
A2 f;11*. More precisely, the junction is described by

AV = Aa(l) @ a*(f;) +a*(1) @ a(f;)) ,

where) € R and thef; € b;. The normalization is fixed by the condition £l =
1. The complete interaction is given by '

M

AV =370V = Ma(l) ® a*(f) + a*(1) @ a(f)),

Jj=1

wheref = @j-‘ilf,-. Note that “charge” is conserved at the junctibe,, V commutes
with the total number operatd¥ = Ns ® I + I ® Ng.
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The full Hamiltonian is
Hy = Hy+ \V,

and the corresponding*-dynamics
Ti(A) = etx o1
is charge-preserving. In other wordg,commutes with the gauge group

ﬁt(A) = eitNA efitN7
and[H), N] = 0. TheC*-dynamical systeniO, 7, ) with its decoupled dynamics
and the reference state= ws ® wr is oursimple electronic black box model (SEBB)
This model is an example of the class of open quantum systestsided in Section 4.

6.2 The fluxes

The heat flux observables have been defined in SubsectioTHe3generator of
is given byd;(-) = i[dI'(hg,),-]. Note thatV; € Domd; iff f; € Domhg,. If
V; € Dom §;, then the observable describing the heat flux o ¢fs

;=5 (V;) = Ma(1) @ a*(ihg, fj) + a*(1) @ a(ihr, f;))-

In a completely similar way we can define the charge currehe rate of change of
the charge in the bo&X is

d )
&Tﬁ(NSHt:o =i[d['(Hx), Ns]

M (6.38)
= —Ai[Ns,V] = Xi[Ng, V] =) Ai[Ng,, V],
j=1

which allows us to identify
Jj = Ni[Ng,, V]

= A [NR;, Vj] = A [Ng, V] = Aa(1) @ a*(if;) + a*(1) @ a(ify),

as the observable describing the charge current oRt;of

Let us make a brief comment concerning these definitionsr |fis finite dimen-
sional, then the energy and the charg®gfare observables, given by the Hamiltonian
dI'(hr;) and the number operatdir , = dI'(p;), and

d
~ SR )0 = Aild(hr,), V] = @,
d .
— @)oo = ML), V] = ;.

Whenhr,; becomes infinite dimensional (recall Example 3 in Subsadi@), N,
anddI'(h,) are no longer observables. However, the flux observabjemndJ; are
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still well-defined and they are equal to the limit of the fluxsebvables corresponding
to finite-dimensional approximations.

The first law of thermodynamics (energy conservation) hanhherified in Sub-
section 4.3—for any-invariant state; one has

M
Zn(‘l’j) = 0.

The analogous statement for charge currents is proved miasiway. By (6.38),

d
t
;= — —
JEZIJJ I Tx(Ns)l|e=0,

and so for anyr,-invariant state; one has
M
> n(J;) =0. (6.39)
j=1

6.3 The equivalent free Fermi gas

In this subsection we shall show how to use the exponentiaida fermionic systems
to map the SEBB model to a free Fermi gas. Let

j=1

M
h:c@hn—c@(@hnj), @ECAR(h), hoEEo@hR,

and, with a slight abuse of notation, denotelby, - - - , fi; the elements off canon-
ically associated with € C andf; € hz,. Then

v = (1) f; + (f5.)1,

is a finite rank, self-adjoint operator ¢nand so is the sum = Z;‘il v;. We further
set
hx = ho + v, (6.40)

and define the dynamical group

7':§\(A) = eitdl“(hA)Ae—itdl“(hA%

on O. Finally, we set i
T =Ts @ Tr,

and denote by be the quasi-free gauge-invariant state’generated by

Theorem 6.1 LetU : T_(C @ hr) — I'_(C) @ I'_(hr) be the unitary map defined
by the exponential law (5.35) and sgtA) = U1 AU.
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() ¢: O — Ois ax-isomorphism.

(i) Forany \,t € Ronehaspori =7, o¢.
(i) w=&oo.

(iv) Forj =1,---,M,one has

¢(®;) = —A(a*(ih; f;)a(l) + a*(1)a(ih; f5))

D,

and R
J; = o(T;) = —=Aa*(if;)a(1) + a*()alif;)).

Proof. Clearly, ¢ is a x-isomorphism fromB3(I'_(C @ b)) onto B(I'_(C) ® I'_(h)).
Using the canonical injection8 — h andhgr — bh we can identifyOs and Ox
with the subalgebras @ generated by(1 @ 0) and{a(0 ® f) | f € hr}. With this
identification, (5.35) gives

#laa) @ I+ (=D @a(f)) = a(a) + a(f),
fora € Candf € hr. We conclude that
P(ARI) = A, (6.41)

forany A € Os. In particular, sincé = (—1)Vs = [a(1),a*(1)] € Os, we have
(b ® I) = b. Relationy? = I yields¢(I ® a(f)) = ba(f). Since[b, a(f)] = 0, we
conclude that fod € Ox

(A fAcoq,
W‘X’A)—{ bA if Ac Oy, (6-42)

where(’)?ta denote the even and odd parts@%. Equ. (6.41) and (6.42) show that
$(0) C 0. SinceO = (Os,0F,0x), it follows from ¢(Os ® I) = Os, ¢(I @
O}) = 0f andg(b ® O5) = O thats(O) > O. This proves Part (i).

From (5.35) we can see thét ' HyU = dI'(hg) and from (6.41) and (6.42) that

U™V;U = ¢(V;) = a(1)ba’(f;) +a*(1) ba(f;).
Since it also follows from CAR that
a(l)b=—a(l),  a*(1)b=a*(1), (6.43)
we get
U™V;U = —a(1) a*(f;) +a*(1) a(f;) = —a(1) a*(f;) — a(f;) a*(1) = —dL(v;).

ThereforeU "' H\U = dI'(h_,) from which Part (i) follows. A similar computation
yields Part (iv).
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It remains to prove Part (iii). Using the morphighfrecall Equ. (5.32)) to express
the even and odd parts & € Ox, we can rewrite (6.41) and (6.42) as

P(A® B)=A(B+6(B))/2+ Ab(B—0(B))/2,
from which we easily get
#»(A® B) = Aa(1)a*(1)B 4+ Aa™(1)a(1)0(B).

It follows from the factorization property (5.30) and theamniance property (5.33) of
quasi-free states that

Wop(A®B) = @

I
& &
BN
o 8
Il
&
=
&
5

O

By Theorem 6.1, the SEBB model can be equivalently desciiyettie C*-dyna-
mical systen{O, 7_ ) and the reference state.. The heat and charge flux observables
are®; and.J;. Since the changk — — )\ affects neither the model nor the resuits,

the sequel we will work with the syste{l(f?, 7») and we will drop the~. Hence, we
will use theC*-algebra® = CAR(C & h) andC*-dynamics

T)t\(A) — eitdr(hA)Ae—itdF(hA)’

with the reference state, the quasi-free gauge-invariant state generate€tl byT's ©
Tr. The corresponding heat and charge flux observables are

®; = A(a"(ih; fj)a(1) + a*(1)a(ih, f7)) ,
J; = Ma*(if;)a(l) +a*(D)al(if;)).

The entropy production observable associateditocomputed as follows. Assume
thatforj =1,---, M one haer Tz, = Ker (I — Tr,) = {0} and set

sj = —logTr,(I — Tr,)" ", SR:GBinlsj.

