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Abstract. Clean is a matching pursuit process which
has two weak points: in situations of astrophysical inter-
est, the “clean map” is not stable in the corresponding
object representation space, and the “atoms” of this rep-
resentation (translated versions of the “clean beam”) are
not well suited for reconstructing the boundaries of the
structuring entities of the object at the related resolution
level. As a result, Clean must be interrupted before the
best possible fit is reached. How does Wipe wipe Clean

clean? First, by introducing a global regularization prin-
ciple based on the concept of resolution; and second, by
conducting the matching pursuit process at the level of
the high-resolution basis functions of the object space.

Key words: methods: data analysis; numerical —
techniques: image processing; interferometric

1. Introduction

WIPE is a Fourier synthesis method recently de-
veloped in radio imaging and optical interferometry
(Lannes et al. 1994, 1996). The name of Wipe is associated
with that of CLEAN, a deconvolution method intensively
used in astronomy (Högbom 1974; Schwarz 1978). (WIPE

can also be used as a deconvolution technique.) As a mat-
ter of fact, WIPE was devised, quite independently, on the
grounds of well known properties in harmonic analysis and
band-limited interpolation (Lannes et al. 1987a). There
also exists a probabilistic interpretation of this method
(Maréchal & Lannes 1997). Nevertheless, to some extent,
Wipe can equally well be regarded as an updated version
of CLEAN. This paper is aimed precisely at clarifying the
relationship between these two methods.

In Sect. 2, we first show that Clean lies in the family
of “matching pursuit” techniques (Mallat & Zhang 1993).
In other words, the principle of the “iterative harmonic
analysis” of CLEAN, as it is exhibited in Schwarz (1978),
can be regarded as a special case of a more general ap-
proach. We then present the reconstruction methods that
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can be implemented for solving the related optimization
problems, first, without any control of the propagation of
errors (Sect. 3), and afterwards, with a complete control
of the stability parameters (Sect. 4). The first weak point
of Clean can thus be exhibited: in situations of astro-
physical interest (for example, when observing extended
complex objects with dilute apertures), the matching pro-
cess of Clean is ill-conditioned. As shown in Sect. 5,
the regularization principle of WIPE, which can be ap-
plied to Clean as it is, remedies this lack of robustness.
Unfortunately, Clean has another weak point: the ba-
sis functions used in the matching pursuit process, the
‘clean beams,’ are not well suited for reconstructing the
boundaries of the structuring entities of the images at the
selected resolution level. As a result, Clean must be inter-
rupted before the best possible fit is reached. As indicated
in Sect. 5, the basic version of Wipe overcomes this diffi-
culty in a simple and efficient manner. The multiresolution
extension of WIPE, underlying the main aspects of this pa-
per, reinforces the arguments justifying this methodolog-
ical choice.

The guiding idea of our analysis is based on the the-
oretical framework presented in Sect. 1.1. (The reader
who is not familiar with the related basic notions is in-
vited to consult Appendices 1 to 4 of Lannes et al. 1987a).
As Clean was first used as a Fourier synthesis tech-
nique, it was natural to compare the principles of Clean

and WIPE in this context. Such a comparative study can
only be started from a common statement of the problem.
The corresponding formulation, which makes the theoret-
ical framework more attractive, is presented in Sect. 1.2.
We then also specify the general conditions of the numer-
ical simulations in support of our analysis.

1.1. Theoretical framework

In many inverse problems, the “reconstructed object” is
described in an “object representation space” E generated
by m vectors gk selected among a family Eo of M vectors
g1, g2, . . . , gM . The latter may be regarded as the “atoms”
of the object representation under consideration. The lin-
ear space generated by all the vectors of Eo , Eo, is a sub-
space of some Euclidean space: the “object space” Ho.
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The “data vector” ψd lies in another Euclidean space: the
“data space” Kd. (When the data are complex quantities,
it is always possible to work in the real linear space un-
derlying the complex linear space directly involved in the
analysis.) To a first approximation, ψd is related to the
object (or image) to be reconstructed via a linear oper-
ator A from Ho into Kd. The basic problem is to choose
the vectors gk in Eo , and thereby to construct the object
representation space E. The solutions are then obtained
by minimizing on E the quadratic functional:

q : Ho → R, q(φ)
4
= ‖ ψd − Aφ ‖

2
d . (1)

Clearly ‖ · ‖d= (· | ·)
1/2
d is the norm on Kd; the scalar

products on Ko and Kd, as well as the norms, will be dis-
tinguished by the subscripts o and d, respectively.

Let F be the “image” of E by A (the space of the Aφ’s,
φ spanning E), AE be the operator from E onto F in-
duced by A, and ψF be the projection of ψd onto F
(see Fig. 1). The vectors φ minimizing q on E, the solu-
tions of the problem, are such that AEφ = ψF . They are
identical up to a vector lying in the kernel of AE . Note that
kerAE = E ∩kerA. (By definition, the kernel of A, kerA,
also referred to as the null space of A, is the set of vec-
tors φ such that Aφ = 0). The condition dimE ≤ dimKd

is a necessary condition for kerAE to be reduced to {0}.
As ψd − ψF is orthogonal to F , the solutions φ of the

problem are characterized by the property:

∀ϕ ∈ E, (Aϕ | ψd −Aφ)d = 0 (φ ∈ E).

On denoting by A∗ the adjoint of A, this property can
also be written in the form

∀ϕ ∈ E, (ϕ | r)o = 0 r
4
= A∗(ψd − Aφ) (φ ∈ E),

where r is regarded as a residue. The solutions φ are
therefore characterized by the fact that the correspond-
ing residue is orthogonal to E, i.e.,

∀gk ∈ E , (gk | r)o = 0. (2)

This condition is of course equivalent to PE r = 0,
where PE is the projection (operator) of Ho onto E. The
solutions of the problem are therefore the solutions of the
equation on E:

PEA
∗AE φ = PEA

∗ψd . (3)

For any ϕ ∈ E and any ψ ∈ Kd, we have

(Aϕ | ψ)d = (ϕ | A∗ψ)o = (ϕ | PEA
∗ψ)o ,

hence A∗E = PEA
∗. This explicitly shows that Eq. (3) is

the “normal equation”:

A∗EAE φ = A∗Eψd . (4)

When the problem is well posed, AE is a one-to-one
map (kerAE = {0}); the solution is then unique: there

exists only one vector φ ∈ E such that AEφ = ψF . This
vector, φE, is said to be the least-squares solution of the
equation AEφ “=” ψd.

In this case, let δψF be a variation of ψF in F ,
and δφE be the corresponding variation of φE (see Fig. 1).
As shown in Appendix 1, the robustness of the reconstruc-
tion process is then governed by the inequality

‖ δφE ‖o
‖ φE ‖o

≤ κE
‖ δψF ‖d
‖ ψF ‖d

(5)

where κE is the condition number of AE :

κE
4
=

√
µ′
√
µ

; (6)

µ and µ′ respectively denote the greatest lower bound and
the least upper bound of ‖ AEφ ‖2d for the φ’s with norm
unity in E:

µ
4
= inf
‖φ‖o=1

‖ AEφ ‖
2
d µ′

4
= sup
‖φ‖o=1

‖ AEφ ‖
2
d . (7)

The closer to 1 is the condition number, the easier and
the more robust is the reconstruction process. As

‖ AEφ ‖
2
d= (φ | A∗EAE φ)o ,

µ and µ′ are the smallest and largest eigenvalues ofA∗EAE ,
respectively.

