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Abstract

The theory of preferential consequence relations, where copies of valuations (or states labeled by valuations)
serve as the terms of the preference relation, has been investigated extensively in the classical context. The first
purpose of the present paper is to extend the theory to certain three/four-valued contexts, well-known as the
paraconsistent logicsJ3 andFOUR. We give characterizations of several families of preferential consequence
relations in these two contexts. Our second and main purposeis to investigate a qualified version of preferential
consequence, which we call preferential-discriminative consequence. This is defined to hold between a set of
formulasΓ and formulaα iff Γ |∼ α butΓ 6|∼ ¬α, where|∼ is the plain relation. We provide characterizations
of several families of such relations for all of the classical, three, and four-valued contexts.

1 Introduction

The theory ofpreferential consequence relations(preferential CRs for short), wherecopies of val-
uations(or states labeled by valuations) serve as the terms of the preference relation, has been
investigated extensively in the classical context, see e.g. [15, 18, 20, 21, 22, 23]. In the present
paper, the author continues these investigations, but on a more general level that covers certain
three/four-valued contexts, well-known as the paraconsistent logicsJ3 andFOUR. The motivation
is that preferential CRs represent natural ways of reasoning which are useful to handle incomplete
information in the classical context and both incomplete and inconsistent information in theJ3 and
FOUR contexts. We will illustrate this, together with the advantages and drawbacks of the different
contexts, with examples in Sections 2.10.1 and 2.10.2, oncethe formal definitions will be made.

The first purpose of the paper is to show that some characterizations of preferential CRs, proved
by Karl Schlechta in the classical context [22, 23], hold also in theJ3 andFOUR contexts. The
second and main purpose is to investigate a qualified versionof preferential CRs, which we call
preferential-discriminativeCRs. They are defined to hold between a set of formulasΓ and formula

∗A previous version on this work has been published in the Journal of Logic and Computation, 15(3):263-294, 2005. The
present version contains some improvements.
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α iff Γ |∼ α but Γ 6|∼ ¬α, where|∼ is the plain relation. We will provide characterizations of
several families of such preferential-discriminative CRsfor all of the classical,J3, andFOUR
contexts. Most of the time, our characterizations have a purely syntactic aspect (i.e. they involve
only the language and some proof systems). They are helpful to answer questions like: “is that
CR (usually defined syntactically) a preferential or preferential-discriminative CR of that or that
family?” More generally, these characterizations can helpto find relationships between preferential,
preferential-discriminative, and other CRs.

The rest of the paper is organized as follows. In Section 2, wegive the formal definitions, an
overview of the characterizations, and examples in the classical andFOUR contexts. In Sections 3
and 4, we give characterizations of several families of preferential CRs. In Section 5 and 6, we give
characterizations of several families of preferential-discriminative CRs. In Section 7, we give some
proof systems used in the characterizations. And, Section 8is a conclusion summing and explaining
what has been achieved.

2 Preliminaries

2.1 A general framework

We fix once and for all a setL, a setV , and a relation|= onV ×L. Intuitively,L is a set of formulas,
V is a set of valuations, and|= is a satisfaction relation (i.e.∀ x ∈ V , ∀ α ∈ L, x |= α means that
the formulaα is satisfied in the valuationx, i.e. x is a model forα). We fix also once and for all a
functionneg : L → L, a functionor : L × L → L, and a functionand : L × L → L. Intuitively,
∀ α, β ∈ L, neg(α) is the negation ofα, or(α, β) is the disjunction ofα andβ, andand(α, β) is
the conjunction ofα andβ. We use these functions instead of the usual connectives:¬, ∨, and∧,
because we do not want nor need to assume any structure onL. We emphasize that for the time
being,no assumption is made aboutL, V , |=, neg, or, and. A similar approach has been taken in
two well-known papers, [19, 16], without anticipating any of the substantive work in this paper.

Notation 1 For all Γ ⊆ L, we denote byMΓ the set such thatMΓ = {x ∈ V : ∀ α ∈ Γ, x |= α}.
Let X ⊆ V . We denote byT (X) the set such thatT (X) = {α ∈ L : X ⊆ Mα}. We denote by
Td(X) the set such thatTd(X) = {α ∈ L : X ⊆Mα andX 6⊆Mneg(α)}. We denote byTc(X) the
set such thatTc(X) = {α ∈ L : X ⊆ Mα andX ⊆ Mneg(α)}. We denote byD the set such that
D = {X ⊆ V : ∃ Γ ⊆ L, MΓ = X}. We denote byC the set such thatC = {X ⊆ V : ∀ α ∈ L,
X 6⊆Mα or X 6⊆Mneg(α)}.

Intuitively, MΓ is the set of all models forΓ, T (X) is the set of all formulas satisfied inX , Td(X)
is the set of all formulas “discriminatively” satisfied inX , Tc(X) is the set of all formulas “com-
plementarily” satisfied inX , D is the set of every set of valuations definable by a set of formu-
las, andC is the set of all “consistent” sets of valuations. It is worthnoticing that∀ Γ, ∆ ⊆ L,
MΓ ∩M∆ = MΓ∪∆, and thusD is closed under arbitrarily intersections.

2.2 Consequence relations and extended consequence relations

Definition 2 We denote byP the power set operator. We say that|∼ is a consequence relation
(CR for short) iff |∼ is a relation onP(L) × L. For all Γ ⊆ L, we denote bỹΓ the set such that
Γ̃ = {α ∈ L : Γ |∼ α}. We denote by⊢ the CR such that∀ Γ ⊆ L, ∀ α ∈ L, Γ ⊢ α iff MΓ ⊆Mα.
For all Γ ⊆ L, we denote byΓ the set such thatΓ = {α ∈ L : Γ ⊢ α}. We denote by⊢d the CR
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such that∀ Γ ⊆ L, ∀ α ∈ L, Γ ⊢d α iff Γ ⊢ α andΓ 6⊢ neg(α). For allΓ ⊆ L, we denote byΓ
d

the

set such thatΓ
d

= {α ∈ L : Γ ⊢d α}.

Intuitively, ⊢ is the basic CR and⊢d is the discriminative CR. It is worth noticing that∀ Γ, ∆ ⊆ L,

Γ = T (MΓ), Γ
d

= Td(MΓ), MΓ = MΓ, andΓ ⊆ ∆ iff Γ ⊆ ∆ iff M∆ ⊆MΓ.

Definition 3 We say that||∼ is anextended consequence relation(ECR for short) iff||∼ is a relation
onP(L) × P(L). We denote by the ECR such that∀ Γ, ∆ ⊆ L, Γ  ∆ iff ∀ x ∈ MΓ, ∃ δ ∈ ∆,
x ∈ Mδ. We denote byd the ECR such that∀ Γ, ∆ ⊆ L, Γ d ∆ iff Γ  ∆ and∃ δ ∈ ∆, Γ 6⊢
neg(δ).

Intuitively,  is the disjunctive ECR, i.e.∀ Γ, ∆ ⊆ L, Γ  ∆ iff every model forΓ is a model
for the disjunction (of the formulas) of∆. Intuitively, d is the disjunctive-discriminative ECR, i.e.
∀ Γ, ∆ ⊆ L, Γ d ∆ iff the disjunction of∆ is satisfied in every model forΓ, butnot the negation
of the disjunction of∆. Note that∀ Γ ⊆ L, ∀ α ∈ L, we haveΓ  {α} iff Γ ⊢ α, and we have
Γ d {α} iff Γ ⊢d α. Thus, any proof system for (resp.d) is a proof system for⊢ (resp.⊢d).

2.3 Preferential consequence relations

Preferential CRs represent natural ways of drawing conclusions which are useful to handle incom-
plete information in the classical context and both incomplete and inconsistent information the para-
consistent contexts. Examples will be given in Sections 2.10.1 and 2.10.2. We need to introduce
preferential structures.

Historically, preferential structures were first introduced by Hansson (see [13]) to give a seman-
tics for deontic logics. Then, they have been rediscovered by Shoham (see [24]) to give a semantics
for nonmonotonic logics. Then, it seems that Imielinski is one of the first persons to introduce pref-
erential structures with copies of valuations (or states labeled by valuations), see [14]. They have
been used to give a more general semantics for nonmonotonic logics, see e.g. [15, 22, 23]. Note that
the terminology: “copies” is used by e.g. Schlechta and the equivalent terminology: “states” is used
by e.g. Kraus, Lehmann, and Magidor.

Definition 4 We say thatZ is preferential structure onV iff Z is an ordered pair〈X ,≺〉 where
X ⊆ V × I, whereI is any set, and≺ is any relation onX × X . LetZ = 〈X ,≺〉 be a preferential
structure. For allX ⊆ V , we denote byCX (X) the set such thatCX (X) = {〈x, i〉 ∈ X : x ∈ X}.
We denote byµZ : P(V)→ P(V) the function such that∀X ⊆ V ,

µZ(X) = {x ∈ X : ∃ c ∈ CX (x), ∀ c′ ∈ CX (X), c′ 6≺ c}

The definition may become more accessible if we see it as puttingµZ(X) = C−1
X (min≺(CX (X))).

Intuitively, X is a set of copies of valuations. More precisely,∀ 〈x, i〉 ∈ X , 〈x, i〉 is a copy of the
valuationx. Intuitively,≺ is a preferential binary relation onX . More precisely,∀ c, c′ ∈ X , c ≺ c′

means that the copyc is preferred to the copyc′. Thus,Z is a set of copies of valuations together
with a preferential binary relation on it. Reciprocally, any set of copies of valuations together with
any preferential binary relation on it can be represented bya preferential structure. Now, a question
arise: what is exactly a copy of a valuation (or a state labeled by a valuation) in daily life? A
begining of answer can be found in e.g. [14, 15, 23]. But, to the author’s knowledge, it seems that
this question has not been answered in a definitive and satisfactory manner. LetX ⊆ V . Intuitively,
CX (X) is the set of every element ofX that is a copy of a valuation inX . And,µZ(X) is the set of
every valuation inX that ismost preferredamong all valuations inX .
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Definition 5 LetZ = 〈X ,≺〉 be a preferential structure onV . We say thatZ is transitive, irreflex-
ive, etc. iff≺ is transitive, irreflexive, etc. We say thatZ is definability preserving(DP for short)
iff ∀ X ∈ D, µZ(X) ∈ D. Let µ be a function fromY ⊆ P(V) to Z ⊆ P(V). We say thatµ is
consistency preserving(CP for short) iff∀X ∈ Y ∩D∩C, µ(X) ∈ C. We say thatZ is CP iff µZ

is CP. LetY ⊆ X andc ∈ Y. We say thatc is≺-preferred inY iff ∀ c′ ∈ Y, c′ 6≺ c. LetY ⊆ P(V).
We say thatZ is Y-smooth(aliasY-stoppered) iff ∀X ∈ Y, ∀ c ∈ CX (X), eitherc is≺-preferred
in CX (X) or there existsc′ ∈ CX (X) such thatc′ ≺ c andc′ is≺-preferred inCX (X). If we say
thatZ is smooth, we mean thatZ is D-smooth.

Definition 6 Let |∼ be a CR. We say that|∼ is a preferential CR iff there exists a preferential
structureZ onV such that∀Γ ⊆ L, Γ̃ = T (µZ(MΓ)). We say that|∼ is smooth, DP, etc. iff|∼ can
be defined by a smooth, DP, etc. preferential structure onV .

Intuitively, |∼ is a preferential CR iff there exist a preferential structure such thatΓ |∼ α iff every
most preferred model forΓ is a model forα. Note that Salem Benferhat, Didier Dubois, and Henri
Prade showed in [7] that there is an equivalent definition without copies, but with multiple preferen-
tial relations. And, Karl Schlechta showed by Theorem 7 below that there is an equivalent definition
with thechoice functionsused inSocial Choice(see [17] for more details about choice functions):

Theorem 7 From [22, 23]. LetY ⊆ P(V) andµ be a function fromY to Y. Then,

(i) if there exists a preferential structureZ onV such that∀X ∈ Y, µ(X) = µZ(X), then(µ0)
and(µ1) hold;

(ii) if (µ0) and(µ1) hold, then there exists a transitive irreflexive preferential structureZ on V
such that∀X ∈ Y, µ(X) = µZ(X);

(iii) if there exists anY-smooth preferential structureZ onV such that∀X ∈ Y, µ(X) = µZ(X),
then(µ0), (µ1), and(µ2) hold;

(iv) if Y is closed under finite unions and intersections and(µ0), (µ1), and (µ2) hold, then
there exists a transitive irreflexiveY-smooth preferential structureZ onV such that∀ X ∈
Y, µ(X) = µZ(X);

where

(µ0) ∀X ∈ Y, µ(X) ⊆ X ;

(µ1) ∀X, Y ∈ Y, if X ⊆ Y , thenµ(Y ) ∩X ⊆ µ(X);

(µ2) ∀X, Y ∈ Y, if µ(X) ⊆ Y ⊆ X , thenµ(X) = µ(Y ).

2.4 Preferential-discriminative consequence relations

They capture the idea that usually we do not want to keep contradictory conclusions.

Definition 8 Let |∼ be a CR. We say that|∼ is a preferential-discriminative CR iff there exists a
choice functionµ such that∀ Γ ⊆ L, Γ̃ = Td(µ(MΓ)). We say that|∼ is DP, CP, etc. iff|∼ can be
defined by a DP, CP, etc. choice function.

Intuitively, |∼ is a preferential-discriminative CR iff there exists a preferential structure onV such
thatΓ |∼ α iff α is satisfied in all preferred models forΓ, but not its negation.
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2.5 Normal Characterizations

Some of our characterizations are said to benormal, whilst some others are not. Let us make this
explicit. For all setA, we denote by|A| the cardinality ofA. Let C be a family of CRs. Intuitively,
we have a normal characterization ofC iff we have found some conditions that determine whether
a CR|∼ is in C or not, only withλ ≤ |L| many sets of formulas:Γ1, . . . Γλ and their|∼-closures:
Γ̃1, . . . Γ̃λ. This notion was introduced by Schlechta [23]. We now formalize it in Definition 9:

Definition 9 Let C be a set of CRs. We have a normal characterization ofC iff we have found a
(finite or infinite) cardinalλ ≤ |L| and a relationΦ onP(L)2λ such that for all CR|∼,

|∼ ∈ C iff ∀ Γ1, . . . Γλ ⊆ L, Φ(Γ1, . . .Γλ, Γ̃1, . . . Γ̃λ)

We specify thatΦ is a relation in the straightforward set-theoretic sense (i.e. any set of2λ-tuples of
subsets ofL). Let C be a family of CRs andA ⊆ P(L). Here is an example of normal characteri-

zation: for all CR|∼, |∼ ∈ C iff ∀ Γ, ∆ ∈ A, ˜
Γ ∪ ∆̃ = ∅. Indeed, just take the relationΦ such that

Φ(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) iff (if Γ1, Γ2 ∈ A andΓ3 = Γ1∪Γ5, thenΓ6 = ∅). Then, clearly|∼∈ C

iff ∀ Γ1, Γ2, Γ3, Φ(Γ1, Γ2, Γ3, Γ̃1, Γ̃2, Γ̃3). This example shows that normal characterizations cover,
for instance, “applications of|∼” to unions of sets, nested “applications of|∼”, constants like∅,
limited domains likeA, etc.

Here is now an example of non-normal characterization: for all CR |∼, |∼ ∈ C iff ∀Γ, Γ̃ = T ({x ∈
MΓ : ∀∆, if M∆ ⊆ MΓ andx ∈ M∆, thenx ∈ M∆̃}). We cannot get a normal characterization
because the condition depends on∆, for 2|L| many∆ (in fact, for any∆). And, we need that the
validity of every condition depends on∆ for at most|L| many∆.