We also assume that< v < 1 and seks = logy(1—7) L. Lets = —ss®sr. Under
the above assumptions, the reference stagemodular and its modular automorphism
group is

ot (A) — eitdF(s)Ae—itdF(s).

w

If f; € Dom(s;), then the entropy production observable is

o ==A(a*(f)a(iss) + a*(iss)a(f)) = A(a”(isr fla(1) + a*(1)a(isr f)) . (6.44)
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The entropy balance equation

Ent(w o 7i|w) = —/O w(ts (o)) ds,

holds and so, as in Subsection 3.2, the entropy productiamoNESSv; € X, (w, 7))
is non-negative. In fact, it is not difficult to show that thetr@py production ofv, is
independent ofy as long asy € (0, 1) (see Proposition 5.3 in [JP4])n the sequel,
whenever we speak about the entropy production, we willmeghaty = 1/2 and
hence that

o=-XA(a"(isrf)a(l) +a*(1)alisr f)) . (6.45)

In particular, if
TRj = (I+ eﬁj(hnji‘uj))7

thensj = _ﬁj(hRj - ,uj), and

M

o==> Bi(®; — 1 Jy). (6.46)

j=1

We finish with the following remark. In the physics literaguthe Hamiltonian
(6.40) is sometimes called thWeigner-Weisskopf atofitvW] (see [JKP] for references
and additional information). The operators of this typeas® often calledrriedrich
Hamiltonians[Fr]. The point we wish to emphasize is that such Hamiltogsiare
often used as toy models which allow for simple mathematoalysis of physically
important phenomena.

6.4 Assumptions
In this subsection we describe a set of assumptions undeshwiné shall study the
thermodynamics of the SEBB model.

Assumption (SEBB1)hr, = L*((e—,e4),dr) for some—oco < e— < e; < oo and
hr, is the operator of multiplication by.

The assumption (SEBBL) yields thet = L2((e_,ey),dr; CM) and thathr
is the operator of multiplication by. With a slight abuse of the notation we will
sometimes denotler; andhr by r. Note that the spectrum afr is purely absolutely
continuous and equal tle_, e, ] with uniform multiplicity M. With the shorthand
f=(f1, -+, fu) € hg, the Hamiltonian (6.40) acts dii & hx and has the form

hy=co@r+X(1,-)f + (f,-)1). (6.47)

Assumption (SEBB2)The functions

sy = [ eI P
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belong toL*(R, dt).

Assumption (SEBB2) implies that the function

G(z) = /:+ £ dr = —i/oOO g(t) e " dt,

r—=z

which is obviously analytic in the lower half-plafie. = {z |Im z < 0}, is continuous
and bounded on its closufe_. We denote by=(r — io) the value of this function at
reR.

Assumption (SEBB3)Forj = 1,---, M, the generatol’z, is the operator of mul-
tiplication by a continuous functiop; (r) such thad) < p;(r) < 1forr € (e_,e4).
Moreover, if
p;i(r) ]
1—pj(r)]’
we assume that;(r) f;(r) € L*((e—,e4),dr).

s;(r) = log {

Assumption (SEBB3) ensures that the reference statef the reservoir is modu-
lar. The functionp;(r) is the energy density of thgth reservoir. The second part of
this assumption ensures that the entropy production oakkry6.44) is well defined.

The study of SEBB model depends critically on the spectrdl soattering prop-
erties ofhy. Our final assumption will ensure that Assumption (S) of ®ahien 3.4
holds and will allow us to use a simple scattering approaciiutdy SEBB.

Assumption (SEBB4)eq € (e_, e4) and|f(go)| # 0.
We set

F(r)Eso—r—)\QG(r—io)zso—r—)\2/6+wdr'. (6.48)

r—r+io

By a well-known result in harmonic analysis (see, e.g., ffadny harmonic analysis
textbook),

ImF(r) = /\27T|f(7")|2, (6.49)
forr € (e_,e;). We also mention that for any € hr = L?((e_, ey ),dr; CM), the
function

(A f
r »—»/ d !
r—r —i— io
is also inhr.

The main spectral and scattering theoretic results pare given in the following
Theorem which is an easy consequence of the techniquestdasban [Ja]. Its proof
can be found in [JKP].
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Theorem 6.2 Suppose that Assumptiof®@EBB1), (SEBB2and(SEBB4)hold. Then
there exists a constart > 0 such that, for any < || < A:

(i) The spectrum ok, is purely absolutely continuous and equal¢a, e ].

(i) The wave operators
Wy =s — limeftho e7itha
t—too

exist and are complete, i.eRan Wi = hr and Wy : h — bhgr are unitary.
Moreover, if) = a @ g € b, then

[T e

r —r+io

(W_a)(r) = g(r) = AF(r)~} [a dr'} f(r). (6.50)

€e_

Needless to say, the thermodynamics of the SEBB model catuldeed under
much more general assumptions than (SEBB1)-(SEBB4). Hervthese assumptions
allow us to describe the results of [AJPP] with the least nenalf technicalities.

Parenthetically, we note that the SEBB model is obvioushetreversal invariant.
Write f;(r) = €% )| f;(r)], and let

j(Oé @ (gla e 7gM)) =ad (eme]gla e 762i9M§]\4)1
where~ denotes the usual complex conjugation. Then the map
t(A) =T()ATG).

is a time reversal and is time reversal invariant.

Finally, as an example, consider a concrete SEBB model wdaamie reservoir is a
semi-infinite wire in the tight-binding approximation debed in Example 5 of Sub-
section 5.2. Thus, for eagh hr, = (*(Z4) andhg, is the discrete Laplacian ¢,
with Dirichlet boundary condition &t. Choosingf; = §; we obtain, in the spectral
representation dfiz ,,

br, = L*((-1,1),dr),
h”Rj = T
e =\ 2a—s
: ™

Thus, Assumptions (SEBB1) and (SEBB4) hold. Since, asco, one has

1
. 2M
[ et mR ar = ZEn = o),
—1

where J; denotes a Bessel function of the first kind, Assumption (SEBB also
satisfied. Hence, i, € (—1, 1), then the conclusions of Theorem 6.2 hold. In fact one
can show that in this case

1— |60|

A=\
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7 Thermodynamics of the SEBB model

Throughout this and the next section we will assume that dgdions (SEBB1)-
(SEBBA4) hold.

7.1 Non-equilibrium steady states

In this subsection we show that the SEBB model has a uniqueSNES$ which does
not depend on the choice of the initial states N,,. Recall that the reference state
of the SEBB model is the quasi-free gauge-invariant stateigeed by’ = T's ® T,
whereTs =~ € (0,1) andTr = @, p;(r).

Theorem 7.1 Let A > 0 be the constantintroduced in Theorem 6.2. Then, for any real
A such thaD < |A] < A the following hold:

(i) The limit
af(A) = lim 75" o 74 (A), (7.51)

exists for allA € O. Moreover,Rana; = Og andaj is an isomorphism
between th€*-dynamical system, ) and (Ox, mr).

(i) Letwys = wg oa. Then
Jim o7l =wxy,
forall n € N,,.
(i) wxy is the gauge-invariant quasi-free state @ngenerated by
T, =W TrW_,
whereW_ is the wave operator of Theorem 6.2.

Proof. Recall thatr{ is a group of Bogoliubov automorphismise., 7% (a#(f)) =
a” (e'*" f). Hence, for any observable of the form

A=a® () a® (¢), (7.52)

To—t ° TK(A) _ a#(e_ithoeith*lﬂl) . -a#(e_ithoeith*z/}n).

It follows from Theorem 6.2 that

lt1hrn 7o Lo th(A) = a®(W_1py) - - a® (W_hy,).
Since the linear span of set of elements of the form (7.5%isd inO, the limit (7.51)
exists and is given by the Bogoliubov morphisii(a#(f)) = a# (W_ f). SinceW_
is a unitary operator betweénandhr, Rana! = CAR(hr) = Og, which proves
Part (i).
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Sincehy has purely absolutely continuous spectrum, it follows faumdiscussion
of quasi-free states in Subsection 5.1 that is mixing for 7§. Part (i) is thus a
restatement of Proposition 3.9.

If A=a*(¢n)---a*(¥1)a(é1) - - - a(¢nm ) is an element oD, then

WHA) = wr(@ (Woth)---a* (W_yr)a(W_1) -~ a(W_))
= §n7mdet{(W_¢i,TRW_¢j)}
5n,m det {((blv T+"/’j)}-

and Part (iii) follows.[

7.2 The Hilbert-Schmidt condition

Sincew and w4 are factor states, they are either quasi-equival&ft & N, )
or disjoint (V, N N,,,, = 0). SinceKerT = Ker (I —T) = {0}, we also have
KerT; = Ker (I — T) = {0}, and sow andw, are quasi-equivalent iff they are
unitarily equivalent.