Fig. 1. Uniqueness of the solution and robustness of the re-
construction process. Operator A is an operator from the ob-
ject space Ho into the data space Kd. The object represen-
tation space E is a particular subspace of Ho (see text). The
image of E by A, the range of AE , is denoted by F . In this
Euclidean representation, ψF is the projection of the data
vector ψd onto F . The inverse problem must be stated so
that AE is a one-to-one map from E onto F , the condition
number κE having a reasonable value (see Eq. (5))

In the analysis of the different methods that can be
devised and implemented for solving the problem, three
main aspects must be examined:

1) the precise definition of ψd, A and E;
2) the selected minimization technique;
3) the robustness of the reconstruction process.
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The first point is essential for the interpretation of the re-
sults. It is related to the statement of the problem and,
if need be, to its “regularization;” ψd is not necessarily
the vector of the experimental data. In such a case, the
definition of A must of course take into account the cor-
responding manipulations. As regards E, which may also
be involved in the regularization of the problem, it is im-
portant to note that this space may be constructed, in a
global manner or step by step, interactively or automati-
cally. As suggested by the statement of point 2, many dif-
ferent techniques can be used for minimizing q on E; some
of these are certainly more efficient than others, but in this
case, the choice is not crucial. The last point concerns the
study of the propagation of errors. The part played by in-
equality (5) in the development of the corresponding error
analysis shows that a good reconstruction procedure must
also provide, in particular, the condition number κE .

1.2. Formulation of the problems of Fourier synthesis in
astronomy

In the problems of Fourier synthesis encountered in as-
tronomy, the “object function” of interest, φo, is a real-
valued function of an angular position variable ξ =
(ξ1, ξ2). The “object model variable” φ lies in some ob-
ject space Ho whose vectors, the functions φ, are defined
at a very high level of resolution. In this sense, one may
say that Ho emulates the Hilbert space of square inte-
grable real-valued functions L2

R(R2). More precisely, Ho

is characterized by two key parameters: the extension
∆ξ of its field, and its resolution scale δξ; δξ is there-
fore much smaller than the resolution limit that can be
reasonably expected at the end of the reconstruction pro-
cess: δξ

4
= ∆ξ/N , where N is some power of 2. (The larger

is N , the more oversampled is the object field.) To define
the object space more explicitly, we introduce the finite
grid (see Fig. 2):

G 4= L× L, L 4=
{
p ∈ Z : −

N

2
≤ p ≤

N

2
− 1

}
.

Let p be an integer vector lying in Z2: p = ( p1, p2).
Clearly, the functions

ep(ξ)
4
= e0(ξ − p δξ) (8)

where

e0(ξ)
4
= sinc

( ξ1
δξ

)
sinc

( ξ2
δξ

)
(9)

form an orthogonal set with

‖ ep ‖
2
o= (δξ)2 (∀p ∈ Z2). (10)

In our comparative analysis of Clean and WIPE, Ho

is the Euclidean space generated by the basis vectors ep,

p spanning G (see Fig. 2). The functions φ lying in this
space can therefore be expanded in the form:

φ =
∑
p∈G

xpep (xp ∈ R). (11)

In the general context of this paper, the functions ep,
which play the role of interpolation or scaling functions,
can be regarded as the “elementary particles” of the
object representation. Evidently, other orthogonal sets
of scaling functions can be used (cf. Sect. 4.3 of Lannes
et al. 1994). Let us finally note that Ho is a subspace
of L2
R
(R2); its inner product can be explicitly expressed

in the form (cf. Eqs. (8)-(11)):

(φ1 | φ2)o = (δξ)2
∑
p∈G

x1,p x2,p .

Thus,

‖ φ ‖2o= (δξ)2
∑
p∈G

x2
p
.

Fig. 2. Object grid G δξ for N = 8

The Fourier transform of φ is defined by the relation-
ship

φ̂(u)
4
=

∫
φ(ξ) exp(−2iπu · ξ) dξ,

where u is a two-dimensional angular spatial frequency:
u = (u1, u2). According to Eqs. (11), (8) and (9), we there-
fore have:

φ̂ =
∑
p∈G

xpêp

where

êp(u) = ê0(u) exp
(
−2iπp ·

u

∆u

)
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with ∆u
4
= 1/δξ and

ê0(u) =
1

(∆u)2
rect

( u1

∆u

)
rect

( u2

∆u

)
.

The “experimental data” ψe(u) are blurred values
of φ̂o(u) on a finite list of frequencies in the Fourier
domain: Le

4
= {ue(1),ue(2), . . . ,ue(Ne)}. As φo is a

real-valued function, it is natural to define ψe(−u) as the
complex conjugate of ψe(u). The ‘experimental frequency
list’ Le is defined consequently: if u ∈ Le, then −u ∈ Le

(except for u = : in the convention adopted in the sequel,
either the null frequency does not lie in Le, or there exists
only one occurrence of this point). The experimental fre-
quency coverage generated by Le is therefore centrosym-
metric (see Fig. 3a).

The experimental data vector ψe lies in the “exper-
imental data space” Ke. By definition, Ke is the real
Euclidean space underlying the space of complex-valued
functions on Le such that ψ(−u) = ψ(u). This space,
whose dimension is equal to Ne, is endowed with the scalar
product

(ψ1|ψ2)e
4
=
∑
u∈Le

ψ1(u)ψ2(u)W (u) (δu)2, (12)

where δu
4
= ∆u/N , and W is a given weighting function

(see for instance Eqs. (17) and (18) further on). Note that
this scalar product is real: (ψ1 | ψ2)e = (ψ2 | ψ1)e.
In CLEAN, the data space Kd reduces to Ke, whereas
in WIPE, Kd is a natural extension of Ke (cf. Sect. 5.1).

Let H be the Fourier domain: H
4
= (−∆u/2, ∆u/2)2.

In Fourier synthesis, the frequency coverage to be synthe-
sized is a centrosymmetric region Hs ⊂ H. In Fig. 3a, this
region is the disc centred on the origin. Clean and Wipe

share a common objective, that of the image to be re-
constructed. This image, φs, is defined so that its Fourier
transform is quadratically negligible outside Hs. More ex-
plicitly, φs is defined by a convolution relation of the form:

φs
4
= s ? φo . (13)

The “synthetic beam” s is a function resulting from
the choice of Hs : the “clean beam” in CLEAN, the “neat
beam” in Wipe (see Fig. 3b). The Fourier data corre-
sponding to φs are then defined by the relationship:

ψs(u)
4
= ŝ(u)ψe(u) (on Le). (14)

Clearly, ψs(u) lies in Ke ⊆ Kd.
The neat beam can be regarded as a sort of optimal

clean beam: the optimal apodized point spread function
that can be designed within the limits of the Heisenberg
principle. (Apodization theory is concerned with the con-
trol of the distribution of light over the exit pupil of an op-
tical system in order to achieve a suppression of side lobes
of the diffraction pattern — Slepian 1965). More precisely,
the neat beam s is a centrosymmetric function lying in the
object space Ho, and satisfying the following properties:

– (i) The “energy” of ŝ is concentrated in Hs. In other
words, ŝ is small outside Hs in the mean-square sense.
Given χ2 less than 1, but close to 1 (say χ2 = 0.97), s
satisfies a condition of the form:

1

‖ s ‖2

∫
Hs

| ŝ(u)|2 du = χ2 (15)

where ‖ s ‖2=‖ ŝ ‖2=
∫
R2 | ŝ(u)|2 du.

