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SEQUENTIAL MULTIDIMENSIONAL SPECTRAL ESTIMATION 
 

RAMI KANHOUCHE1 
June 14, 2005 

 
 
 

Abstract-By considering an empirical approximation, and a new class of operators that we will call 
walking operators, we construct, for any positive ND-toeplitz matrix, an infinite in all dimensions matrix, 
for which the inverse approximates the original matrix in its finite part. A recursive hierarchical algorithm 
is presented for sequential dimension spectral representation. A positive comparison in calculus cost, and 
numerical simulation, for 2D and 3D signals, is also presented. 
 

Résumé-En considérant une approximation empirique et une nouvelle classe des opérateurs qu’on appèle 
les opérateurs « Walking », on arrive à construire, pour toute matrice positive ND-Toeplitz, une matrice 
infinie dans toutes les dimensions, et pour laquelle l’inverse; est une approximation de la matrice originale 
dans sa partie finie. L’algorithme hiérarchique récursif qu’on présente produit une estimation séquentielle 
de la puissance spectrale multidimensionnelle. On montre aussi une comparaison positive dans le coût de 
calcul par rapport à la méthode de Capon, et des simulations numériques pour des signaux 2D, et 3D. 

I Introduction 

Lot of work has been done in the past in the domain of spectral analysis. As a basic 
mathematical problem giving solutions to many physical systems, it remains not a 
totally resolved problem in its multidimensional aspect. While the foundations of the 
theory were established by [11],[12], a very series of important advances in the field 
were achieved, especially, the connection to the information theory [13], by the 
introduction of the spectral maximum of entropy principle in [1]. Also the connection 
to an optimized Toeplitz linear system was made in [10] and [9]. In the two 
dimensional case, and more generally in the multidimensional case, actually, and 
contrary to the correlation matching, and maximum of entropy criteria achieved in the 
1D case, two algebraic methods are used. Each got its advantage and disadvantage. 
The first method is what we can call the quarter-plan forced autoregressive filters [7], 
and the second is the Capon Minimum variance method [6],[15]. While the Capon 
estimation provide a good stable estimation; it got the disadvantage of high calculus 
coast, on the other hand the quarter-plan method follows an unreal model2, and for 
that suffers from high instability with order elevation. In this text we are proposing a 
method that is less costly than the Capon method, and far more stable than the 
quarter-plan autoregressive estimation. The work done and the proposed 
approximation depend highly on the previous insight achieved in [8] and [14]. 

                                                 
1 PhD Student at Lab. CMLA, École Normale Supérieure de Cachan, 61, avenue du Président Wilson, 
94235 CACHAN Cedex, France.Phone: +33-1-40112688, mobile: 33-6-62298219, fax: +33-1-
47405901.E-mail : rami.kanhouche@cmla.ens-cachan.fr, kanram@free.fr.  
Web: http://www.cmla.ens-cachan.fr/Utilisateurs/kanhouch 
2 Polynomial’s roots are not forcefully inside the unit circle. 



Rami KANHOUCHE 

2 

II Multidimensional Toeplitz Characters and Spectral Block Structure 

For a multidimensional signal ( ) , dx t t ∈ � , we will define the γ order correlation 

matrix, ( )d
γ +∈ � as  

( ) ( )( )( ):
H

R E X t X t=  
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As far as this paper is concerned we will be only dealing with the case where the 
correlation matrix admit a toeplitz nature in all dimensions, in other words, it is 
d time toeplitz, so it is also adequate to represent it as an operator of a d dimension 
correlation signal ( )c t so that  

 ( ) [ ] ( ), , ,
d

c t t γ γ γ +∈ ∈ − ∈� � ,  

 ( ) ( ) ( )*

dn

c t x n t x n
∈

≡ +∑
�

 

and we will write  

( )( )R R c γ=  which is of size 
1

0

d

i
i

q γ
−

=

=∏ . 

It is also well known, and according to Kolmogorov’s relation [12]  that  

( )
( )

[ ] ( ) ( )
2

. .

