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Positive energy-momentum theorem in

asymptotically Anti-de Sitter space-times

Maerten Daniel

1 The Energy-Momentum

1.1 Introduction

This paper proves a positive energy-momentum theorem under the (well known in general rel-
ativity) dominant energy condition, for orientable 3-dimensional Riemannian manifolds that
are asymptotic at infinity to a standard hyperbolic slice in anti-de Sitter (AdS) space-time.
Chruściel and Nagy [14] recently defined notions of mass and momentum on an asymp-
totically hyperbolic manifold, which generalize the analogous notions in the asymptotically
flat case. Besides Chruściel and Herzlich [12] recently proved a positive mass theorem for
asymptotically hyperbolic manifolds. The aim of the present paper is to extend this result
in the following way: we will define a sequilinear form Q on C4 which is related to the
energy-momentum (cf. section 4) and prove under the relevant energy condition, that Q
is non negative. We also give a rigidity part to our theorem: if the sesquilinear form Q is
degenerate, then our 3-manifold M can be isometrically embedded in AdS.

1.2 Some definitions and notations

We consider a Lorentzian manifold N4 and a Riemannian spacelike hypersurface M . Using
geodesic coordinates along M , we shall write a neighbourhood of M in N as a subset of
] − ǫ, ǫ[×M , endowed with the metric γ = −dt2 + gt. The Riemannian 3-manifold M has
induced metric g0 = g and second fundamental form k := (−1

2
d
dt
gt)|t=0. We assume that

(M, g, k) is asymptotically hyperbolic that is to say, the metric g and the second fundamen-
tal form k are asymptotic at infinity to the metric and the second fundamental form of a
standard hyperbolic slice in AdS. More precisely we adopt the following

Definition. (M, g, k) is said to be asymptotically hyperbolic if there exists some compact
K, a positive number R and a homeomorphism M r K −→ R3 r B(0, R) called a chart at
infinity such that in this chart we have

{
e := g − b = O(e−τr), ∂e = O(e−τr), ∂2e = O(e−τr),
k = O(e−τr), ∂k = O(e−τr),

for τ > 3/2 and where ∂ is taken with respect to the hyperbolic metric b = dr2 + sinh2 rgS2

with gS2 the standard metric of S2.
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AdS space-time is merely denoted by (Ñ, β). If one considers Ñ as R
4 then we will write

β = −dt2 + bt, with b0 = b the hyperbolic metric.
Remark. As we will see below, the definition of the energy-momentum only depends of
the behaviour of (g, k) on M r K. So we will assume that M and H3 are homeomorphic

without any loss of generality. This also entails that N ∼= Ñ as topological spaces. This
asumption will be convenient in order to work on the whole manifold N and not only on
] − ǫ, ǫ[×(M rK). �

The motivation for the definition of the energy-momentum comes from the study of the
constraints map which by definition is

Φ : M× Γ(S2T ∗M) −→ C∞(M) × Γ(T ∗M)

(h, p) 7−→

(
Scalh + (trhp)

2 − |p|2h
2 (δhp+ dtrhp)

)
,

where M is the set of Riemannian metrics on the manifold M . Let us denote by (ḣ, ṗ) an
infinitesimal deformation of (h, p). Now if we take a couple (f, α) ∈ C∞(M)×Γ(T ∗M) then
we compute
〈
(f, α), (Φ(h+ ḣ, p+ ṗ) − Φ(h, p))

〉
= δ(f(δḣ+ dtrḣ) + i∇f ḣ− (trḣ)df + 2iαṗ− 2(trṗ)α)

+ δ(< p, ḣ > α+ < h, ḣ > iαp− 2iiαpḣ)