Fig. 3. General conditions of the simulation; a) experimen-
tal frequency coverage and frequency coverage to be synthe-
sized; b) representation of the corresponding neat beam (for
χ2 = 0.97). The experimental frequency list corresponding
to the experimental frequency coverage shown in a) includes
211 frequency points (dimKe = 211). The Fourier grid is of
the form G δu where δu = ∆u/N with N = 128. The neat
beam s represented in b) corresponds to the frequency cover-
age to be synthesized Hs. It is centred in the object grid G δξ
where δξ = 1/∆u. The resolution limit of the reconstruction
process (the full width of s at half maximum) is of the order
of 1.5/∆us where ∆us is the diameter of Hs

– (ii) The effective support Ds of s is as small as possible
with respect to the choices of Hs and χ. The idea is of
course to have the best possible resolution.
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– (iii) The normalization condition ŝ(0) = 1, so that:∫
R2

φs(ξ) dξ =

∫
R2

φo(ξ) dξ. (16)

In the terminology adopted in this paper, an atom such
as s is a finite linear combination of elementary parti-
cles ep. The integers p involved in this linear combination
lie in a subset Ds of G (see Figs. 2 and 3b). As explicitly
shown in Sect. 2 of Lannes et al. (1996), the computation
of the corresponding coefficients does not raise any par-
ticular difficulty.

In a first approach to Fourier synthesis, Eq. (13) sug-
gests that the basis functions of the object representation
space E should be translated versions of s: a finite number
of atoms centred on the nodes of grid G. This very natural
idea, which is exploited as it is, in the matching pursuit
principle of Clean (cf. Sect. 2.2), may be completely re-
laxed in WIPE. More precisely, the matching pursuit pro-
cess may be performed at the level of the elementary par-
ticles. The resolution limit of the reconstruction process
is then kept under control thanks to an appropriate regu-
larization principle (cf. Sect. 5.1).

The simulations presented in this paper correspond to
the general conditions defined in Fig. 3. The “object func-
tion” φo was defined as a set of “δ functions” centred on
the nodes of grid G δξ with N = 128. The image to be re-
constructed (φs = s ? φo) then lies in Ho. Figure 4 gives
an idea of the complexity of this image.

Fig. 4. Image to be reconstructed, φs, at the resolution level
defined in Fig. 3. Note that the portion of the field represented
here is twice as large as that defined in Fig. 3b

The Fourier data were blurred by adding a Gaussian
noise. More precisely, for all the u ∈ Le (see Fig. 3a),

the standard deviation of [ψe(u) − φ̂o(u)] was set equal

to 5% of the total flux of the object: σe(u) = φ̂o()/20.
The weighting function W introduced in Eq. (12) was ex-
plicitly defined by the formula

W (u)
4
=

w(u)∑
u′∈Le

sinc2
(u1 − u′1

δu

)
sinc2

(u2 − u′2
δu

)
w(u′)

(17)

where

w(u)
4
= 1/σ2

s(u), σs(u)
4
= ŝ(u)σe(u). (18)

2. Reconstruction via matching pursuit methods

Among the various iterative methods that can be imple-
mented for finding an approximation to the image (or the
object) to be reconstructed, there exists a very slow al-
gorithm which is based on a matching pursuit strategy.
As will be clarified in this section, this algorithm is noth-
ing but an aborted version of a particular algorithm mini-
mizing q on Eo (see the introduction of Sect. 1.1). The cor-
responding iterative process must never be used in prac-
tice for solving the problem. Its slow convergence may
however be of interest for initializing the choice of the
object representation space E. It is therefore important
to analyse its principle (Sect. 2.1), and in particular, to
show that Clean is an algorithm of this type (Sect. 2.2).

2.1. Reconstruction principle

Let hj
4
= Agj be the virtual data vector corresponding to

the object atom gj (cf. Sect. 1.1), and Qj be the projec-
tion (operator) of Kd onto the space generated by hj :

Qjψ = η2
j (hj | ψ)d hj (ψ ∈ Kd) (19)

where

ηj
4
= ‖ hj ‖

−1
d = ( gj | A

∗Agj)
−1/2
o . (20)

The guiding idea is to determine the projection of ψd

onto Fd
4
= AEo via the elementary projections Qj.

Let us consider the iteration in Fd:

ψ0 = 0, ψn+1 = ψn + ωQk(ψd − ψn), (ω > 0); (21)

ω is a relaxation parameter to be defined. At each itera-
tion, k ≡ kn is chosen so that

‖ Qk(ψd − ψn) ‖d= max
1≤j≤M

‖ Qj(ψd − ψn) ‖d . (22)

If Qk(ψd − ψn) = 0, then ψn = ψFd (the projection
of ψd onto Fd) and the problem is solved.

Let us set yn
4
= ψd − ψn and zn

4
= ψFd − ψn. As

Qkyn = Qkzn, we have from Eq. (21):

yn+1 = yn − ωQkyn zn+1 = zn − ωQkzn.

It follows that

‖ yn+1 ‖
2
d =‖ yn ‖

2
d −2ω(yn | Qkyn)d + ω2 ‖ Qkyn ‖

2
d

=‖ yn ‖
2
d −2ω ‖ Qkyn ‖

2
d +ω2 ‖ Qkyn ‖

2
d ,

hence

‖ yn+1 ‖
2
d=‖ yn ‖

2
d −ω(2 − ω) ‖ Qkyn ‖

2
d . (23)
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Likewise, ‖ zn+1 ‖2d=‖ zn ‖2d −ω(2 − ω) ‖ Qkzn ‖2d.
Provided that ω lies in the open interval (0, 2), ω(2− ω)
is strictly positive. Then, ‖ zn+1 ‖d≤‖ zn ‖d. The se-
quence {βn}∞n=0, where βn

4
= ‖ zn ‖2d, therefore con-

verges towards some nonnegative number β. As shown in
Appendix 2, β proves to be equal to 0. As a result, zn → 0
as n→∞. The iterates (21) then converge towards ψFd .

The maximal value of ω(2 − ω) is attained for ω = 1.
To increase the convergence speed of the projection
operation, ω may be set equal to this optimal value.
The corresponding algorithm, ψn+1 = ψn +Qk(ψd − ψn),
is nothing but a traditional matching pursuit process
(see Mallat & Zhang 1993).

As yn = ψd − ψn, we have from Eq. (19),

Qkyn = η2
k (Agk | ψd − ψn)dAgk ,

hence

Qkyn = η2
k ( gk | rn)oAgk (24)

where rn
4
= A∗(ψd − ψn). The relaxed matching pursuit

iteration (21) can therefore be written in the form

ψ0 = 0, ψn+1 = ψn + ωη2
k( gk | rn)oAgk .

Clearly, this sequence is the image by A of the object
sequence (in Eo):

φ0 = 0, φn+1 = φn + ωη2
kρn,k gk , (25)

where

ρn,k
4
= ( gk | rn)o rn = A∗ψd − A

∗Aφn . (26)

According to its definition, the residue rn is obtained
via the iteration:

r0 = A∗ψd , rn+1 = rn − ωη
2
kρn,kA

∗Agk . (27)

As, from Eqs. (24) and (26), Qkyn = η2
kρn,kAgk , we

have (cf. Eq. (20)):

‖ Qkyn ‖
2
d= η4

kρ
2
n,k( gk | A

∗Agk)o = η2
kρ

2
n,k .

On setting (cf. Eq. (1))

qn
4
= q(φn) =‖ ψd − Aφn ‖

2
d =‖ ψd − ψn ‖

2
d=‖ yn ‖

2
d ,

it follows from Eq. (23) that qn is obtained through the
iteration:

q0 =‖ ψd ‖
2
d , qn+1 = qn − ω(2− ω)η2

kρ
2
n,k . (28)

Provided that ω lies in the open interval (0, 2), the
iterates qn converge towards the minimal value of q on Eo.
Sequence (25) then converges towards a solution φ of the
problem; φ is the unique solution φEo , if and only if AEo is
a one-to-one map.