1

1 .
2

T T

dd

jw n jw t
d

n

c t x n e e dw
π

−

∈=

= ∑∫
��

� . 

By considering Ω , a redistribution of the dimensions nesting, such that  
( ){ }0 1 1, , , : , ,0 1d k l l l d−Ω ∈ Ω Ω Ω Ω ≠ Ω ∀Ω ≤ Ω ≤ −…  

we will define   
1

0

0
:

1 0

i

l

il

if l
q

if l

γ
−

ΩΩ
=

 ≠= 
 =

∏
 

Of course Ω is invertible in the sense that ( )1
k l l k−Ω = ⇒ Ω = . 

 
Definition 1.We will define the walking operator as 
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( ) [ ] [ ] ( ) ( )

( )( ) ( )( ) ( )( )1 1 1
1 1 1

, ,

0 0 1 1 1 1 0 1 10 1 1

:

( )
i j i j

d d d d

W M M M

i q i q i q i q i q i q

′ ′Ω→Ω Ω→Ω

− − −

′Ω→Ω Χ Χ

′ ′ ′ ′Ω→Ω Ω Ω Ω Ω Ω Ω
− − −′ ′ ′Ω Ω Ω Ω Ω Ω −

→

Χ + + = + +… …

 

where [ ] ( ) ( )
*

0 1 1, , ,0
d

d k ki i i i γ− Ω∈ ≤ ≤… � . 
 
From a basic point of view, the walking operator corresponds to the convention used 
in the relation defining the vector X, but, as we will see later, it represents also a very 
important constraint on the degree of liberty of the correlation matrix, and eventually 
its inverse. 
 

Definition 2. We call for any ( )d
t +∈ � , t-block matrix any matrix of size 

1

0

d

i
i

t
−

=
∏ . 

A d-block matrix M can be indexed by the virtue of some dimensions nesting Ω  
according to  

0 0 1 1 1 1 0 0 1 1 1 1d dM i q i q i q j q j q j qΩ Ω Ω Ω Ω Ω
− − − −   + + + +   … … , ( ) ( )0 ,0l ll li jγ γΩ Ω≤ ≤ ≤ ≤ . 

 
Definition 3. A matrix admits ( ), ,uγ Ω -toeplitz character when it is γ -block 
matrix and realize the following  
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Definition 4. In the case that an γ -block matrix contains more than one toeplitz 
character, such that it is ( ) ( ) ( )0 1 1, , , , , , ,su u uγ γ γ −Ω Ω Ω… , toeplitz character, we will 

call it an ( ), ,uγ Ω -s-toeplitz character matrix, with u equal in that case to 

[ ]0 1 1, , su u u −… . 
 
According to Definition 3 we can index the matrix elements using the notation 

( )0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1u u u u u u u d u u dM i q i q i q j q j q i q k i q i q j q j qΩ Ω Ω Ω Ω Ω Ω Ω Ω Ω
− − − − + + − − + + − −       + + + + + +       … … … …

 To simplify the notations we will write it as 

( ) ( )21 1 1 * 1
0 1 ,

yu u s d h y h y y
u u s h hM b d b b dΩ − + − + − + −

+ +    ∈ ∈    � � , 
where for 0s >  the matrix is s-toeplitz characters.  
 
Proposition 1. ′∀Ω , any ( ), ,uγ Ω  toeplitz character matrix can be transformed 

into ( ), ,uγ ′ ′Ω  toeplitz character using the walking transformation ( )W M′Ω→Ω , and 

we have ( )1
uu −′ ′= Ω Ω . 

 
Theorem 1. For any full rank matrix ( ), ,uγ Ω -s-toeplitz character matrix, 

( )0

0 1 1

1
0 , , ,

s

u
u u uM b t t t

−

−Ω    … , with [ ],
iut ∈ −∞ ∞ , the inverse matrix iM is equal to  
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( ) ( ) ( ) ( ) ( )
0 1 1 0 1 1

1
1, , , , , , .