2.6 Overview of the characterizations

Sometimes, to show a characterization, we will need to makesomeof the following assumptions
aboutL, V , |=, neg, or, andand:

(A0) D is closed under finite unions;

(A1) ∀α, β ∈ L, Mor(α,β) = Mα ∪Mβ andMand(α,β) = Mα ∩Mβ andMneg ◦neg(α) = Mα and
Mneg ◦ or(α,β) = Mand(neg(α),neg(β)) andMneg ◦ and(α,β) = Mor(neg(α),neg(β)), where◦ is
the function composition operator (i.e.neg ◦ or(α, β) = neg(or(α, β)), etc.);

(A2) V is finite;

(A3) ∀ Γ ⊆ L, ∀ α ∈ L, if α 6∈ T (MΓ) andneg(α) 6∈ T (MΓ), thenMΓ ∩Mα 6⊆Mneg(α).

We emphasize that for the time being, we donot make any of these assumptions. We emphasize
again that to show our characterizations, we willneverneed other assumptions aboutL, V , |=, neg,
or, andand. Note that(A0), (A1), (A2), and(A3) are not independent of each other. For instance,

Proposition 10 If (A1) holds, then(A0) holds too.

Proof Let Γ, ∆ ⊆ L. It suffices to showMΓ ∪M∆ = MΘ, with Θ = {or(α, β) : α ∈ Γ, β ∈ ∆}.
Direction: “⊆”. Let x ∈ MΓ ∪M∆ andγ ∈ Θ. We get∃ α ∈ Γ, ∃ β ∈ ∆, γ = or(α, β). Thus,
x ∈Mα ∪Mβ =(A1) Mor(α,β) = Mγ .
Direction: “⊇”. Suppose∃ x, x ∈ MΘ andx 6∈ MΓ ∪M∆. Then,∃ α ∈ Γ, x 6∈ Mα and∃ β ∈ ∆,
x 6∈Mβ, thusx 6∈Mα ∪Mβ =(A1) Mor(α,β), butor(α, β) ∈ Θ, thusx 6∈MΘ, impossible.
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We will give normal characterizations of the six following families:

• the DP preferential CRs (in Section 3);

• the smooth DP preferential CRs, under(A0) (in Section 3);

• the DP preferential-discriminative CRs, under(A1), (A2), and(A3) (in Section 5);

• the smooth DP preferential-discriminative CRs, under(A1), (A2), and(A3) (in Section 5);

• the CP DP preferential-discriminative CRs, under(A1) and(A2) (in Section 5);

• the smooth CP DP preferential-discriminative CRs, under(A1) and(A2) (in Section 5).

In addition, we will give nonnormal characterizations of the three following families:

• the preferential CRs (in Section 4);

• the preferential-discriminative CRs, under(A1), (A2), and(A3) (in Section 6);

• the CP preferential-discriminative CRs, under(A1) and(A2) (in Section 6).

Now, we are going to see in Sections 2.7, 2.8, and 2.9 that(A0), (A1), (A2), and(A3) are weak
enough to hold in the classical (propositional) context, intheFOUR context, and in theJ3 context.

2.7 The classical context

Notation 11 We fix once and for all a setA of propositional symbols. We denote byLc the classical
language generated fromA, the constant symbols:0,1, and the usual connectives:¬, ∨, ∧. We
denoted byVc the classical valuations ofLc and by|=c the classical satisfaction relation onVc×Lc.

Roughly speaking,(A0), (A1), (A2), (A3) hold in the classical context. More precisely, first(1)
entails(A0), second(1) and(2) entail(A1) and(A3), and third(1) and(3) entail(A2), where

(1) L = Lc, V = Vc, and |==|=c;

(2) ∀ α, β ∈ Lc, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

2.8 TheFOUR context

The logicFOUR was introduced by Belnap in [5, 6] to deal with inconsistent and incomplete
information. Intensive investigations ofFOUR were made by e.g. Ofer Arieli and Arnon Avron
[1, 2, 3]. They worked with richer languages than the classical Lc, containing e.g. some constants
⊥,⊤ and some implication connective⊃ first introduced by Avron in [4]. In addition proof systems
for  and⊢ in theFOUR context have been given in [1, 2, 3]. Now, from e.g. [5, 6, 4]:

Notation 12 We denoted byL4 the propositional language generated fromA, the constant symbols
0, 1,⊥,⊤, the unary connective¬, and the binary connectives∨, ∧, and⊃.

6



Definition 13 We say thatx is aFOUR-valuation iffx is a function fromL4 to {0, 1,⊥,⊤} such
thatx(0) = 0, x(1) = 1, x(⊥) = ⊥, x(⊤) = ⊤ and truth tables 1, 2, 3, and 4 hold. We denote by
V4 the set of allFOUR-valuations. We denote by|=4 the relation onV4 × L4 such that∀ x ∈ V4,
∀ α ∈ L4, x |=4 α iff x(α) ∈ {1,⊤}. We call|=4 theFOUR-satisfaction relation.

α ¬α
0 1
1 0
⊥ ⊥
⊤ ⊤
Table 1.

β

0 1 ⊥ ⊤

α

0 0 1 ⊥ ⊤
1 1 1 1 1
⊥ ⊥ 1 ⊥ 1
⊤ ⊤ 1 1 ⊤

α ∨ β

Table 2.

β

0 1 ⊥ ⊤

α

0 0 0 0 0
1 0 1 ⊥ ⊤
⊥ 0 ⊥ ⊥ 0
⊤ 0 ⊤ 0 ⊤

α ∧ β

Table 3.

β

0 1 ⊥ ⊤

α

0 1 1 1 1
1 0 1 ⊥ ⊤
⊥ 1 1 1 1
⊤ 0 1 ⊥ ⊤

α ⊃ β

Table 4.

The connective⊃ was first introduced by Arnon Avron in [4]. An alternative definition is as follows:

x(α ⊃ β) =

{
x(β) if x |=4 α

1 otherwise

We found it useful to recall an intuitive meaning forFOUR, valid if we restrict the language to
Lc ⊆ L4. We will use this meaning in an example in Section 2.10.2. Following e.g. John Fox [12],
let x ∈ V4 andα ∈ Lc, then

• x(α) = 0 means: we are informed thatα is false, but not informed thatα is true;

• x(α) = 1 means: we are informed thatα is true, but not informed thatα is false;

• x(α) = ⊥ means: we are neither informed thatα is true nor informed thatα is false;

• x(α) = ⊤ means: we are both informed thatα is true and informed thatα is false.

Now consider the followingsimplifying assumption: the information about any formula can always
be obtained only from the information about the propositional symbols. In other words, the initial
information is the one about the propositional symbols and the information about general formulas
is constructed from the initial information. Then, intuitively

(1) We are informed that¬α is true iff we are informed thatα is false;

(2) We are informed that¬α is false iff we are informed thatα is true;

(3) We are informed thatα∨ β is true iff we are informed thatα is true or informed thatβ are true;

(4) We are informed thatα ∨ β is false iff we are both informed thatα is false and thatβ are false;

(5) We are informed thatα ∧ β is true iff we are both informed thatα is true and thatβ are true;

(6) We are informed thatα∧β is false iff we are informed thatα is false or informed thatβ is false.

Note that without the simplifying assumption only the left-to-right implications of(3) and(6) do
not longer hold. Now,(1) and(2) are formalized in Table 1,(3) and(4) are formalized in Table
2, and(5) and(6) are formalized in Table 3. Thus, everyFOUR-valuation represents a way to
be informed about the formulas under the simplifying assumption. And clearly, every such way is
represented by aFOUR-valuation.

7



Roughly speaking,(A0), (A1), (A2), but not (A3) hold in theFOUR context. Indeed, first(1)
entails(A0), second(1), (2) entail(A1) butnot (A3), and third(1), (3) entail(A2), where

(1) L = L4, V = V4, and|==|=4;

(2) ∀ α, β ∈ L4, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

It is easy to see that our assumptions (except(A3)) still hold if we restrict the language toLc.

2.8.1 A proof system

A proof system for in theFOUR context can be found in e.g. [1, 2, 3]. We call itsystemFOUR.

Axioms:
[a⇒ a] Γ, α⇒ ∆, α

[¬1⇒] Γ,¬1⇒ ∆ Γ⇒ ∆, 1 [⇒ 1]

[0⇒] Γ, 0⇒ ∆ Γ⇒ ∆,¬0 [⇒ ¬0]

[⊥ ⇒] Γ,⊥ ⇒ ∆ Γ⇒ ∆,⊤ [⇒ ⊤]

[¬⊥ ⇒] Γ,¬⊥ ⇒ ∆ Γ⇒ ∆,¬⊤ [⇒ ¬⊤]

Rules: Exchange, Contraction, and the following rules:

[¬¬ ⇒]
Γ, α⇒ ∆

Γ,¬¬α⇒ ∆
Γ⇒ ∆, α

Γ⇒ ∆,¬¬α
[⇒ ¬¬]

[∧ ⇒]
Γ, α, β ⇒ ∆

Γ, α ∧ β ⇒ ∆
Γ⇒ ∆, α Γ⇒ ∆, β

Γ⇒ ∆, α ∧ β
[⇒ ∧]

[¬∧ ⇒]
Γ,¬α⇒ ∆ Γ,¬β ⇒ ∆

Γ,¬(α ∧ β)⇒ ∆

Γ⇒ ∆,¬α,¬β

Γ⇒ ∆,¬(α ∧ β)
[⇒ ¬∧]

[∨ ⇒]
Γ, α⇒ ∆ Γ, β ⇒ ∆

Γ, α ∨ β ⇒ ∆

Γ⇒ ∆, α, β

Γ⇒ ∆, α ∨ β
[⇒ ∨]

[¬∨ ⇒]
Γ,¬α,¬β ⇒ ∆

Γ,¬(α ∨ β)⇒ ∆

Γ⇒ ∆,¬α Γ⇒ ∆,¬β
Γ⇒ ∆,¬(α ∨ β)

[⇒ ¬∨]

[⊃⇒]
Γ⇒ ∆, α Γ, β ⇒ ∆

Γ, α ⊃ β ⇒ ∆

Γ, α⇒ ∆, β

Γ⇒ ∆, α ⊃ β
[⇒⊃]

[¬ ⊃⇒]
Γ, α,¬β ⇒ ∆

Γ,¬(α ⊃ β)⇒ ∆

Γ⇒ ∆, α Γ⇒ ∆,¬β
Γ⇒ ∆,¬(α ⊃ β)

[⇒ ¬ ⊃]
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Proposition 14 From [1, 2, 3]. IfL = L4, V = V4, and|==|=4, then∀ Γ, ∆ ⊆ L4, Γ  ∆ iff
Γ⇒ ∆ is provable insystemFOUR.

We will usesystemFOUR to construct a proof system ford in theFOUR context (in Section 7).
Note that a single-conclusioned proof system for⊢ in theFOUR context has been given in [1, 2].

2.9 TheJ3 context

The logicJ3 was introduced in [10] to answer a question posed in 1948 by S.Jaśkowski, who was
interested in systematizing theories capable of containing contradictions, especially if they occur in
dialectical reasoning. The step from informal reasoning under contradiction and formal reasoning
with databases and information was done in [8] (also specialized for real database models in [9]),
where another formulation ofJ3 calledLFI1 was introduced, and its first-order version, semantics
and proof theory were studied in detail. Investigations ofJ3 have also been made by Avron in e.g.
[4] where richer languages than the classicalLc are considered. In addition, proof systems for and
⊢ in theJ3 context can be found in e.g. [4, 10] and the chapter IX of [11].Now, from e.g. [10]:

Notation 15 We denote byL3 the propositional language generated fromA, the constant symbols
0, 1,⊤, the unary connective¬, and the binary connectives∨, ∧, and⊃.

Definition 16 We say thatx is a J3-valuation iff x is a function fromL3 to {0, 1,⊤} such that
x(0) = 0, x(1) = 1, x(⊤) = ⊤, and the truth tables 5, 6, 7 and 8 hold. We denote byV3 the set of
all J3-valuations. We denoted by|=3 the relation onV3 ×L3 such that∀ x ∈ V3, ∀α ∈ L3, x |=3 α

iff x(α) ∈ {1,⊤}. We call|=3 theJ3-satisfaction relation.

α ¬α
0 1
1 0
⊤ ⊤
Table 5.

β

0 1 ⊤

α

0 0 1 ⊤
1 1 1 1
⊤ ⊤ 1 ⊤

α ∨ β

Table 6.

β

0 1 ⊤

α

0 0 0 0
1 0 1 ⊤
⊤ 0 ⊤ ⊤

α ∧ β

Table 7.

β

0 1 ⊤

α

0 1 1 1
1 0 1 ⊤
⊤ 0 1 ⊤

α ⊃ β

Table 8.

If we restrict the language toLc ⊆ L3, the same precise meaning as forFOUR is valid, except that
the following is added to the simplifying assumption: for every propositional symbol, we are at least
informed that it is true or informed that it is false.

Roughly speaking,(A0), (A1), (A2), and(A3) hold in theJ3 context. More precisely, first(1)
entails(A0), second(1) and(2) entail(A1) and(A3), and third(1) and(3) entail(A2), where

(1) L = L3, V = V3, and|==|=3;

(2) ∀ α, β ∈ L3, neg(α) = ¬α, or(α, β) = α ∨ β, and(α, β) = α ∧ β;

(3) A is finite.

It is easy to see that our assumptions still hold if we restrict the language toLc.
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2.9.1 A proof system

A proof system for in theJ3 context can be found in e.g. [4, 10] and the chapter IX of [11].We
call it systemJ3. It is obtained fromsystemFOUR by removing the axioms[⊥ ⇒] and[¬⊥ ⇒]
and by adding the axiom

[⇒ α,¬α] Γ⇒ ∆, α,¬α

Proposition 17 From [4, 10] and the chapter IX of [11]. IfL = L3, V = V3, and|==|=3, then
∀ Γ, ∆ ⊆ L3, Γ  ∆ iff Γ⇒ ∆ is provable insystemJ3.

We will usesystemJ3 to construct a proof system ford in theJ3 context (in Section 7).

2.10 Different contexts different drawbacks

Preferential (resp. preferential-discriminative) CRs suffer from the following drawback: some sets
of formulas are rendered useless in the sense that everything (resp. nothing) can be concluded from
them. A set of formulasΓ is rendered useless in two situations:

• there does not exist a model forΓ;

• there exist models forΓ, but they are not preferred.

Note that in theFOUR andJ3 contexts, these two situations happen less often than in theclassical
context. Roughly speaking, this is due to the fact that in theFOUR andJ3 contexts, there are
much more valuations than in the classical context. Then, itis harder to be left with no model or no
preferred model. In particular, for all classically inconsistentΓ ⊆ Lc, there are generallyFOUR
andJ3 models. Thus, in theFOUR andJ3 contexts, preferential and preferential-discriminative
CRs are paraconsistent.

On the other hand, in these paraconsistent contexts, the Disjunctive Syllogism is not satisfied,
unlike in the classical context. The Disjunctive Syllogismsays that fromα and¬α∨β, we can infer
β. Let us illustrate all of this with examples.

2.10.1 A particular preferential consequence relation in the classical context

Suppose that we are in the classical context (i.e. supposeL = Lc, V = Vc, and|==|=c) and suppose
A = {r, q, p}. Recall thatA is a set of propositional symbols introduced in Section 2.7.Intuitively,
r means that Nixon is a republican,q means that Nixon is a quaker, andp means that Nixon is a
pacifist. Then,Vc is the set of the 8 following classical valuations:v0, v1, v2, v3, v4, v5, v6, andv7,
which are defined in the obvious way by the following table:

r q p

v0 0 0 0
v1 0 0 1
v2 0 1 0
v3 0 1 1
v4 1 0 0
v5 1 0 1
v6 1 1 0
v7 1 1 1
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Now, consider the class of all republicans and the class of all quakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normal iffhe is a pacifist. And, consider that a
valuationx is more normal than a valuationy (from some point of view) iff there is a classC s.t.:

• Nixon is an individual ofC in bothx andy;

• Nixon is normal inx;

• Nixon is not normal iny.