Leta > 0. A functionh : (e_,e;) — Cis a-H6lder continuous if there exists a
constant’ such that for ali, ' € (e_,e4), |h(r) — h(r")| < C|r —r'|*.

Theorem 7.2 Assume that all the densities(r) are the same and equal 1gr). As-
sume further that the functiongr)'/? and (1 — p(r))'/? are a-Hélder continuous for
somex > 1/2. Then the operators

(THY?—1Y? and (I -T4)Y%—(I—T)Y?

are Hilbert-Schmidt. In particular, the reference stateand the NES% ;. are unitar-
ily equivalent andp(wy+) = 0.

Remark. We will prove this theorem in Appendix 9.2. Although the Hétdontinuity
assumption is certainly not optimal, it covers most casestefest and allows for a
technically simple proof.

Theorem 7.2 requires a comment. By the general principlssatitical mechan-
ics, one expects thdp(w,+) = 0 if and only if all the reservoirs are ithermal
equilibriumat the same inverse temperatyt@nd chemical potential (see Section
4.3 in [JP4]). This is not the case in the SEBB model becausgénturbationd/;
are chosen in such a special way that the coupled dynamitii given by a Bogoli-
ubov automorphism. Following the strategy of [JP4], onestaow that the Planck law
p(r) = (1 4+ ?"=#))~1 can be deduced from the stability requiremBptw ) = 0
for a more general class of interactiokis For reasons of space we will not discuss
this subject in detail in these lecture notes (the intecesgader may consult [AJPP]).

We will see below that the entropy production of the SEBB nigleon-vanishing
whenever the density operators of the reservoirs are notiag.
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7.3 The heat and charge fluxes

Recall that the observables describing heat and chargentamwut of thg-th reservoir
are

P = Ma*(irf;)a(1) +a*(Da(irf;)),

Jj = AMa"(if;)a1) +a*(1)a(if;)).

The expectation of the currents in the stajg. are thus
war (@) = Dwny (a(rfy)a(l) —a*(D)alrf;))

2Mm (rf;, T4+ 1)
ONIm (W_r f;, TRW_1),

and
wri(J5) = Py (0 (f5)a(l) - a”(1)a(f;))
= 2Mm(f;,T41)
2/\Im(W_fj,TRW_1).
Setting

ey r _,,,/ 2
Gj(T)E/ |f]( )| dT/,

_r'—r+4io

it easily follows from Formula (6.50) that far=1,--- , M,

(TRW_1)i(r) = AMF)(%( Pr(r) (1)
= T 2 Gj(r) fi(r)
W”MW>—6wwm+wfm§<

from which we obtain
€+ B _
(W_rf;, TRW-1) AZ/ |f’“|F| pilr [ rF(r)dk; + A2G,(r)] dr

From Equ. (6.49) we havden F(r) = —\2x|f(r)|2. SimilarlyIm G; (r) = 77| f; (r)|?
and hence,

s (@ f%vzf AROLOD) (05, - 11 0P) ar

Since|f|? = Y, | fx|?, the last formula can be rewritten as

r(® %WZ/ILIWI((%mWww, (753)
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In a completely similar way one obtains

dr
() = WZ/ PR = ) s (750
=1 €e_
An immediate consequence of Formulas (7.53) and (7.54atsththe fluxes van-
ishif py = --- = pa. Note also the antisymmetry inand; of the integrands which

ensures that the conservation laws

Z wr+ (P Z wx+(T5) =

hold.

7.4 Entropy production

By the Assumption (SEBB3) the entropy production obsemalbthe SEBB model is
well defined and is given by Equ. (6.45) which we rewrite as

= —AZ “(is; f5)a(1) + a*(Vafis; f;)) - (7.55)
Proceeding as in the previous section we obtain

M
war(0) = =20 Tm (W_s, f;, TRW_1),
Jj=1

which yields

wr (o) =22t Z /e+ i(r)F 1) | |fk s (s5(r) — sk(r)) pr(r) dr.

7,k=1

Finally, symmetrizing the sum ovgrandk we get

() = A S [ EOEBDE i) - s100) on0r) = )

7,k=1
Sincep; = (1 + e%)~! is a strictly decreasing function ef,
(55 (r) = sk(r))(pk (r) — p;(r)) 2 0,
with equality if and only ifpi (1) = p;(r). We summarize:

Theorem 7.3 The entropy production @f . is

PREIE o [ EOEBDE (i) - s100) on0r) = )

7,k=1

In particular, Ep(w;.) > 0 (something we already know from the general principles)
andEp(wy) =0ifandonlyifp; = - = pas.
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Sincew andw) - are factor states, they are either quasi-equivalent coidisjBy
Theorem 3.4, iEp(wx4) > 0, thenw, is notw-normal. Hence, Theorem 7.3 implies
that if the densitiep; are not all equal, then the reference statend the NESS, ;-
are disjoint states.

Until the end of this section we will assume that the energysig of the j-th

reservoir is )

PBju; (r) = ma

wheref; is the inverse temperature apg € R is the chemical potential of thgth
reservoir. Then, by (6.46Fp(wy+ ) can be written as
Ep(w)\Jr) = Ephcat (w)\Jr) + Epchargc (WAJr)v

where

Ephcat w>\+ Z 63 w)\Jr

is interpreted as the entropy production due to the heatdlaxd

Epchargc w)\+ Z ﬁ]:u’7w>\+ '-7])

=1

as the entropy production due to the electric currents.

7.5 Equilibrium correlation functions

In this subsection we compute the integrated current-otio@relation functions
1" .
L,(A,B)= lim — wpt (75 (A4)B) dt,
T 2 )_p

whereA and B are heat or charge flux observables and denotes the NES&) +
in the equilibrium case, = --- = py = p. To do this, note tha®;, = dI'(¢;) and
J; = dI'(j;) where

oo = i[hw,, M| = ~i[hy, hr,),
J = ipj, ] = —i[ha, pjl,

are finite rank operators. We will only consides(®;, ®;), the other cases are com-
pletely similar.
Using the CAR, Formula (5.29) and the fact that, (®;) = 0, one easily shows
that
W (74 (®7)B5) = Tr (Te ™ 075 (1 — T )y, ).

Since
eith)\ —ith)\ — _geith)\h ,e_ith)‘7

¥w;e dt
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the integration can be explicitly performed and we have

T
1 : .
Ly(®;,®;) = — lim 5T (T hg,e (1 — T4 )py)

T—o0 _T

Writing el"ms hp e7ithx = elthag=ithop g eithoe=itha and using the fact thap,, is
finite rank, we see that the limit exists and can be expressadrins of the wave
operatord¥ as

L,(®;,®) = % {Tr (T4 W hg,W_(I — T4)pk)
= Tr (TyWihr,Wi(I =Ty )pk)} -
The intertwining property of the wave operators gives
Ty = W plhr)W- = p(hs) = Wi p(hr) Wy,
from which we obtain
Ly (5, 81) = 5T (Tr(1 — T, (W oy W2 — W),
with Tz = p(hz). Time reversal invariance further gives
Wy =iW_j,  jer)=—¢k
and so
L(®;,8) = %Tr (Tr(I — Tr)hr, (W_gW* 4+ W_ oW §))
= Tr(Tr(I —Tr)hr, W_p,WZ).

The last trace is easily evaluated (use the formula= \i[hx, ,v] and follow the steps
of the computation in Subsection 7.3). The result is
r2dr

L,(®;, ) = —2m4/ TP )P = 855l £)P] o) (1 — )

rdr

Lol 00) = =2 1500 (LA = 8301 F] o)1 = o) s

Ly(@;.50) = 223 1500 G = Gl 70)P] o)1 = plr)
LT3 = =20 100 A0 = 8l 100 o)1= o)
: (7.56)

Note the following symmetries:
LP((I)J" q)k) = Lp(q)kv (I)j)v
Lo(Tj, Tk) = Lp(Tk, Tj), (7.57)
LP((I)jv jk) = Lp(jkv q)j)'
Note also thatl,(®;, ®x) < 0andL,(J;, Jx) < 0for j # k while L,(®;, ®;) > 0
andL,(J;,J;) > 0.
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7.6 Onsager relations. Kubo formulas.