+
〈
dΦ∗

(h,p)(f, α), (ḣ, ṗ)
〉

+Q(f, α, h, p, ḣ, k̇),

where ¡,¿ is the metric extended to all tensors, δ is the h-divergence operator, dΦ∗
(h,p) is the

formal adjoint of the linearized constraints map at the point (h, p), traces are taken with
respect to h and Q(f, α, h, p, ḣ, k̇) is a remainder which is linear with respect to (f, α) and
at least quadratic with respect to (ḣ, ṗ). Now considering the constraints map along the
hyperbolic space embedded in AdS, that is to say (h, k) = (b, 0) and (ḣ, k̇) = (g − b = e, k)
one finds

〈(f, α), (Φ(g, k) − Φ(b, 0))〉 = δ(f(δe+ dtre) + i∇fe− (tre)df + 2iαk − 2(trk)α)

+
〈
dΦ∗

(b,0)(f, α), (e, k)
〉

+Q(f, α, b, k, e).

As a consequence if we assume that (M, g, k) is asymptotically hyperbolic and if the function
〈(f, α), (Φ(g, k)− Φ(b, 0))〉 is integrable on M with respect to the measure dV olb, then the
energy-momentum H can be defined as a linear form on Ker dΦ∗

(b,0)

H : (f, α) � //
∫

S∞
−f(δbe+ dtrbe) − i∇bfe+ (trbe)df − 2iα♯k + 2(trbk)α .

Remark. The integrability condition 〈(f, α), (Φ(g, k) − Φ(b, 0))〉 ∈ L1(M, dV olb) can be re-
placed by the less general but more convenient condition |Φ(g, k) − Φ(b, 0)| er ∈ L1(M, dV olb).
Moreover the integrand in the formula of H is in index notations

f(ei
j,i − ei

i,j) − f ,ieij + (ei
i)f,j − 2αikij + 2(ki

i)αj ,
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where “,” stands for the b-derivatives and where hi = bijhj for any tensor h. �

The condition of integrability above and the conditions of asymptoticity are sufficient in order
to make H well defined and invariant under coordinate change. The sharpest conditions have
been found by Chruściel and Nagy in [14].
One can show, using Moncrief argument [18], that Ker dΦ∗

(b,0)
∼= Kill(N, β) where Kill(N, β)

denotes the Lie algebra of Killing vector fields on (M,β), since the metric β satisfies the
Einstein equations with a cosmological constant. The isometry group of AdS is SO(3,2),
and thereby Kill(N, β) ∼= so(3, 2) ∼= Nb ⊕ so(3, 1) ∼= Nb ⊕ Kill(M, b), where we have set
Nb = {f ∈ C∞(M)|Hessf = fb}. It is well known [14], [12] that the application

R3,1 −→ Nb

yk 7−→ xk := yk|H3
,

(where (yk)
3
k=0 are the standard coordinates) is an isometry, and the “mass” part of the

energy-momentum is a linear form on Nb which is causal and positively oriented as soon as
Scalg ≥ −n(n− 1) = Scalb.
Remark. It is important to notice that the decomposition so(3, 2) ∼= R3,1 ⊕ so(3, 1) does
not have the same meaning than in the asymptotically Minkowski case, so that the terminol-
ogy “energy” and “linear momentum” is not so relevant. Physicists may call them “global
charges” and the positive energy-momentum theorem should be consequently renamed global
inequalities theorem. �

1.3 Statement of the theorems

As a matter fo fact, we will see (cf. sections 2.2 and 2.4) that, given a chart at infinity, H can
be considered as a vector of R3,1⊕sl2(C) ∼= Nb⊕so(3, 1) and will be denoted by M⊕Ξ, where

Ξ =

(
n1 + ir1 (n2 − r3) + i(n3 + r2)

(n2 + r3) + i(−n3 + r2) −n1 − ir1

)
, M =

(
m0 +m1 m2 + im3

m2 − im3 m0 +m1

)
.

The matrix M is the mass part [12] of H. Then we define the matrix

Q = 2

(
M̂ Ξ
Ξ∗ M

)
,

where M̂ means the transposed comatrix of M .

