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Impeded Growth of Magnetic Flux Bubbles
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Normal state bubble patterns in Type I superconducting Indium and Lead slabs are studied by
the high resolution magneto-optical imaging technique. The size of bubbles is found to be almost
independent of the long-range interaction between the normal state domains. Under bubble diameter
and slab thickness proper scaling, the results gather onto a single master curve. On this basis, in
the framework of the “current-loop” model [R.E. Goldstein, D.P. Jackson and A.T. Dorsey, Phys.
Rev. Lett. 76, 3818 (1996)], we calculate the equilibrium diameter of an isolated bubble resulting
from the competition between the Biot-and-Savart interaction of the Meissner current encircling the
bubble and the superconductor-normal interface energy. A good quantitative agreement with the
master curve is found over two decades of the magnetic Bond number. The isolation of each bubble
in the superconducting matrix and the existence of a positive interface energy are shown to preclude
any continuous size variation of the bubbles after their formation, contrary to the prediction of
mean-field models.

PACS numbers: 05.65.+b, 74.25.Ha

A great variety of quasi-two-dimensional, biphasic sys-
tems present a spontaneous formation of domain pat-
terns: magnetic liquids [1], Langmuir monolayers [2],
sub-monolayer of adsorbed atoms [3], ferro- and ferri-
magnetic films [4], intermediate state (IS) in Type-I su-
perconducting (SC) materials [5]... These structures are
mostly interpreted as resulting from the balance between
long-range repulsive, electrostatic, magnetic or elastic in-
teractions between domains and short-range attractive
interaction associated with a positive interface energy.
The observed patterns are generally disordered and con-
sist of bubbles and of branched and intricate fingered
structures (lamellae). At present the mechanisms of the
formation of these structures are theoretically actively
studied [6, 7, 8]. In particular, for magnetic fluids, the in-
stabilities of bubble circular shape was shown to produce
fingered structures which are similar to those observed
experimentally [6]. The same mechanism was proposed
for the IS in Type I superconductors [9]. However little
is known even about the static properties of bubble pat-
terns [10]. This question is of prime importance for the
study of IS patterns formation since normal state (NS)
bubbles form the early stage of the IS when the magnetic
flux starts to penetrate into SC samples [5].

IS patterns are observed in slabs placed in a perpen-
dicular magnetic field. They consist of SC and NS, flux-
bearing domains [5]. Former studies were essentially fo-
cused on the lamella structures [5]. The free energy of
a one-dimensional lattice of infinitely long and parallel
stripes was first calculated by Landau [11]. The field-
dependent predicted and measured periods of the stripes

were found in good agreement [12]. Subsequently, their
comparison became a conventional method for determin-
ing the interface energy of Type-I SC materials. The
formation of lamellae was recently re-examined by Gold-
stein, Jackson and Dorsey in the framework of a “current-
loop” model [9]. These authors propose to consider IS
patterns as a set of domains of arbitrary shapes with
vertical domain walls and bounded by current loops in-
teracting in the free space above and below the slabs [9].
When applied to the stripe pattern the model predicts
equilibrium periods close to those found using the Lan-
dau model, thus indicating that both models essentially
capture the same physics. As the model is formulated
for arbitrary domain shape, it opens the way to study
the formation of bubble patterns whose conditions of ex-
istence and control parameters are not well understood.
To our knowledge, the only calculation of the free energy
of an hexagonal lattice of bubbles uses an approximate
expression of the magnetic energy interaction [13]. Subse-
quent experiments found a field-dependent bubble spac-
ing different from the predicted one. They also yield a
smaller interfacial tension than the one deduced from the
studies of stripe patterns [13, 14, 15, 16]. In view of these
scarce and contradictory results, it cannot be established
whether bubble patterns correspond to a quasi-ground
state as it is the case for stripe patterns. Futhermore,
the onset of the formation of the IS was shown to result
from the penetration of bubbles from the edges of samples
[17]. The magnetic flux penetration is controlled by an
energy barrier of geometrical nature [18, 19]. This raises
the question of the respective contributions of the mech-
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anism of flux penetration and of the balance between
long-range and short-range interactions on the formation
of bubble patterns.

