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Abstract

Today, large scale parallel systems are available at low cost. Many
powerful such systems have been installed all over the world and the num-
ber of users is always increasing. The difficulty of using them efficiently is
growing with the complexity of the interactions between more and more
architectural constraints and the diversity of the applications. The design
of efficient parallel algorithms has to be reconsidered under the influence
of new parameters of such platforms (namely, cluster, grid and global
computing) which are characterized by a larger number of heterogeneous
processors, often organized in several hierarchical sub-systems. At each
step of the evolution of the parallel processing field, researchers designed
adequate computational models whose objective was to abstract the real
world in order to be able to analyze the behavior of algorithms.

In this paper, we will investigate two complementary computational
models that have been proposed recently: Parallel Task (PT) and Di-
visible Load (DL). The Parallel Task (i.e. tasks that require more than
one processor for their execution) model is a promising alternative for
scheduling parallel applications, especially in the case of slow communi-
cation media. The basic idea is to consider the application at a coarse
level of granularity. Another way of looking at the problem (which is
somehow a dual view) is the Divisible Load model where an application
is considered as a collection of a large number of elementary – sequential
– computing units that will be distributed among the available resources.
Unlike the PT model, the DL model corresponds to a fine level of gran-
ularity. We will focus on the PT model, and discuss how to mix it with
simple Divisible Load scheduling.

As the main difficulty for distributing the load among the processors
(usually known as the scheduling problem) in actual systems comes from
handling efficiently the communications, these two models of the problem
allow us to consider them implicitly or to mask them, thus leading to more
tractable problems.

We will show that in spite of the enormous complexity of the general
scheduling problem on new platforms, it is still useful to study theoretical
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models. We will focus on the links between models and actual implemen-
tations on a regional grid with more than 500 processors.

1 Introduction

In the Parallel Processing area, scheduling is a crucial problem for determining
the starting times of the tasks and the processor locations. Many theoretical
studies were conducted [5] and some efficient practical tools have been devel-
oped for old generation shared-memory systems [23, 37] or for loosely coupled
distributed memory parallel machines made of homogeneous processors and so-
phisticated interconnection networks [20].

Scheduling in modern parallel and distributed systems is much more dif-
ficult because of new characteristics of these systems. These last few years,
super-computers have been replaced by collections of large number of standard
components, physically far from each other and heterogeneous [13]. This trend
is clearly visible in the data provided by the Top500 organization [35], where
the number of clusters and constellations started from a few percent in 1999 to
reach almost three quarters of the 500 most powerful computer systems today.

The need of efficient algorithms for managing these resources is a crucial
issue for a more popular use. Today, the lack of adequate software tools is
the main obstacle for using these powerful systems in order to solve large and
complex applications.

Our contribution in this work is to study the adequateness of models to ac-
tual implementation on large scale parallel platforms. We focus on two existing
models underlying resource management systems.

In the next section, we review some classical theoretical models, to introduce
the platform model we are interested in. In the following section we present two
recent models that have been designed for specific applications/platforms pairs,
namely Divisible Load, which considers very regular fine grain applications on
complex platforms and Parallel Tasks, which considers complex applications
on homogeneous platforms. In Section 4, we detail several interesting criteria
for the resource management problem. Then we summarize in Section 5 some
theoretical results on Parallel Tasks to put in perspective the experiments in
Section 6. In Section 7, we discuss a framework for extending these results to
general light grids. Finally, some concluding remarks are provided in Section 8.
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2 Parallel Processing Today

2.1 Theoretical Models

PRAMs is the oldest abstraction of parallel machines [21]. Many extensions
have been proposed to capture more realistic features like asynchronous, large
grain computations, and communications. A comparative survey can be found
in [2].

The classical scheduling algorithms that have been developed for parallel
machines of the nineties are not well adapted to new execution platforms, as
the most important factor is the influence of communications.

The first attempt that took into account the communications into computa-
tional models was to adapt and refine existing models into more realistic ones
(delay model with unitary delays [27], LogP model [12]). However, even the
most elementary problems are already intractable [36], especially for large com-
munication delays. The other characteristics of the new execution platforms are
heterogeneity of processors or communication media, several levels of hierarchy
(from SMP nodes to clusters and grids), versatility of the system components
(some nodes can appear or disappear, new jobs can be created at any moment
depending of the results of a job, etc.).

Starting from the new execution models, we look for practical tools for effi-
cient resource management. We consider the notion of light grid as a collection
of few clusters in a same geographical area. It is an intermediate step for a better
understanding of general grids and global computing. We propose a pragmatic
approach which is based on several years of experience using a 225 PC cluster at
IMAG and the regional grid CiGri, which gather more than 500 machines [10].