Positive Energy-Momentum Theorem. Let (M3, g, k) an orientable asymptotically hy-
perbolic Riemannian manifold satisfying the decay conditions stated in section 1.2 and the
following conditions
(i) 〈(f, α), (Φ(g, k)− Φ(b, 0))〉 ∈ L1(M, dV olb) for every (f, α) ∈ Nb ⊕ Kill(M, b),
(ii) the relative version of the dominant energy condition (cf. section 3.3) holds, that is to
say (Φ(g, k) − Φ(b, 0)) is a positively oriented causal 4-vector.
Then Q is non negative.
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Classical algebra results give the non negativity of each principal minors of Q which provide
a set of inequalities on the coefficients of H that are explicitely written in the appendix (cf.
section 5).
Remark. Zhang [27] recently obtained some inequalities. It is not easy to compare them
with our inequalities, but there exists some energy-momentum that satisfy Zhang’s condi-
tions and do not respect the non negativity of Q. �

As regards the rigidity part we have the

Rigidity Theorem. If the assumptions of the positive energy-momentum hold, and if Q is
degenerate then (M,g,k) can be isometrically embedded in AdS.

1.4 Sketch of the proofs

Analogously to the original Witten’s proof of the positive mass theorem in the asymptotically
flat case, this work relies on spinorial geometry [25] (recall that in dimension 3 orientable is
equivalent to spin). In section 2, we make a complete study of the imaginary Killing spinors
[8], [9] in AdS along the hypersurface H3, and define some Killing invariants in order to see
H as an element of Nb ⊕ sl2(C). Section 3 contains the geometric and analytical background
useful to understand, following the work of Andersson and Dahl [3], the relation between the
imaginary Killing spinors and the energy-momentum. We finally give in section 4 the proofs
of the positive energy-momentum theorem, and the proof of the rigidity part which relies on
the dominant energy condition and some relevant curvature formula in order to apply the
result of [5].

2 Imaginary Killing Spinors

2.1 Tangent and Spinor bundles

In this paper, the model spaces AdS and H3 are considered as symmetric spaces:

H3 = SL(2,C)/SU(2) �

�

// AdS = Spin0(3, 2)/Spin0(3, 1) ,

with SU(2) ∼= Spin(3) and SL(2,C) ∼= Spin0(3, 1).
The spinor bundle of AdS is ΣAdS = Spin0(3, 2)×ρ̃ C4, where Spin0(3, 2) is the bundle of the

Spin0(3, 1)-frames in AdS, and ρ̃ is the standard représentation of SL(2,C) on C
4 ∼= C

2⊕C2
′
.

In other words
ρ̃ : SL(2,C) −→ M4(C)

g̃ 7−→

(
g̃ 0
0 (g̃∗)−1

)
,

where A∗ =t A,A ∈ M2(C). When we restrict this bundle to the hypersurface H3 we have
Σ = SL(2,C) ×ρ̃|SU(2)

C
4.
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Proposition. Σ and H
3 × C

4 are isomorphic thanks to the following trivialisation:

T : Σ −→ H3 × C4

{ẽ, w} 7−→ ([ẽ], ρ̃(ẽ)w)
,

where {ẽ, w} denotes the class of (ẽ, w) ∈ SL(2,C) × C4 in Σ , and [ẽ] denotes the class of
ẽ ∈ SL(2,C) in H3 = SL(2,C)/SU(2).

The construction of TAdS , the tangent bundle of AdS, is quite similar to the construction of
the spinor bundle. Still noticing that the principal bundle of SO0(3, 1)-frames in AdS is iso-
morphic to SO0(3, 2), we write TAdS = SO0(3, 2)×ρR

4, where ρ is the standard representation
of SO0(3, 1) on R4. By restriction to the hypersurface H3, we obtain T = SO0(3, 1)×ρ|SO(3)

R4,

where SO(3) is by definition the isotropy group of f0 if (fk)
3
k=0 denotes the canonical basis

of R4.

Proposition. T and H
3 × R

4 are isomorphic thanks to the following trivialisation:

T : T −→ H3 × R4

{e, u} 7−→ ([e], ρ(e)u)
,

where {e, u} denotes the class of (e, u) ∈ SO0(3, 1) × R4 in T, and [e] denotes the class of
e ∈ SO0(3, 1) in H3 = SO0(3, 1)/SO(3).