Let foq andpueq be given equilibrium values of the inverse temperature hacchemi-
cal potential. The affinities (thermodynamic forces) cgaijied to the currents; and
J; are
Xj = Beq — By, Yj = Bjtj — Beqtteq-
Indeed, it follows from the conservations laws (4.12) an89pthat
M

Ep(was) = 3 (Xjwre (®)) + Y wai (F)) -

j=1
Since
- 1
pﬁjl‘j (T) — 1+ eﬁeq(T—Meq)—(XjT-l-Yj) 5
we have
Ox, PBu; (T)|x=y=0 = dkjp(r)(L—p(r))r,
O Ppu; (T)|x=y=0 = dk;p(r)(1—p(r)),

wherep = pg....,- Using these formulas, and explicit differentiation of steady
currents (7.53) and (7.54) and comparison with (7.56) lead t

Ox,wr+(Pj)|x=y=0 = Ly(®;,Ps),
Oy wrt (P))lx=y=0 = Ly(®;,T),
Ox,wx+(Jj)|x=y=0 = L,(TJj,Px),

Ovwrt (Ti)lx=vy=0 = Lp(Tj, Tk),

which are theKubo Fluctuation-Dissipation Formulaghe symmetry (7.57) gives the
Onsager reciprocity relations

IOx,wx +(P;)| x=y =0,
Ov;wr+(Tk)|x=y=0 = Oy,wr+(Jj)|lx=v=0,
Ov;wr4(Pr)|x=y=0 = Ox,wr+(TJj)lx=v=0-
The fact thatL,(®;, ®;) > 0 andL,(J;,J;) > 0 while L,(®;,®;) < 0 and
L,(J;,Jx) < 0forj # k means that increasing a force results in an increase of the

conjugated current and a decrease of the other currents. iShiot only true in the
linear regime. Direct differentiation of (7.53) and (7.54lds

Ox,;wA+(Pr)|x=y=0

2d
Ox,02+ (@) = 2005 [ 15,00 PLAG 080 ()L — P (0 NiEE 2%
j#k e_
d
Oyowr +(Jk) = 2mA) |fa (P15 01 (1) (L = Py (T))ﬁ >0,
J#kT e
et 2d
Ot (®) = =20\ [P0 (1)1 = P (1) iy <0

Bnt(T) = =2\ (ORI 0 (1)1 = P ) Ty <O
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Note that these derivatives do not depend on the refereatessif the reservoirg ;
forj # k.

8 FGR thermodynamics of the SEBB model

Forj=1,---, M, we set

g;(t) = / " e o ()| £ (r)|? dr-.

In addition to (SEBB1)-(SEBB4) in this section we will asseim

Assumption (SEBB5)g;(t) € L'(R,dt) forj=1,---, M.

8.1 The weak coupling limit

In this subsection we study the dynamics restricted to tradlsystem on the van Hove
time scalet/\2.

Recall that by Theorem 6.1 the algebra of observalgf the small system is
the 4-dimensional subalgebra®f= CAR(C & hr) generated by(1). Itis the full
matrix algebra of the subspage C I'_(Cohr ) generated by the vectof§, a(1)$2}.

In this basis, the Hamiltonian and the reference state offed| system are

[0 o 1=~ 0
I ] A

Let A € Os be an observable of the small system. We will study the expiect
values ,
w(m/ ™ (4), (8.58)

as\ — 0. If A =a7(1), then (8.58) vanishes, so we need only to consider the Abelia
2-dimensional even subalgebf® C Os. Sincea*(1)a(1) = Ns anda(1)a*(1) =
I — Ng, it suffices to consideA = Ngs. In this case we have

t/ 22

wor/" (Ns) cu(a*(e“h*/k21)a(e”h*/A21))

(&2 1 (v @ Tr)e ™™ /A1), (8.59)

Using the projectiop; on the Hilbert spacér; of the j-th reservoir we can rewrite
this expression as

M
2 . . .
wor/ ™ (Ns) = 7|(L"™ A DP 37 (pye ™A1, T, e /41).
j=1

Theorem 8.1 Assume that Assumptio(B8EBB1)(SEBB5)hold.
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(i) Foranyt >0,
;13% |(17eithA/A21)|2 — o—2mtlf(e0)? (8.60)
(i) Foranyt>0andj=1,---, M,

. i 2 i 2 (e 2 —on P
)1\11% (pse tha/A LTijjethx/)\ 1) = %Pj(fo) (1 _ o~ 2mt|f(c0)] ) )
(8.61)

The proof of Theorem 8.1 is not difficult—for Part (i) see [D&LL], and for Part (i)
[Da2]. These proofs use the regularity Assumption (SEBBS).alternative proof of
Theorem 8.1, based on the explicit form of the wave operdfar, can be found in
[JKP].

Theorem 8.1 implies that

y(t) = limwor!Y (Ns)

A—0
M 9
_ —27t|f(e0))? ( _ 727rt|f(so)|2) | fi(g0)| ]
= e +(1-e Tz Pil€o),
2 T
from which we easily conclude that for all € Os one has

lim w o T;/Az (A) = Tr(ws(t)A),

A—0

where

o) =100 0]

According to the general theory described in Section 4.5lee lzave
ws(t) = eswg,

where Ky is the QMS generator in the Schrodinger picture. We shall disguss its
restriction to the algebra of diagoriak 2-matrices. In the basis

HREEK]

of this subalgebra we obtain the matrix representation

M
2 | P L=p;
Kg = 27T7; | fi (o) [ p?(i‘i())) -(1 —ppa('?gg))] '

In the Heisenberg picture we have

;imo ws o 7';/)\2 (A) = Tr(ws e A),
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whereKy is related toK'g by the duality
TI‘(Ks(wS)A) = TI‘((.«)SKH(A)).

The restriction of{y to the subalgebra of diagonalx 2-matrices has the following
matrix representation relative to the basis (8.62),

M
K — 9 (a2 | —Pileo) p;i(€0) _
! ;'f"( o) [1 = pi(eo) (1= pj(e0)
We stress thals and Ky are the diagonal parts of the full Davies generators in the
Schrédinger and Heisenberg pictures discussed in theéesties [D1].
As we have discussed in Section 4.5, an important propertiyeofenerators(s
and Ky is the decomposition

M M
Ks =) Ks;, Ku=) Kuj,
=1

J=1

whereKs ; andKy; ; are the generators describing interactiog afith the j-th reser-
voir only. Explicitly,

Ks; = wipe? | ) et ]
Ku; = 2nu|fj(e0) [1_—[);75'8(23)) —(1[)1(;?250))]

Finally, we note that

M o
ws+ = lim w = M 1= pj(eo) 0
st = Jim ws(t) = ; f(e0)2 l 0 o))

wsy is the NESS on the Fermi Golden Rule time scale: for any obbde\A of the
small system,

lim lim w o 7/ (4) = Tr(ws+ A) = ws. (A).

t—o00 A—0

In the sequel we will refer tas as the FGR NESS.