2.2. Presentation of CLEAN as a matching pursuit
algorithm

In our formulation of CLEAN, which essentially fol-
lows that of Högbom (1974), the object space is the
Euclidean space Ho introduced in Sect. 1.2. The vectors gj
are then translated versions of the clean beam CB ≡ s
(see Fig. 3b). More precisely, the elements of Eo are the
clean beams CBp centred on the nodes of the “clean
box” Gc δξ:

CBp ≡ sp , sp(ξ)
4
= s(ξ − p δξ) (p ∈ Gc ⊂ G).

The data space Kd coincides with the experimental
data space Ke, and A with the experimental Fourier sam-
pling operator: (Aeφ)(u)

4
= φ̂(u) on Le. As the image to

be reconstructed is defined as the convolution of the orig-
inal object by the clean beam (Eq. (13)), the data vec-
tor ψd must be defined as the experimental data vec-
tor ψe damped by the Fourier transform of the clean
beam: ψd = ψs (cf. Eq. (14)). We then have q ≡ qe with
(cf. Eqs. (1), (12) and (17)):

qe(φ)
4
= ‖ ψs −Aeφ ‖

2
e

=
∑
u∈Le

|ψs(u)− φ̂(u)|2W (u) (δu)2. (29)

As explicitly shown in Appendix 3, the “dirty map”
is the map of the scalar components of A∗eψe in the
basis of the elementary particles ep. In this context,
A∗eψs may be referred to as the “dusty map”. For clar-
ity, we set DMe ≡ A∗eψe and DMs ≡ A∗eψs. Likewise, the
action of A∗eAe corresponds to a “discrete convolution” by
the “dirty beam” DB: A∗eAeφ = DB ? φ (the precise def-
inition of this operation is given in Appendix 3). Thus,
from Eq. (20), the parameters η p ≡ ηj are all equal to:

η = (CB | DB ? CB)−1/2
o . (30)

The relaxed matching pursuit iteration (25) can then
be written in the form

φ0 = 0, φn+1 = φn + ωη2ρn,p CBp , (31)

where (from Eq. (26))

ρn,p = (CBp | rn)o rn = DMs −DB ? φn . (32)

Clearly, ρn (the map of the ρn,p) is nothing but the
“discrete intercorrelation” of rn with CB.

The residue rn and the quadratic errors qn are respec-
tively obtained via the iterations (27) and (28):

r0 = DMs , rn+1 = rn − ωη
2ρn,p(DB ? CBp) (33)

and

qe,0 =‖ ψs ‖
2
e=

∑
u∈Le

|ψs(u)|2W (u) (δu)2,

qe,n+1 = qe,n − ω(2 − ω)η2ρ2
n,p . (34)



A. Lannes et al.: CLEAN and WIPE 189

Fig. 5. Image reconstruction via Clean with ω = 0.2; a) dirty beam; b) dusty map; c) image to be reconstructed (Fig. 4);
d) clean map for Ce = 1.99 (the definition of the fit criterion Ce is given in Eq. (35)). In the conditions of this simulation
(see Fig. 3), the optimal fit threshold of Clean is of the order of 1.75. For a lower threshold, the support of the clean map is no
longer contained in that of the image to be reconstructed. In the framework of the analysis presented in this paper, the residual
maps rn or ρn must not be added to the clean map

Note that DB ? CBp = DBp ? CB = (DB ? CB)p .
In the classical presentation of CLEAN, the con-

volution by the clean beam is performed a posteri-
ori, whence some small differences in these iterations
(cf. Appendix 4). In particular, in the version of CLEAN

presented here, p is chosen (at each iteration) so that
|ρn,p| = maxp′∈Gc |ρn,p′ |.

The process is interrupted as soon as qe,n is less than
a threshold value related to the level of the noise in the
Fourier domain. In our implementation of CLEAN, we in-
troduce the “fit criterion” (cf. Eqs. (18) and (29)):

Ce(φ)
4
=

√
qe(φ)

‖ σs ‖e
‖ σs ‖

2
e=

∑
u∈Le

σ2
s(u)W (u) (δu)2. (35)

As soon as Ce
4
= Ce(φn) is less than 2 (for example), the

matching pursuit process is interrupted; φn is the corre-
sponding “clean map”.

In the simulation presented in Fig. 5, we show the clean
map corresponding to the fit threshold 2. The relaxation
parameter ω was set equal to 0.2, and the clean box was
defined as the support of φs at a lower level of resolution
(twice as low). In the conditions of this simulation, the
optimal fit threshold of Clean is of the order of 1.75. For
a lower threshold, the support of the clean map is no longer
contained in that of the image to be reconstructed.

Let E be the object representation space generated
by the CBp selected by CLEAN. Clearly, the clean map φn
does not minimize qe on E. The same matching pursuit
algorithm (with ω = 1) can be confined to E for per-
forming the complete minimization on this space. This
corresponds to the principle of what is referred to as
“Window CLEAN” (Schwarz 1978). The algorithms pre-
sented in Sects. 3 and 4 are much more efficient for this
purpose, but as specified in Sect. 5, they only reveal
that (in situations of astrophysical interest) the solution
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thus obtained is without any interest: the problem is ill-
conditioned.

3. Optimization without control of robustness

Let E be any subset of Eo, say that generated by
an aborted matching pursuit process; E has m elements.
Let us now consider the problem of minimizing q(φ) on
the space E generated by the gk, k spanning

J 4= {k : gk ∈ E}.

By definition, E is the range of the operator:

S : Rm → Ho , Sα
4
=
∑
k∈J

αkgk . (36)

In the case where Rm is equipped with its standard scalar
product, the adjoint of S is explicitly defined by the rela-
tionship:

(S∗φ)k = (gk | φ)o (for all k ∈ J).

Indeed, for any φ ∈ Ho, we have from Eq. (36):

(Sα | φ)o =
∑
k∈J

αk (gk | φ)o ≡
∑
k∈J

αk (S∗φ)k .

In what follows, S is not necessarily a one-to-one map
from Rm onto E: the vectors gk lying in E are not neces-
sarily linearly independent.

Let α now be a vector minimizing on Rm the quan-
tity ‖ ψd −ASα ‖2d . Then, the vector φ = Sα mini-
mizes q on E. From Eq. (2), the vectors α in question are
such that

∀k ∈ J,
(
gk | A

∗(ψd − ASα)
)

o
= 0. (37)

These vectors are therefore the solutions of the normal
equation

S∗A∗(ψd −ASα) = 0 (α ∈ Rm) (38)

(the least-squares solutions of the equation ASα “=” ψd).
In most cases encountered in image reconstruction,

the conjugate-gradients method is the best suited tech-
nique for solving Eq. (38). The version of this method pre-
sented below provides φ = Sα.

ALGORITHM 1:

Step 0: Set ε = 10−6 (for example) and n = 0;
choose a natural starting point φ0 in E;
compute r0 = A∗ψd − A∗Aφ0,

q0 =‖ ψd −Aφ0 ‖2d;
compute ρ0,k = ( gk | r0)o (for all k ∈ J);
set δ0,k = ρ0,k (for all k ∈ J).

Step 1: Compute
dn =

∑
k∈Jδn,kgk,

zn = A∗Adn,

ζn,k = ( gk | zn)o (for all k ∈ J),

ωn =
∑
k∈J|ρn,k|

2/
∑
k∈Jδn,kζn,k,

qn+1 = qn − (2rn − ωnzn | ωndn)o,

φn+1 = φn + ωndn,

rn+1 = rn − ωnzn,

ρn+1,k = ρn,k − ωnζn,k (for all k ∈ J);

if maxk∈J{|ρn+1,k|/ ‖ gk ‖o} < ε ‖ rn+1 ‖o,
termination.