2

T T
u u

s s
u

jw t jw l
u u u u u us
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iM l l l M t t t e e dw
π− −

−
−Ω Ω 

=  
 
∑∫… …� . 

PROOF. The proof is very connected to signal processing theory, with the 
difference of the signal being a matrix –or a block- instead of a point value. In 
the first part the matrix M Ω , can be seen as a block convolution operator. In 
the effort to simplify the algebra representation of this operator, we will take a 

continuous ordering of a half of the complex region 
1 1s+ =� as iw , and with 

the same manner, we will consider for the time space, a discrete numbering, of 
the half also, as ik , both ik  and iw are eventually both symmetric around zero.  

It is well known fact that in the case where s d= for ( )0 1 1
, , ,

su u uM t t t
−

Ω
… , the 

convolution operator can be represented as  
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H

d
dw C Cλ
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where λ is the eigenvalues diagonal matrix defined as  
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This is can be inferred directly, as we said, from Linear Time Invariant system 
theory. More precisely for a given signal vector v , the inverse transformation 
can be written as  

( ) ( )
1 1

2 2
H H

d d
dw dwx Mv C C v v M x C C xλ λ
π π

− −= = ⇔ = = . 

On the other hand we can directly conclude the exactness of the previous 
representation by the fact that  
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( ) ( )
( )

,

11 .
02 2

jw i jH
d d

wi j

if i jdw CC e dw
if i jπ π

−
  == =  

≠   
∫� . 

From which, we got 
( )2

H
d

dw CC
π

= 1 . 

In the case that s d< , then we will note : d sh q Ω
−= as the non-toeplitz part 

matrix size. As a counter part to the multidimensional Fourier transform 
vector in the previous definition we will define the block multidimensional 
Fourier transform vector as  

( ) ( )
1 1

, : 0 0 0 0 0 0 0 0
T T

i ii

Tt h t t h t
jw k jw kw tF e e−∞ ∞

− − − −
− −

 
 =
  

����� ����� ����� �����

… … … … … , 

0 1t h≤ ≤ − . By considering the Block diagonal matrix sλ , which is by 

definition do contain the matrix value ( ) ( )
0 1 1
, , ,

T
i u

s

u

jw t
u u u

k
M t t t e

−

−Ω 
 
 
∑ … , at the 

diagonal index iw , it is simple to prove that  

( ) ( )
2

H
s s ss

dw C M Cλ
π

Ω=   

where ,0 ,1 , , 1 ,w w w h w h w h
sC F F F F F−∞ −∞ −∞ ∞ ∞− =  … … . Next, by observing 

that sC is full rank, we prove that sλ is full rank also, and that proves the 
theorem. 

III Multidimensional Extension Approximation 

Our approximation that we are proposing in this  depends strongly on the previous 
work done in the treatment of the generalized reflection coefficients [8], and [14], to 
better explain this extension we start with the 1 dimensional case. For a positive 
definite toeplitz matrix ( )NM l , : 1, , 1l N N= − + −… , we define the polynomial 

1Np − , 1Nq − , as the solution for the linear system ( ) 1
0

N NM l p e− = , ( ) 1
1

N N
NM l q e−

−= .  
These solutions in fact can be obtained recursively according to  

1

1

0

0

N
N

N N

p
p

q
σ

−

−

 ′ �  �
′ = + �  �′ �  � �

.  

Where v′ is v  normalized by the first value for Np , and the last for Nq , σ is the 
famous reflection coefficient. Putting the reflection coefficient to zero is equivalent to 
the existence of a positive definite matrix ( )1NM l+ , which coincides with ( )NM l , so 

that ( ) ( )1 , 1, 1N NM l M l l N N+ = = − + −… . By repeating the procedure until infinity. 
We obtain that  

( ) 1 1 . HM l P Pρ
−∞ −  =    (1) 
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With 

1

1

1

N

N

N

p

p
P

p

−

−

−

 ∞
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∞  
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And ( ) 1
0

N NM l p eρ−′ = . 