2.2 Algebraic structures

We are going to define the Clifford action on Σ, in the same way as in [19]. To this end,
we denote by (R4, q) the Minkowski space-time of signature (3,1), where q = −dy2

0 + dy2
1 +

dy2
2 + dy2

3. This space is isometric to a subspace of M2(C) via

Λ : (R4, q) −→ M := ({A ∈ M2(C)/A∗ = A} ,−det)

y = (yi)
3
i=0 7−→

(
y0 + y1 y2 + iy3

y2 − iy3 y0 − y1

)
.

We have thus the following real vector space isomorphisms:

M2(C) ∼= su(2) ⊕ M

sl2(C) ∼= su(2) ⊕ (M ∩ sl2(C))
∼= su(2) ⊕ G,

and G ∼= R3. In order to make the value of the sectional curvature of H3 equal to -1, when
we consider H3 = SL(2,C)/SU(2) as a symmetric space, we have to consider R4 endowed
with 4q and not q, and consequently the embedding of the Clifford algebra Cℓ3,1 in M4(C)
becomes

Θ : X ∈ M 7−→

(
0 2X

2X̂ 0

)
,
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where X̂ means the transposed comatrix of X.
It will be convenient to see T as SL(2,C)×µM, where µ is the universal covering of SO0(3, 1)
by SL(2,C), which is given by:

µ : SL(2,C) −→ SO0(3, 1)
g̃ 7−→ (g̃ : X ∈ M 7→ g̃Xg̃∗)

.

We can now define the Clifford action. Let us take e ∈ SO0(3, 1) and ẽ ∈ SL(2,C) such that
e = µ(ẽ). A vector X = X[e] tangent at the point [e] = [ẽ] ∈ H3, is a class {e, u} ∈ T.
A spinor σ = σ[ẽ] at the same point is likewise a class {ẽ, w} ∈ Σ. The result of the
Clifford action of X on σ is the spinor (X · σ)[ẽ] = {e, u} · {ẽ, w} = {ẽ,Θ(u)w}. We

define a sesquilinear inner product (not definite positive) (·, ·) on C4 ∼= C2 ⊕ C2
′
as in [19]

(ξ, η) := 〈ξ1, η2〉C2 +〈ξ2, η1〉C2 , where ξ =
(

ξ1
ξ2

)
, η =

(
η1

η2

)
∈ C4 and where 〈·, ·〉

C2 is the standard

Hermitian product on C2. This induces a sesquilinear product on Σ by ({ẽ, ξ}, {ẽ, η}) :=
(ξ, η). In the same way we define a scalar product on Σ setting

〈{ẽ, ξ}, {ẽ, η}〉 :=
(

1
2
f0 · {ẽ, ξ}, {ẽ, η}

)

= ({ẽ, 1
2
Θ(f0)ξ}, {ẽ, η})

= 〈ξ, η〉
C4 ,

where 〈·, ·〉
C4 denotes the standard Hermitian product on C4.

Since SL(2,C) is the 2-sheeted covering of SO0(3, 1), there exists a natural (left) action of
SL(2,C) on Σ which is derived from the natural (left) action of SO0(3, 1) on T: the action of
the group of the isometries of AdS preserving the slice H3 that is g̃ ∗ {ẽ, w} = {g̃ẽ, w}, with
g̃ ∈ SL(2,C) and σ[ẽ] = {ẽ, w} a spinor at [ẽ]. To have the action on a section σ ∈ Γ(Σ) we
set as usual (g̃ ∗ σ)[ẽ] = g̃ ∗ σ(g̃−1ẽ).

2.3 The Killing equation

Definition. The Killing equation on a spinor field τ ∈ Γ(Σ) is

DXτ +
i

2
X · τ = 0 ∀X ∈ Γ(TH

3),

where D denotes the Levi-Civita connection of AdS. Such a spinor τ is called a imaginary
Killing spinor.