This letter presents a systematic study of NS bubble
patterns as a function of the SC material, the slab thick-
ness and the applied magnetic field. Contrary to the
lamellae width, the diameter of the bubbles is found to
be independent of the mutual interaction between flux-
bearing domains. We discuss the origin of these different
behaviors in terms of magnetic flux penetration mecha-
nisms.

The domain patterns are observed with the high res-
olution Faraday microscopy technique which probes the
normal component of the local induction at the top sur-
face of a superconductor. Experimental details are given
elsewhere [20]. The SC Pb slabs were cut out from
GoodFellow 99.9% pure and annealed 25 and 120 ± 1
µm thick foils. The magneto-optic layer (MOL) con-
sisted of a 1500 Å EuS film evaporated on a glass
substrate and covered with a 600 Å Al mirror. The
Pb slab was compressed against the mirror. The In
slabs (0.6, 1.1, 1.5, 2.2, 10.0±0.1 µm thick) were obtained
by evaporation directly onto MOLs. The MOLs con-
sisted of CdMnTe/CdMgTe semiconductor heterostruc-
tures grown by molecular beam epitaxy [21]. The sam-
ples were immersed into superfluid helium at tempera-
tures T ≤ 2 K. They were subjected to an increasing
perpendicular magnetic field H whose maximum value
equals 60 mT .

Fig. 1 shows typical IS patterns observed on the edge
of a 10 µm thick Indium slab for two values of the re-
duced applied magnetic field h = H/Hc, where Hc is
the thermodynamical critical field. Increasing h results
in the penetration of the magnetic flux from the edges
of the slab which is revealed by a significant increase of
the density of NS domains. At low h-value (left image),
NS domains essentially consist of almost circular bubbles.
They were systematically observed over a limited range
of low h-values. At higher h-value (right image), lamel-
lae have appeared. They progressively form labyrinthine
structures. While most of the lamellae are connected to
the edges of the slab from which the magnetic flux enters,
bubbles are isolated in the SC matrix and separated from
the edges by a full diamagnetic band (≈ 50µm large). Let
us note firstly that the interaction between isolated NS
domains is repulsive and secondly that the diamagnetic
band reflect the presence of the geometrical energy bar-
rier which prevent spontaneous flux penetration on the
edges [18, 19]. Therefore different formation and growth
mechanisms are expected for bubbles and lamellae.

In order to get more insight into this question, the vari-
ation of the bubble diameter 2R and the lamella width W
were measured systematically as a function of h. They
were then compared to their respective equilibrium val-
ues 2Req and Weq , calculated for regular arrays. Fig. 2.
presents the results obtained for a 10 µm thick In slab

FIG. 1: Intermediate state pattern on the edge of the 10 µm
thick superconducting Indium slab for h = 0.07 (left) and
h = 0.41 (right) at T = 2 K. The edge of the In slab is along
the right edge of the images. Normal and superconducting
domains appear in black and gray, respectively. The few white
domains correspond to magnetic flux which was trapped at
h = 0 (details on image processing are given in Ref. [20]).

(left) and for a 120 µm thick Pb slab (right). For the
lamella pattern, Weq is calculated from Eq. (3.23) and
(4.8) of Ref. [9]. For the bubble pattern, Req is calcu-
lated in the framework of the “current-loop” model [9].
NS bubbles with radii R are assumed to be arranged in an
hexagonal lattice of period a in an infinite slab of thick-
ness d. The magnetic field in the bubbles is equal Hc

[9]. From the constraint of global flux conservation the
area fraction of NS domains ρn = 2πR2/

√
3a2 is equal to

h = H/Hc. The interface energy Eint is the product of
the interfacial tension σns = (H2

c /8π)∆ by the total area
of the interfaces 2NπRd where N and ∆ are the total
number of bubbles and the “wall” energy parameter, re-
spectively. The magnetic energy per unit area resulting
from the self and mutual interaction between the screen-
ing currents flowing at the interfaces is found equal to:

ǫm = −
y2Nb

3π

+∞
∑

m=−∞

+∞
∑

t=−∞

J2
1 (ys)

s2

(

1 −
1 − exp (− 2πds

a
)

2πds
a

)