8.2 Historical digression—Einstein’s derivation of the Panck law

Einstein’s paper [Ei], published in 1917, has played an irtgrd role in the historical
development of quantum mechanics and quantum field theorthi$ paper Einstein
made some deep insights into the nature of interaction leetwadiation and matter
which have led him to a new derivation of the Planck law. Ferhtstory of these early
developments the interested reader may consult [Pa].
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The original Einstein argument can be paraphrased as felld@onsider a two-
level quantum systens with energy leveld) and ey, which is in equilibrium with
a radiation field reservoir with energy densjiyr). Due to the interaction with the
reservoir, the systerf will make constant transitions between the energy lev@nd
eo. Einsteinconjecturedhat the corresponding transition rates (transition pbdhies
per unit time) have the form

k(g0,0) = Ao (1 = pl(eo)),  k(0,e0) = Beyp(e0),

whereA., andB., are the coefficients which depend on the mechanics of theairrte
tion. (Of course, in 1917 Einstein considered the bosorsemair (the light)—in this
case in the first formula one has- p(go) instead ofl. — p(e()). These formulas are the
celebrated Einstein’d andB laws. Letp, andp., be probabilities that in equilibrium
the small system has energigande, respectively. IfS is in thermal equilibrium at
inverse temperatur@, then by the Gibbs postulate,

po = (14 e Peo) 1 Pe, = € P (1 4 e Fe0) 7L,
The equilibrium condition

k(()? 50)]30 = k(EOa O)ﬁ&oa
yields

ple0) = 21— plea)e .

In 1917 Einstein naturally could not compute the coeffigety, and B.,. However,
if A,/Bes, = 1 for all ¢, then the above relation yields the Planck law for energy
density of the free fermionic reservoir in thermal equiliion,
1
14 efeo’

p(eo) =

In his paper Einstein points out that to compute the numleradae of A., andB., one
would need an exact [quantum] theory of electro-dynamicdlraechanical processes.

The quantum theory of mechanical processes was develojled i920’s by Hei-
senberg, Schrodinger, Jordan, Dirac and others. In 192&cRixtended quantum
theory to electrodynamical processes and computed théaierfsA., andB., from
the first principles of quantum theory. Dirac’s seminal pgpg] marked the birth of
guantum field theory. To computé., and B,, Dirac developed the so-called time-
dependent perturbation theory, which has been discusskedtire notes [D1, JKP]
(see also Chapter XXI in [Mes], or any book on quantum medawniln his 1949
Chicago lecture notes [Fer] Fermi called the basic formwa®irac’s theorythe
Golden Ruleand since then they have been calleel Fermi Golden Rule

In this section we have described the mathematically rigefeermi Golden Rule
theory of the SEBB model. In this context Dirac’s theory reglsito the computation of
Kg andKy since the matrix elements of these operators give the tramgirobabilities
k(eo,0) andk(0,e¢). In particular, in the case of a single reservoir with enefgysity
p(r),

Aeo = BE[} = 27T|f(60)|2'
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Einstein’s argument can be rephrased as follows: if theggn@ensityp is such that

wsy = e PHs /Tr(emPHs) = (1 4 e F=0) ! {(1) e([)isg:| ,

for all g (namelyHgs), then
1

p(eo) = e

8.3 FGR fluxes, entropy production and Kubo formulas

Any diagonal observabld € O¢ of the small system is a function of the Hamiltonian
Hs. We identify such an observable with a functipn{0, o} — R. Occasionally, we
will write g as a column vector with componet®) andg(e). In the sequel we will
use such identifications without further comment. A vectads called a probability
vector ifv(0) > 0, v(go) > 0 andr(0) + v(g9) = 1. The diagonal part of any density
matrix defines a probability vector. We denote the probigbilector associated to
FGR NESSws, by the same letter. Similarly, to a probability vector onequiely
associates a diagonal density matrix. With these convesittbe Hamiltonian and the
number operator of the small system are

0

Hs =epa*(1)a(l) = LO

] . Ns=a*(1)a(1) = m .

The Fermi Golden Rule (FGR) heat and charge flux observaldes a
o , _ ez | pileo)
By = King(ts) = 2mal e [, P60 T
o ) o (o2 | Pi(eo)
Jtgry = Kny (Ns) = 27T|fj(50)| {_(1 - /)j(Eo))} .

The steady heat and the charge currents in the FGR NESS arelgiv

ws i (Pige ) = 27 Z'fﬂ Eff|<5|£7§€0)| co(ps(20) — pr(e0)),
(8.63)

s+ (Tig) 2WZ|f’ COPRLEE ) ) - pu(en)

The conservation laws
M M
ZWSH‘I’fgr,j) =0, Z ws+(Jtgr,j) =0
Jj=1 Jj=1

follow from the definition of the fluxes and the relatiéfs (ws-) = 0. Of course, they
also follow easily from the above explicit formulas.
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Until the end of this subsection we will assume that

1

pi(r) = 1+ eBilr—ny)’

Using Equ. (8.63), we can also compute the expectation céitr@py production
in the FGR NESSs. The natural extension of the definition (4.25) is

M
Ot = = ) By (®rgrj — 15 Trgrs)

j=1

from which we get

M 2 2
wsi(ogg) —2m 32 LICOAEOE )y e iten — ). (8.69

2 TP
Writing
o pie) .
sj = log 1-pi(c0) Bjleo — m;),

and symmetrizing the sum in Equ. (8.64) we obtain

M _ 2 2
slone) = 3 PEFIEIE 4, 00) = s o) sy = 50,
j k=1

which is non-negative sincg(so) is a strictly decreasing function a¢f. The FGR
entropy production vanishes iff al’s are the same. Note however that this condition
does not require that all the;’s and;’s are the same.

Let 5.4 andueq be given equilibrium values of the inverse temperature dueoirs-
cal potential, and

(1 4 e~ Feaco) 1 0
0 (1 + efeaso)=1 >

WSeq = e—ﬁeq(HS_Heq)/Tr(e_Beq(HS_Neq))

the corresponding NESS. As in Subsection 7.6, the affinjtlermodynamic forces)
areX; = fBeq — B andY; = Bju; — Beqlteq- A simple computation yields the FGR
Onsager reciprocity relations

Ox,;Ws+(Pegr k)| x=y=0 = Ox,,ws+(Pegr,j)| x=v =0,
Oy, ws+(Jtgr k)| x=v=0 = Oy, ws+(Jtgr,i)| x=y=o, (8.65)
Ov,ws+(Prgr,k) [ x=y=0 = Ox,ws+ (Jrgr,i)| x=y=0-
We set
Lt (A, B) = / Wseq (e (A)B) dt,
0
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where A and B are the FGR heat or charge flux observables. Explicit contipata
yield the FGR Kubo formulas

Ox, wWs+(Pear,j) | x=y =0 = Ltgr(Ptar,j» Prar k),
Oy, ws(Prgrj)x=y=0 = Lige(Prar j, Trar k), (8.66)
Ox,ws+(Trgr,j) | x =y =0 = Ltgr(Tter,j> Ptgr.o)
Oy ws+(Trgr,j) | x=v =0 = Ligr(Tter,j> Trer,k)-

8.4 From microscopic to FGR thermodynamics

At the end of Subsection 4.5 we have briefly discussed theagassom the micro-
scopic to the FGR thermodynamics. We now return to this stibjehe context of the
SEBB model. The next theorem is a mathematically rigorousioe of the heuristic
statement that the FGR thermodynamics is the first normatreontribution (in)) to
the microscopic thermodynamics.

Theorem 8.2 (i) For any diagonal observabld € Og,

;12% wr+(A4) = ws+(A).

(i) Foryj=1,---, M,

lim A™ Ywrt (®)) = ws 4 (Prgr ), lim A 2wa g (T5) = wsi (Trgr,j)-

(iii) Let s; =logp;(c0)/(1 — p;(e0)) and define the FGR entropy production by

M
i =2 Uteo)ss |, 0 |

Then
lim A™ PEp(wit) = ws+(01gr)-
The proof of this theorem is an integration exercise. We reiditrict ourselves to
an outline of the proof of Part (i) and several comments. Aet Ns = a*(1)a(1).

Then
M

s ()= (VLT = 30 I '|§1((:)>|'2pj<r>dr,

and
file
LA}S+ E |J 0|2 J )

Hence, to prove Part (i) we need to show that

(O BER
i 3t [ e () dr = 2 o)
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By Assumption (SEBB2)R(r) = ReG(r — io) andr|f(r)]? = ImG(r — io) are
bounded continuous functions. The same is truepfdr) by Assumption (SEBB3).
Since

F(r) =¢eo —r — NR(r) +iN7|f(r)|?,

we have

CULEP e ()P ps(r)
/e, |F<r>|2”7(’°)d“/e, (r 20 ¥ N2R(r)? + 2N

Using the above-mentioned continuity and boundednesseptiop it is not hard to
show that

[ AP
2 [ st o

) e+ dr
= el Jim ¥ [

. oo dr
= pj(e0)lfi(e0)l? Jim. A [m r? + 12 f(e0)|*
_ Ifi(=)?