Let us see this with the following graph (there is an arrow from a valuationx to a valuationy iff x is
more normal thany):

This is formalized by the preferential structureZ such thatZ = 〈X ,≺〉, whereX = V × {0} and
≺ is the relation onX ×X such that∀ 〈x, 0〉, 〈y, 0〉 ∈ X , 〈x, 0〉 ≺ 〈y, 0〉 iff (1) or (2) holds, where

(1) x |= r andx |= ¬p andy |= r andy 6|= ¬p;

(2) x |= q andx |= p andy |= q andy 6|= p.

Now, let |∼ be the preferential CR defined byZ.
Then,|∼ leads us to “jump” to plausible conclusions from incompleteinformation and to revise

previous “hasty” conclusions in the face of new and fuller information. For instance,r |∼ ¬p and
{r, p} 6|∼ ¬p andq |∼ p and{q,¬p} 6|∼ p. Thus, in the classical context, preferential CRs can be
useful to handle incomplete information.

But, we many sets of formulas are rendered useless because there is no preferred model. For
instance,{q, r} |∼ α, ∀ α ∈ L. And, a lot of sets of formulas are rendered useless because there is
just no model. For instance:{p,¬p, q} |∼ α, ∀ α ∈ L. In other words,|∼ is not paraconsistent.

2.10.2 A particular preferential consequence relation in theFOUR context

Suppose now that we are in theFOUR context (i.e. supposeL = L4, V = V4, and|==|=4) and
suppose again thatA = {r, q, p}. Consider the same classes, etc. as in the classical context, except
that this time a valuationx is considered to be more normal than a valuationy (from some point of
view) iff there is a classC such that

• in bothx andy, we are informed that Nixon is an individual ofC;

• in x, we are informed that Nixon is normal and not informed of the contrary;

• in y, we are not even informed that Nixon is normal.

This is formalized by the preferential structureZ such thatZ = 〈X ,≺〉, whereX = V × {0} and
≺ is the relation onX ×X such that∀ 〈x, 0〉, 〈y, 0〉 ∈ X , 〈x, 0〉 ≺ 〈y, 0〉 iff (1) or (2) holds, where
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(1) x |= r andx |= ¬p andx 6|= p andy |= r andy 6|= ¬p;

(2) x |= q andx |= p andx 6|= ¬p andy |= q andy 6|= p.

Then, again|∼ leads us to “jump” to plausible conclusions from incompleteinformation and to
revise previous “hasty” conclusions in the face of new and fuller information. For instance,r |∼ ¬p
and{r, p} 6|∼ ¬p andq |∼ p and{q,¬p} 6|∼ p. In addition, less sets of formulas are rendered useless
because there is no preferred model. For instance,{q, r} |∼ p and{q, r} |∼ ¬p and{q, r} |∼ q

and{q, r} 6|∼ ¬q and {q, r} |∼ r and {q, r} 6|∼ ¬r. And, less sets of formulas are rendered
useless because there is just no model. For instance,{p,¬p, q} |∼ p and{p,¬p, q} |∼ ¬p and
{p,¬p, q} |∼ q and{p,¬p, q} 6|∼ ¬q.

But, |∼ does not satisfy the Disjunctive Syllogism. Indeed,{¬r, r ∨ q} 6|∼ q.

3 Definability preserving preferential consequence relations

In this section, we give normal characterizations of the twofollowing families:

• the DP preferential CRs;

• the smooth DP preferential CRs, under(A0).

We emphasize that theses characterizations have already been given by Karl Schlechta under the
assumption that we are in the classical context, see e.g. [23]. We just show that his characterizations
are valid in almost all contexts (classical,J3, FOUR, etc.).

3.1 The necessary and sufficient conditions

Before going further, note thatfor the rest of the papereach time we write one of the following
letters:α, β, γ, Γ, ∆, Θ, x, y, z, X , Y , Z, X, Y, Z (possibly with exponents and/or subscripts),
we assumeα, β, γ ∈ L andΓ, ∆, Θ ⊆ L andx, y, z ∈ V andX, Y, Z ⊆ V andX,Y,Z ⊆ P(V).
Thus, if we write∀ α, ∀X , ∃ α, ∃X , etc., we mean∀ α ∈ L, ∀X ⊆ V , ∃ α ∈ L, ∃X ⊆ V , etc.

Proposition 18 Let |∼ be a CR. Then,

(i) if |∼ is a DP preferential CR, then(|∼ 0), (|∼ 1), (|∼ 2), and(|∼ 3) hold;

(ii) if (|∼ 0), (|∼ 1), (|∼ 2), (|∼ 3) hold, then|∼ is a transitive irreflexive DP preferential CR;

(iii) if |∼ is a smooth DP preferential CR, then(|∼ 0), (|∼ 1), (|∼ 2), (|∼ 3), and(|∼ 4) hold;

(iv) if (A0), (|∼ 0), (|∼ 1), (|∼ 2), (|∼ 3), and(|∼ 4) hold, then|∼ is a transitive irreflexive
smooth DP preferential CR;

where

(|∼ 0) ∀ Γ, if Γ = ∆, thenΓ̃ = ∆̃;

(|∼ 1) ∀ Γ, Γ̃ = Γ̃;

(|∼ 2) ∀ Γ, Γ ⊆ Γ̃;

(|∼ 3) ∀ Γ, ∆, Γ̃ ∪∆ ⊆ Γ̃ ∪∆;
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(|∼ 4) ∀ Γ, ∆, if Γ ⊆ ∆ ⊆ Γ̃, thenΓ̃ = ∆̃.

Proof For (i) and (iii), there exists a DP preferential structureZ on V such that∀ Γ, Γ̃ =
T (µZ(MΓ)). By Theorem 7(i), µZ satisfies(µ0) and(µ1). And,∀ Γ, µZ(MΓ) = MT (µZ (MΓ)) =

MΓ̃, asµZ(MΓ) ∈ D. Let Γ, ∆ ⊆ L. We show(|∼ 0). If Γ = ∆, thenMΓ = M∆, thus

Γ̃ = T (µZ(MΓ)) = T (µZ(M∆)) = ∆̃. We show(|∼ 1). Γ̃ = T (MT (µZ(MΓ))) = T (µZ(MΓ)) =

Γ̃. We show(|∼ 2). Γ ⊆ T (MΓ) ⊆(µ0) T (µZ(MΓ)) = Γ̃. We show(|∼ 3). MΓ∪∆ ⊆ MΓ, thus

µZ(MΓ)∩MΓ∪∆ ⊆(µ1) µZ(MΓ∪∆), thusΓ̃ ∪∆ = T (µZ(MΓ∪∆)) ⊆ T (µZ(MΓ)∩MΓ∪∆) =(µ0)

T (µZ(MΓ) ∩M∆) = T (MΓ̃ ∩M∆) = Γ̃ ∪∆.
(i). Everything has been shown in the common part.
(iii). AsZ is smooth, by Theorem 7(iii), µZ satisfies(µ2). We show(|∼ 4). If Γ ⊆ ∆ ⊆ Γ̃,

thenµZ(MΓ) = MΓ̃ ⊆M∆ = M∆ ⊆MΓ, thusΓ̃ = T (µZ(MΓ)) =(µ2) T (µZ(M∆)) = ∆̃.

For (ii) and (iv), we have(|∼ 0), (|∼ 1), (|∼ 2), and(|∼ 3). Let µ : D → D be the func-
tion such that∀ Γ, µ(MΓ) = MΓ̃. If MΓ = M∆, thenΓ = ∆, thus Γ̃ =(|∼0) ∆̃, thusµ is

well-defined. Moreover,∀ Γ, Γ̃ =(|∼1) Γ̃ = T (MΓ̃) = T (µ(MΓ)). Let Γ, ∆ ⊆ L. We show(µ0).
µ(MΓ) = MΓ̃ ⊆(|∼2) MΓ. We show(µ1). If MΓ ⊆ M∆, thenµ(M∆) ∩MΓ = M∆̃ ∩MΓ =
M∆̃∪Γ ⊆(|∼3) M

∆̃∪Γ
= µ(M∆∪Γ) = µ(MΓ).

(ii). By Theorem 7(ii), there exists a transitive irreflexive preferential structureZ onV s.t.∀Γ,
Γ̃ = T (µ(MΓ)) = T (µZ(MΓ)). In addition,Z is DP, as∀ Γ, µZ(MΓ) = µ(MΓ) ∈ D.

(iv). We show(µ2). ∀ Γ, ∆, if µ(MΓ) ⊆ M∆ ⊆ MΓ, thenMΓ̃ ⊆ M∆ ⊆ MΓ, thusΓ ⊆

T (MΓ) ⊆ T (M∆) = ∆ ⊆ T (MΓ̃) = Γ̃ =(|∼1) Γ̃, thusµ(MΓ) = MΓ̃ =(|∼4) M∆̃ = µ(M∆).
Thus, by Theorem 7(iv), there exists a transitive irreflexive smooth preferentialstructureZ onV
such that∀Γ, Γ̃ = T (µ(MΓ)) = T (µZ(MΓ)). And,Z is DP, as∀Γ, µZ(MΓ) = µ(MΓ) ∈ D.

The conditions:(|∼ 0), (|∼ 1), (|∼ 2), (|∼ 3), and(|∼ 4) depend only on|∼, ⊢ andL. As,⊢ has
been defined semantically (in Section 2.2), these conditions have a semantic aspect. In parallel, as
we have a proof system for⊢ in the classical,FOUR, andJ3 contexts (in Section 2.8 and 2.9), the
conditions have also a syntactic aspect in these contexts.

3.2 Normal characterizations

Let Φ be the relation onP(L)6 such that∀ Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 ⊆ L, Φ(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) iff

• if Γ1 = Γ2, thenΓ4 = Γ5;

• Γ4 = Γ4;

• Γ1 ⊆ Γ4;

• if Γ3 = Γ1 ∪ Γ2, thenΓ6 ⊆ Γ4 ∪ Γ2.

Then, by Proposition 18(i) and(ii), for all CR |∼, |∼ is a DP preferential CR iff∀ Γ1, Γ2, Γ3 ⊆ L,
Φ(Γ1, Γ2, Γ3, Γ̃1, Γ̃2, Γ̃3). Let Φ′ be the relation onP(L)6 such that∀ Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 ⊆ L,
Φ′(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) iff Φ(Γ1, Γ2, Γ3, Γ4, Γ5, Γ6) and

if Γ1 ⊆ Γ2 ⊆ Γ4, thenΓ4 = Γ5
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Then, by Proposition 18(iii) and(iv), under(A0), for all CR |∼, |∼ is a smooth DP preferential
CR iff ∀ Γ1, Γ2, Γ3 ⊆ L, Φ′(Γ1, Γ2, Γ3, Γ̃1, Γ̃2, Γ̃3).

4 Preferential consequence relations

In this section, we gave a nonnormal characterization of thefamily of all preferential CRs. Un-
fortunately, we cannot use Lemma 7 to characterize preferential CRs as we did to characterize DP
preferential CRs in Proposition 18. Roughly speaking, thisis due to the fact that in the proof of(i)

and(iii), from Γ̃ = T (µZ(MΓ)), we can no longer concludeµZ(MΓ) = MΓ̃, asµZ(MΓ) is no
longer necessarily inD. Thus, we cannot get the conditions on|∼ from the conditions onµ.

Here is the Karl Schlechta’s remedy. In Proposition 5.2.5 of[23], he gave for any function
µ : Y → Y, necessary and sufficient conditions for the existence of a preferential structureZ
on V such that∀ X ∈ Y, µ(X) is the smallest element ofY that containsµZ(X). Note that in
this proposition, it is assumed thatY is closed under arbitrarily intersections and finite unions, and
∅,V ∈ Y. Then, Schlechta used Proposition 5.2.5 of [23] to give a nonnormal charaterization of
preferential CRs under the assumption that we are in the classical context.

Strongly inspired by Proposition 5.2.5 of [23], we will givefor any functionµ : Y → Y,
necessary and sufficient conditions for the existence of a preferential structureZ on V such that
∀ X ∈ Y, µ(X) = MT (µZ(X)) (Lemma 21 below). Note that unlike Proposition 5.2.5 of [23],
Lemma 21 has no further prerequisite. Then, by Lemma 21 we will give nonnormal characterizations
of: preferential CRs (in Section 4); some families of preferential-discriminative CRs (in Section 6).

Definition 19 Let Y ⊆ P(V) andµ : Y → Y be a function. We denote byµ′ : Y → P(V) the
function such that∀X ∈ Y,

µ′(X) = {x ∈ X : ∀ Y ∈ Y, if Y ⊆ X andx ∈ Y, thenx ∈ µ(Y )}

The lemma just below is from Karl Schlechta (Fact 5.2.2 and Proposition 5.2.4 of [23]).

Lemma 20 From [23]. LetY ⊆ P(V) andµ : Y → Y be a function. Then, there exists a transitive
irreflexive preferential structureZ onV such that∀X ∈ Y, µ′(X) = µZ(X).

Lemma 21 Let Y ⊆ P(V) andµ : Y → Y be a function. Then,

(i) if there exists a preferential structureZ onV such that∀ X ∈ Y, µ(X) = MT (µZ(X)), then
(µ3) holds;

(ii) if (µ3) holds, then there exists a transitive irreflexive preferential structureZ on V such that
∀X ∈ Y, µ(X) = MT (µZ (X));

where

(µ3) ∀X ∈ Y, µ(X) = MT (µ′(X)).

Proof (i). By Theorem 7(i), µZ satisfies(µ0) and (µ1). We show thatµ satisfies(µ3). Let
X ∈ Y. Case 1:∃ x ∈ µZ(X), x 6∈ µ′(X). Then,x ∈(µ0) X . Thus, asx 6∈ µ′(X), ∃ Y ∈ Y,
Y ⊆ X , x ∈ Y , andx 6∈ µ(Y ) = MT (µZ (Y )) ⊇ µZ(Y ). However,µZ(X) ∩ Y ⊆(µ1) µZ(Y ), thus
x ∈ µZ(Y ), which is impossible.
Case 2:µZ(X) ⊆ µ′(X). Case 2.1:∃x ∈ µ′(X), x 6∈ µ(X). Then,x ∈ X and∀Y ∈ Y, if Y ⊆ X

andx ∈ Y , thenx ∈ µ(Y ). Thus,x ∈ µ(X), which is impossible. Case 2.2:µ′(X) ⊆ µ(X). Then,
µ(X) = MT (µZ (X)) ⊆MT (µ′(X)) ⊆MT (µ(X)) = MT (MT (µZ (X))) = MT (µZ (X)) = µ(X).

(ii). Obvious by Lemma 20 and(µ3).
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Proposition 22 Let |∼ be a CR. Then,

(i) if |∼ is a preferential CR, then(|∼ 5) holds;

(ii) if (|∼ 5) holds, then|∼ is transitive irreflexive preferential CR;

where

(|∼ 5) ∀ Γ, Γ̃ = T ({x ∈MΓ : ∀∆, if M∆ ⊆MΓ andx ∈M∆, thenx ∈M∆̃}).