Remark. Notice that this equation is neither the Killing equation in AdS nor in H3, but
the Killing equation in AdS along H

3. �

The aim of this section is to solve explicitely our Killing equation. As a matter of fact,
representation theory provides us good candidates for the imaginary Killing spinors. Thanks
to Schur’s lemma, we have an isomorphism

C2 −→ HomSU(2)(C2,C2 ⊕ C2)(
z1

z2

)
7−→

(
z1I2
z2I2

) ,
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We are now considering two families of spinors which are derived from representation theory.
To this end, we will denote w ⊗ z ∈ C2 ⊗HomSU(2)(C2,C2 ⊕ C2) thanks to the isomorphism
above.

Definition. Let w ⊗ z ∈ C2 ⊗ C2 and set σ−1
w⊗z[g̃] = {g̃, z(g̃−1w)} , σ∗

w⊗z[g̃] = {g̃, z(g̃∗w)} .

Let us consider a spinor field τ ∈ Γ(Σ) and a vector field X ∈ Γ(T) tangent to H3. We
can write τ [g̃] = {g̃, v(g̃)} and X[g] = {g, ζ(g)}, where v : H3 −→ C4 and ζ : H3 −→ G

are respectively SO(3) and SU(2)-équivariant functions. We can now differentiate τ in the
direction of X and write down

(DXτ)[g̃] = {g̃, v∗(X)[g̃] + ρ̃∗ ◦ s
∗θ(ζ)[g̃]v[g̃]},

where θ is the connection 1-form of the bundle of SL(2,C)-frames, restricted to H3. If one
remembers that θ is only the projection on the first factor in the decomposition sl2(C) ∼=
su(2)⊕G, we can conclude that ρ̃∗ ◦s

∗θ(ζ)[g̃]v[g̃] vanishes. Besides we will apply this formula
to spinors in

{
σ−1

w⊗z, σ
∗
u⊗z, w, u ∈ C2

}
so that we can only derive at the point g̃ = 1 unity in

SL(2,C) since we have the

Proposition. The set
{
σ−1

w⊗z, σ
∗
u⊗z, w, u ∈ C2

}
is stable under the SL(2,C) action. More

precisely for every ẽ ∈ SL(2,C) we have ẽ ∗ σ−1
w⊗z = σ−1

ẽw⊗z and ẽ ∗ σ∗
u⊗z = σ∗

(ẽ∗)−1u⊗z.

We obtain {
(DXσ

−1
w⊗z)[1] = {1,−z(ζw)}

(DXσ
∗
u⊗z)[1] = {1, z(ζu)}

,

where ζ = ζ(1). We also compute the Clifford action of X on σ−1
w⊗z, σ

∗
u⊗z at the point 1:

{
X · σ−1

w⊗z[1] = {1,Θ(ζ)z(w)}
X · σ∗

u⊗z[1] = {1,Θ(ζ)z(u)}
.

We must precise Θ|G : ζ 7−→

(
0 2ζ

−2ζ 0

)
, and if we introduce the sections σ−1

w⊗( 1
−i)

and

σ∗
w⊗(1

i)
, for any w ∈ C2, we have on one hand

{
− i

2
X · σ−1

w⊗( 1
−i)

[1] = −i {1,−iζw ⊕−ζw} = {1,−ζw ⊕ iζw}

− i
2
X · σ∗

u⊗(1
i)

[1] = −i {1, iζu⊕−ζu} = {1, ζu⊕ iζu}
,

and on the other hand




(
DXσ

−1

w⊗( 1
−i)

)
[1] = {1,−ζw ⊕ iζw}

(
DXσ

∗
u⊗(1

i)

)
[1] = {1, ζu⊕ iζu}

.
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Since

{
σ−1

w⊗( 1
−i)

+ σ∗
u⊗(1

i)
/w, u ∈ C2

}
is a 4-dimensional complex vector space, we obviously

obtain the

Proposition. The space of imaginary Killing spinors denoted by IKS(Σ) is generated by

{
σ−1

w⊗( 1
−i)
, σ∗

u⊗(1
i)
, w, u ∈ C

2

}
.