2.2 Description of the Platform Model

The target execution platform that we consider here is a few clusters composed
each by a collection of a reasonable number of SMP or simple PC machines
(typically several tenths or several hundreds of nodes). Such a system may be
highly heterogeneous between clusters (different kinds of processors, different
numbers of processors, different Operating Systems, etc.), but weakly hetero-
geneous inside each cluster (different generations of processors running under
the same Operating System with different clock speeds). No specific topology
is assumed, but the interconnection network is fast and may be hierarchical.

The submissions of jobs is done by some specific nodes by the way of several
priority queues. No other submission is allowed. Each cluster is administrated
by a separate system administrator but of course, ad-hoc cooperative agreements
have been established between resource owners.
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Figure 1: Synthetic view of a light grid.

2.3 How to Manage the Resources?

There is no global consensus today for an universal way of looking at the resource
management problem on grids. Adequate computational models have to be
developed for designing and analyzing scheduling algorithms.

The delay models [29], based on explicit handling of communications, often
cannot be used because of their intrinsic intractability. Two alternative models
have been proposed, namely the Divisible Load model (DL) and the Parallel
Tasks model (PT).

We believe that there is no easy way for determining a standard solution for
managing the resources. As the objectives may be different from one community
to another, it seems impossible to formalize the global problem as a classical
combinatorial optimization problem. Thus, studies on simplified theoretical
models lead to well-founded algorithms with some guaranties, which can be used
in actual settings with satisfying results even if the global theoretical bounds
do not hold.

3 Alternative Models

3.1 Divisible Load – DL

A Divisible Load can be seen as a (usually large) set of computations that can
be partitioned in every possible way, each part being completely independent of
the other parts. This model was first introduced in [8] for the processing of big
data files on arrays of processors.

As each part has to be completely independent, the jobs modeled with the
DL model cannot have data dependencies or communication within the tasks.
With the partitioning property, the share sent to a processor may be very small
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with respect to the total work (fine grain). Since the introduction of this model,
many kinds of applications have been considered as Divisible Loads, such as
parametric executions or image and signal processing.

The DL model is more interesting than precedence constrained PT tasks for
heterogeneous platforms and slow communications, as no communications occur
during the computation of the task (each share is independent). The difficulty
of scheduling lies in the distribution of the task to the available processors. This
distribution can be made in one, several rounds2 or dynamically with a work
stealing strategy [6].

Many kinds of processor topologies have been studied such as homogeneous
trees [9], heterogeneous bus [34] or stars [7] for the single round problem. Simple
problems as the single round distribution on processors connected by a common
bus are polynomial, but the complexity becomes quickly NP-hard with more
general network topologies.

At the end of the computation, if we are for example searching something in
a database there is only one processor which has to send back data. However,
if all the data processing produces output, the communications gathering the
results can be done as a mirror image of the data distribution. Unfortunately,
mirrored schedules are usually not optimal, even if the original schedule which
is mirrored is optimal.

With several rounds of communications, a common approach consists in
defining asymptotically optimal algorithms, where the makespan gets closer
to the optimal as the number of rounds increases (as in [38]). In order to
achieve this result, the authors of [4] maximized the throughput3 to get a simple
distribution scheme which is repeated at will.

3.2 Parallel Tasks – PT

Informally, a Parallel Task (PT) is a task that gathers elementary operations,
typically a numerical routine or a nested loop, which contains itself enough
parallelism to be executed by more than one processor.

We consider PT as independent jobs (applications) submitted in a multi-user
context. Usually, new PT are submitted at any time (on-line). The time for
each PT can be estimated or not (clairvoyant or not) depending on the type of
applications. We will consider mainly the first case in this paper: we have an
estimation of the characteristics of the submitted jobs (expected running times,
parallel profile – at least qualitatively, etc.).

The PT model seems particularly well-adapted to grid and global computing
because of the intrinsic characteristics of these new types of platforms: namely,
large communication delays which have a smaller impact since the granularity is
increased, moreover communications are considered implicitly and not explicitly

2A round is a time interval in which every processor can get at most one chunk of load.
3A short definition of throughput is given in Section 4.
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as in all standard models leading to more robust algorithms, finally the hierar-
chical character of the execution platform which may be naturally expressed in
the PT model as discussed in [19] (an extra constraint on the allotment of tasks
is added to use neighbor processors).

We usually distinguish between three types of Parallel Tasks (PT):

• Rigid jobs when the number of processors to execute the PT is fixed a
priori. In this case, the PT can be represented as a rectangle in a Gantt
chart. The allocation problem corresponds to a strip-packing problem
[28].