Proof (i). There is a preferential structureZ onV such that∀Γ, Γ̃ = T (µZ(MΓ)). Letµ : D→ D

be the function s.t.∀X ∈ D, µ(X) = MT (µZ(X)). By Lemma 21(i), µ satisfies(µ3). Moreover,

∀ Γ, µ(MΓ) = MT (µZ (MΓ)) = MΓ̃. We show(|∼ 5). ∀ Γ, Γ̃ = T (µZ(MΓ)) = T (MT (µZ(MΓ))) =
T (µ(MΓ)) =(µ3) T (MT (µ′(MΓ))) = T (µ′(MΓ)) = T ({x ∈ MΓ : ∀ Y ∈ D, if Y ⊆ MΓ and
x ∈ Y , thenx ∈ µ(Y )}) = T ({x ∈MΓ : ∀∆, if M∆ ⊆MΓ andx ∈M∆, thenx ∈M∆̃}).

(ii). Let µ : D → D be the function such that∀ Γ, µ(MΓ) = MΓ̃. If MΓ = M∆, then

Γ̃ =(|∼5) ∆̃, thusµ is well-defined. We show thatµ satisfies(µ3). ∀ Γ, µ(MΓ) = MΓ̃ =(|∼5)

M
T ({x∈MΓ:∀ ∆, if M∆⊆MΓ andx∈M∆, thenx∈M∆̃}) = MT (µ′(MΓ)). Thus, by Lemma 21(ii), there

exists a transitive irreflexive preferential structureZ on V such that∀ Γ, Γ̃ =(|∼5) T (MΓ̃) =
T (µ(MΓ)) = T (MT (µZ(MΓ))) = T (µZ(MΓ)).

We cannot get a normal characterization of preferential CRsfrom Proposition 22, because the con-
dition depends on too many∆. More explanations have been given in Section 2.5.

5 Definability preserving preferential-discriminative CRs

In this section, we give normal characterizations of the four following families:

• the DP preferential-discriminative CRs, under(A1), (A2), and(A3);

• the smooth DP preferential-discriminative CRs, under(A1), (A2), and(A3);

• the CP DP preferential-discriminative CRs, under(A1) and(A2);

• the smooth CP DP preferential-discriminative CRs, under(A1) and(A2).

5.1 The necessary and sufficient conditions

Definition 23 We say thatΓ is consistent iff∀ α, Γ 6⊢ α or Γ 6⊢ neg(α). We denote by IN the nat-
ural numbers including 0:{0, 1, 2, . . .}, by IN+ the strictly positive natural numbers:{1, 2, . . .},
and by ZZ the integers. For alli, j ∈ ZZ, we denote by[i, j] the set of allk ∈ ZZ such that
i ≤ k ≤ j. In addition, for allβ1, β2, . . . , βr ∈ L, when we writeor(β1, β2, . . . , βr), we mean
or(or(. . . or(or(β1 , β2), β3), . . .), βr) and when we writeor(β1), we simply meanβ1.

Definition 24 Let |∼ be a CR,Γ ⊆ L, andi ∈ IN, i ≥ 2. Then,

• H1(Γ)
def
= {neg(β) : β 6∈ Γ̃, β ∈ Γ ∪ Γ̃, andneg(β) 6∈ Γ ∪ Γ̃};
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• Hi(Γ)
def
= {neg(β) :





β 6∈ Γ̃ and

β ∈ Γ ∪ Γ̃ ∪H1(Γ) ∪ . . . ∪Hi−1(Γ) and

neg(β) 6∈ Γ ∪ Γ̃ ∪H1(Γ) ∪ . . . ∪Hi−1(Γ)

};

• H(Γ)
def
=

⋃
i∈IN+ Hi(Γ).

Note thatH should be indexed by|∼, but as there will never be any ambiguity, we omit it to increase
readability. We can now give the representation results.

Proposition 25 Let |∼ be a CR. Then,

(i) if (A1), (A2), and(A3) hold and|∼ is a DP preferential-discriminative CR, then(|∼ 0),
(|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 9) hold;

(ii) if (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 9) hold, then|∼ is a transitive
irreflexive DP preferential-discriminative CR;

(iii) if (A1), (A2), and(A3) hold and|∼ is a smooth DP preferential-discriminative CR, then
(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9) and(|∼ 10) hold;

(iv) if (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9) and(|∼ 10) hold, then|∼ is a transitive
irreflexive smooth DP preferential-discriminative CR;

(v) if (A1) and(A2) hold and|∼ is a CP DP preferential-discriminative CR, then(|∼ 0), (|∼ 6),
(|∼ 7), (|∼ 8), (|∼ 9), and(|∼ 11) hold;

(vi) if (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9), and(|∼ 11) hold, then|∼ is a transitive
irreflexive CP DP preferential-discriminative CR;

(vii) if (A1) and(A2) hold and|∼ is a smooth CP DP preferential-discriminative CR, then(|∼ 0),
(|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9), (|∼ 10), and(|∼ 11) hold;

(viii) If (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9), (|∼ 10), and(|∼ 11) hold, then|∼ is a
transitive irreflexive smooth CP DP preferential-discriminative CR;

where

(|∼ 6) ∀ Γ, α, β, if β 6∈ Γ̃, β ∈ Γ ∪ Γ̃, andΓ ∪ Γ̃ ∪ {neg(α)} ⊆ Γ ∪ Γ̃ ∪ {neg(β)}, thenα 6∈ Γ̃;

(|∼ 7) ∀Γ, α, β, if α, β 6∈ Γ̃, α ∈ Γ ∪ Γ̃, andΓ∪ Γ̃∪{β} ⊆ Γ ∪ Γ̃ ∪ {neg(α)}, thenor(α, β) 6∈ Γ̃;

(|∼ 8) ∀ Γ, α, if α ∈ Γ̃, thenneg(α) 6∈ Γ ∪ Γ̃;

(|∼ 9) ∀ Γ, ∆, if ∆ ⊆ Γ, thenΓ ∪ Γ̃ ∪H(Γ) ⊆ ∆ ∪ ∆̃ ∪H(∆) ∪ Γ;

(|∼ 10) ∀ Γ, ∆, if Γ ⊆ ∆ ⊆ Γ ∪ Γ̃ ∪H(Γ), thenΓ ∪ Γ̃ ∪H(Γ) = ∆ ∪ ∆̃ ∪H(∆);

(|∼ 11) ∀ Γ, if Γ is consistent, theñΓ is consistent,Γ ⊆ Γ̃, andΓ̃ = Γ̃.
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Note that the conditions:(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 9), (|∼ 10), and(|∼ 11) depend only
on |∼, ⊢, L, neg, andor. As ⊢ has been defined semantically (in Section 2.2), these conditions
have a semantic aspect. In parallel, as we have a proof systemfor ⊢ in the classical,FOUR, and
J3 contexts (Sections 2.8 and 2.9), the conditions have also a syntactic aspect in these contexts. In
addition,(|∼ 8) is equivalent to(|∼ 8d), where

(|∼ 8d) ∀ Γ, Γ̃ ⊆ Γ ∪ Γ̃
d

.

As ⊢d has been defined semantically (in Section 2.2),(|∼ 8d) has a semantic aspect. We will give
a proof system ford and thus for⊢d in theFOUR andJ3 contexts (in Section 7). Thus,(|∼ 8d)
has also a syntactic aspect in these contexts.

It now remains to prove Proposition 25. The proof has been relegated at the end of Section 5.1.
Indeed, we first need Definitions 26 and Lemmas 27, 28, and 29 below. We now give an overview
of the proofs of(i) and(ii). The proofs of(iii), (v) and(vii) are similar to the proof of(i). The
proofs of(iv), (vi), and(viii) are similar to the proof of(ii).

Overview of the proof of proposition 25 We begin with(ii). If (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8),
and (|∼ 9) hold, then we can construct a functionµ : D → D such that(µ0), (µ1), and∀ Γ,
Γ̃ = Td(µ(MΓ)). Then, by Theorem 7,|∼ is clearly a transitive irreflexive DP preferential-
discriminative CR. Recall that(µ0) and(µ1) have been defined in Section 3.1. We now describe
µ. It suffices to take the function such that∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Indeed, by(|∼ 0), µ is
well-defined, by(|∼ 9), µ satisfies(µ1), and clearlyµ satisfies(µ0). In addition, in Lemma 28
below, we show that(|∼ 6), (|∼ 7), and(|∼ 8) entail∀ Γ, Γ̃ = Td(MΓ∪Γ̃∪H(Γ)) = Td(µ(MΓ)).
The proofs of(iv), (vi) and(viii) are very similar. Roughly speaking, from the other properties of
|∼ (resp.(|∼ 10) and(|∼ 11)), we show thatµ satisfies some other properties (resp.(µ2) and CP),
from which we show that|∼ belongs to the desired family (resp. smooth and CP).

We turn to(i). If |∼ is a DP preferential-discriminative CR, then there exists aDP preferential
structureZ on V such that∀ Γ, Γ̃ = Td(µZ(MΓ)). Then,(|∼ 0) clearly holds. In addition, by
Theorem 7,µZ satisfies(µ0) and(µ1). Then, we show in Lemma 29 below that(|∼ 6), (|∼ 7),
(|∼ 8) hold and∀Γ, µZ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, by(µ1), (|∼ 9) also holds. The proofs of(iii),
(v), (vii) are very similar. Roughly speaking, from the properties of|∼ inherited from the family to
which |∼ belongs (resp. smooth and CP), we show thatµZ satisfies some properties (resp.(µ2) and
CP), from which we show that the desired properties of|∼ hold (resp.(|∼ 10) and(|∼ 11)).

We hope that this overview have given the reader an idea of what is shown in Lemma 28 and 29
below. Lemma 27 below is just a part of Lemma 28 that we have separated from the rest to increase
readability. We now explain the utility of Definition 26 justbelow. The purpose of these definitions
is to introduce for allΓ, a setF (Γ), which is very close toH(Γ). The reason is that in Lemma 28
and 29 below, we do not work directly withH(Γ), but withF (Γ). Let us make it more precise with
the previous overview. We begin with the overview of the proof of (ii). In fact, in Lemma 28, we
first show that if(|∼ 6), (|∼ 7), and(|∼ 8) hold, then∀ Γ, MΓ∪Γ̃∪F (Γ) = MΓ∪Γ̃∪H(Γ) (this is why

we said thatF (Γ) is very close toH(Γ)). Then, we show∀ Γ, Γ̃ = Td(MΓ∪Γ̃∪F (Γ)). And it is only

then that we conclude∀ Γ, Γ̃ = Td(MΓ∪Γ̃∪H(Γ)). We turn to the overview of the proof of(i). In
fact, in Lemma 29 we show that(|∼ 6), (|∼ 7), (|∼ 8) hold and that∀ Γ, µZ(MΓ) = MΓ∪Γ̃∪F (Γ).
It is only then that we conclude∀ Γ, µZ(MΓ) = MΓ∪Γ̃∪H(Γ).
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We hope to have given the reader an idea of the utility ofF (Γ). We confess that we do not
have given any intuition behindH(Γ) andF (Γ), we just have explained the utility of these sets. In
fact,H(Γ) andF (Γ) are mainly technical tools which help us to achieve the representation results
(Proposition 25) and thus there is no real intuition. We now introduceF (Γ), which requires the
introduction ofM i

Γ, M ′
Γ, nΓ, βi

Γ, andβΓ. We also define a setG(Γ) which is just a technical tool
used in Lemma 29. We need to fix for the rest of the paper a total order<V onV . This total order is
completely auxiliary and chosen arbitrarily.

Definition 26 Let (A2) holds,|∼ be a CR, andΓ ⊆ L. We denote byM1
Γ the set such that

M1
Γ = {x ∈MΓ∪Γ̃ : ∃ β, β 6∈ Γ̃, MΓ∪Γ̃ ⊆Mβ, andx 6∈Mneg(β)}

Let i ∈ IN, i ≥ 2. We denote byM i
Γ the set such that

M i
Γ = {x ∈MΓ∪Γ̃\M

1
Γ∪. . .∪M i−1

Γ : ∃β, β 6∈ Γ̃, MΓ∪Γ̃\M
1
Γ∪. . .∪M i−1

Γ ⊆Mβ, x 6∈Mneg(β)}

We denote byM ′
Γ the set such that

M ′
Γ =

⋃

i∈IN+

M i
Γ

We denote bynΓ the cardinal such that

nΓ = |{i ∈ IN+ : M i
Γ 6= ∅}|

If M1
Γ 6= ∅, then we denote byβ1

Γ the element ofL, such that

β1
Γ = or(β1, β2, . . . , βr)

wherer is the cardinality ofM1
Γ and∀ j ∈ [1, r], βj is an element ofL chosen arbitrarily such that

βj 6∈ Γ̃ andMΓ∪Γ̃ ⊆ Mβj
andxj 6∈ Mneg(βj), wherexj is thej-th <V -smallest element ofM1

Γ.
Note thatr ≥ 1 and by(A2), r is finite, thusβ1

Γ is well-defined.
Let i ∈ IN, i ≥ 2. If M i

Γ 6= ∅, then we denote byβi
Γ the element ofL, such that

βi
Γ = or(β1, β2, . . . , βr)

wherer is the cardinality ofM i
Γ and∀ j ∈ [1, r], βj is an element ofL chosen arbitrarily such that

βj 6∈ Γ̃ andMΓ∪Γ̃ \M
1
Γ ∪ . . .∪M i−1

Γ ⊆Mβj
andxj 6∈Mneg(βj), wherexj is thej-th <V-smallest

element ofM i
Γ. Note thatr ≥ 1 and by(A2), r is finite, thusβi

Γ is well-defined.
If M ′

Γ 6= ∅, then we denote byβΓ the element ofL, such that

βΓ = or(β1
Γ, β2

Γ, . . . , βnΓ

Γ )

Note thatnΓ ≥ 1. In addition, we will show in Lemma 27 thatnΓ is finite and∀ i ∈ IN+, i ≤ nΓ,
M i

Γ 6= ∅. Thus,βΓ is well-defined.
We denote byF (Γ) the set such that

F (Γ) =

{
{neg(βΓ)} if M ′

Γ 6= ∅
∅ otherwise

We denote byG(Γ) the set such that

G(Γ) = {α ∈ L : α 6∈ Γ̃, neg(α) 6∈ Γ̃ andTd(MΓ∪Γ̃∪{α}) ⊆ Γ̃}
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Note that these definitions should be indexed by|∼, but as there will never be any ambiguity, we
omit it to increase readability.

Lemma 27 Let (A2) holds,|∼ be a CR,Γ ⊆ L andi, j ∈ IN+. Then,

(0) if i 6= j, thenM i
Γ ∩M

j
Γ = ∅;

(1) if M i
Γ = ∅, thenM i+1

Γ = ∅;

(2) Td(MΓ∪Γ̃) ⊆ Γ̃ iff M1
Γ = ∅;

(3) if i ≥ 2, thenTd(MΓ∪Γ̃ \M1
Γ ∪ . . . ∪M i−1

Γ ) ⊆ Γ̃ iff M i
Γ = ∅;

(4) nΓ is finite;

(5) if i ≤ nΓ, thenM i
Γ 6= ∅;

(6) if i > nΓ, thenM i
Γ = ∅;

(7) if M ′
Γ 6= ∅, thenM ′

Γ = M1
Γ ∪ . . . ∪MnΓ

Γ ;

(8) Td(MΓ∪Γ̃ \M ′
Γ) ⊆ Γ̃.

Proof (0), (1), (2), and(3). Trivial.
(4). Obvious by(0) and(A2).
(5). Suppose∃ i ∈ IN+, M i

Γ = ∅ and i ≤ nΓ. By (1), ∀ j ∈ IN+, j ≥ i, M
j
Γ = ∅. Thus,

|{j ∈ IN+ : M
j
Γ 6= ∅}| < i ≤ nΓ, which is impossible.

(6). Suppose∃ i ∈ IN+, M i
Γ 6= ∅ and i > nΓ. By (1), ∀ j ∈ IN+, j ≤ i, M

j
Γ 6= ∅. Thus,

|{j ∈ IN+ : M
j
Γ 6= ∅}| ≥ i > nΓ, which is impossible.