2.4 Killing Invariants

Let σ an imaginary Killing spinor and set Vσ :=< σ, σ > which is a function on H3, and if
e0 denotes a unit normal of H3 in AdS ασ(Y ) := 〈Y · e0 · σ, σ〉 which is a real 1-form on H3.
Our goal is to find an application from IKS(Σ) −→ (M⊕ sl2(C))∗. Troughtout this section,
a general σ ∈ IKS(Σ) will be denoted by σ = σ−1

w⊗( 1
−i)

+ σ∗
u⊗(1

i)
, where w, u ∈ C2.

The functions Vσ

We compute the functions Vσ which are by definition

Vσ[g̃] =

∣∣∣∣σ
−1

w⊗( 1
−i)

[g̃]

∣∣∣∣
2

C4

+

∣∣∣∣σ∗
u⊗(1

i)
[g̃]

∣∣∣∣
2

C4

+ 2ℜe

(〈
σ−1

w⊗( 1
−i)

[g̃], σ∗
u⊗(1

i)
[g̃]

〉

C4

)

= 2 |g̃−1w|
2
C2 + 2 |g̃∗u|2

C2

Remark. σ−1

w⊗( 1
−i)

and σ∗
u⊗(1

i)
are orthogonal spinors for every u, w ∈ C2. �

If g̃ ∈ SL(2,C), the corresponding base point is g̃g̃∗ ∈ H3 ⊂ M ∼= R3,1 whose coordinates are
given by (xk)

3
k=0 = Λ−1(g̃g̃∗).

Proposition. Vσ is a causal element of Nb.

Proof. Let U =
(

u1

−w2

)
∈ C2, V =

(
u2

w1

)
∈ C2. We notice that

Vσ[g̃] = x0(|U |
2 + |V |2) + x1(|U |

2 − |V |2) + 2x2ℜe(< U, V >) − 2x3ℑm(< U, V >),

so that the norm of Vσ is |Vσ[g̃]|2 = 4 (| < U, V > |2 − |U |2|V |2) ≤ 0, thanks to the Cauchy-
Schwarz inequality for the standard Hermitian form on C

2. �

More conceptually we see that Vσ[g̃] = 2(w∗Ŵw + u∗Wu), where we have set W := g̃g̃∗ ∈
H3 ⊂ M. Thereby we can define by extension an application

C2 ⊕ C2 −→ M
∗

w ⊕ u 7−→
(
Vw⊕u : W 7→ 2(w∗Ŵw + u∗Wu)

)
.

The 1-forms ασ
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The positively oriented unit normal of H
3 in AdS is given by e0[g̃] =

{
g̃, 1

2
µ(g̃)I2

}
and

for any ξ ∈ G satisfying −detξ = 1 we set Xξ[g̃] =
{
g̃, 1

2
µ(g̃)ξ

}
. Just remember that

ασ(Xξ)[g̃] :=
〈
Xξ · e0 · σ, σ

〉
[g̃]

. As we suppose that σ ∈ IKS(Σ), we can easily compute the

first derivative of ασ

DXηασ(X
ξ)[g̃] =

i

2

〈
(Xη ·Xξ −Xξ ·Xη) · e0 · σ, σ

〉
[g̃]
,

which is a real skew symmetric 2-form and hence ασ is a Killing form on H3 . From now on
we set ασ = (ασ)1 and Dασ = (Dασ)1, that we will write as function of w ⊕ u. After some
computations we find

{
ασ(ξ) = 2(w∗ξu+ u∗ξw)
Dασ(η, ξ) = (w∗(ξη − ηξ)u− u∗(ξη − ηξ)w)

.