In the multidimensional case, the correlation matrix ( )0 1 1, , , dM l l lΩ
−… , 

1 11 : 1 , , 1
d ddl γ γ

− −− Ω Ω= − + −…  can be always considered as a block toeplitz matrix and 
eventually admit the same extension as the 1 dimensional case, with the difference of 

1Np − being a matrix-vector with size 1d dq qΩ Ω
−× , the main constraint in this case is that 

the new generated blocks [ ][ ] ( )1 1, : ,d dM l lΩ
− − = −∞ ∞… , for 

11 1
ddl γ

−− Ω> − are not 

[ ] [ ] [ ]( )0 2 0 2 0 2, , , , , ,d d dγ γ − − −Ω Ω Ω Ω… … … -toeplitz character matrices. The 
approximation that we are proposing is to neglect this constraint and to proceed 
according to, in a sequential manner across each dimension. The foundation for this 
approximation is –as we will introduce in future work- that the block polynomial that 
preserve the internal toeplitz structure of the new extended matrix, do in fact coincide 
with the finite size polynomial in its first dqΩ line values, while for lines going from 

dqΩ  to infinity, we observe far more less magnitude values.   
 
Theorem 2. The multidimensional extension of the correlation matrix can be 
approximated in a sequential way according to the following  
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where  
( ) ( ) ( )1 1 1
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x x x xM b u u u R b u u u u− − − − −

− −     =     … …  (3) 
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1 1
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0,1, , , 1, 2, , 1 0,1 , 1, 1, 2, 1, 1
1 0 1 2 1

, ,
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∞ ∞ ∞ ∞ ∞ ∞
− − − − − −

+ ∞ ∞ ∞ ∞ ∞ ∞
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PROOF. Starting from 1x = , ( )( ) 1
1

0 0 2 1: , , dR R c γ γ γ
−

−
−

  =    
… , relation (3) 

forwards the block-vector xp with columns of size ( )0,1 , 1, 1, 2, 1,x d d d x d x
d xq − − − − + −

−
… … , which 

is next applied according to the form (1). By accepting the proposed 
approximation, we assume that form (1) represents the inverse of ND-Toeplitz 

matrix ( )( )0 2 1, 1 2, , , ,d x d d d xR c γ γ γ γ γ γ∞ ∞ ∞
− − − − −  … … , with infinite dimension 

according to the dimension d x− , and - by construction- coincide with the 

original matrix in its finite part. From that, and by Theorem 1, the inverse can 

be written according to the form (2). By Advancing x , and by Proposition 1, 

relation (4) permits us to continue the extension on the next dimension. 
Hence our proof is completed. 

IV Sequential Multidimensional Spectral Estimation Algorithm  

Theorem 2 presents an analytic representation of the spectral estimation and that is 

by taking advantage of both the Theorem 1 and the proposed approximation. From 
numerical point of view, we need more finite simple Algorithm. On the contrary of 
the 1 dimensional case, in the general case, there is no known finite time 
representation for the proposed estimation, on the other hand even in the 1 
dimensional case the numerical representation of the estimation is obtained always as 

a Fourier series of the prediction polynomial i.e. ( ) 21

0

jwk
k

k

C jw

p e
γ

γ

ρ
−

=

=

∑

 

And w is taken to a large finite number of points on the spectral circle, that is in an 
effort to approximate the continuous field of values.  
By examining relation (2), and replacing by (3) starting from x d= , and descending 
in the reverse order of Theorem 2, we find that the spectral inverse of correlation 

signal ( )1 2 0, ,d dc γ γ γ∞ ∞ ∞
− −  … can be obtained by a finite series of block exponential 

sum, with a diminishing Block size at each step. According to the previous discussion, 
the algorithm takes the following form: 
 