• Moldable jobs when the number of processors to execute the PT is not
fixed but determined before the execution. As in the previous case this
number does not change until the completion of the PT.

• Malleable jobs when the number of processors may change during the
execution (by preemption of the tasks or simply by data redistribution).

For historical reasons, most of submitted jobs are rigid. However, intrinsi-
cally, most parallel applications are moldable. An application developer does
not know in advance the exact number of processors which will be used at run
time. Moreover, this number may vary with the input problem size or number
of available nodes. This is also true for many numerical parallel libraries. The
main restriction is the minimum number of processors that are needed because
of time, memory or storage constraints.

The main restriction in a systematic use of the moldable property is the
need for a practical and reliable way to estimate (at least roughly) the parallel
execution time as function of the number of processors. Most of the time, the
user has this knowledge but this is an inertia factor against the more system-
atic use of such models. Most parallel programming tools or languages have
some malleability support, with dynamic addition of processing nodes support.
Modern well-known advanced parallel programming environments, like Condor,
Globus or Mosix implement advanced capabilities, including resilience, preemp-
tion, migration, or at least the model allows us to implement these features.

Malleability is much more easily usable from the scheduling point of view
but it requires advanced capabilities from the runtime environment, and thus
restricts the use of such environments and their associated programming models.
In the near future, moldability and malleability should be used more and more.
We will not consider malleability here, but focus on moldability as a first step.

4 Optimization Criteria

The main objective function used historically is the makespan. This function
measures the ending time of the schedule, i.e., the latest completion time over
all the tasks. However, this criterion is interesting only if we consider the tasks
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altogether and from the viewpoint of a single user. If the tasks have been
submitted by several users, as it is the case for grid computing, other criteria
have to be considered. Let us introduce some notations and review briefly
various possible criteria usually used in the literature.
Notations and execution constraints

A processor executes only one task at a time. Any task i is scheduled without
preemption from time σ(i) on nbproc(i) processors, with an execution time
pi(nbproc(i)). nbproc can be a vector in the case of specific allocations for
heterogeneous processors. The task i completes at time Ci equals to σ(i) +
pi(nbproc(i)). It is scheduled after its release date ri and the scheduler may try
to schedule it before its (mandatory or not) due date di. All values are assumed
to be positive.

Criteria

• Minimization of the makespan (Cmax = max(Ci)). This criterion is well-
known as an algorithm was proposed in 1966 with constant approximation
ratio [24]. The main idea of the heuristic is to realize a trade-off between
the total amount of work to execute and the critical path. The constrained
version of Graham’s algorithm can be adapted to parallel tasks.

Optimizing this criterion corresponds to maximizing the utilization of the
computing resources in a global point of view. However it is probably
insufficient in multi-user environments. Moreover, in the off-line case this
is equivalent to maximizing the throughput criterion in the makespan
interval.

• Minimization of the average completion time (ΣCi) [32, 1], often written
minsum, and its variant with weights (ΣωiCi). Giving weights to tasks al-
lows the users or system administrators to define priorities between tasks.
For instance, big weights can be assigned to urgent tasks in order to re-
duce their completion times. For example, when a large task and many
small tasks have to be scheduled concurrently, delaying the large task in
order to compute the small tasks first is generally a good solution, because
the large task is not delayed too much whereas the improvement on the
completion time of the small ones is important.

• Minimization of the mean stretch (defined as the sum of the difference
between completion times and release dates: ΣCi − ri). In an on-line
context it represents the average response time between the submission
and the completion. Of course, if ∀i, ri = 0, for example in a batch
context, it is equivalent to ΣCi. Additionally, the value of stretch is the
value of minsum minus the constant

∑
ri. Thus the optimal solution

of one criterion is also the optimal solution of the other. Nevertheless,
the performance ratios for both criteria for an algorithm are not as easily
comparable. The performance ratio of an algorithm on stretch is also the
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performance ratio of this algorithm for minsum, but the inverse is not
true.

• Minimization of the maximum stretch (i.e. the longest waiting time for
a user). This criterion allows us to obtain guaranties close to “real time”
systems with rejection. It does not seem to be completely relevant in grid
computing.

• Maximum throughput (or steady state) defined as the maximum number
of elementary tasks to execute in a given amount of time or for asymptot-
ically long times. It is well-suited for some types of jobs like parametric
computations [4]. This criterion is also useful for problems with rejection,
e.g. with mandatory due date.