~ e

The proofs of Parts (ii) and (iii) are similar. Clearly, umdalditional regularity as-
sumptions one can get information on the rate of convergerarts (i)-(iii). Finally,

it is not difficult to show, using the Kubo formulas descritie&ubsection 7.6 and 8.3,
that

(g0)-

)1\1H}] /\_QLp(A, B) = Lfgr(Afgra Bfgr)a

whereA, B are the microscopic heat or charge flux observablesfnd By, are their
FGR counterparts.

9 Appendix

9.1 Structural theorems

Proof of Theorem 3.3 Recall thatr,, (O)” is the Banach space dualbf,. If A € O
andA € 7w, (0)" is a weak« accumulation point of the net

% /0 7w (T (A4)) ds,

t > 0, it follows from the asymptotic abelianness in mean that 7, (O)'. Sincew is
a factor state we have, (O)' N, (0)” = CI and therefore, for any € N, one has

n(A) = w(A). (9.67)
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Letp,v € M, anduy € ¥4 (u, 7v). Lett, — oo be a net such that

toc
lim 1 / porty(A)ds = uy(A4),
@ a Jo
forall A € O. Passing to a subnet, we may also assume that fot all©O and some
vy € E.,.(V, TV),
ta
lim 1 / vorty(A)ds = vy (A4).
a a Jo

By the Banach-Alaoglu theorem, for arye O there exists a subnef(A) of the net
t, andA# € m,(O)” such that, for alh € NV,

£ (4)
lin | ntmtri Ay ds = ),

Hence,u, (A) = p(A#) andv, (A) = v(A#). By (9.67) we also havp(A#) =
w(A#) = v(A#) and souy (A) = v, (A). We conclude that, = v, and that

E+(/L,TV) - E+(l/, TV).

By symmetry, the reverse inclusion also holds and

E‘f‘(ﬂa TV) = E"'(wa TV)

forall p e N,. O

Proof of Theorem 3.6 To prove this theorem we use the correspondence between
w-normal states and elements of the standard &obtained fromw (see Proposition
37 in [Pi]); this is possible since is modular by assumption.

Note that ifKer Ly, # {0}, then there is aw-normal, 7 -invariant state). By
Theorem 3.3X, (w,7v) = ¥4 (n, 7v) and obviously> (n, 7v) = {n}. Two non-
zero elements ifKer Ly therefore yield the same vector state and are represented by
the same vector in the standard coine, Ker Ly, N P is a one-dimensional half-line.
Recall that any € b, can be uniquely decomposed as

¢ = (1 — G2 +i¢3 —icy,

with ¢; in P. Sincee'*v preserves the standard conélv ¢ = (iff e*Lv(; = ¢ for
alli (i.e.,¢; € Ker Ly NP for all i). Hence Ker Ly is one-dimensional and Part (i)
follows.

The proof of Part (ii) is simple. Any NES% € ¥, (w, 7v) can be uniquely de-
composed ag,, + ns wheren,, < w andns L w. Sincen is ry-invariant,n,, and
7, are alsory -invariant. Thereforey, is represented by a vectorin Ker Ly N P. If
Ker Ly = {0}, thenn,, = 0 andn L w.
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It remains to prove Part (i) (see Theorem 44 in the lectwtes [Pi]). Letp €
Ker Ly be a separating vector fi,,. Let B € w,,(O)’ be such thalj By|| = 1 and
let v be the vector state associatedde, vg(-) = (By, -By). ForanyA € 7, (O),

1 1

t t
2/0 vp(ti(A)) ds = 2/0 (Be, eV, (A)e "V By) ds

t
= <1/ e v B*B o ds, ﬂ'w(A)<p> .
0

t
Hence, by the von Neumann ergodic theorem,

1 )
vpt(A) = thm 7| VB (13(A)) ds = (Pker v BB o, mu(A)gp),
— 00 0
where Pk, 1., is the projection orfKer Ly. Sincey is cyclic for «,,(O)’, for every
n € Nwe can find aB,, such thafjw — vp, || < 1/n. The sequenceg, is Cauchy in
norm and for allw; € ¥4 (w, 7v),

lws =B, ]l < lw=vB, [ <1/n.

This implies that the norm limit of5, is the unique NESS it (w, 7). Since
vp,+ € N, andN,, is a norm closed subset 6, this NESS isv-normal.(]

9.2 The Hilbert-Schmidt condition

Proof of Theorem 7.2 We will prove thatl’}/> — T/ is Hilbert-Schmidt. The proof
that(I -1, )*/? — (I—T)'/?is also Hilbert-Schmidt is identical. For an elementary in-
troduction to Hilbert-Schmidt operators (which sufficestfte proof below) the reader
may consult Section V1.6 in [RS].

By our general assumptions, the functigi{s) and F'(r)~! are bounded and con-
tinuous. By the assumption of Theorem 7.2, all the densitj¢s) are the same and
equal top(r). Hence,

M
Tr = P pi(r) = p(hz).
i=1

Let pr be the orthogonal projection on the reservoir Hilbert spage SinceT'/? —
T71z/2 = Té/Q, T}F/Q(I —pr), (I — pR)T}r/2 are obviously Hilbert-Schmidt, it suffices
to show tha{oRT}r/sz — T71z/2 is a Hilbert-Schmidt operator on the Hilbert spagg
Since

pRT*pr — Tg/? = —prW*[W_pr, /%),

it suffices to show thakl’ = [W_px, T}a/z] is a Hilbert-Schmidt operator dnz. By
Theorem 6.2, foy € hr,

r et o(r /2 ()12
10 [ 0000

r —r+io

(Kg)(r) =X
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Let K;; be an operator oh?((e_, e ), dr) defined by

A [ e
=2 F(T)/e 7 —r+io Ji(r)h(r") dr’.

(Kjh)(r)

To prove thatK is Hilbert-Schmidt onf, it suffices to show thaf(;; is Hilbert-
SchmidtonZ?((e_, ey ), dr) forall i, j.
Let hq, ha € L*((e—, e4),dr) be bounded continuous functions. Then

(h1, Kijha) = A2 /j —hl(r)lf;((:))”(r) dr, (9.68)
where o (2
g2(r) =lim | B () 0
Using the identity
1 r—r i€

v —r+ie (r' —r)? 4 €2 - (r' —r)2 + €2’

and the fact that, for € (e_, e4), one has

“Ep(r) = p(r) 2L, N 3 1/2 1/2\ F
e[ AP () = ()2 o) )

= O’

(see the Lecture [Ja]), we obtain

e (¢ — ) (p(r')/2 = p(r)t/2)
(r" = r)(p(r")/2 = p(r)! z)fj(rl)hz(r,)drl.

= 1.
92(7‘) ellnol . (7,/ _7,)2 _|_€2

Sincef; andh, are bounded ang(r)'/? is 1-Hélder continuous, we have

et (¢ _p Y2 ()12 _
[T E

sup
e>0,r€(e_,e4) _ (rl - T)Q + €2
“ fi()ha(r)
J
S C sup m dr’ < 00.

ré(e—,eq)Je_

Moreover, sincé (r)F(r)~! fi(r) € L'((e_, ey ),dr), we can invoke the dominated
convergence theorem to rewrite Equ. (9.68) as

(hl, Kith) = 151&)1(h17 Kij,ehZ) (969)

whereK; . is the integral operator oh?((e_, e ), dr) with kernel

32 fitr) fi (") (7 = r)(p(r') /% = p(r)'/?)
F(r) (r' —r)2 + €2 ’

ké (T7 T/)
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We denote by - ||us the Hilbert-Schmidt norm. Then
[Kisellas = [ atrr) P drar.