(7). We getnΓ ∈ IN+. Thus,M ′
Γ = M1

Γ ∪ . . . ∪MnΓ

Γ ∪ . . . =(6) M1
Γ ∪ . . . ∪MnΓ

Γ .

(8). Case 1:M ′
Γ = ∅. Then,Td(MΓ∪Γ̃ \M ′

Γ) = Td(MΓ∪Γ̃) ⊆(2) Γ̃, asM1
Γ = ∅. Case 2:M ′

Γ 6= ∅.

Td(MΓ∪Γ̃ \M
′
Γ) =(7) Td(MΓ∪Γ̃ \M

1
Γ∪ . . .∪MnΓ

Γ ) ⊆(3) Γ̃, asnΓ +1 ≥ 2 andMnΓ+1
Γ =(6) ∅.

We will use Lemma 27 implicitly in the sequel. Lemmas 28 and 29below have an interest of
their own. Indeed, we will use them to characterize some families of DP preferential-discriminative
CRs in this section. In addition, we will use them in Section 6to characterize some families of
preferential-discriminative CRs that are not necessarilyDP. In fact, it seems that Lemmas 28 and
29 can be useful to characterize any familyC of CRs such that for all CR|∼, |∼ ∈ C iff ∀ Γ,
Γ̃ = Td(µ(MΓ)), whereµ : D→ P(V) is simply a function satisfying(µ0).

Lemma 28 Let (A1) and(A2) hold, let|∼ be a CR such that(|∼ 6), (|∼ 7), and(|∼ 8) hold, and
let Γ ⊆ L. Then,

(1) βΓ 6∈ Γ̃ if M ′
Γ 6= ∅;

(2) MΓ∪Γ̃ ⊆MβΓ if M ′
Γ 6= ∅;

(3) MΓ∪Γ̃ \M ′
Γ ⊆Mneg(βΓ) if M ′

Γ 6= ∅;

(4) M ′
Γ ∩Mneg(βΓ) = ∅ if M ′

Γ 6= ∅;

(5) MΓ∪Γ̃ \M ′
Γ = MΓ∪Γ̃∪F (Γ);
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(6) Γ̃ = Td(MΓ∪Γ̃∪F (Γ));

(7) MΓ∪Γ̃∪H(Γ) = MΓ∪Γ̃∪F (Γ);

(8) Γ̃ = Td(MΓ∪Γ̃∪H(Γ)).

Proof (1), (2), and(4). It suffices to show by induction∀ i ∈ [1, nΓ], p1(i), p2(i), p3(i) hold, with

p1(i) or(β1
Γ, . . . , βi

Γ) 6∈ Γ̃;

p2(i) MΓ∪Γ̃ ⊆Mor(β1
Γ,...,βi

Γ);

p3(i) (M1
Γ ∪ . . . ∪M i

Γ) ∩Mneg ◦ or(β1
Γ,...,βi

Γ) = ∅.

We can poseM1
Γ = {x1, . . . , xr} andβ1

Γ = or(β1, . . . , βr), with r ∈ IN+ and∀ j ∈ [1, r], βj 6∈ Γ̃
andMΓ∪Γ̃ ⊆ Mβj

andxj 6∈ Mneg(βj). By (A1), we getp2(1). We showp3(1). Let x ∈ M1
Γ. We

get∃ j ∈ [1, r], x = xj . Thus,x 6∈Mneg(βj) ⊇(A1) Mneg(β1
Γ). We showp1(1), but we relegate the

proof to(∗) below to increase readability.
Let i ∈ [1, nΓ − 1]. Supposep1(i), p2(i), andp3(i). We can poseM i+1

Γ = {x1, . . . , xr} and
βi+1

Γ = or(β1, . . . , βr), with r ∈ IN+ and∀ j ∈ [1, r], βj 6∈ Γ̃ andMΓ∪Γ̃ \M1
Γ ∪ . . . ∪M i

Γ ⊆Mβj

andxj 6∈Mneg(βj). We showp2(i+1). We getMΓ∪Γ̃ ⊆p2(i) Mor(β1
Γ,...,βi

Γ) ⊆(A1) Mor(β1
Γ,...,β

i+1
Γ ).

We showp3(i + 1). Let x ∈ M1 ∪ . . . ∪Mi+1. Case 1:x ∈ M1 ∪ . . . ∪Mi. We getx 6∈p3(i)

Mneg ◦ or(β1
Γ,...,βi

Γ) ⊇(A1) Mneg ◦ or(β1
Γ,...,β

i+1
Γ ). Case 2:x ∈ M i+1

Γ . We get∃ j ∈ [1, r], x = xj .

Thus,x 6∈ Mneg(βj) ⊇(A1) Mneg(βi+1
Γ ) ⊇(A1) Mneg ◦ or(β1

Γ,...,β
i+1
Γ ). We showp1(i + 1). We

showor(β1
Γ, . . . , βi

Γ, β1, . . . , βr) 6∈ Γ̃, but we relegate the proof to(∗∗) below to increase read-
ability. Then, we getMΓ∪Γ̃ ⊆p2(i) Mor(β1

Γ,...,βi
Γ) ⊆(A1) Mor(β1

Γ,...,βi
Γ,β1,...,βr). We get also

Mneg ◦ or(β1
Γ,...,βi

Γ,β1,...,βr) =(A1) Mneg ◦ or(β1
Γ,...,β

i+1
Γ ). Thus,or(β1

Γ, . . . , βi+1
Γ ) 6∈(|∼6) Γ̃.

(∗) It suffices to show by induction∀ j ∈ [1, r], q(j), where

q(j) or(β1, . . . , βj) 6∈ Γ̃.

Clearly,q(1) holds. Letj ∈ [1, r−1]. Supposeq(j). We showq(j +1). MΓ∪Γ̃ ⊆(A1) Mor(β1,...,βj)

andMΓ∪Γ̃∪{neg ◦ or(β1,...,βj)}
⊆MΓ∪Γ̃ = MΓ∪Γ̃∪{βj+1}

. Thus,or(β1, . . . , βj+1) 6∈q(j), (|∼7) Γ̃.

(∗∗) It suffices to show by induction∀ j ∈ [1, r], q(j), where

q(j) or(β1
Γ, . . . , βi

Γ, β1, . . . , βj) 6∈ Γ̃.

We showq(1). If x ∈MΓ∪Γ̃∪{neg ◦ or(β1
Γ,...,βi

Γ)}, thenx 6∈p3(i) M1
Γ∪. . .∪M i

Γ, thusx ∈MΓ∪Γ̃∪{β1}
.

Thus,MΓ∪Γ̃∪{neg ◦ or(β1
Γ,...,βi

Γ)} ⊆MΓ∪Γ̃∪{β1}
. Thus,or(β1

Γ, . . . , βi
Γ, β1) 6∈p1(i),p2(i),(|∼7) Γ̃.

Let j ∈ [1, r − 1]. Supposeq(j). We showq(j + 1). Let x ∈ MΓ∪Γ̃∪{neg ◦ or(β1
Γ,...,βi

Γ,β1,...,βj)}
.

We getx ∈(A1) Mneg ◦ or(β1
Γ,...,βi

Γ), thusx 6∈p3(i) M1
Γ ∪ . . . ∪M i

Γ, thusx ∈ MΓ∪Γ̃∪{βj+1}
. Thus,

MΓ∪Γ̃∪{neg ◦ or(β1
Γ,...,βi

Γ,β1,...,βj)}
⊆ MΓ∪Γ̃∪{βj+1}

. We getMΓ∪Γ̃ ⊆p2(i) Mor(β1
Γ,...,βi

Γ) ⊆(A1)

Mor(β1
Γ,...,βi

Γ,β1,...,βj). Thus,or(β1
Γ, . . . , βi

Γ, β1, . . . , βj+1) 6∈q(j),(|∼7) Γ̃.

(3). If ∃ x ∈MΓ∪Γ̃ \M ′
Γ, x 6∈Mneg(βΓ), thenx ∈(1),(2) MnΓ+1

Γ , impossible.
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(5). Case 1:M ′
Γ 6= ∅. We getMΓ∪Γ̃ \M ′

Γ ⊆(3) MΓ∪Γ̃∪{neg(βΓ)}. We getMΓ∪Γ̃∪{neg(βΓ)} ⊆(4)

MΓ∪Γ̃ \M ′
Γ. Case 2:M ′

Γ = ∅. We getMΓ∪Γ̃ \M ′
Γ = MΓ∪Γ̃ = MΓ∪Γ̃∪F (Γ).

(6). Direction: “⊆”. Case 1:M ′
Γ 6= ∅. Suppose∃ α, α ∈ Γ̃ andα 6∈ Td(MΓ∪Γ̃∪{neg(βΓ)}). We

get,MΓ∪Γ̃∪{neg(βΓ)} ⊆ MΓ̃ ⊆ Mα. Thus,MΓ∪Γ̃∪{neg(βΓ)} ⊆ Mneg(α), thusMΓ∪Γ̃∪{neg(βΓ)} ⊆

MΓ∪Γ̃∪{neg(α)}. Thus,α 6∈(1),(2),(|∼6) Γ̃, which is impossible.

Case 2:M ′
Γ = ∅. Let α ∈ Γ̃. We getMΓ∪Γ̃ ⊆ MΓ̃ ⊆ Mα. We getMΓ∪Γ̃ 6⊆(|∼8) Mneg(α). Thus,

α ∈ Td(MΓ∪Γ̃) = Td(MΓ∪Γ̃∪F (Γ)).
Direction: “⊇”. Obvious by(5) and Lemma 27(8).

(7). Direction: “⊆”. Case 1:M ′
Γ = ∅. Case 1.1:H1(Γ) 6= ∅. We get∃α, α 6∈ Γ̃, MΓ∪Γ̃ ⊆Mα, and

MΓ∪Γ̃ 6⊆ Mneg(α). Thus,α ∈ Td(MΓ∪Γ̃) = Td(MΓ∪Γ̃∪∅) =(6) Γ̃, which is impossible. Case 1.2:
H1(Γ) = ∅. As∀ i ∈ IN+, if Hi(Γ) = ∅, thenHi+1(Γ) = ∅, we getH(Γ) = ∅ = F (Γ).
Case 2:M ′

Γ 6= ∅. As, M ′
Γ ⊆ MΓ∪Γ̃, we getMΓ∪Γ̃ 6⊆(4) Mneg(βΓ). Thus,neg(βΓ) ∈(1),(2)

H1(Γ) ⊆ H(Γ). Thus,MH(Γ) ⊆MF (Γ).
Direction: “⊇”. Case 1: M ′

Γ = ∅. Verbatim the same reasoning as for case 1 of the “⊆”
direction. Case 2:M ′

Γ 6= ∅. It suffices to show by induction that∀i ∈ IN+, p(i), where

p(i) MΓ∪Γ̃∪{neg(βΓ)} ⊆MΓ∪Γ̃∪H1(Γ)∪...∪Hi(Γ).

We showp(1) by contradiction. Suppose∃ x, x ∈ MΓ∪Γ̃∪{neg(βΓ)} andx 6∈ MΓ∪Γ̃∪H1(Γ). Then,

x 6∈ MH1(Γ). Thus, ∃ β, MΓ∪Γ̃ ⊆ Mβ, β 6∈ Γ̃, and x 6∈ Mneg(β). Thus x ∈ M1
Γ, thus

x ∈M ′
Γ ∩Mneg(βΓ), which is impossible by(4).

Let i ∈ IN+. Supposep(i). We showp(i + 1) by contradiction. Suppose∃ x, x ∈MΓ∪Γ̃∪{neg(βΓ)}

andx 6∈ MΓ∪Γ̃∪H1(Γ)∪...∪Hi+1(Γ). Then,x ∈(5) MΓ∪Γ̃ \M ′
Γ = MΓ∪Γ̃ \M1

Γ ∪ . . . ∪MnΓ

Γ and

∃ j ∈ [1, i + 1], x 6∈ MHj(Γ). Case 2.1:j = 1. As for p(1), ∃ β, MΓ∪Γ̃ ⊆ Mβ, β 6∈ Γ̃, and
x 6∈ Mneg(β). Thusx ∈ M1

Γ ∩Mneg(βΓ), which is impossible by(4). Case 2.2:j > 1. Then,∃ β,

MΓ∪Γ̃∪H1(Γ)∪...∪Hj−1(Γ) ⊆ Mβ, β 6∈ Γ̃, andx 6∈ Mneg(β). But, MΓ∪Γ̃ \M1
Γ ∪ . . . ∪MnΓ

Γ =(5)

MΓ∪Γ̃∪{neg(βΓ)} ⊆p(i) MΓ∪Γ̃∪H1(Γ)∪...∪Hi(Γ) ⊆ MΓ∪Γ̃∪H1(Γ)∪...∪Hj−1(Γ) ⊆ Mβ. Thus,x ∈

MnΓ+1
Γ , which is impossible.

(8). Obvious by(6) and(7).

Lemma 29 Let (A1) and(A2) hold, |∼ be a CR, andµ : D → D be a function such that(µ0)

holds and∀ Γ, Γ̃ = Td(µ(MΓ)). Let nowΓ ⊆ L. Then,

(i) (|∼ 6), (|∼ 7), (|∼ 8), (0), (1), (2), and(3) hold;

(ii) if (A3) holds, then(4), (5), and(6) also hold;

(iii) if µ is CP, then(6) also holds;

where

(0) µ(MΓ) ⊆MΓ∪Γ̃;

(1) M ′
Γ ∩ µ(MΓ) = ∅;
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(2) MΓ∪Γ̃∪Tc(µ(MΓ)) = µ(MΓ);

(3) MΓ∪Γ̃∪H(Γ) = µ(MΓ) if M ′
Γ 6= ∅;

(4) MG(Γ) = MTc(µ(MΓ)) if M ′
Γ = ∅;

(5) MΓ∪Γ̃ ⊆MG(Γ) if M ′
Γ = ∅;

(6) MΓ∪Γ̃∪H(Γ) = µ(MΓ).

Proof (i). (0). Obvious by(µ0) and ifx ∈ µ(MΓ) andα ∈ Γ̃ = Td(µ(MΓ)), thenx ∈Mα.

(|∼ 6). We getµ(MΓ) ⊆(0) MΓ∪Γ̃ ⊆Mβ, howeverβ 6∈ Γ̃ = Td(µ(MΓ)), thusµ(MΓ) ⊆Mneg(β),

thusµ(MΓ) ⊆MΓ∪Γ̃∪{neg(β)} ⊆MΓ∪Γ̃∪{neg(α)}, thusα 6∈ Td(µ(MΓ)) = Γ̃.

(|∼ 7). We getµ(MΓ) ⊆(0) MΓ∪Γ̃ ⊆Mα, howeverα 6∈ Td(µ(MΓ)), thusµ(MΓ) ⊆Mneg(α), thus
µ(MΓ) ⊆MΓ∪Γ̃∪{neg(α)} ⊆MΓ∪Γ̃∪{β}, howeverβ 6∈ Td(µ(MΓ)), thusµ(MΓ) ⊆Mneg(β). Thus,
µ(MΓ) ⊆Mneg(α) ∩Mneg(β) =(A1) Mneg ◦ or(α,β), thusor(α, β) 6∈ Td(µ(MΓ)).

(|∼ 8). We getα ∈ Td(µ(MΓ)), thusµ(MΓ) 6⊆Mneg(α), thusMΓ∪Γ̃ 6⊆(0) Mneg(α).

(1). Case 1:M ′
Γ = ∅. Obvious. Case 2:M ′

Γ 6= ∅. We show∀ i ∈ [1, nΓ], p(i) hold, with

p(i) (M1
Γ ∪ . . . ∪M i

Γ) ∩ µ(MΓ) = ∅.