• Tardiness. Each task is associated with an expected due date and the
schedule must minimize either the number of late tasks, the sum of the
tardiness (

∑
(Ci − di) for all late tasks i) or the maximum tardiness

(maxi(Ci − di)). Minimizing the number of late tasks may produce star-
vation by delaying forever one particular task, thus it should be used with
great care (for instance in a multi-criteria analysis, together with another
criterion). The sum of tardiness and the maximum of tardiness are close
to minsum and makespan but introduce in addition a partitioning of the
tasks between late and not late tasks, which add an extra cost.

• Fairness. This criterion is rather a qualitative measure which is difficult
to define accurately and numerous definitions have been proposed. Most
of the time, the users want to share evenly computation time and/or com-
puting resources. However sometimes the owner wants to fully control his
computing resources whenever he needs, maybe even killing all jobs from
non-owners. In this scenario, non-owners use the computing resources
only when they are not used by the owner. Applications inspired from
“Seti@home” are typical examples.

Another way of looking at the fairness is to consider several users sharing
a single computing resource, without a privileged user as the owner. The
fairness is then a fair division over time of the resource.

Other criteria may include rejection of tasks or normalized versions (with
respect to the workload) of the previous ones.

5 Some Results about Parallel Tasks

We concentrate in this section on the PT model. We will show some interesting
results that can be combined together in order to construct realistic scheduling
algorithms.
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In the PT model, communications are taken into account via a global penalty
factor that reflects the overhead for data distributions, synchronization, preemp-
tion or any extra factors coming from the management of the parallel execution.
The penalty factor implicitly takes into account some constraints, when they
are unknown or too difficult to estimate formally. It can be determined by em-
pirical or theoretical studies (benchmarking, profiling, performance evaluation
through modeling or measuring, etc.).

We first consider the case of a single cluster. Independent jobs have been
submitted to a file and are ready to be executed. More formally, we consider
the off-line scheduling of a set of n independent moldable jobs on m identical
processors with the objective of minimizing the makespan. Most of the exist-
ing methods for solving this problem have a common geometrical approach by
transforming the problem into 2 dimensional packing problems. It is natural to
decompose the problem in two successive phases: determining first the number
of processors for executing the jobs, then solve the corresponding scheduling
problem with rigid jobs.

5.1 A Good Off-line Approximation Algorithm

We recall briefly the principle on the best known algorithm for solving this
problem [17]. The idea is to determine the job allocation with great care in
order to fit them into a particular packing scheme that is inspired from the
shape of the optimal one.

The MRT algorithm has a performance ratio of 3/2+ǫ [17]. It is obtained by
stacking two shelves of respective sizes λ and λ

2
where λ is a guess of the optimal

value C∗

max. This guess is computed by a dual approximation scheme [26]. A
binary search on λ allows us to refine the guess with an arbitrary accuracy ǫ.

The guess λ is used to bound some parameters on the tasks. We give be-
low some constraints that are useful for proving the performance ratio. In the
optimal solution, assuming C∗

max = λ:

• ∀j, pj(nbproc(j)) ≤ λ.

•
∑

wj(nbproc(j)) ≤ λm.

• When two tasks share the same processor, the execution of one of these
tasks is lower than λ

2
. As there are no more than m processors, less than

m processors are used by the tasks with an execution time larger than λ
2

.

This MRT algorithm is the basis of an on-line algorithm described in the
next section.
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5.2 On-line Batch Scheduling

An important characteristic of the new parallel and distributed systems is the
versatility of the resources: at any moment, some processors (or groups of pro-
cessors) can be added or removed. At the same time, the increasing availability
of the clusters or collections of clusters involved new kind of data intensive ap-
plications (like data mining) whose characteristics are that the computations
depend on the data sets. The scheduling algorithm has to be able to react step
by step to arrival of new tasks and thus, off-line strategies can not be used.
Depending on the applications, we distinguish two types of on-line algorithms,
namely, clairvoyant on-line algorithms when most parameters of the Parallel
Tasks are known as soon as they arrive, and non-clairvoyant ones when only a
partial knowledge of these parameters is available.

Most of the studies about on-line scheduling concern independent tasks, and
more precisely the management of parallel resources. We invite the reader to
look at the survey [31] for more details about on-line algorithms. In this section,
we consider the clairvoyant case, where an estimate of the task execution time
is known.

We first recall a generic result about batch scheduling. In this context, the
jobs are gathered into sets (called batches) that are scheduled together. All
further arriving tasks are delayed to be considered in the next batch. This is
a nice way for dealing with on-line algorithms by a succession of off-line prob-
lems. We will use the result of Shmoys et al. [33] who proposed how to adapt
an algorithm for scheduling independent tasks without release dates (all tasks
are available at date 0) with a performance ratio of ρ into a batch scheduling
algorithm with unknown release dates with a performance ratio of 2ρ.