Sincep(r)!/? is a-Holder continuous forr > 1/2 andF(r)~! is bounded there exists
a constant such that, for, ' € (e_, e4) ande > 0, one has the estimate

|[fi(r)21£; (r) >

/Y2
L

Therefore, sinc&(1 — «) < 1, we conclude that
sup || Kijellfis = sup/ |ke(r,r")|? drdr’ < oco.
>0 e>0

The Hilbert-Schmidt class of operators bA((e_, e ), dr) is a Hilbert space with the
inner produc{ X,Y) = Tr(X*Y"). Since{K;;.}e>0 is a bounded set in this Hilbert
space, there is a sequenge— 0 and a Hilbert-Schmidt operatdt;; such that for
any Hilbert-Schmidt operatoX on L?((e_, ey ), dr),

lim Tr(X*Kij.,) = Tr(X*K;j).
Taking X = (hi,-)ha, whereh; € L*((e_, ey ), dr) are bounded and continuous, we
derive from (9.69) thathi, K;;hs) = (h1, K;jh2). Since the set of such's is dense
in L?((e—, ey ),dr), K;; = K;; and sokK;; is Hilbert-Schmidt]



Topics in non-equilibrium quantum statistical mechanics 61

References

[AB]

Araki, H., Barouch, E.: On the dynamics and ergodic pdfes of theX'Y'-
model. J. Stat. Phy81, 327 (1983).

[AJPP] Aschbacher, W., Jak$iV., Pautrat, Y., Pillet, C.-A.: Transport properties of

[AM]

[Arl]

[Ar2]

[Ar3]

[ArM]

[At]

[AW]

[BFS]

[BLR]

(BM]

[BR1]

[BR2]

[BSZ]

[CG1]

ideal Fermi gases (in preparation).

Aizenstadt, V.V., Malyshev, V.A.: Spin interaction i an ideal Fermi gas. J.
Stat. Phys48, 51 (1987).

Araki, H.: Relative entropy of states of von Neumangethras. Publ. Res.
Inst. Math. Sci. Kyoto Univl1, 809 (1975/76).

Araki, H.: Relative entropy of states of von Neumangetras Il. Publ. Res.
Inst. Math. Sci. Kyoto Univ13, 173 (1977/78).

Araki, H.: On the XY -model on two-sided infinite chain. Publ. Res. Inst.
Math. Sci. Kyoto Univ20, 277 (1984).

Araki, H., Masuda, T.: Positive cones ard’-spaces for von Neumann alge-
bras. Publ. RIMS Kyoto Univ18, 339 (1982).

Attal, S.: Elements of operator algebras and modulaptly. Volume | of this
series.

Araki, H., Wyss, W.: Representations of canonical esagimmutation rela-
tions. Helv. Phys. Act&87, 136 (1964).

Bach, V., Frohlich, J., Sigal, I.: Return to equilibm. J. Math. Phys41,
3985 (2000).

Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fouriéaw: A challenge to
theorists. InMathematical Physics 2000mp. Coll. Press, London (2000).

Botvich, D.D., Malyshev, V.A.: Unitary equivalence éémperature dynam-
ics for ideal and locally perturbed Fermi Gas. Commun. MBtiys.61, 209
(1978).

Bratteli, O, Robinson D. W.:Operator Algebras and Quantum Statistical
Mechanics 1Springer, Berlin (1987).

Bratteli, O, Robinson D. W.:.Operator Algebras and Quantum Statistical
Mechanics 2Springer, Berlin (1996).

Baez, J.C., Segal, |.E., Zhou, 4ntroduction to algebraic and constructive
quantum field theorPrinceton University Press, Princeton NJ, (1991).

Cohen, E.G.D., Gallavotti, G.: Dynamical ensembtestationary states. J.
Stat. Phys80, 931 (1995).



62

[CG2]

[Dal]

[Da2]
[De]

[DGM]

[D1]

(D2]

[Di]

[DJ]

[DJP]

[Do]

(Ei]

[EM]

[Fer]

[FM1]

[FM2]

[FMS]

Aschbacher, Jak&j Pautrat, Pillet

Cohen, E.G.D., Gallavotti, G.: Dynamical ensembiteadnequilibrium sta-
tistical mechanics. Phys. Rev. Letd, 2694 (1995).

Davies, E.B.: Markovian master equations. CommunthviRhys.39, 91
(1974).

Davies, E.B.: Markovian master equations Il. MathnAR19, 147 (1976).

Dell’Antonio, G.F.; Structure of the algebra of somedrsystems. Commun.
Math. Phys9, 81 (1968).

De Groot, S.R., Mazur, P.:Non-Equilibrium ThermodynamicsNorth-
Holland, Amsterdam (1969).

Derezihski, J.: Fermi Golden Rule and open quantum systems. Thisne

Dereziski, J.: Inroduction to representations of canonical canation and
anticommutation relations. Lecture notes of the Nordfgaddsummer School
"Large Coulomb Systems—Quantum Electrodynamics", Aug06s.

Dirac P.A.M.: The quantum theory of the emission anda@ibpsion of radia-
tion. Proc. Roy. Soc. London, Ser.14 4, 243 (1927).

Dereziski, J., Jak®, V.: Return to equilibrium for Pauli-Fierz systems. Ann.
Henri Poincarél, 739 (2003).

Derezhski, J., Jak#, V., Pillet, C.-A.: Perturbation theory &/ *-dynamics,
KMS-states and Liouvillean. Rev. Math. Phy&, 447 (2003).

Dorfman, J.R.:An Introduction to Chaos in Nonequilibrium Statistical Me-
chanics.Cambridge University Press, Cambridge (1999)

Einstein, A.: Zur Quantentheorie der Strahlung. Phy&eitschr.18, 121
(1917). This paper is reprinted in: van der Waerden, BSoyrces of Quan-
tum MechanicsDover, New York (1967).

Evans, D.J., Morriss, G.PStatistical Mechanics of Non-Equilibrium Liquids.
Academic Press, New York (1990).

Fermi, E.:Nuclear PhysicsNotes compiled by Orear J., Rosenfeld A.H. and
Schluter R.A. The University of Chicago Press, Chicago0195

Frohlich, J., Merkli, M.: Thermal lonization. Matheatical Physics, Analysis
and Geometry, 239 (2004).

Frohlich, J., Merkli, M.: Another return of "return quilibrium". Commun.
Math. Phys.251, 235 (2004).

Frohlich, J., Merkli, M., Sigal, 1.M.: lonization oftams in a thermal field. J.
Stat. Phys116, 311 (2004).



Topics in non-equilibrium quantum statistical mechanics 63

[FMSU] Frohlich, J., Merkli, M., Schwarz, S., Ueltschi, DStatistical mechanics
of thermodynamic processes. MGarden of Quanta345. World Scientific
Publishing, River Edge NJ (2003).

[FMU] Fréhlich, J., Merkli, M., Ueltschi, D.: Dissipativednsport: thermal contacts
and tunneling junctions. Ann. Henri Poinca&97 (2004).

[Fr] Friedrichs, K. O.:Perturbation of Spectra in Hilbert SpacdMS, Providence
(1965).

[Gal] Gallavotti, G.: Nonequilibrium thermodynamics. priat, mp-arc 03-11
(2003).

[Ga2] Gallavotti, G.: Entropy production in nonequilibmithermodynamics: a re-
view. Preprint, arXiv cond-mat/0312657 (2003).

[GVV1] Goderis, D., Verbeure, A., Vets, P.: Noncommutatbentral limits. Probab.
Theory Related Field82527 (1989).

[GVV2] Goderis, V., Verbeure, A., Vets, P.: Quantum centirait and coarse grain-
ing. In Quantum probability and applications, Yecture Notes in Math.,
1442 178 (1988).

[GVV3] Goderis, D., Verbeure, A., Vets, P.: About the matladital theory of quan-
tum fluctuations. IlMathematical Methods in Statistical Mechaniceuven
Notes Math. Theoret. Phys. Ser. A Math. Phyls.31. Leuven Univ. Press,
Leuven (1989).