We have to notice that ξη − ηξ ∈ iG so that Dασ is naturally a linear form on iG. As a
consequence we define, thanks to the Killing 1-form ασ, the following application

C2 ⊕ C2 −→ sl2(C)∗R

w ⊕ u 7−→ (αw⊕u : ξ 7→ 2(w∗ξu+ u∗ξ∗w)) ,

where ∗R stands for the duality with respect to the reals. Now taking also the function Vσ

into account we define

K : IKS(Σ) ∼= C2 ⊕ C2 −→ (M ⊕ sl2(C))∗R

w ⊕ u 7−→ Kw⊕u := (Vw⊕u ⊕ αw⊕u),

Proposition. The application K is SL(2,C)-equivariant. More precisely, for every ẽ ∈
SL(2,C)

Kẽ∗(w⊕u) = (Vw⊕u ◦ µ(ẽ−1), αw⊕u ◦ Ad(ẽ∗)).

Proof. We must compute for every W ∈ M and ξ ∈ sl2(C)

Kẽ∗(w⊕u)(W, ξ) = Kẽw⊕(ẽ∗)−1u(W, ξ)

= 2(w∗ẽ∗Ŵ ẽw + u∗ẽ−1W (ẽ∗)−1u+ w∗ẽ∗ξ(ẽ∗)−1u+ u∗ẽ−1ξ∗ẽw)
= Vw⊕u ◦ µ(ẽ−1)(W ) + αw⊕u ◦ Ad(ẽ∗)(ξ).

�

Remark. The norm of imaginary Killing spinors

Classical considerations on Lie algebras show that so(3, 2) endowed with its Killing form,
is isometric to (M,−det) ⊕ (sl2(C),−ℜe(det)) which is a 10-dimensional real vector space
of signature (6,4). The norm of K(w ⊕ u) with respect to the Killing form is, up to a mul-
tiplicative and positive constant |K(w ⊕ u)|2 = | < U, V > |2 − |U |2|V |2 + ℜe(χ2), where
we have set χ = u1w1 + u2w2. Besides, if Vw⊕u is isotropic in M then αw⊕u and K(w ⊕ u)
are also isotropic respectively in sl2(C)∗ and (M ⊕ sl2(C))∗. Indeed the equality case in the
Cauchy-Schwarz inequality occurs if and only if U and V satisfy detC2(U, V ) = χ̄ = 0. �
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3 Analytical and geometric background

The energy-momentum functional H is a linear form on (M,−det)⊕(sl2(C),−ℜe(det)), and
we will see below that H is non negative when it is composed with the application K.

3.1 Connections and curvatures

∇,∇ denote respectively the Levi-Civita connections of γ and g. Let us take a spinor field
ψ ∈ Γ(Σ) and a vector field X ∈ Γ(TM), then

{
∇Xψ = ∇Xψ − 1

2
k(X) · e0 · ψ

〈k(X), Y 〉γ = 〈∇XY, e0〉γ
.

In these formulae · denotes the Clifford action with respect to the metric γ, and e0 = ∂t. We
will use different notations when we have to make the difference between the Clifford action
with respect to the metric γ or β. We define the Killing connection by

∇̂Xψ = ∇Xψ +
i

2
X · ψ .

The spinors which are parallel with respect to ∇̂ are the γ-imaginary Killing spinors. Of
course we can define in the same way, the connection D̂ thanks to the Levi-Civita connections
D,D of respectively β and b. R, R̂ the respective curvatures of ∇ and ∇̂ are related by the
formula

R̂X,Y = RX,Y −
1

4
(X · Y − Y ·X)· ,

where we use the convention of [17] for the curvature.

3.2 Bochner-Lichnerowicz and integration formulae

From now on (ek)
3
k=0 is an orthonormal basis at the point with respect to the metric γ. We

define the Dirac-Witten operators

Dψ =
n∑

k=1

ek · ∇ek
ψ, D̂ψ =

n∑

k=1

ek · ∇̂ek
ψ,

where n = 3 is the dimension of the standard hyperbolic slice.

Lemma.(Bochner-Lichnerowicz-Witten formula)

D̂
∗
D̂ = ∇̂∗∇̂ + R̂,

where R̂ := 1
4
(Scalγ + n(n− 1) + 4Ricγ(e0, e0) + 2e0 · Ricγ(e0)) .