,

(1)

with s =
√

4(m2 + t2 − mt)/3, y =
√

2π
√

3ρn. J1 is
the Bessel function of the first kind, Nb = d/π∆ is
the magnetic Bond number [9] and ǫm is expressed in
units of σns. The equilibrium period aeq is obtained
by minimizing the reduced total energy per unit area
ǫ(a) = ǫint + ǫm. Req is then obtained from flux con-

servation as Req = aeq

√√
3h/2π. Hc(T ) was assumed

to follow a Bardeen-Cooper-Schrieffer temperature vari-
ation: Hc(T ) = Hc(0)(1 − (T 2/T 2

c )). Hc(0) is 28.2 mT
and 80.3 mT and Tc is 3.4 K and 7.2 K for Indium and
Lead, respectively. ∆(T ) was assumed to follow the em-
pirical law ∆(T ) = ∆(0)/

√

1 − (T/Tc) as proposed in
Ref. [22]. ∆(0)-values were taken from the literature:
for Pb, ∆(0) = 0.056µm[5] ; for In, ∆(0) = 0.33µm [22].

For the lamellae, W and Weq present a good quanti-
tative agreement, as often reported in the literature (see
Fig. 2a and 2b). The slight discrepancy obtained for Pb,
when h > 0.65 may be attributed to the fact that an im-
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FIG. 2: Mean lamella width W (top) and bubble diameter 2R
(bottom) as a function of the reduced field h = H/Hc for a
10 µm thick In slab (left) and a 120 µm thick Pb slab (right).
The error bars represent the full width at half maximum of
the distributions of lamella width or bubble diameter. The
solid lines are the equilibrium values 2Req and Weq.

portant fraction of the lamellae remains isolated among
bubbles. Surprisingly, the measured bubble diameter 2R
is found to remain almost constant, as h is increased, in
disagreement with the theoretical predictions (see Fig.
2c and 2d). The maximum ratio between 2Req and 2R
is of the order of 1.6 and 4 for In and Pb, respectively.
However, 2R approaches 2Req for h → 0, thus suggest-
ing that the disagreement does not originate from the
approximations used in the model of Ref. [9].

To clarify this point, the bubble diameter 2R was mea-
sured for different slab thicknesses d and compared to
2R0

eq, the limit of 2Req calculated for h → 0. In this
limit, the magnetic energy is only determined by the self
interaction of the screening currents flowing at each bub-
ble interface. We find that 2R0

eq is the solution of the
implicit equation :

Nb =
3(1 − k2)

k2

[

1 +
1

k3
((k2 − 2)E(k) + 2(1 − k2)K(k))

]

−1

.

(2)

with k2 = 4R0
eq

2
/(d2 +4R0

eq

2
). K and E are the complete

elliptic integrals of the first and the second kind, respec-
tively. Eq. 2 is transformed into a relation between the
reduced variables 2R0

eq/∆ and d/∆ as plotted in Fig. 3.
The same figure reports the results obtained by us and
by other authors with different SC materials (In, Pb,
Hg) [23]. Scaling 2R and d by the wall energy parame-
ter ∆ allows to gather all the measured diameters onto a
single master curve. This demonstrates that 2R/∆ and
d/∆ are appropriate reduced variables to describe the
bubble patterns. Furthermore, the magnetic Bond num-
ber Nb = d/π∆ varies over the full range of existence of
non-branching IS patterns (1 < Nb < 1000)[13, 24].For

smaller Bond numbers the gray region in Fig. 3 indicates
the occurrence of Type-II superconductivity below a crit-
ical thickness dc. Indeed, no IS domains were observed
for the thinnest In slab (d = 0.6µm).

100 101 102 103 104
0

50

100

150

200

250

 2R
/ ∆∆ ∆∆

d/∆∆∆∆

FIG. 3: Semi-log plot of the reduced bubble diameter 2R/∆
versus reduced sample thickness d/∆. The filled circles and
squares were obtained with In and Pb slabs, respectively. The
empty squares, lozenges and circles are reported from Ref.
[14, 15, 16], for Pb, Hg and In, respectively. The gray region
corresponds to Type-II superconductivity for very thin slabs.
The solid curve is the equilibrium diameter (Eq. 2).