Now, using the off-line algorithm with a performance ratio of 3/2 + ǫ, it is
possible to schedule moldable independent tasks with release dates with a per-
formance ratio of 3+ǫ for Cmax. The algorithm is a batch scheduling algorithm,
using the previous independent tasks algorithm at every phase.

The makespan criterion does not always have a clear meaning, especially for
very long execution windows. The users usually prefer to have a guaranty that
in average, their jobs are performed in the minimum time.

5.3 Batch Scheduling for Average Completion Time

Scheduling to minimize the average completion times (minsum) is very different
than scheduling to minimize the makespan. Good scheduling algorithms for one
criterion usually have a very big performance ratio for the other criterion. The
single machine problem has a polynomial optimal solution which consists of
sorting the tasks by increasing sizes and scheduling them in this order. In the
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weighted case, where each task is associated to a weight (defining its priority),
the scheduling is done according to the time/weight ratio.

In the off-line multi-processor case, scheduling with batches (or shelves) al-
lows us to return to this simple single machine problem. Each batch has a time
length and a weight (the sum of the weight of their tasks) and finding the opti-
mal order of batches is exactly the single machine problem. Schwiegelshohn et
al. [30] proposed for rigid PTs to use shelves (where all the tasks start at the
same time) filled with tasks of approximately the same length (shelves sizes are
powers of 2). The performance ratio is 8 for the unweighted case and 8.53 for
the weighted case.

The shelves here were just filled with a well-known first fit algorithm. We will
see that this ratio can be improved using more complex scheduling algorithms
within batches instead of stacking tasks on shelves.

5.4 Bi-criteria Analysis

As said before, several criteria could be used to describe the quality of a schedule.
The choice of which criterion to choose depends on the users view of the problem
or the system administrators point of view.

However, one could wish to take advantage of several criteria in a single
schedule. We present here such an analysis for the two most relevant criteria
(which are somehow antagonistic). With the makespan and the sum of weighted
completion times, it is easy to find examples where there is no schedule reaching
the optimal value for both criteria. We can try to study how far the solution of a
schedule is from the optimal one for each criterion. In this section, we present a
specific family of scheduling algorithms for independent on-line moldable tasks.

There exists an approach for obtaining a bi-criteria algorithm starting from
two algorithms for each criterion. It is also possible to design an ad hoc
bi-criteria algorithm just by adapting an algorithm ACmax

designed for the
makespan criterion [25]. This solution is better and is detailed below.

The main idea is to use algorithm ACmax
(with performance ratio ρCmax

on the makespan) as a procedure to build a schedule which has a performance
guaranty on the sum of the completion times. The makespan algorithm ACmax

takes as input a set of (possibly weighted) tasks and a deadline d, and outputs
a schedule of length at most ρCmax

d with as many tasks as possible (or the
maximum weight).

Running this ACmax
algorithm iteratively in batches of doubling sizes (d,

2d, 4d, . . . ) gives a schedule where the total makespan is at most 4ρCmax
C∗

max

as the last batch is smaller than 2ρCmax
C∗

max. The performance ratio on the
sum of completion times is also 4ρCmax

. The technical proofs are in the original
article [25].

The resulting schedule is depicted in Figure 2. The tasks are chosen at each
step among the available tasks, and scheduled in batch of doubling sizes.
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Figure 2: Principle of the bi-criteria algorithm using batches of doubling sizes.

6 Simulation of a Practical Use

Due to several technical constraints, the implementation of the previous algo-
rithm in an actual cluster environment requires to modify it. While we main-
tained the overall structure in batches of doubling sizes, the algorithm used to
pack each batch was changed so as to fit in an environment using the classic
FIFO with backfilling strategy. With this change, (almost)4 all the tasks in one
batch start their execution at the beginning of the batch – which means tasks
are not “piled up” on top of each other, and thus the sum of the allocations of
the tasks do not exceed the number of processors. With such an allocation, the
packing of tasks in a batch is much simpler, and therefore easier to implement
in an actual environment. The downside of this approach is that we have not
been able to keep a performance guarantee for this modified algorithm, although
simulation results show that it has a good average performance.

6.1 Experimental setting

The experimental simulations presented here were performed with an ad-hoc
program. Each experience is repeated 40 times; for each run tasks are generated
in an off-line manner, then given as an input to the scheduling algorithm and
to the linear program solver which computes a lower bound for this instance.
Comparison between the two results yields a performance ratio, and the average
ratio for the whole set of runs is the result of the experiments.