Compute
γn =

∑
k∈J|ρn+1,k|2/

∑
k∈J|ρn,k|

2,

δn+1,k = ρn+1,k + γnδn,k (for all k ∈ J);

increment n and loop to step 1.

Throughout this algorithm, rn is the residue of the equa-
tion A∗ψd − A∗Aφ = 0 for φ = φn. Likewise, qn is the
value of q(φ) at the same iterate:

rn = A∗ψd −A
∗Aφn , qn =‖ ψd − Aφn ‖

2
d .

The iteration in qn results from the identity:

q(φ+ δφ) = q(φ)− 2(ψd − Aφ | Aδφ)o+ ‖ Aδφ ‖2d
= q(φ)− 2(A∗ψd −A

∗Aφ | δφ)o

+(A∗Aδφ | δφ)o.

The sequence of vectors φn converges towards a solu-
tion of the problem with all the remarkable properties of
the conjugate-gradients method (see Lannes et al. 1987b).
In practice, E is chosen so that AE is a one-to-one map.
The uniqueness of the solution can easily be verified by
modifying the starting point of the algorithm. The stop-
ping criterion is based on the fact that the final residue
must be practically orthogonal to all the gk’s (Eq. (37));
the cosine of the angle between the vectors rn and gk is
equal to ρn,k/(‖ gk ‖o ‖ rn ‖o). Here, as Rm is endowed
with its standard scalar product, this algorithm cannot
provide the condition number of AE . (The transposition
of what is presented in Sect. 4.2 would give the “general-
ized condition number” of AS). We therefore recommend
to use algorithm 1 only when κE is approximately known.

REMARK 3. Let us consider the special case where A is the
identity operator on Kd (which then coincides with Ho).
The problem is then to find PEφd, the projection of
φd = ψd onto E. Note that κE is then equal to unity. In
this case, algorithm 1 reduces to

ALGORITHM 2:

Step 0: Set ε = 10−6 (for example) and n = 0;
set φ0 = 0 and r0 = φd;
compute
q0 =‖ φd ‖2o,
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ρ0,k = ( gk | r0)o (for all k ∈ J);
set δ0,k = ρ0,k (for all k ∈ J).

Step 1: Compute
zn =

∑
k∈Jδn,kgk,

ζn,k = ( gk | zn)o (for all k ∈ J),

ωn =
∑
k∈J|ρn,k|

2/
∑
k∈Jδn,kζn,k,

qn+1 = qn − (2rn − ωnzn | ωnzn)o,

φn+1 = φn + ωnzn,

rn+1 = rn − ωnzn,

ρn+1,k = ρn,k − ωnζn,k (for all k ∈ J);

if maxk∈J{|ρn+1,k|/ ‖ gk ‖o} < ε ‖ rn+1 ‖o,
termination.

Compute
γn =

∑
k∈J|ρn+1,k|2/

∑
k∈J|ρn,k|

2,

δn+1,k = ρn+1,k + γnδn,k (for all k ∈ J) ;

increment n and loop to step 1.

This algorithm converges towards the projection of φd

onto E with all the properties of the conjugate-gradients
method.

In principle, the projection operation can also be per-
formed by using the matching pursuit iteration (25). In
this case, on setting ω equal to its optimal value, this it-
eration reduces to

φ0 = 0, φn+1 = φn + η2
kρn,kgk ,

where

ηk =‖ gk ‖
−1
o ρn,k = ( gk | rn)o rn = φd − φn .

The residues rn are then obtained via iteration (27):

r0 = φd , rn+1 = rn − η
2
kρn,kgk ;

and likewise for qn (cf. Eq. (28)):

q0 =‖ φd ‖
2
o , qn+1 = qn − η

2
kρ

2
n,k .

At each iteration, it is then natural to choose k so
that ηk|ρn,k| = maxj∈Jηj|ρn,j|. In the general case where
the gk’s (k ∈ J) do not form an orthogonal set, the
conjugate-gradients algorithm is of course preferable.

4. Optimization with control of robustness

For clarity, let us now assume that AE is a one-to-one
map. The method presented in Sect. 3 then yields a solu-
tion α of Eq. (38), and thereby the solution of the prob-
lem: φE = Sα. Unfortunately, as already mentioned, this
method does not provide any information on the robust-
ness of the reconstruction process. The most natural way

of obtaining this information is to find φE, directly, as the
solution of the normal Eq. (4):

Bφ = φd , (39)

where

B
4
= A∗EAE = PEA

∗AE φd
4
= A∗Eψd = PEA

∗ψd . (40)

In this section, we present the corresponding de-
velopments. To conduct our analysis, the eigenvalues
of B are ordered so as to form a nondecreasing sequence
(cf. Eq. (7)):

µ
4
= µ1 ≤ µ2 ≤ · · · ≤ µ

′ 4= µm . (41)

As AE is assumed to be a one-to-one map, µ is strictly
positive. In the general case where the gk generating E do
not form an orthogonal set, the reader must keep in mind
the fact that the action of PE can be performed with the
aid of algorithm 2.

4.1. Reconstruction algorithm

The problem is solved by using the conjugate-gradients
method (cf. Sect. 2.3 of Lannes et al. 1987b). Starting
from any φ0 in E, the iterates φn converge to φE in at
most m iterations, φn getting closer to φE at each itera-
tion. In this algorithm, dn is the “direction of research” in
iteration n+ 1, whereas ωn is the corresponding “param-
eter of exact line search”; rn is the residue of the normal
Eq. (39) for φ = φn:

rn
4
= φd − Bφn.

As BφE = φd, we have rn = B(φE − φn), hence:

‖ φE − φn ‖o≤
1

µ
‖ rn ‖o .

Denoting by µe an estimate of µ, we therefore have:

‖ φE − φn ‖o
‖ φn ‖o

<∼ εn, εn
4
=
‖ rn ‖o

µe ‖ φn ‖o
.

Let us introduce an acceptable error threshold εφ for
‖ φE − φn ‖o / ‖ φn ‖o. Clearly, the iterative process can
be interrupted as soon as εn is less than εφ; εn therefore
plays the role of a convergence estimator. The estimate
of µ is refined throughout the iterative process as indi-
cated in Sect. 4.2. The corresponding algorithm can then
be summarized as follows.

ALGORITHM 3:

Step 0: Set εφ = 10−4 (for example) and n = 0;
choose a natural starting point φ0 in E;
compute r0 = φd − Bφ0;
set d0 = r0.

Step 1: Compute
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zn = Bdn,

ωn =‖ rn ‖2o /(dn | zn)o,

φn+1 = φn + ωndn,

rn+1 = rn − ωnzn,

εn+1 =‖ rn+1 ‖o /(µe ‖ φn+1 ‖o);

if εn ≤ εφ, termination.

Compute
γn =‖ rn+1 ‖2o / ‖ rn ‖

2
o,

dn+1 = rn+1 + γndn.

Increment n and loop to step 1.

4.2. Effective object representation space

In the conjugate-gradients method, the n-dimensional
subspace of E generated by the conjugate directions
d0 , . . . , dn−1,

En
4
= span{d`}

n−1
`=0 ,

is referred to as the Krylov space of order n. According to
a well known property (cf. properties 2 and 3.1 of Lannes
et al. 1987b), φn minimizes q(φ) on En.