1. Calculate the inverse of the correlation matrix, 
( ) ( )

10,1, , 11
0 0 1 1: , , ,d

dR R l l l
−−−

−
 =  

…

… , 

 set 1x =  
 set 

( ) 1
0 0 0 1 1 2 2 1 0 0 1 1 2 2 1: . 0.d d d d d dG k R i q i q i q k q j q j q j q q− Ω Ω Ω Ω Ω Ω Ω Ω

− − − − − −   = + + + + + +   … …

 

2. Apply relation (1) ( ) ( ) ( )
1

1 1 1
0

, ,
x

d xjkw
d d x d d x

k
M w w G k w w e

γ
−

−

− − − − +
=

=∑… …  

3. Set ( ) ( ) ( ) ( )1
1 1 1, , 0 ,H

d d x d d x d d xG w w M w w G M w w
−

− − − − − −′  =  … … …  
4. if ( x d= ) { 
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stop  
} 
else  { 
set  

( )( ) ( )1 0 0 1 0 0 1 1, : . 0. ,d d x d x d x d d xG k w w G i q k q j q q w wΩ Ω Ω Ω
− − − − − − − −′    = + +   … … … …

 
set 1x x= +  
go to 2 
} 

V Numerical calculation cost 

In this part we will try to shed the light on the numerical efficiency of the algorithm. 
For that, we will measure the number of operations needed to obtain the spectral 
estimation over an ND spectral grid with size 

1 2 0
: , ,

d dw w w wC C C C
− −

 =  … , where 
iwC is 

the number of points in the i  dimension. In the following discussion we will omit the 
Step 1 from our Calculus Cost, since that 1

0R− , and more precisely ( ) , 1G k x =  can be 
obtained in different ways, like in [4], or [5], the thing that is irrelevant to the 
estimation method. 
From the algorithm’s step 2 and Step 3 we can write the number of operations needed 
at each : 1t d x= − + as 

( ) ( )
1

3
1 1

0

3
2 d f

d t

t t t w
f

q q q C
− −

−

− −
=

 +  
∏ , 

The total sum is equal to the sum from t d= , and down until 1t =  , which can be 
expressed as  

( ) ( )
1

3
1 1

1 0

3
2 d f

d td

t t t w
t f

q q q C
− −

−

− −
= =

  +    
∑ ∏  

Figure 1 graphs the above relation in function of 
0 1 1dw w wC C C

−
= = =… , with values 

taken as 0 1 1 10dγ γ γ −= = =… , and 5d = . Also for the same values Figure 2 
represents the number of operations needed by Capon Estimation, which is equal to 

( )
1

2

0
f

d

d w
f

q C
−

=
∏ . We see clearly a very good advantage using the proposed algorithm, 

from a calculus coast point of view. 

 
Figure 1 
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Figure 2 

VI Numerical simulations and discussion 

In an effort to evaluate the proposed estimation we will present a three-dimensional 
test signal ( )0 1 2, ,c w w w , defined in its spectral composition as zero everywhere 

except for ( )0.1,0.3,0.7 1c = , ( )0.1,0.6,0.2 1c = , ( )0.6,*,* 1c = . Next, the signal was 
plunged in a white noise of variance 0.1.  In our simulation we took our estimation on 
a grid of equal size in all dimensions, 10

iwC = , and the same for the correlation 
matrix order, having a uniform value of 3iγ = . Figure 3-Figure 22 show a series cuts 
in the cube for the simulated signal, with the noised spectrum on the left and the 
calculated estimation on the right. 
In Figure 23, the graph representing the correlation matching accuracy of the 
proposed estimation for a two dimensional signal was also presented. The value 
present in the graph is the relative difference between the original correlation values 

,k lr , and the estimated ones ,k lr� , that is , ,

,

k l k l

k l

r r
r
−�

. 

From The presented Figures, and from other observed numerical simulations we 
found that the proposed algorithm provide a good estimation of the simulated signal, 
and contrary to the quarter-hyper plan filters proposed for the 2D case by [3][2], it 
enjoys a high degree of stability when augmenting in the Correlation matrix order iγ .  
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