4The exception concerns sequential tasks whose execution times are smaller than half of
the batch length of the batch, which can be placed one after the others.
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The runs were made assuming a cluster of 200 processors, and a number of
tasks varying from 25 to 200. In order to describe a mono-processor task, only
its computing time is needed. A moldable task is described by a vector of m
processing times (one per number of processors alloted to the task). We used
two different classical models to generate the tasks. The first one generates the
sequential processing times of the tasks, and the second one uses a parallelism
model to derive all the other values.

Two different sequential workload types were used: uniform and mixed cases.
For all uniform cases, sequential times were generated according to an uniform
distribution, varying from 1 to 10. For mixed cases, we introduce two classes:
small and large tasks. The random values are taken with Gaussian distributions
centered respectively on 1 and 100, with respective standard deviations of 0.4
and 40, the ratio of small tasks being 70%.

Modeling the parallelism of the jobs was done in two different ways. In the
first one, successive processing times were computed with the formula pi(j) =
pi(j − 1)X+j

1+j
, where X is a random variable between 0 and 1. Depending on

the distribution of X , tasks generated are highly parallel (with a quasi-linear
speedup) or weakly parallel (with a speedup close to 1). Respectively highly
and weakly parallel are generated using gaussian distribution centered on 0.9
and 0.1, and with a standard deviation of 0.2. Any random value smaller than
0 and larger than 1 is ignored and recomputed. According to the usual parallel
program behavior, this method generates monotonic tasks, which have decreas-
ing execution times and increasing work with the number of alloted processors.
For the mixed cases, the small tasks are weakly parallel and the large tasks are
highly parallel.

The second way of modeling parallelism was done according to a model from
Cirne and Berman [11], which relies on an analysis of the behavior of the users
in a computing center.

To evaluate our algorithm, we use a lower bound obtained by a relaxed
linear program as reference. Some simple ”standard” list algorithms are used to
compare the behavior and efficiency of our approach. All the 3 algorithms use
multiprocessor list scheduling [22]. Every task is alloted using the number of
processors selected by [16]. This should lead to a very good average performance
ratio with respect to the Cmax criterion. Only the order of the list is changed
between the three algorithms:

• the first one keeps the order of [16], listing first the tasks of the large shelf,
then the tasks of the small shelf, then the small tasks.

• weighted largest processing time first (LPTF), a classical variant, with a
very good behavior for Cmax criterion; but the tasks are actually sorted
using the ratio between weighted and their execution time.

• smallest area first (SAF), almost the opposite of LPTF, the tasks are
sorted according to their area (number of processors × execution time).

13



The goal is to improve the average performance ratio for the
∑

wiCi

criterion.

In all experiments, the task priority is a random value taken from an uniform
distribution between 1 and 10.

6.2 Comparing to other algorithms

Figure 3 shows the result of the experiments for both criteria using the Cirne
workload model, which tries to emulate real applications. On this figure, our
bicriteria algorithm is named DEMT. We can see that in this setting, our algo-
rithm significantly outperforms the other algorithms for the minsum criterion,
especially for a low number of tasks. This is not true for Cmax, but the difference
is much less important.

When using other workload models, we can make the following observations
(see [15] for more details):

• List algorithms perform always better than our algorithm as far as Cmax

is concerned. This was expected, since our main focus was the
∑

ωiCi

criterion. However, the performance ratio for the Cmax criterion is always
less than 2.

• A workload made only of weakly parallel tasks is the worst case for our
algorithm, which can be explained by the fact that the algorithm spends
a lot of the resources trying to accelerate the completion of small and
high priority tasks. Since they are not very parallel, the gain is too small
and some resources are wasted. However, the performance ratio of our
algorithm is always less than 2 for Cmax, and less than 2.5 for

∑
ωiCi,

even in this worst case scenario.

• On more parallel workloads, our algorithm behaves much better for the∑
ωiCi criterion. It has the best ratio of all algorithms for the higly

parallel workloads, and is only dominated by SAF on the mixed workload.