The comparison between the master curve and the pre-
diction of Eq. 2 shows that two ranges of d/∆-values can
be distinguished. For d/∆ < 30, 2R-values are found
slightly smaller than 2Req. In this range of thickness,
the assumption of a constant ∆ is no longer valid. As
the thickness decreases towards the critical value dc the
interfacial tension (positive for a Type-I superconductor
and negative for a Type-II one) should decrease. Indeed
adjusting the experimental data to the predicted curve
leads to a continuous decrease of ∆ with decreasing d
(not shown here). The critical thickness at which ∆ → 0
was found equal to dc = 0.8 µm, a value consistent with
dc ≈ 0.9 − 1 µm reported for In in Ref. [13]. Therefore,
the poor agreement found for d/∆ < 30 most likely orig-
inates from the reduction of the interface energy when
the slab thickness is decreased. For d/∆ > 30, the mas-
ter curve presents a very good quantitative agreement
with the prediction of Eq. 2. This shows that the bubble
mean diameter is determined by the balance between the
interfacial tension and the self -interaction of the screen-
ing current flowing at the bubble interface. While the
bubble diameter remains constant when h increases, as
shown in Fig. 2, the mutual interaction between the bub-
bles serves to adjust the mean distance between them so
that the area density of NS domains ρn is very close to
the equilibrium value. We calculate that the bubbles
free energy is only ≈ 1 % larger than the equilibrium
value. The reason is that volume terms depending on
ρn, but not on the period, are dominant in the free en-
ergy. Hence the bubble system is only in a very slightly
out-of-equilibrium state.

These results raise the question of the growth mecha-
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nisms of NS domains. For the lamellae, the good agree-
ment between the predicted and the measured width sug-
gests that their growth is continuous and reversible, as
assumed by the IS models. This most likely results from
the fact that lamellae are connected to the edges of the
slab, thus allowing infinitesimal amounts of magnetic flux
to penetrate continuously from the exterior. This is not
the case when NS domains are isolated within the SC ma-
trix. As the flux density is uniformly equal to zero in the
matrix, it follows from the constraint of flux conservation
that the increase of the size of an isolated NS bubble has
to result from the incoming of another NS bubble crossing
the surrounding SC region. The fusion of these two bub-
bles is impeded by their repulsive interaction. Moreover,
surface tension prevents the formation of bubbles of size
much smaller than 2R0

eq. This precludes the continuous
and reversible growth of bubbles. Therefore they have
to keep the size acquired during their formation as it is
observed experimentally. A similar phenomenon should
be encountered in other physical systems for which the
mechanism of growth of isolated domains requires the
migration of particles or of flux lines through a second
phase. For example, in a ferrofluid confined in a Hele-
Shaw cell with an immiscible non-magnetic liquid, the in-
hibited migration of magnetic particles between domains
should prevent their size variation.

The early stage of bubble formation and migration is
not accessible experimentally. Bubble velocities close to
the sample edges (> 1µm/µs) [17] are beyond our exper-
imentally measurable velocities (≈ 1µm/s). Therefore
only a qualitative and partial understanding of bubble
penetration can be inferred from the results presented
above. The concentration of bubbles was observed to
increase with h essentially while the diamagnetic band
is present (see Fig. 1). The bubbles should therefore
be formed in the region of the edges and cross the dia-
magnetic band to reach the sample interior. The char-
acteristic sizes of the domains observed on the edges are
smaller than those observed within the bulk. This sug-
gests that the bubbles have to grow and to come unfas-
tened from the IS structures present on the edges of the
slab. The motion of the bubbles towards the center of
the slab is driven by the magnetic interaction between
the flux bearing domains and the magnetic field around
the slab. However, the size of the bubbles was found to
be independent of the aspect ratio of the slabs. This in-
dicates that, even if the magnetic field gradient plays a
role in the instability giving birth to a bubble, its size
is essentially controlled by the competition between the
surface tension and the self-interaction of the screening
current. It would be of great interest to determine to
what extent the size of the domains observed in other
diphasic systems results more from specific mechanisms
of the formation of domains than from the competition
between long and short-range interactions.

Experimental evidence of the branching instabilities of

circular NS bubbles, predicted in Ref. [7], was not found.
Branched domains always bear a much larger magnetic
flux than bubbles. As a result the branching instabilities
of bubbles are unlikely to be the prevalent mechanism
for the formation of fingered structures. Whether, as
in the case of bubbles, this formation results from an
instability of the IS structure located on the edge of the
sample remains to be investigated.

The authors would like to thank A.O. Cebers for nu-
merous and fruitful discussions.
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