We showp(1) by contradiction. Suppose∃x ∈M1
Γ ∩µ(MΓ). We get∃β, β 6∈ Γ̃, MΓ∪Γ̃ ⊆Mβ and

x 6∈ Mneg(β). Thus,µ(MΓ) ⊆(0) Mβ. However,µ(MΓ) 6⊆ Mneg(β). Thus,β ∈ Td(µ(MΓ)) = Γ̃,
which is impossible.
Let i ∈ [1, nΓ − 1]. Supposep(i). We showp(i + 1). Case 1:M i+1

Γ ∩ µ(MΓ) = ∅. Obvious by
p(i). Case 2:∃ x ∈ M i+1

Γ ∩ µ(MΓ). We get∃ β, β 6∈ Γ̃, MΓ∪Γ̃ \M1
Γ ∪ . . . ∪M i

Γ ⊆ Mβ , and
x 6∈Mneg(β). Thus,µ(MΓ) ⊆(0),p(i) MΓ∪Γ̃ \M1

Γ ∪ . . .∪M i
Γ ⊆Mβ. Howeverµ(MΓ) 6⊆Mneg(β).

Thus,β ∈ Td(µ(MΓ)) = Γ̃, which is impossible.

(2). As µ(MΓ) ∈ D, ∃ Γ′, MΓ′ = µ(MΓ), thusMT (µ(MΓ)) = MT (MΓ′ ) = MΓ′ = µ(MΓ).
Thus,MΓ∪Γ̃∪Tc(µ(MΓ)) = MΓ∪Td(µ(MΓ))∪Tc(µ(MΓ)) = MΓ∪T (µ(MΓ)) =(µ0) MT (µ(MΓ)) = µ(MΓ).

(3). We showMΓ∪Γ̃∪{neg(βΓ)} ⊆ µ(MΓ). Case 1:∃ x, x ∈MΓ∪Γ̃∪{neg(βΓ)} andx 6∈MTc(µ(MΓ)).

We get∃ α ∈ Tc(µ(MΓ)), x 6∈ Mα. First, by Lemma 28(5), x ∈ MΓ∪Γ̃ \M1
Γ ∪ . . . ∪ MnΓ

Γ .
Second, by(0) and Lemma 28(2), µ(MΓ) ⊆ MβΓ ∩ Mα =(A1) Mneg ◦ neg ◦ and(βΓ,α), thus

neg ◦ and(βΓ, α) 6∈ Td(µ(MΓ)) = Γ̃. Third, by Lemma 28(3), MΓ∪Γ̃ \ M1
Γ ∪ . . . ∪ MnΓ

Γ ⊆
Mneg(βΓ) ⊆(A1) Mneg ◦ and(βΓ,α). Fourth,x 6∈ Mα ⊇(A1) Mneg ◦ neg ◦ and(βΓ,α). Thus,x ∈
MnΓ+1

Γ , which is impossible.
Case 2:MΓ∪Γ̃∪{neg(βΓ)} ⊆MTc(µ(MΓ)). Then,MΓ∪Γ̃∪{neg(βΓ)} ⊆MΓ∪Γ̃∪Tc(µ(MΓ)) =(2) µ(MΓ).

We showµ(MΓ) ⊆ MΓ∪Γ̃∪{neg(βΓ)}. We getµ(MΓ) ⊆(0),(1) MΓ∪Γ̃ \ M ′
Γ which is, by

Lemma 28(5), equal toMΓ∪Γ̃∪{neg(βΓ)}. Now, by Lemma 28(7), we are done.

(ii). (4). Direction: “⊆”. Suppose∃x, x ∈MG(Γ) andx 6∈MTc(µ(MΓ)). We get∃ δ ∈ Tc(µ(MΓ)),
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x 6∈ Mδ. We show∃ α ∈ Tc(µ(MΓ)), |MΓ∪Γ̃∪{α}| − |µ(MΓ)| ≤ −1, but we relegate the proof
to (∗) below to increase readability. We then get a contradiction,asµ(MΓ) ⊆(0) MΓ∪Γ̃∪{α}.

Direction: “⊇”. Suppose∃ x, x ∈ MTc(µ(MΓ)) andx 6∈ MG(Γ). We show a contradiction. We
get∃ α ∈ G(Γ), x 6∈Mα. Case 1:neg(α) ∈ T (MΓ∪Γ̃). Then,neg(α) ∈ Td(MΓ∪Γ̃) ∪ Tc(MΓ∪Γ̃).

But, neg(α) 6∈ Γ̃ which is, by Lemma 28(6), equal toTd(MΓ∪Γ̃), thusneg(α) ∈ Tc(MΓ∪Γ̃), thus,
α ∈(A1) Tc(MΓ∪Γ̃), thusα ∈(0) Tc(µ(MΓ)), thusx ∈Mα, which is impossible.
Case 2 :α ∈ T (MΓ∪Γ̃). Similar reasoning as for case 1.
Case 3 : neg(α) 6∈ T (MΓ∪Γ̃) and α 6∈ T (MΓ∪Γ̃). We getMΓ∪Γ̃∪{α} 6⊆(A3) Mneg(α), thus

α ∈ Td(MΓ∪Γ̃∪{α}), thusTd(MΓ∪Γ̃∪{α}) 6⊆ Γ̃, thusα 6∈ G(Γ), which is impossible.

(∗) It suffices to show by induction∀ i ∈ ZZ, i ≤ |MΓ∪Γ̃∪{δ}|, ∃ α, p1(α), p2(α), andp3(α, i),
where

p1(α) α ∈ Tc(µ(MΓ));

p2(α) x 6∈Mα;

p3(α, i) |MΓ∪Γ̃∪{α}| − |µ(MΓ)| ≤ i.

As |MΓ∪Γ̃∪{δ}| is finite by (A2), we can start withi = |MΓ∪Γ̃∪{δ}|. Clearly,p1(δ), p2(δ), and
p3(δ, |MΓ∪Γ̃∪{δ}|) hold.

Let i ∈ ZZ, i ≤ |MΓ∪Γ̃∪{δ}|. Suppose∃ α, p1(α), p2(α), p3(α, i). Case 1:Td(MΓ∪Γ̃∪{α}) ⊆ Γ̃.

Then, α 6∈p1(α) Td(µ(MΓ)) = Γ̃. We get alsoneg(α) 6∈p1(α),(A1) Td(µ(MΓ)) = Γ̃. Thus,
α ∈ G(Γ), thusx ∈Mα, which is impossible byp2(α).
Case 2:Td(MΓ∪Γ̃∪{α}) 6⊆ Γ̃. Then,∃ β, MΓ∪Γ̃∪{α} ⊆ Mβ, MΓ∪Γ̃∪{α} 6⊆ Mneg(β), andβ 6∈

Td(µ(MΓ)). We getµ(MΓ) ⊆(0),p1(α) Mβ, thusµ(MΓ) ⊆ Mneg(β), asβ 6∈ Td(µ(MΓ)). We show
p1(and(α, neg(β))). µ(MΓ) ⊆p1(α) Mα ∩ Mneg(β) =(A1) Mand(α,neg(β)) andµ(MΓ) ⊆p1(α)

Mneg(α) ⊆(A1) Mneg ◦ and(α,neg(β)). We turn top2(and(α, neg(β))). x 6∈p2(α) Mα ⊇(A1)

Mand(α,neg(β)). We showp3(and(α, neg(β)), i − 1). MΓ∪Γ̃∪{and(α,neg(β))} ⊆(A1) MΓ∪Γ̃∪{α},
but MΓ∪Γ̃∪{α} 6⊆ Mneg(β) ⊇(A1) MΓ∪Γ̃∪{and(α,neg(β))}. Thus |MΓ∪Γ̃∪{and(α,neg(β))}| + 1 ≤

|MΓ∪Γ̃∪{α}|. Thus,|MΓ∪Γ̃∪{and(α,neg(β))}| − |µ(MΓ)| ≤p3(α,i) i− 1.

(5). Suppose∃ x, x ∈ MΓ∪Γ̃ andx 6∈ MG(Γ). We show a contradiction. We get∃ α ∈ G(Γ),
x 6∈ Mα. Case 1:neg(α) ∈ T (MΓ∪Γ̃). We getneg(α) ∈ Td(MΓ∪Γ̃) ∪ Tc(MΓ∪Γ̃). We get

neg(α) 6∈ Γ̃ which is, by Lemma 28(6), equal toTd(MΓ∪Γ̃), thusneg(α) ∈ Tc(MΓ∪Γ̃), thus
MΓ∪Γ̃ ⊆Mneg ◦ neg(α) =(A1) Mα, thusx ∈Mα, which is impossible.
Case 2:α ∈ T (MΓ∪Γ̃). Similar reasoning as for case 1.
Case 3: neg(α) 6∈ T (MΓ∪Γ̃) and α 6∈ T (MΓ∪Γ̃). We getMΓ∪Γ̃∪{α} 6⊆(A3) Mneg(α), thus

α ∈ Td(MΓ∪Γ̃∪{α}), thusTd(MΓ∪Γ̃∪{α}) 6⊆ Γ̃, thusα 6∈ G(Γ), which is impossible.

(6). Case 1:M ′
Γ = ∅. We get, by Lemma 28(7), MΓ∪Γ̃∪H(Γ) = MΓ∪Γ̃∪F (Γ) = MΓ∪Γ̃ =(5)

MΓ∪Γ̃∪G(Γ) =(4) MΓ∪Γ̃∪Tc(µ(MΓ)) =(2) µ(MΓ). Case 2:M ′
Γ 6= ∅. Obvious by(3).

(iii). Case 1:M ′
Γ = ∅. Case 1.1:∃ x, x ∈MΓ∪Γ̃ andx 6∈MTc(µ(MΓ)). Case 1.1.1:Γ is not consis-

tent. We get∃ α ∈ Tc(µ(MΓ)), x 6∈ Mα and∃ β, MΓ ⊆ Mβ andMΓ ⊆ Mneg(β). First,MΓ∪Γ̃ ⊆
MΓ ⊆(A1) Mor(β,neg(α)). Second,µ(MΓ) ⊆(µ0) Mneg(β) ∩ Mα =(A1) Mneg ◦ or(β,neg(α)),
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thus or(β, neg(α)) 6∈ Td(µ(MΓ)) = Γ̃. Third, x 6∈ Mα ⊇(A1) Mneg ◦ or(β,neg(α)). Thus,
x ∈M1

Γ ⊆M ′
Γ, which is impossible.

Case 1.1.2:Γ is consistent. Thus,MΓ ∈ D ∩ C, thusµ(MΓ) ∈ C, thusTc(µ(MΓ)) = ∅,
thusMTc(µ(MΓ)) = V ∋ x, which is impossible. Case 1.2:MΓ∪Γ̃ ⊆ MTc(µ(MΓ)). We get, by
Lemma 28(7), MΓ∪Γ̃∪H(Γ) = MΓ∪Γ̃∪F (Γ) = MΓ∪Γ̃ = MΓ∪Γ̃∪Tc(µ(MΓ)) =(2) µ(MΓ). Case 2:
M ′

Γ 6= ∅. Obvious by(3).

Now comes theproof of Proposition 25. Proposition 25 is stated at the begining of Section 5.1.

Proof For (i), (iii), (v), and(vii), there exists a DP preferential structureZ onV such that∀ Γ,
Γ̃ = Td(µZ(MΓ)). Let µ : D → D be the function such that∀X ∈ D, µ(X) = µZ(X). AsZ is
DP,µ is well-defined. Moreover,∀ Γ, Γ̃ = Td(µ(MΓ)) and, by Theorem 7(i), µ satisfies(µ0) and
(µ1). We show(|∼ 0). If Γ = ∆, thenMΓ = M∆, thusΓ̃ = Td(µZ(MΓ)) = Td(µZ(M∆)) = ∆̃.
In addition, by Lemma 29(i), we get(|∼ 6), (|∼ 7), and(|∼ 8).

(i). By Lemma 29(ii), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ), thus by(µ1), (|∼ 9) holds.
(iii). By Lemma 29(ii), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ), thus by(µ1), (|∼ 9) holds. In addition,

Z is smooth. Thus by Theorem 7(iii), µ satisfies(µ2), thus(|∼ 10) holds.
(v). Z is CP, thusµ is CP. Thus, by Lemma 29(iii), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ), thus, by(µ1),

(|∼ 9) holds. We show(|∼ 11). Let Γ be consistent. We getMΓ ∈ D ∩C, thusµ(MΓ) ∈ D ∩C.
We showΓ ⊆ Γ̃. Let α ∈ Γ. We getµ(MΓ) ⊆(µ0) MΓ ⊆ Mα. Thus,µ(MΓ) 6⊆ Mneg(α), thus

α ∈ Td(µ(MΓ)) = Γ̃. We show that̃Γ is consistent. We getMΓ̃ = MTd(µ(MΓ)) = MT (µ(MΓ)) =

µ(MΓ) ∈ C. And, Γ̃ = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (MΓ̃) = Γ̃.
(vii). By verbatim the same proof as for(v), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ) and(|∼ 9), (|∼ 11)

hold. In addition,Z is smooth, thus, by Theorem 7(iii), µ satisfies(µ2), thus(|∼ 10) holds too.

For (ii), (iv), (vi), and(viii), we have(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 9). Let µ : D→ D

be the function such that∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). If MΓ = M∆, thenH(Γ) =(|∼0) H(∆),

thusµ(MΓ) = µ(M∆), thusµ is well-defined. By Lemma 28(8), ∀ Γ, Γ̃ = Td(µ(MΓ)). We get
obviously(µ0). And, by(|∼ 9), we get(µ1).

(ii). By Theorem 7(ii), there exists a transitive irreflexive preferential structureZ onV s.t.∀Γ,
Γ̃ = Td(µ(MΓ)) = Td(µZ(MΓ)). And,Z is DP, as∀ Γ, µZ(MΓ) = µ(MΓ) ∈ D.

(iv). By (|∼ 10), we get(µ2). By (A1) and Proposition 10,(A0) holds. Thus, by Theo-
rem 7(iv), there exists a transitive irreflexive smooth preferentialstructureZ onV such that∀ Γ,
Γ̃ = Td(µ(MΓ)) = Td(µZ(MΓ)). In addition,Z is DP, as∀ Γ, µZ(MΓ) = µ(MΓ) ∈ D.

(vi). We show thatµ is CP. LetMΓ ∈ D ∩ C. Case 1:H1(Γ) 6= ∅. Thus,∃ β, β 6∈ Γ̃ and

MΓ∪Γ̃ ⊆ Mβ. As, Γ ⊆(|∼11) Γ̃, MΓ∪Γ̃ = MΓ̃, thusMΓ̃ ⊆ Mβ, thusβ ∈ T (MΓ̃) = Γ̃ =(|∼11) Γ̃,
which is impossible. Case 2:H1(Γ) = ∅. ThusH(Γ) = ∅. Thus,µ(MΓ) = MΓ∪Γ̃∪H(Γ) =

MΓ̃ ∈(|∼11) C. By Theorem 7(ii), there exists a transitive irreflexive preferential structureZ on

V such that∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(µZ(MΓ)). We show thatZ is CP. If X ∈ D ∩ C, then
µZ(X) = µ(X) ∈ C. And,Z is DP, as∀ Γ, µZ(MΓ) = µ(MΓ) ∈ D.

(viii). By verbatim the same proof as for(vi), µ is CP. In addition, by(|∼ 10), µ satisfies
(µ2). By (A1) and Proposition 10,(A0) holds. Thus, by Theorem 7(iv), there exists a transitive
irreflexive smooth preferential structureZ onV such that∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(µZ(MΓ)).
In addition,Z is CP, as ifX ∈ D ∩ C, thenµZ(X) = µ(X) ∈ C. And, Z is DP, as∀ Γ,
µZ(MΓ) = µ(MΓ) ∈ D.
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5.2 Normal characterizations

We give now in a straightforward manner, normal characterizations of the four following families:
DP preferential-discriminativeCRs, smooth DP preferential-discriminativeCRs, CP DP preferential-
discriminative CRs, and smooth CP DP preferential-discriminative CRs.