Provided that n is sufficiently large, the least-squares
solutions in E and En are very close to one another.
At the end of the reconstruction process, En is therefore
the effective object representation space. The dimension of
this space, as well as the robustness of the reconstruction
process, depends upon the localization of the eigenvalues
of B, and more precisely, on the relative weight of the pro-
jections of r0 onto the corresponding eigenspaces. We are
thus led to consider the operator

Bn:En→ En , Bnφ
4
= PnA

∗Aφ,

where Pn is the projection (operator) onto En.
The residues r0 , . . . , rn−1 form an orthogonal basis

for En (see Appendix 4 of Lannes et al. 1987b). As estab-
lished in Appendix 2 of Lannes et al. (1996), the matrix
of Bn expressed in this basis is tridiagonal (this matrix
is of course symmetric). Its diagonal and upper-diagonal
elements are respectively given by the relationships

bn;`,` =


1

ω`
(` = 0)

1

ω`
+
γ`−1

ω`−1
(1 ≤ ` ≤ n − 1)

and

bn;`−1, ` = −

√
γ`−1

ω`−1
(1 ≤ ` ≤ n− 1).

The eigenvalues of Bn can therefore be calculated very
easily with the aid of the QR algorithm (cf. Sect. 11.3 of

Press et al. 1992). Let us order these eigenvalues as those
of B (see Eq. (41)):

µn,1 ≤ µn,2 ≤ · · · ≤ µn,n .

By referring to the eigenvalue analysis based on the
notion of “minmax numbers” (cf. Appendix 5 of Lannes
et al. 1987a), it is easy to show that

µ ≤ µn+1,1 ≤ µn,1 , µn,n ≤ µn+1,n+1 ≤ µ
′.

Provided that the projections of φd onto the
eigenspaces corresponding to µ and µ′ are different from
zero, a condition which is always numerically satisfied in
practice, µn,1 and µn,n respectively tend to µ and µ′ as n
tends to m (see Fig. 3 of Lannes et al. 1996).

In our reconstruction processes, the eigenvalues of Bn
are computed at each iteration. (The cost for this is neg-
ligible compared to that of the action of B.) As soon
as (µn,1 − µn+1,1)/µn,1 is less than say 10−3,

µe = µn,1 , µ′e = µn,n ,

are very good approximations to µ and µ′, respectively. In
most cases, the termination test of the basic algorithm is
then satisfied (see Fig. 3 of Lannes et al. 1996).

5. How WIPE wipes CLEAN clean

We now have all the tools for analysing the weak points
of Clean as well as the tricks of WIPE allowing the corre-
sponding difficulties to be overcome.

In situations of astrophysical interest, Clean is imple-
mented with a value of the relaxation parameter ω much
less than 1 (say 0.2). The basis vectors sp selected in the
matching pursuit process then define an acceptable ob-
ject representation space E. Unfortunately, the problem
is often ill conditioned; AE is a one-to-one map, but its
condition number is very large. For example, in the sim-
ulation presented in Fig. 5d, κE is equal to 45.08. As a
result, φE is a very perturbed version of the clean map.
This is unsatisfactory. Indeed, in this situation, the clean
map can only be regarded as an image for which the
fit criterion Ce (introduced in Eq. (35)) is of the order
of the threshold value (say 2). In other words, the clean
map must be accepted as it is, without any reference to
a stable optimization process. The interpretation of the
results may then be doubtful. As indicated in Sect. 5.1,
the regularization principle of WIPE remedies this lack of
robustness, but the regularized version of Clean thus ob-
tained is still different from WIPE. Indeed, Clean has
another weak point: the boundaries of the structuring en-
tities of the image may not be correctly represented in
the clean map. In such situations, the matching pursuit
strategy of Clean is not well suited for solving the prob-
lem. For example, in the particular case of the Fourier
data of our simulation, the best possible fit corresponds
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Fig. 6. Image reconstruction via the regularized version of Clean; a) traditional clean map for Ce = 1.99; b) improved clean
map φE provided by the regularized version of Clean (Ce = 1.15). These images have to be compared with the image to be
reconstructed (Fig. 5c). As shown in Fig. 7b, the matching pursuit process of Wipe can still refine image (b)

to a value of Ce of about 0.9 (see Fig. 7 further on). Even
with a good support constraint (a reasonable “clean box”),
CLEAN cannot reach this fit threshold with a satisfactory
representation of the image support. In the same situa-
tion, as shown in Sect. 5.2, WIPE reaches this threshold
without any difficulty.

5.1. How WIPE regularizes CLEAN

In the basic version of Clean presented in Sect. 2.2, the
functions φ ∈ E are linear combinations of atoms sp.
In the sense defined in Sect. 1.2, the “energy” of the
Fourier transform of each atom sp is concentrated in Hs
(cf. Eq. (15)). The intrinsic instability of Clean is related
to the fact that this property does not necessarily hold for
any linear combination of such atoms. This difficulty arises
any time the distances between these atoms are much
smaller than the corresponding resolution limit. This is
precisely the case when dealing with extended objects and
a small relaxation parameter ω.

To overcome this difficulty, WIPE suggests that Clean

should define the reconstructed image as the function min-
imizing on E the functional

q(φ)
4
= qe(φ) + qr(φ) (42)

where (see Eq. (29))

qe(φ)
4
=
∑
u∈Le

|ψs(u)− φ̂(u)|2W (u) (δu)2

and

qr(φ)
4
=
∑
u∈Lr

|φ̂(u)|2 (δu)2. (43)

The experimental criterion qe constrains φ (the model)
to be consistent with the damped Fourier data, while
the regularization criterion qr penalizes the high-frequency
components of φ. The elements of the regularization fre-
quency list Lr are located outside Hs, at the nodes of
grid Hr δu where

Hr
4
= {r ∈ Z2 : r δu ∈ H, r δu /∈ Hs}.

In the traditional version of CLEAN, q reduces
to qe. The minimization of qe on E then reveals the ill-
conditioned character of the problem.

The regularized version of Clean corresponding to cri-
terion (42) can be formulated in the theoretical framework
presented in Sect. 1.1. To clarify this point, let us intro-
duce the data vector:

ψd(u)
4
=

{
ψs(u) on Le;
0 on Lr.

This vector lies in a data space Kd endowed with the
scalar product:

(ψ1 | ψ2)d
4
=

∑
u∈Le

ψ1(u)ψ2(u)W (u) (δu)2

+
∑
u∈Lr

ψ1(u)ψ2(u) (δu)2.

The Fourier sampling operator A is then the operator:

A:Ho→ Kd , (Aφ)(u)
4
=

{
φ̂(u) on Le;

φ̂(u) on Lr.

According to Eqs. (42), (29) and (43), q(φ) can then be
effectively written in the form ‖ ψd − Aφ ‖2d (see Eq. (1)).
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The problem is then stated in terms of Fourier interpola-
tion (Lannes et al. 1987a and 1994). This is why q is of the
form qe+αqr with α = 1. In this context, it is important to
note that in the definition of qe (Eq. (29)), where ψs is de-
fined in Eq. (14), the weighting function W (u) takes into
account the local redundancy of u up to δu (Eq. (17)).

The algorithms described in Sects. 3 and 4 can be used
for minimizing q on E. The action of A∗A is that of a
convolutor. The corresponding point spread function, the
“dusty beam”, has two components: the dirty beam and
the “regularization beam”. The latter is induced by the
regularization list Lr. With regard to the dusty map, note
that A∗ψd ≡ A∗eψs (cf. Sect. 2.2).

In the simulation presented in Fig. 6, we compare the
clean map of Fig. 5d (for which Ce = 1.99) with the image
provided by this opt(Ce = 1.15). The condition number is
now reasonable: κE = 2.62. As shown in the next subsec-
tion, the construction of the object representation space E
can, however, be refined.