6.3 Varying Parameters

A natural question that arises when implementing this algorithm is wether dou-
bling the size of the batch at each iteration is a “good” choice. The main idea in
this algorithm is to have batches of exponentially increasing sizes, but the actual
value α by which we should multiply the size of the batch at each iteration is
not fixed. This parameter actually represents a tradeoff between the two criteria
Cmax and

∑
ωiCi. With small values of α, batches stay relatively small at the

beginning, and the algorithm focuses more on scheduling small and high-weight
tasks, thus improving the

∑
ωiCi criterion. On the other hand, large values of

α imply larger batches, so the algorithm focuses more on scheduling efficiently
a high number of tasks – improving on the Cmax criterion.
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A theoretical study was made on this topic (see [18]). As far as worst cases
are concerned, the best value for the

∑
ωiCi criterion is to have α = 2, with

larger values improving Cmax but degrading
∑

ωiCi, and smaller values de-
grading both criteria. However, when considering average behavior rather than
worst case, we observe a similar behaviour, with the limit value being e ≃ 2.718.
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Figure 5: Influence of the α parameter, with mixed workload

To evaluate the influence of this parameter on our implementation of the
algorithm, we conducted a series of experiments in the same setting as described
earlier. The parameter α was set to vary between 1.05 and 6.3. Figures 4
and 5 show the results of this simulation, in the uniform and mixed workloads
respectively, both using the Cirne parallelism model. On each figure, the right-
hand part shows the performance ratios for both criteria as a function of α, and
the left-hand part is a plot of the ratio for Cmax against the ratio for

∑
ωiCi,

when α varies. This left-hand part shows the best trade-off between Cmax and
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∑
ωiCi.
We have selected two extreme cases for the number of tasks in the system,

namely 25 and 200. With 25 tasks, there is often one which is not parallel
enough to have its processing time reduced by a significant amount, and the
length of the schedule is dominated by this task. With 200 tasks, we have the
opposite case where the schedule is more dominated by the total work to do.

There are several observations to make on these figures. Firstly, the optimum
value of α for the

∑
ωiCi criterion is actually lower than 2 (it is somewhere

around 1.4 and 1.6). This difference between the theoretical value may be
explained with the fact that the simulation results are averages whereas the
theoretical studies are more interested in worst case scenarios which do not occur
in our experiments. The second observation is that, unlike in the theoretical
model, large values of α degrade the Cmax performance ratio of the algorithm,
especially in the uniform workload. This might again be explained by the fact
that generated tasks are not different enough one from another for larger batches
to be beneficial.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 1  1.5  2  2.5  3  3.5

ra
tio

s

Alpha

Class Higly Parallel

25 tasks - Cmax

25 tasks - Wici

200 tasks - Cmax

200 tasks - Wici

Figure 6: Influence of the α parameter, with mixed workload and high paral-
lelism

When using different parallel behavior, the results obtained are slightly dif-
ferent, and some time chaotic. For example, Figure 6 shows the result of the
experiments with a mixed workload, in which there are two types of tasks: large
ones and small ones, both types having a highly parallel behavior. We can see
that the performance ration for Cmax has a (reproducible) erratic behavior when
α is small, between 1 and 2.
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7 Integration into an Actual Environment

In this section, we discuss several directions for integrating the previous ideas
in order to build an operational light grid management system.

7.1 Single Cluster Issues

Rigid Jobs The scheduling algorithms presented in Section 5 are targeted for
moldable jobs. Even though most jobs are intrinsically moldable, some of them
need to stay rigid, or at least cannot accept every allocation. The reason can be
a lack of time to re-code the program to make it moldable, memory constraints
which set a minimum number of processors, or the job can be a benchmarking
job that requires a preset number of processors. This means we actually have
to deal with a mix of moldable and rigid jobs.

There are different possible ideas to solve this problem. The first trivial idea
is to separate rigid and moldable jobs and schedule one category after the other.
Another solution is to calculate a-priori an allocation for the moldable jobs, and
then apply a rigid scheduling algorithm on the resulting rigid jobs. The last
solution is to modify the bi-criteria algorithm in order to schedule each rigid job
in the first batch in which it fits.

Reservations An important point for a management system is the ability to
perform reservations. This would allow a user to ask for a given number of pro-
cessors in a given time window. Such a possibility is necessary for demonstration
purposes, or in order to set up a wide-area experiment with other computing
centers. The scheduling algorithm must then cope with this additional con-
straint, which makes a certain number of nodes unavailable during a period of
time.

Including support for such reservations into a scheduling algorithm is a dif-
ficult a problem. A batch algorithm could try to ensure that batch boundaries
match the beginning and the end of the reservations, but that would likely be
inefficient.

7.2 Dealing with Several Clusters

This section focuses on the additional problems raised when trying to have
several clusters operate together. We will first present the light grid context in
which we are interested.