Let Γ1, Γ2 ⊆ L andi ∈ IN, i ≥ 2. Then,

• H1(Γ1, Γ2)
def
= {neg(β) : β 6∈ Γ2, andβ ∈ Γ1 ∪ Γ2, neg(β) 6∈ Γ1 ∪ Γ2};

• Hi(Γ1, Γ2)
def
= {neg(β) :





β 6∈ Γ2 and
β ∈ Γ1 ∪ Γ2 ∪H1(Γ1, Γ2) ∪ . . . ∪Hi−1(Γ1, Γ2) and
neg(β) 6∈ Γ1 ∪ Γ2 ∪H1(Γ1, Γ2) ∪ . . . ∪Hi−1(Γ1, Γ2)

};

• H(Γ1, Γ2)
def
=

⋃
i∈IN+ Hi(Γ1, Γ2).

Let nowΦ be the relation onP(L)4 such that∀ Γ1, Γ2, Γ3, Γ4, Φ(Γ1, Γ2, Γ3, Γ4) iff

• if Γ1 = Γ2, thenΓ3 = Γ4;

• ∀α, β, if β 6∈ Γ3, β ∈ Γ1 ∪ Γ3 andΓ1∪Γ3∪{neg(α)} ⊆ Γ1 ∪ Γ3 ∪ {neg(β)}, thenα 6∈ Γ3;

• ∀α, β, ifα, β 6∈ Γ3, α ∈ Γ1 ∪ Γ3andΓ1∪Γ3∪{β} ⊆ Γ1 ∪ Γ3 ∪ {neg(α)}, thenor(α, β) 6∈ Γ3;

• ∀ α, if α ∈ Γ3, thenneg(α) 6∈ Γ1 ∪ Γ3;

• if Γ2 ⊆ Γ1, thenΓ1 ∪ Γ3 ∪H(Γ1, Γ3) ⊆ Γ2 ∪ Γ4 ∪H(Γ2, Γ4) ∪ Γ1.

Then, by Proposition 25(i) and (ii), under(A1), (A2), and (A3), for all CR |∼, |∼ is a DP
preferential-discriminative CR iff∀ Γ1, Γ2 ⊆ L, Φ(Γ1, Γ2, Γ̃1, Γ̃2). LetΦ′ be the relation onP(L)4

s.t.∀ Γ1, Γ2, Γ3, Γ4, Φ′(Γ1, Γ2, Γ3, Γ4) iff Φ(Γ1, Γ2, Γ3, Γ4) and

if Γ1 ⊆ Γ2 ⊆ Γ1 ∪ Γ3 ∪H(Γ1, Γ3), thenΓ1 ∪ Γ3 ∪H(Γ1, Γ3) = Γ2 ∪ Γ4 ∪H(Γ2, Γ4)

Then, by Proposition 25(iii) and(iv), under(A1), (A2), and(A3), for all CR |∼, |∼ is a smooth
DP preferential-discriminative CR iff∀ Γ1, Γ2 ⊆ L, Φ′(Γ1, Γ2, Γ̃1, Γ̃2). Let Φ′′ be the relation on
P(L)4 s.t.∀ Γ1, Γ2, Γ3, Γ4, Φ′′(Γ1, Γ2, Γ3, Γ4) iff Φ(Γ1, Γ2, Γ3, Γ4) and

if Γ1 is consistent, thenΓ1 ⊆ Γ3, Γ3 is consistent, andΓ3 = Γ3

Then, by Proposition 25(v) and(vi), under(A1) and(A2), for all CR|∼, |∼ is a CP DP preferential-
discriminative CR iff∀ Γ1, Γ2 ⊆ L, Φ′′(Γ1, Γ2, Γ̃1, Γ̃2). Let Φ′′′ be the relation onP(L)4 s.t.
∀Γ1, Γ2, Γ3, Γ4, Φ′′′(Γ1, Γ2, Γ3, Γ4) iff Φ′′(Γ1, Γ2, Γ3, Γ4) andΦ′(Γ1, Γ2, Γ3, Γ4). Then, by Propo-
sition 25(vii) and(viii), under(A1) and(A2), for all CR |∼, |∼ is a smooth CP DP preferential-
discriminative CR iff∀ Γ1, Γ2 ⊆ L, Φ′′′(Γ1, Γ2, Γ̃1, Γ̃2).

6 Preferential-discriminative consequence relations

In this section, we give nonnormal characterizations of thetwo following families:

• the preferential-discriminative CRs, under(A1), (A2), and(A3);
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• the CP preferential-discriminative CRs, under(A1) and(A2).

Proposition 30 Let |∼ be a CR.

(i) If (A1), (A2), and(A3) hold and|∼ is a preferential-discriminative CR, then(|∼ 0), (|∼ 6),
(|∼ 7), (|∼ 8), and(|∼ 12) hold;

(ii) If (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 12) hold, then|∼ is a transitive irreflexive
preferential-discriminative CR;

(iii) If (A1) and(A2) hold and|∼ is a CP preferential-discriminative CR, then(|∼ 0), (|∼ 6),
(|∼ 7), (|∼ 8), (|∼ 11) and(|∼ 12) hold;

(iv) If (A1), (A2), (|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), (|∼ 11) and(|∼ 12) hold, then|∼ is a transitive
irreflexive CP preferential-discriminative CR;

where

(|∼ 12) ∀ Γ, MΓ∪Γ̃∪H(Γ) = M
T ({x∈MΓ:∀ ∆, if M∆⊆MΓ andx∈M∆, thenx∈M∆∪∆̃∪H(∆)})

.

Proof For(i) and(iii), there exists a preferential structureZ onV such that∀Γ, Γ̃ = Td(µZ(MΓ)).
Let µ : D → D be the function such that∀ X ∈ D, µ(X) = MT (µZ (X)). Then,∀ Γ, Γ̃ =
Td(µZ(MΓ)) = Td(MT (µZ (MΓ))) = Td(µ(MΓ)). We show thatµ satisfies(µ0). ∀ Γ, µ(MΓ) =
MT (µZ(MΓ)) ⊆MT (MΓ) = MΓ, asµZ(MΓ) ⊆MΓ. In addition, by Lemma 21(i), µ satisfies(µ3).
Recall that(µ3) has been defined in Section 4. We get obviously(|∼ 0). And, by Lemma 29(i), we
get(|∼ 6), (|∼ 7), and(|∼ 8).

(i). By Lemma 29(ii), ∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, By(µ3), (|∼ 12).
(iii). In addition,Z is CP. We show thatµ is CP. ifX ∈ D∩C, thenµ(X) = MT (µZ (X)) ∈ C,

asµZ(X) ∈ C. Thus, by Lemma 29(iii), µ(MΓ) = MΓ∪Γ̃∪H(Γ). Thus, by(µ3), we get(|∼ 12).
We show(|∼ 11). Verbatim the same reasoning as(v) of Proposition 25.

For (ii) and (iv), we have(|∼ 0), (|∼ 6), (|∼ 7), (|∼ 8), and(|∼ 12). Let µ : D → D be
the function such that∀ Γ, µ(MΓ) = MΓ∪Γ̃∪H(Γ). If MΓ = M∆, thenH(Γ) =(|∼0) H(∆), thusµ

is well-defined. By(|∼ 12), µ satisfies(µ3). In addition, by Lemma 28(8), ∀ Γ, Γ̃ = Td(µ(MΓ)).
Thus, by Lemma 21(ii), there exists a transitive irreflexive preferential structureZ onV such that
∀ Γ, Γ̃ = Td(µ(MΓ)) = Td(MT (µZ (MΓ))) = Td(µZ(MΓ)).

(ii). Everything has be shown in the common part.
(iv). We show thatµ is CP. Verbatim the same reasoning as(vi) of Proposition 25. We show

thatZ is CP. ifX ∈ D ∩C, thenµZ(X) ∈ C, asMT (µZ (X)) = µ(X) ∈ C.

We cannot get normal characterizations of these two families of preferential-discriminative CRs,
from Proposition 30, because the conditions depend on∆ for too many∆. More explanations have
been given in Section 2.5.

7 Proof systems ford

7.1 A proof system ford in the FOUR context

For the whole Section 7.1we assumeL = L4, V = V4, |==|=4 and∀ α ∈ L4, neg(α) = ¬α.
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Definition 31 We say thatα is aL4-literal iff there exists a constant or propositional symbol p of
L4 such thatα ∈ {p,¬p}. For all α ∈ L4, we denote byinv4(α) the formula ofL4 such that:
inv4(α) = β if ∃ β ∈ L4, α = ¬β; inv4(α) = ¬α otherwise. We callsystemFOURd the proof
system obtained fromsystemFOUR by adding:

Axioms:

[α⇒d α]

Γ ∪∆ ∪ {α} is a set ofL4-literals
0,¬1,⊥,¬⊥ 6∈ Γ ∪ {α}

∃ δ ∈ ∆ ∪ {α}, δ 6∈ {0,¬1,⊤,¬⊤} andinv4(δ) 6∈ Γ ∪ {α}

Γ, α⇒d ∆, α

[⇒d ⊤]

Γ ∪∆ is a set ofL4-literals
0,¬1,⊥,¬⊥ 6∈ Γ

∃ δ ∈ ∆ \ {0,¬1,⊤,¬⊤}, inv4(δ) 6∈ Γ

Γ⇒d ∆,⊤

0,¬1,⊥,¬⊥ 6∈ Γ
Γ⇒d ∆, 1

[⇒d 1]

[⇒d ¬⊤]

Γ ∪∆ is a set ofL4-literals
0,¬1,⊥,¬⊥ 6∈ Γ

∃ δ ∈ ∆ \ {0,¬1,⊤,¬⊤}, inv4(δ) 6∈ Γ

Γ⇒d ∆,¬⊤

0,¬1,⊥,¬⊥ 6∈ Γ
Γ⇒d ∆,¬0

[⇒d ¬0]

Rules:

[⇒d ∨]
Γ⇒d ∆, α, β

Γ⇒d ∆, α ∨ β

Γ⇒d ∆,¬α,¬β

Γ⇒d ∆,¬(α ∧ β)
[⇒d ¬∧]

[α∨ ⇒d]
Γ, α⇒d ∆ Γ, α ∨ β ⇒ ∆

Γ, α ∨ β ⇒d ∆
Γ, β ⇒d ∆ Γ, α ∨ β ⇒ ∆

Γ, α ∨ β ⇒d ∆
[∨β ⇒d]

[α¬∧ ⇒d]
Γ,¬α⇒d ∆ Γ,¬(α ∧ β)⇒ ∆

Γ,¬(α ∧ β)⇒d ∆

Γ,¬β ⇒d ∆ Γ,¬(α ∧ β)⇒ ∆

Γ,¬(α ∧ β)⇒d ∆
[¬ ∧ β ⇒d]

[⇒d ∧]
Γ⇒ ∆, α Γ⇒ ∆, β ∃ δ ∈ ∆ ∪ {α ∧ β}, Γ 6⇒ ¬δ

Γ⇒d ∆, α ∧ β

Γ, α, β ⇒d ∆

Γ, α ∧ β ⇒d ∆
[∧ ⇒d]

[⇒d⊃]
Γ, α⇒ ∆, β ∃ δ ∈ ∆ ∪ {α ⊃ β}, Γ 6⇒ ¬δ

Γ⇒d ∆, α ⊃ β

Γ⇒d ∆, α

Γ⇒d ∆,¬¬α
[⇒d ¬¬]

[⊃⇒d]
Γ⇒ ∆, α Γ, β ⇒ ∆ ∃ δ ∈ ∆, Γ, α ⊃ β 6⇒ ¬δ

Γ, α ⊃ β ⇒d ∆
Γ, α⇒d ∆

Γ,¬¬α⇒d ∆
[¬¬ ⇒d]

[¬ ⊃⇒d]
Γ, α,¬β ⇒ ∆ ∃ δ ∈ ∆, Γ,¬(α ⊃ β) 6⇒ δ

Γ,¬(α ⊃ β)⇒d ∆

Γ,¬α,¬β ⇒d ∆

Γ,¬(α ∨ β)⇒d ∆
[¬∨ ⇒d]

[⇒d ¬ ⊃]
Γ⇒ ∆, α Γ⇒ ∆,¬β ∃ δ ∈ ∆ ∪ {¬(α ⊃ β)}, Γ 6⇒ ¬δ

Γ⇒d ∆,¬(α ⊃ β)

[⇒d ¬∨]
Γ⇒ ∆,¬α Γ⇒ ∆,¬β ∃ δ ∈ ∆ ∪ {¬(α ∨ β)}, Γ 6⇒ ¬δ

Γ⇒d ∆,¬(α ∨ β)
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Proposition 32

(0) ∀ Γ, ∆, Γ⇒ ∆ is provable insystemFOUR iff Γ⇒ ∆ is provable insystemFOURd;

(1) ∀ Γ, ∆, Γ d ∆ iff Γ⇒d ∆ is provable insystemFOURd.

Proof (0). Direction: “→”. systemFOUR is a subset ofsystemFOURd. Direction: “←”.
The conclusions of the axioms and rules insystemFOURd which are not insystemFOUR are
sequents of the formΓ⇒d ∆ and thus cannot be used to derive new sequents of the formΓ⇒ ∆.

(1). In the whole proof, if we writeΓ ⇒ ∆ or Γ ⇒d ∆, we meanΓ ⇒ ∆ or Γ ⇒d ∆ is
provable insystemFOURd. Direction: “←”. It suffices to show by induction∀ i ∈ IN+, p(i), with

p(i) ∀ Γ, ∆, if there is a proof of lengthi for Γ⇒d ∆, thenΓ d ∆.