5.2. How WIPE relaxes the matching pursuit process of
CLEAN

In the regularized version of Clean described in Sect. 5.1,
the calculation of the condition number κE requires the
action of the projection PE at each iteration of algo-
rithm 3. This projection is performed at the cost of the
conjugate-gradients iterations of algorithm 2. This first
remark suggests that E should be redefined as the lin-
ear space generated by the elementary particles ep′ of
all the atoms sp selected in the matching pursuit pro-
cess of CLEAN. The projection onto E is then trivial since
these elementary particles form an orthogonal set. As the
resolution limit of the reconstruction process is then con-
trolled by the regularizer qr (cf. Eq. (43)), the choice of
such an object representation space proves to be very nat-
ural. Moreover, the definition of E can then be refined by
continuing (or even by conducting) the matching pursuit
process at the level of the elementary particles. As speci-
fied below, this is what is precisely done in WIPE.

Let D then be the subset of G corresponding to the
choice of E . (The elementary particles generating E are
centred on the nodes of D δξ.) We say that D is the “dis-
crete field (or support)” associated with the definition
of E. Depending on the particular problems to be solved,
this discrete field may be fixed from the outset (for exam-
ple, in an interactive manner), or constructed step by step
in a matching pursuit strategy.

In this last case, which corresponds to the basic ver-
sion of WIPE, let us denote by D(i) the discrete field ob-
tained at the end of the i th step of the construction of the
object representation space. Let φ(i) then be the solution
of the problem in the corresponding object representation
space E(i). In the basis of the elementary particles ep (the

interpolation basis of Ho), the scalar components of the
residue r(i) are the quantities:

ρ(i)
p

4
= (ep | r

(i))o r(i) 4= A∗ψs −A
∗Aφ(i) .

According to the definition of φ(i) , these coefficients
vanish on D(i) (see Eq. (2) with gk ≡ ep, p ∈ D(i)). One
then has to decide whether the current field has to be ex-
tended. The current values of Ce and κE play an essential
role in this decision. When the reconstruction procedure
is not interrupted at this stage, WIPE uses algorithm 3 for
computing the solution of the problem in the object rep-
resentation space relative to the union of D(i) with some
set D′ ⊂ G:

D(i+1) = D(i) ∪ D′.

There exist many ways of selecting D′. All are based on

the examination of the distribution of the coefficients ρ
(i)
p

outside D(i). For example, one may try to define D′ as a
connected region containing the “pixel” pmax for which the
maximum of these coefficients is attained. The simplest
choice is then to define D′ as the discrete field of the atom s
centred on this pixel. With regard to the construction of
the object representation space, the corresponding version
of Wipe is then very similar to that of Clean.

In the matching pursuit steps where the field of the re-
constructed image must be refined, it is natural to choose
the nodes of D′ along the boundaries of the structuring
entities of the image. Let Ns be the number of particles in-
volved in the linear combination defining the neat beam s
(the number of nodes in Ds). In the basic version of WIPE,
the size of D′, expressed in number of nodes, is defined as a
fraction of Ns (say Ns/2), and the selected nodes are those

for which the coefficients ρ
(i)
p are the largest above some

given threshold (half of the maximal value, for example).
The field of the image (or object) to be reconstructed can
thus be obtained in a natural manner.

The construction of the object representation space
is interrupted as soon as the fit criterion Ce(φ

(i)) is suf-
ficiently small, for instance, less than or of the order
of 0.85. The current field is then refined by a morpholog-
ical smoothing of its connected entities. In this classical
operation of mathematical morphology, the discrete sup-
port of the neat beam, Ds, is of course used as structuring
element. The boundaries of the effective field of the “neat
map” (the reconstructed image) are thus defined at the
appropriate resolution. In particular, the connected enti-
ties of size smaller than that of Ds are eliminated. As il-
lustrated in Fig. 7, it is thus possible to reach the optimal
value of Ce (0.88 in the simulation under consideration)
with a satisfactory representation of the image field.

Let E be the object representation space at the end of
the action of WIPE, and D be the corresponding discrete
field. There exists a variant of WIPE, in which the object
representation space is a particular subspace of E, that
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Fig. 7. Image reconstruction through WIPE; a) image to be reconstructed; b) neat map (reconstructed image). The latter,
for which Ce = 0.88 and κE = 3.83 (and which was obtained without any clean box), is to be compared to image a) and
to the maps presented in Fig. 6. The boundaries of the structuring entities of the image are now correctly restored, hence a
better intensity distribution. The unreliable character of the oscillating perturbation along the main structuring entity of the
reconstructed images is revealed by the image-eigenmode analysis provided by WIPE(see Fig. 6 of Lannes et al. 1996)

generated by all the atoms sp whose discrete field is con-
tained in D. In the conditions of the simulation presented
in Fig. 7, the corresponding solution is very close to that
provided by WIPE. As expected, the condition number is
then slightly smaller (here, 3.36 instead of 3.83).

From the outset, the discrete field D may be taken
equal to that of the clean box. One then uses the global
version of WIPE in which the nonnegativity constraint is
imposed (cf. Sect. 4.3 of Lannes et al. 1996). At the end
of the corresponding reconstruction process, the fit crite-
rion Ce is often smaller than its optimal value. As a result,
the support of the image (or object) to be reconstructed
is not well restored. A similar remark can be made for
the Fourier synthesis methods in which the regularization
principle is based on the concept of entropy. Moreover,
the relative weights of the experimental and regulariza-
tion criteria must then be carefully chosen (Cornwell 1983;
Maréchal & Lannes 1997). The strategy adopted in the
basic version of Wipe is therefore preferable; its imple-
mentation is simpler and more efficient.

The condition “Ce of the order of 1 with κE less than
say 5, with a sufficiently small value of ‖ σs ‖e / ‖ ψs ‖e”
often suffices to ensure a good solution to the problem,
but strictly speaking, this is not a sufficient condition. The
complete control must be based on a multiresolution strat-
egy. The corresponding developments will be presented in
a forthcoming paper.

Appendix 1. Notion of condition number

For any φ 6= 0 in E, we have from the definitions of µ
and µ′ given in Eq. (7):

µ ≤
‖ AEφ ‖2d
‖ φ ‖2o

≤ µ′.

For φ = δφE , the first inequality gives

µ ≤
‖ δψF ‖2d
‖ δφE ‖2o

,

whereas for φ = φE the second yields

‖ ψF ‖2d
‖ φE ‖2o

≤ µ′.

By combining these inequalities, it follows that

µ
‖ ψF ‖2d
‖ φE ‖2o

≤ µ′
‖ δψF ‖2d
‖ δφE ‖2o

,

hence:

‖ δφE ‖o
‖ φE ‖o

≤

√
µ′
√
µ

‖ δψF ‖d
‖ ψF ‖d

.

The square root of µ′/µ is referred to as the condition
number of AE .
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Appendix 2. Convergence property

Using the notation introduced in Sect. 2.1, we have

‖ zn+1 ‖
2
d=‖ zn ‖

2
d −ω(2 − ω) ‖ Qkzn ‖

2
d ,

i.e., from Eq. (19):

βn+1 = βn − ω(2− ω)η2
k(hk | zn)2

d .

Thus (cf. Eq. (22)),

βn+1 ≤ βn − C max
1≤j≤M

(hj | zn)2
d ,

where C
4
= ω(2 − ω) min1≤j≤M η2

j . As the relaxation
parameter ω is supposed to lie in the open interval (0, 2),
C is strictly positive. As shown in remark A2, there exists
a positive constant C ′ such that for all z in Fd, we have:

max
1≤j≤M

(hj | z)
2
d ≥ C

′ ‖ z ‖2d .