The CIMENT project The system we are working on is a part of the CI-
MENT [10] project, in which the academic computing resources of Grenoble
are connected. This results in the realization of a light grid, containing quite
heterogeneous machines, more than 500 in total (see Figure 7). The goal of the

18



104 Bi−Itanium 2

Myrinet

48 Bi−P4 Xeon

Giga Eth
Submission

queues

40 Bi−Athlon
Eth 100

Eth 100
24 Bi−Athlon

Figure 7: 4 largest clusters of the CIMENT project.

project is to make different research communities (Numerical Physicists, As-
trophysicists, Medical Image Researchers, Computer Scientists, ...) share their
computing resources, leading to an overall better use of these resources.

Gathering different communities raises several issues. First, every commu-
nity has its own behavior and culture, either for historical reasons or for reasons
linked to the type of research the community performs. For example, the nu-
merical physicists have long (up to several weeks), sequential jobs to perform,
while the computer scientists’ jobs are shorter, focusing mainly on debugging.
Scheduling jobs with such a disparity is an issue in itself.

Furthermore, these disparities imply differences in scheduling choices. It is
important to point out that each community has habits about scheduling policy,
management system, submission rules, and so on. The light grid management
system should try not to disturb these habits by a too large extent.

Another important point is to guarantee some notion of fairness between the
different communities. Each computing resource was bought by its respective
community because they wanted to use that computing power, so we should
make sure that making it available to others does not make them lose too much.

A majority of the jobs submitted in this context are multi-parametric jobs.
Such a job consists of a large number (up to several hundreds of thousands)
of runs of the same program, each having with different parameters. Each run
takes a relatively short time to complete, this time being often the same for every
run. This kind of jobs are related to the divisible tasks model (see Section 3.1).
For this kind of jobs, the theory of asymptotic behavior shows that optimal
solutions can be computed in polynomial time. This allows the use of these jobs
in order to fill the holes in the Gantt chart (using the same idea as conservative
backfilling).

There are different ways to link several clusters together. The first one is the

19



current system in use in Grenoble, and the second version is rather an attempt
to address the problem more globally.

Centralized In the first vision of this problem, each cluster keeps its own sub-
mission system used only for jobs that are to be processed locally. Additionally,
there is a centralized server to which all grid jobs are submitted. In this setting,
grid jobs are only multi-parametric jobs, which the centralized server submits
on the local clusters in order to fill the holes of their respective schedules. This
is achieved through the notion of best-effort jobs: the local scheduler gives no
warranty that the job will be finished. If a locally submitted job requires a
processor currently in use by a best-effort job, the latter will be killed. The
central server then has to submit it once again. Since there are a large number
of relatively small runs, the cost of killing one of them is not too high. Further-
more, this ensures that local users of the clusters will not be disturbed by grid
jobs: they have the same submission interface as before and cannot have their
job delayed by a grid job.

In order to schedule the best-effort jobs efficiently, we can rely on the Di-
visible Load model introduced in Section 3.1. The configuration of all the idle
processors of the grid is fixed between local events such as the completion or the
beginning of a local job. Therefore, if the schedules are on-line batch schedules,
we can define time windows where the idle processors do not change. Within
these time windows, we can pack as many parameterized computations as pos-
sible using a makespan algorithm. The problem of scheduling many identical
tasks on complex heterogeneous topologies is NP-hard [14], however in this cen-
tralized setting, the submission node and the clusters are respectively a master
node and its slaves connected as a heterogeneous fork-graph. This problem of
scheduling on heterogeneous fork graph minimizing the makespan can be solved
in polynomial time [3].

Decentralized In this vision, all jobs – grid and local ones – are submitted to
local scheduling systems. These systems then have the possibility to exchange
work in order to balance the load. The protocol for exchanging work still has to
be defined, but it would have to take care of both fairness and performance issues
at the same time. There are several directions to address this problem: namely,
graph coupling which would aim at minimizing data transfers, an economical
approach where each cluster can optimize its own criteria, or use consensus-
driven algorithms, etc..

We do not believe that it is possible to formalize the resource management
problem on grids as a global combinatorial optimization problem because of the
complexity. However we can use sophisticated algorithms for local optimization
on each cluster, and then focus on alternative methods at the interface of local
methods.
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8 Concluding Remarks

We presented in this paper two theoretical models which concern very specific
(and complementary) applications/platforms pairs, namely the Divisible Load
with regular and simple computations, and the Parallel Tasks model with a high
abstraction level of the machine. Using both models we described how to adapt
them to actual implementations, we ran many experiments to tune parameters
and we presented some of the most meaningful results.

Today there is no general scheduler for managing the resources on grids. We
can expect in the next few years that intermediate level models will arise and
allow to develop practical efficient schedulers.
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