[GVV4] Goderis, D., Verbeure, A., Vets, P.: Theory of quantfluctuations and the
Onsager relations. J. Stat. Phg§, 721 (1989).

[GVV5] Goderis, D., Verbeure, A., Vets, P.: Dynamics of fluations for quantum
lattice systems. Commun. Math. Ph$28 533 (1990).

[GVVE6] Goderis, D., Verbeure, A., Vets, P.: Aboutthe exads of the linear response
theory. Commun. Math. Phy436, 265 (1991).

[Haa] Haake, F.:Statistical Treatment of Open Systems by Generalized KMaste
Equation.Springer Tracts in Modern Physié$, Springer, Berlin (1973).

[Ha] Haag, R.:.Local Quantum Physic&pringer, New York (1993).
[Ja] Jak&t, V.: Topics in spectral theory. Volume | of this series.

[JKP]  Jaksg, V., Kritchevski, E., Pillet, C.-A.: Mathematical theoof the Wigner-
Weisskopf atom. Lecture notes of the Nordfjordeid SumméroBt"Large
Coulomb Systems—Quantum Electrodynamics”, August 2003.

[Jo] Joye, A.: Introduction to quantum statistical mecleaniMolume | of this
series.



64

[JP1]

[JP2]

[JP3]

[IP4]

[JP5]

[JP6]

[JP7]

[JPR1]

[JPR2]

[KR]

[LeSp]

(L]

[LMS]

[Ma]

[Mel]

[Me2]

[Me3]
[Mes]

Aschbacher, Jak&j Pautrat, Pillet

Jak&, V., Pillet, C.-A.: On a model for quantum friction II: Fefsigolden
rule and dynamics at positive temperature. Commun. Matis Y6, 619
(1996).

Jaks, V., Pillet, C.-A.: On a model for quantum friction Il1: Eoglic proper-
ties of the spin-boson system. Commun. Math. PhyS8, 627 (1996).

Jakd, V., Pillet, C.-A.: Spectral theory of thermal relaxatidnMath. Phys.
38, 1757 (1997).

Jaks, V., Pillet, C.-A.: Mathematical theory of non-equilibrh quantum
statistical mechanics. J. Stat. Phy68 787 (2002).

Jaks, V., Pillet, C.-A.: Non-equilibrium steady states for fmguantum sys-
tems coupled to thermal reservoirs. Commun. Math. P238§.131 (2002).

Jak&, V., Pillet, C-A.: On entropy production in quantum stat¢ial mechan-
ics. Commun. Math. Phy217, 285 (2001).

Jak&, V., Pillet, C.-A.: A note on the entropy production forrauContemp.
Math. 327, 175 (2003).

Jakdi, V., Pillet, C.-A., Rey-Bellet, L.: Fluctuation of entrgproduction in
classical statistical mechanics. In preparation.

Jakd, V., Pillet, C.-A., Rey-Bellet, L.: In preparation.

Kadison R.V., Ringrose J.RFundamentals of the Theory of Operator Alge-
bras Il: Advanced TheoryGraduate Studies in Mathematit§ AMS, Prov-
idence (1997).

Lebowitz, J., Spohn, H.: Irreversible thermodynesrfor quantum systems
weakly coupled to thermal reservoirs. Adv. Chem. PI3g109 (1978).

Lindblad, G.: Completely positive maps and entropydoealities. Commun.
Math. Phys40, 147 (1975).

Lieb, E.H., Schulz, T., Mathis, D.: Two soluble modet§ an anti-
ferromagnetic chain. Ann. Phy28, 407, (1961).

Matsui, T.: On the algebra of fluctuation in quantum sglirains. Ann. Henri
Poincarét, 63 (2003).

Merkli, M.: Positive commutators in non-equilibriuguantum statistical me-
chanics. Commun. Math. Phy&23 327 (2001).

Merkli, M.: Stability of equilibria with a condensat€ommun. Math. Phys.,
in press.

Merkli, M.: The ideal quantum gas. Volume | of this segi

Messiah, A.Quantum Mechanics. Volume Wiley, New York.



Topics in non-equilibrium quantum statistical mechanics 65

[Od]

[OP]

[Pa]

[Pi]

[PoSt]

[RC]

[Re]
[Ri]

[Ro1]

[Ro2]

[Rul]

[Ru2]

[Ru3]

[Ru4]

[Rub5]

[Ru6]

[Ru7]

Ogata, Y.: The stability of the non-equilibrium steatgtes. Commun. Math.
Phys.245 577 (2004).

Ohya, M., Petz, D.Quantum Entropy and its Us&pringer-Verlag, Berlin
(1993).

Pais, A.:"Subtle is the Lord...", The Science and Life of Albert Eirst
Oxford University Press, Oxford (1982).

Pillet, C.-A.: Quantum dynamical systems and their Kigtdtes. Volume |
of this series.

Powers, R. T., Stormer, E.: Free states of the caabamticommutation
relations. Commun. Math. Phys6, 1 (1969).

Rondoni, L., Cohen, E.G.D.: Gibbs entropy and irreildesthermodynam-
ics. Nonlinearityl3, 1905 (2000).

Rey-Bellet, L.: Open classical systems. Volume |l a§theries.

Rideau, G.: On some representations of the anticomtimntaelations. Com-
mun. Math. Phys9, 229 (1968).

Robinson, D.W.: Return to equilibrium. Commun. Mafthys. 31, 171
(1973).

Robinson, D.W.: C*-algebras in quantum statistical mechanics.(i-
algebras and their Applications to Statistical Mechanicsl@uantum Field
Theory (D. Kastler editor). North-Holand, Amsterdam (1976).

Ruelle, D.: Natural nonequilibrium states in quantstatistical mechanics.
J. Stat. Phys98, 57 (2000).

Ruelle, D.: Entropy production in quantum spin syssei@ommun. Math.
Phys.224, 3 (2001).

Ruelle, D.: Topics in quantum statistical mechaniod aperator algebras.
Preprint, mp-arc 01-257 (2001).

Ruelle, D.: Smooth dynamics and new theoretical ideasonequilibrium
statistical mechanics. J. Stat. Ph9§, 393 (1999).

Ruelle, D.: Extending the definition of entropy to ngnéibrium steady
states. Proc. Nat. Acad. Sci. USA0, 3054 (2003).

Ruelle, D.: A remark on the equivalence of isokinetitiasoenergetic ther-
mostats in the thermodynamic limit. J. Stat. PHy30, 757 (2000).

Ruelle, D.: Conversations on nonequilibrium physigth an extraterrestrial.
Physics Toda7, 48 (2004).



66 Aschbacher, Jak&j Pautrat, Pillet

[RS] Reed, M., Simon, B.Methods of Modern Mathematical Physics, I. Func-
tional Analysis London, Academic Press (1980).

[Sp] Spohn, H.: An algebraic condition for the approach tailgrium of an open
N-level system, Lett. Math. Phyg, 33 (1977).

[Ta] Takesaki, M.:Theory of Operator Algebras Springer, New-York (1979).

[TM]  Tasaki, S., Matsui, T.: Fluctuation theorem, noneiiprilim steady states and
MacLennan-Zubarev ensembles of a class of large quantutansgsFun-
damental Aspects of Quantum Physics (Tokyo, 2001). QP—R@ntm
Probab. White Noise Anall,7, 100. World Sci., River Edge NJ, (2003).

[VH1] van Hove, L.: Quantum-mechanical perturbations igiyrise to a statistical
transport equation. Physi@d, 517.

[VH2] van Hove, L.: The approach to equilibrium in quanturatsttics. Physic23,
441.

[VH3] van Hove, L.: Master equation and approach to equliforfor quantum sys-
tems. InFundamental problems in statistical mechanmsmpiled by E.G.D.
Cohen, North-Holand, Amsterdam 1962.

[WW] Weisskopf, V., Wigner, E.: Berechnung der natirlicheimienbreite auf
Grund der Diracschen Lichttheorie. Zeitschrift fir Phy8# 54 (1930).