As a result,

βn+1 ≤ βn − C
′′βn

with C ′′
4
= CC ′ > 0.

Let us now assume that β is different from 0. There
then exists n such that

0 < βn − β < C ′′β,

hence

βn+1 ≤ βn − C ′′β < β.
This is impossible, since βn+1 must be greater than β.
Consequently, β = 0.

REMARK A2. The property in question can be established
as follows. Consider the operator on Fd:

Rz
4
=

M∑
j=1

(hj | z)d hj .

For any z and z′ in Fd, we have:

(z | Rz′)d =
M∑
j=1

(hj | z
′)d (z | hj)d

=
M∑
j=1

(hj | z)d (z′ | hj)d = (z′ | Rz)d .

This identity shows that R is self-adjoint. Moreover,
as

(z | Rz)d =
M∑
j=1

(hj | z)
2
d ,

the condition (z | Rz)d = 0 implies z = 0; R is therefore
positive definite. The fact that Fd is of finite dimension

then implies that the smallest eigenvalue of R is strictly
positive. Consequently, for any z ∈ Fd,

M∑
j=1

(hj | z)
2
d ≥ λ ‖ z ‖

2
d (λ > 0).

It follows immediately that

max
1≤j≤M

(hj | z)
2
d ≥ C

′ ‖ z ‖2d

with C ′
4
= λ/M .

Appendix 3. Dirty map and dirty beam

We first show that the dirty map is the map of the scalar
components of A∗eψe in the basis of the elementary par-
ticles ep. According to Eqs. (11) and (10), A∗eψe can be
expanded in the form A∗eψe =

∑
p∈Gxe,p ep , where

xe,p =
1

(δξ)2
(ep | A

∗
eψe)o

=
1

(δξ)2
(Aeep | ψe)d .

As

êp(u) = ê0(u) exp
(
−2iπp ·

u

∆u

)
with

ê0(u) =
1

(∆u)2
rect

( u1

∆u

)
rect

( u2

∆u

)
,

it then follows from Eq. (12) that

xe,p =
1

(δξ∆u)2

∑
u∈Le

W (u)ψe(u) exp
(

2iπp ·
u

∆u

)
(δu)2,

hence, since δξ∆u = 1:

xe,p =
∑
u∈Le

W (u)ψe(u) exp
(

2iπp ·
u

∆u

)
(δu)2.

This explicitly shows that A∗eψe can be identified with
the dirty map (see for example Fig. 5b).

The action of A∗e corresponds to a “back Fourier
sampling operation”. The dirty map looks like the in-
verse Fourier transform of Wψe, but from a mathemat-
ical point of view, it isn’t. Indeed, Wψe is a vector in
the experimental data space Ke and not the distribution∑

u∈Le
W (u)ψe(u) δu. When considering the basic ver-

sions of Clean and WIPE, this distinction may seem to
be a “mathematical stylishness”, but this is not the case,
for example, in multifrequency Fourier synthesis (see the
context of Eq. (68) in Lannes et al. 1996).
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Let us now consider the action of A∗eAe on any φ ∈ Ho.
Setting Φ

4
= A∗eAeφ, and expanding φ and Φ in the forms

φ =
∑
p∈G

xp ep , Φ =
∑
p∈G

Xp ep ,

we have:

Xp =
1

(δξ)2
(ep | A

∗
eAeφ)o =

1

(δξ)2

∑
p′∈G

xp′(ep | A
∗
eAeep′)o

=
1

(δξ)2

∑
p′∈G

(Aeep | Aeep′)d xp′ .

By using the same arguments as above, it then follows
that Xp can be written in the form

Xp =
∑
p′∈G

he,p−p′ xp′

where

he,p
4
=

1

(∆u)2

∑
u∈Le

W (u) exp
(

2iπp ·
u

∆u

)
(δu)2.

Note that he,−p = he,p and (δu/∆u)2 = 1/N2. Let G′
be the grid twice as large as G:

G′ 4= L′ × L′, L′ 4= { p ∈ Z : −N ≤ p ≤ N − 1} .

The map of the coefficients he,p on G′ defines what is
referred to as the dirty beam DB (see for example Fig. 5a).
An expression such as

DB ? φ

then denotes the vector (lying in Ho) whose scalar com-
ponents are given by the discrete convolution:∑
p′∈G

he,p−p′ xp′ (p ∈ G).

As a result, in the general case where the nonzero com-
ponents of φ are distributed all over grid G, the operation
DB ? φ is performed by implementing the FFT algorithm
on grid G′.

When N is large and the experimental frequency list
very long, the direct calculation of the dirty map and
the dirty beam may be very time-consuming. To save
computer time, it is then preferable to use appropriate
Fast Fourier Sampling techniques. The complete descrip-
tion of these FFS algorithms is given in Sect. 3 of Lannes
et al. (1996).

Appendix 4. On the traditional version of CLEAN

In the classical presentation of CLEAN (Högbom 1974),
the Fourier data are not damped by ŝ, and the convolu-
tion by the clean beam is performed a posteriori. More

precisely, the successive clean maps of the traditional ver-
sion of Clean are given by the convolutions

φn = CB ? ϕn ,

where the iteration in ϕ is defined by the formula:

ϕ0 = 0, ϕn+1 = ϕn + ω
re,n,p

he,0
ep ;

re,n,p denotes the scalar component of the “experimental
residue”

re,n
4
= DMe − DB ? ϕn

at pixel p, and he,0 that of the dirty beam at the origin:

re,n,p =
1

(δξ)2
(ep | re,n)o he,0 =

1

(δξ)2
(e0 | A

∗
eAee0)o .

The relaxation parameter ω is referred to as the “loop
gain”. At each iteration, p is chosen so that

|re,n,p| = max
p′∈Gc

|re,n,p′ |.

The experimental residue re,n is obtained iteratively
according to the formula:

re,0 = DMe , re,n+1 = re,n − ω
re,n,p

he,0
DBp .

Note that DBp = DB ? ep.
The objective of the iteration in ϕ is to minimize the

quadratic functional:

‖ ψe −Aeϕ ‖
2
e=

∑
u∈Le

|ψe(u)− ϕ̂(u)|2W (u) (δu)2.

This iteration is nothing but the matching pursuit it-
eration (25) in which the vectors gk are basis vectors ep,
p lying in the clean box (cf. Eqs. (20) and (26); see also
Appendix 3). Let us note in passing that in the traditional
version of CLEAN, “these basis vectors are more or less
dealt with as δ functions” centred on the nodes of grid G.

As far as the connection with our formulation
of Clean is concerned, the related iterations in φ and r
are of the form

φ0 = 0, φn+1 = φn + ω
re,n,p

he,0
CBp

and

r0 = DMs , rn+1 = rn − ω
re,n,p

he,0
(DB ? CBp).

These iterations slightly differ from those introduced
in our presentation of Clean (Eqs. (31) and (33)). The
main difference is that the selected successive pixels p are
not necessarily the same: in our version of CLEAN, p is
chosen, at each iteration, so that |ρn,p| = maxp′∈Gc |ρn,p′ |
(see Eq. (32)). According to the analysis presented in
Sect. 5, the weak points of Clean related to its intrinsic
instability unfortunately remain the same. As the objec-
tive of Clean is to find an approximation to the object
function convolved by the clean beam, it is therefore more
natural to consider that, basically, CLEAN is the matching
pursuit process described in Sect. 2.2.



198 A. Lannes et al.: CLEAN and WIPE

References

Cornwell T.J., 1983, A&A 121, 281
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