We showp(1). Let Γ, ∆ ⊆ L4 andA be an axiom which provesΓ⇒d ∆.
Case 1:A = [α ⇒d α] or A = [⇒d ⊤] or A = [⇒d ¬⊤]. We getΓ  ∆. In addition,∃ δ ∈ ∆,
inv4(δ) 6∈ Γ, inv4(δ) is aL4-literal, andδ 6∈ {0,¬1,⊤,¬⊤}. Consider theL4-valuationx such that
∀ α ∈ A,

x(α) =





⊤ if α ∈ Γ ¬α ∈ Γ
1 if α ∈ Γ ¬α 6∈ Γ
0 if α 6∈ Γ ¬α ∈ Γ
⊥ if α 6∈ Γ ¬α 6∈ Γ

Then,x 6∈ Minv4(δ) = M¬δ. But, Γ is a set ofL4-literals and0,¬1,⊥,¬⊥ 6∈ Γ, thusx ∈ MΓ.
ThusMΓ 6⊆M¬δ, thusΓ 6⊢ ¬δ.
Case 2:A = [⇒d 1]. Then,Γ  ∆. And,0,¬1,⊥,¬⊥ 6∈ Γ, thusMΓ 6⊆ ∅ = M¬1, thusΓ 6⊢ ¬1.
Case 3:A = [⇒d ¬0]. Similar reasoning as for case 2, which ends the proof ofp(1).
Let i ∈ IN+. Supposep(i). We showp(i + 1). Let Γ, ∆ ⊆ L4 andR be the last rule of a proof of
lengthi + 1 for Γ⇒d ∆.
Case 1:R = [⇒d ∧]. Then,∃∆′, α, β, ∆ = ∆′ ∪ {α ∨ β}, Γ ⇒ ∆′, α, andΓ ⇒ ∆′, β. Thus, by
the rule[⇒ ∧], Γ ⇒ ∆. Thus, by(0) and Proposition 14,Γ  ∆. In addition,∃ δ ∈ ∆, Γ 6⇒ ¬δ.
Thus, by(0) and Proposition 14,∃ δ ∈ ∆, Γ 6⊢ ¬δ.
Case 2:R = [⇒d ¬∨] or R = [⇒d ¬ ⊃] or R = [¬ ⊃⇒d] or R = [⊃⇒d] or R = [⇒d⊃]. Similar
reasoning as for case 1.
Case 3:R = [α∨ ⇒d]. Then,Γ ⇒ ∆, thus, by(0) and Proposition 14,Γ  ∆. In addition,
∃ Γ′, α, β, Γ = Γ′ ∪ {α ∨ β} and there is a proof of lengthi for Γ′, α ⇒d ∆. Thus, byp(i),
Γ′, α d ∆ thus,∃ δ ∈ ∆, Γ′, α 6⊢ ¬δ, thusMΓ′,α 6⊆ M¬δ, howeverMΓ′,α ⊆ MΓ′,α∨β, thus
MΓ′,α∨β 6⊆M¬δ. Thus,∃ δ ∈ ∆, Γ 6⊢ ¬δ.
Case 4:R = [∨β ⇒d] or R = [α¬∧ ⇒d] or R = [¬ ∧ β ⇒d]. Similar reasoning as for case 3.
Case 5:R = [⇒d ∨]. By p(i), Γ d ∆′, α, β. Thus,Γ  ∆′, α, β, thus, by Proposition 14 and
(0), Γ ⇒ ∆′, α, β, thus, by the rule[⇒ ∨], Γ ⇒ ∆, thus, by(0) and Proposition 14,Γ  ∆. It
remains to show∃ δ ∈ ∆, Γ 6⊢ ¬δ. We have∃ δ ∈ ∆′ ∪ {α, β}, Γ 6⊢ ¬δ. Case 5.1:δ = α. Then,
MΓ 6⊆ M¬α ⊇ M¬(α∨β), thusΓ 6⊢ ¬(α ∨ β). Case 5.2:δ = β. Similar reasoning as for case 5.1.
Case 5.3:δ ∈ ∆′. Obvious.
Case 6:R = [⇒d ¬∧]. Similar reasoning as for case 5.
Case 7:R = [¬¬ ⇒d] or R = [⇒d ¬¬] or R = [∧ ⇒d] or R = [¬∨ ⇒d]. Obvious.

Direction: “→”. First, note that all rules insystemFOUR are semantically reversible. For in-
stance, the rule[¬¬ ⇒] is semantically reversible, as ifΓ ∪ {¬¬α}  ∆, thenΓ ∪ {α}  ∆. Now,
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we denote byc(α), the complexity ofα. More formally,

c(α) =





1 if α is aL4-literal
c(β) + 1 if α is not aL4-literal and∃ β, α = ¬β
max({c(β), c(β′)}) + 1 if ∃ β, β′, α ∈ {β ∧ β′, β ∨ β′, β ⊃ β′}

We denote byc(Γ), the complexity ofΓ, i.e. c(Γ) = max({c(α) : α ∈ Γ}). As, ∀ Γ, c(Γ) ∈ IN+,
to show the “→” direction it suffices to show by induction that∀ i ∈ IN+, p(i), with

p(i) ∀ Γ, ∆, if Γ d ∆ andc(Γ ∪∆) ≤ i thenΓ⇒d ∆.

We showp(1). Let Γ, ∆ ⊆ L4, Γ d ∆ andc(Γ ∪∆) = 1. Then,Γ ∪∆ is a set ofL4-literals.
Case 1:Γ ∩ {0,¬1,⊥,¬⊥} 6= ∅. MΓ = ∅, thus∀ δ ∈ ∆, Γ ⊢ ¬δ, thusΓ 6d ∆, impossible.
Case 2:0,¬1,⊥,¬⊥ 6∈ Γ. Case 2.1:∀ δ ∈ ∆, inv4(δ) ∈ Γ or δ ∈ {0,¬1,⊤,¬⊤}. Let δ ∈ ∆. If
inv4(δ) ∈ Γ, thenMΓ ⊆Minv4(δ) = M¬δ. Else,δ ∈ {0,¬1,⊤,¬⊤}, thusMΓ ⊆ L = M¬δ. Thus,
Γ ⊢ ¬δ. Thus,Γ 6d ∆, which is impossible.
Case 2.2:∃ δ ∈ ∆, inv4(δ) 6∈ Γ andδ 6∈ {0,¬1,⊤,¬⊤}. Case 2.2.1:∆∩ {1,¬0,⊤,¬⊤} 6= ∅. By
the rule[⇒d 1], [⇒d ¬0], [⇒d ⊤], or [⇒d ¬⊤], Γ⇒d ∆.
Case 2.2.2:1,¬0,⊤,¬⊤ 6∈ ∆. Case 2.2.2.1:Γ ∩∆ = ∅. Consider theL4-valuationx of the “←”
direction. AsΓ is a set ofL4-literals and0,¬1,⊥,¬⊥ 6∈ Γ, we getx ∈ MΓ. Let δ ∈ ∆. As δ 6∈ Γ,
δ is aL4-literal, andδ 6∈ {1,¬0,⊤,¬⊤}, we getx 6∈Mδ. Thus,Γ 6 ∆, which is impossible.
Case 2.2.2.2:Γ ∩∆ 6= ∅. By the rule[α⇒d α], Γ⇒d ∆.
Let i ∈ IN+. Supposep(i). We showp(i+1). It suffices to show by induction∀ j ∈ IN+, q(j), with

q(j) ∀ Γ, ∆, if





Γ d ∆ and
c(Γ ∪∆) ≤ i + 1 and
|{α ∈ Γ ∪∆ : c(α) is maximal}| = j

thenΓ⇒d ∆.

We showq(1). LetΓ, ∆ ⊆ L4, Γ d ∆, c(Γ∪∆) ≤ i+1, and|{α ∈ Γ∪∆ : c(α) is maximal}| = 1.
Let γ be the unique formula such thatc(γ) is maximal.
Case 1:γ is aL4-literal. Obvious byp(1).
Case 2:γ is not aL4-literal. We study the sub-cases which follow. Note that thecase whereγ = ¬γ′

is slipped into the following casesγ = ¬(α ∨ β), γ = ¬(α ∧ β), γ = ¬(α ⊃ β), andγ = ¬¬α.
Case 2.1:γ = α ∧ β ∈ ∆. Then,Γ  ∆. We pose∆ = ∆′ ∪ {α ∧ β}. The rule[⇒ ∧] is
semantically reversible, thusΓ  ∆′, α andΓ  ∆′, β. Thus, by Proposition 14 and(0), Γ⇒ ∆′, α

andΓ⇒ ∆′, β. In addition,∃ δ ∈ ∆, Γ 6⊢ ¬δ. Thus, by Proposition 14 and(0), ∃ δ ∈ ∆, Γ 6⇒ ¬δ.
Thus, by the rule[⇒d ∧], Γ⇒a ∆.
Case 2.2:γ = ¬(α ∨ β) ∈ ∆ or γ = α ⊃ β or γ = ¬(α ⊃ β). Similar reasoning as for case 2.1.
Case 2.3:γ = α ∨ β ∈ Γ. Then,Γ  ∆. Thus, by Proposition 14 and(0), Γ ⇒ ∆. We pose
Γ = Γ′ ∪ {α ∨ β}. The rule[∨ ⇒] is semantically reversible, thusΓ′, α  ∆ andΓ′, β  ∆. In
addition,∃ δ ∈ ∆, Γ 6⊢ ¬δ. Thus,MΓ′,α∨β 6⊆ M¬δ, howeverMΓ′,α∨β = MΓ′,α ∪MΓ′,β, thus
MΓ′,α 6⊆ M¬δ or MΓ′,β 6⊆ M¬δ. Thus,∃ δ ∈ ∆, Γ′, α 6⊢ ¬δ or ∃ δ ∈ ∆, Γ′, β 6⊢ ¬δ. Thus,
Γ′, α d ∆ or Γ′, β d ∆. However,c(∆ ∪ Γ′ ∪ {α, β}) ≤ i, thus, byp(i), Γ′, α ⇒d ∆ or
Γ′, β ⇒d ∆. Thus, by the rule[α∨ ⇒d] or [∨β ⇒d], Γ⇒d ∆.
Case 2.4:γ = ¬(α ∧ β) ∈ Γ. Similar reasoning as for case 2.3.
Case 2.5:γ = α∨β ∈ ∆. Then,Γ  ∆. We pose∆ = ∆′∪{α∨β}. The rule[⇒ ∨] is semantically
reversible, thusΓ  ∆′, α, β. We show∃ δ ∈ ∆′ ∪ {α, β}, Γ 6⊢ ¬δ. We have∃ δ ∈ ∆′ ∪ {α ∨ β},
Γ 6⊢ ¬δ. Case 2.5.1:δ = α ∨ β. Then,MΓ 6⊆ M¬(α∨β) = M¬α ∩M¬β, thusMΓ 6⊆ M¬α or
MΓ 6⊆ M¬β. Thus,Γ 6⊢ ¬α or Γ 6⊢ ¬β. Case 2.5.2:δ ∈ ∆′. Obvious. Therefore,Γ d ∆′, α, β.
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However,c(Γ∪∆′ ∪{α, β}) ≤ i, thus, byp(i), Γ⇒d ∆′, α, β, thus, by the rule[⇒d ∨], Γ⇒d ∆.
Case 2.6:γ = ¬(α ∧ β) ∈ ∆. Similar reasoning as for case 2.5.
Case 2.7:γ = ¬¬α or γ = α ∧ β ∈ Γ or γ = ¬(α ∨ β) ∈ Γ. Obvious.
Let j ∈ IN+. Supposeq(j). We showq(j + 1). Similar reasoning as forq(1), except thatp(i) is
replaced byq(j) andγ is one of the formula such thatc(γ) is maximal.

7.2 A proof system ford in the J3 context

For the whole Section 7.2we assumeL = L3, V = V3, |==|=3 and∀ α ∈ L3, neg(α) = ¬α.

Definition 33 We say thatα is aL3-literal iff there exists a constant or propositional symbol p of
L3 such thatα ∈ {p,¬p}. For all α ∈ L3, we denote byinv3(α) the formula ofL3 such that:
inv3(α) = β if ∃β ∈ L3, α = ¬β; inv3(α) = ¬α otherwise. We callsystemJ3d the proof system
obtained fromsystemJ3 by adding:

• the same axioms and rules that we have added to getsystemFOURd from systemFOUR,
except that: we omit⊥ and¬⊥wherever they appear, we replaceL4-literal(s) byL3-literal(s),
and we replaceinv4 by inv3;

• [⇒d α,¬α]

Γ ∪∆ ∪ {α,¬α} is a set ofL3-literals
0,¬1 6∈ Γ

∃ δ ∈ ∆ ∪ {α,¬α}, inv3(δ) 6∈ Γ andδ 6∈ {0,¬1,⊤,¬⊤}

Γ⇒d ∆, α,¬α

.

Proposition 34

(0) ∀ Γ, ∆, Γ⇒ ∆ is provable insystemJ3 iff Γ⇒ ∆ is provable insystemJ3d;

(1) ∀ Γ, ∆, Γ d ∆ iff Γ⇒d ∆ is provable insystemJ3d.

Proof The proofs are similar to the ones for Proposition 32, exceptfor the parts which follow.

(1). Direction: “←”. Case 1:R = [α⇒d α] or R = [⇒d ⊤] or R = [⇒d ¬⊤] or R = [⇒d α,¬α].
Then,Γ  ∆. In addition,∃ δ ∈ ∆, inv3(δ) 6∈ Γ, inv3(δ) is aL3-literal, andδ 6∈ {0,¬1,⊤,¬⊤}.
Consider theL3-valuationsx1 andx0 such that∀ α ∈ L,

x1(α) =





⊤ if α ∈ Γ ¬α ∈ Γ
1 if α ∈ Γ ¬α 6∈ Γ
0 if α 6∈ Γ ¬α ∈ Γ
1 if α 6∈ Γ ¬α 6∈ Γ

x0(α) =





⊤ if α ∈ Γ ¬α ∈ Γ
1 if α ∈ Γ ¬α 6∈ Γ
0 if α 6∈ Γ ¬α ∈ Γ
0 if α 6∈ Γ ¬α 6∈ Γ

Then,x1 6∈ Minv3(δ) or x0 6∈ Minv3(δ). However,Γ is a set ofL3-literals and0,¬1 6∈ Γ, thus
x1, x0 ∈MΓ. ThusMΓ 6⊆Minv3(δ) = M¬δ. Thus,∃ δ ∈ ∆, Γ 6⊢ ¬δ.

Direction: “→”. We showp(1). Let Γ, ∆ ⊆ L3, Γ d ∆ andc(Γ ∪ ∆) = 1. Then,Γ ∪ ∆ is
a set ofL3-literals.
Case 1:Γ ∩ {0,¬1} 6= ∅, case 2:0,¬1 6∈ Γ, and case 2.1:∀ δ ∈ ∆, inv3(δ) ∈ Γ or δ ∈
{0,¬1,⊤,¬⊤}. Similar reasoning as for Proposition 32.
Case 2.2:∃ δ ∈ ∆, inv3(δ) 6∈ Γ andδ 6∈ {0,¬1,⊤,¬⊤}. Case 2.2.1:∆ ∩ {1,¬0,⊤,¬⊤} 6= ∅ or
∃ α, α,¬α ∈ ∆. By the rule[⇒d 1], [⇒d ¬0], [⇒d ⊤], [⇒d ¬⊤], or [⇒d α,¬α], Γ⇒d ∆.
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Case 2.2.2:1,¬0,⊤,¬⊤ 6∈ ∆ and∀ α, α 6∈ ∆ or ¬α 6∈ ∆. Case 2.2.2.1:Γ ∩∆ = ∅. Consider the
L3- valuationx such that∀ α ∈ A

x(α) =





⊤ if α ∈ Γ ¬α ∈ Γ
1 if α ∈ Γ ¬α 6∈ Γ
0 if α 6∈ Γ ¬α ∈ Γ
0 if α 6∈ Γ ¬α 6∈ Γ α ∈ ∆ ¬α 6∈ ∆
1 if α 6∈ Γ ¬α 6∈ Γ α 6∈ ∆ ¬α ∈ ∆
⊤ if α 6∈ Γ ¬α 6∈ Γ α 6∈ ∆ ¬α 6∈ ∆

As Γ is a set ofL3-literals and0,¬1 6∈ Γ, we getx ∈ MΓ. Let δ ∈ ∆. As δ 6∈ Γ, δ is aL3-literal,
andδ 6∈ {1,¬0,⊤,¬⊤}, we getx 6∈Mδ. Thus,Γ 6 ∆, thusΓ 6a ∆, which is impossible.
Case 2.2.2.2:Γ ∩∆ 6= ∅. By the rule[α⇒d α], Γ⇒d ∆.

8 Summary and future work

Preferential and preferential-discriminativeCRs represent natural ways of drawing conclusions which
are useful to handle incomplete information in the classical context and both incomplete and incon-
sistent information in theJ3 andFOUR contexts. The purpose of this paper was to characterize
several families of them in a general context that covers theclassical, three and four-valued contexts.

Theorem 7 and Lemma 21 have been used in both the basic and the discriminative case. This
suggests that they can be used to characterize some other families of CRs based on preferential
structures. Similarly, Lemmas 28 and 29 have an interest of their own. Indeed, it seems that they
can be used to characterize any familyC of CRs such that|∼ ∈ C iff ∀ Γ, Γ̃ = Td(µ(MΓ)), where
µ : P(V)→ P(V) is simply a function satisfying(µ0). Finally, let us say that some of the conditions
that we provided are probably too complex (and ugly) to be used efficiently. Simplifying them could
be the goal of a future work.
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