10



Proof. The Dirac-Witten operator D is clearly formally self adjoint, and we have the
classical Bochner-Lichnerowicz formula (cf. [16],[19] for instance) D

∗
D = D

2 = ∇∗∇ + R,

where R := 1
4
(Scalγ + 4Ricγ(e0, e0) + 2e0 · Ricγ(e0)). We also know that D̂ = D− in

2
and so

we get

D̂
∗
D̂ = ∇∗∇ + R +

n2

4
,

but finally remarking that ∇̂∗∇̂ = ∇∗∇ + n
4

we obtain our formula. �

We derive an integration formula from the Bochner-Lichnerowicz-Witten identity considering

the 1-form θ on M defined by θ(X) =
〈
∇̂Xψ +X · D̂ψ, ψ

〉
γ
, where ψ is a spinor field.

Straightforward computations lead to the following g-divergence formula

divθ =
〈
D̂ψ, D̂ψ

〉
γ
−
〈
R̂ψ, ψ

〉
γ
−
〈
∇̂ψ, ∇̂ψ

〉
γ
.

Let Sr the g-geodesic sphere of radius r and centered in a point of M. The radius r is supposed
to be as large as necessary. We denote by Mr the interior domain of Sr and νr the (pointing
outside) unit normal. Integrating our divergence formula over Mr, we get

∫

Mr

∣∣∣D̂ψ
∣∣∣
2

γ
=

∫

Mr

(∣∣∣∇̂ψ
∣∣∣
2

γ
+
〈
R̂ψ, ψ

〉
γ

)
−

∫

Sr

〈
∇̂νrψ + νr · D̂ψ, ψ

〉
γ
dVolSr .

3.3 Dominant Energy Condition

Let us consider the Einstein tensor G = Ricγ − 1
2
Scalγγ with respect to the metric γ.

The dominant energy condition [23] says that the speed of energy flow of matter is always
less than the speed of light. More precisely, for every positively oriented time-like vec-
tor field v, the energy-momentum current of density of matter −G(v, .)♯ must be time-like
or null, with the same orientation as v. The assumption we make in order to prove the
positive energy-momentum theorem is a relative version of the dominant energy condition:

−
(
G− n(n−1)

2
γ
)

(e0) is a positively oriented time-like or null vector along M . Some easy

computations give

Scalγ = 2(G(e0, e0) − Ricγ(e0, e0))

e0 · Ricγ(e0) = e0 ·G|TM(e0) − Ricγ(e0, e0),

where G|TM(e0) =
∑3

k=1G(e0, ek)ek. Thereby

R̂ =
1

4

(
2G(e0, e0) + (n(n− 1)) + 2e0 ·G|TM(e0)

)
·

=
1

2

((
G(e0, e0) +

n(n− 1)

2

)
e0 −G|TM(e0)

)
· e0 ·

=
1

2

((
G(e0, e0) −

n(n− 1)

2
γ(e0, e0)

)
e0 −G|TM(e0)

)
· e0 ·

= −
1

2

(
G−

n(n− 1)

2
γ

)
(e0) · e0 · .
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Our assumption gives the non negativity of the spinorial endomorphism R̂ that is to say〈
R̂ψ, ψ

〉
≥ 0 for every spinor field ψ.

Remark. We can express the dominant energy condition in terms of the constraints as in
section 1.3 since

−

(
G−

n(n− 1)

2
γ

)
(e0) =

1

2
(Φ(g, k) − Φ(b, 0)) .

�

3.4 Spinorial gauge

In the same way as Andersson and Dahl [3], but in a Lorentzian situation, we compare
spinors in Σ (along M) with respect to the two different metrics β and γ. We suppose that
both metrics are written in Gaussian coordinates β = −dt2 + gt, γ = −dt2 + bt. We define
the spinorial gauge A ∈ Γ(End(T)) with the relations

{
γ(AX,AY ) = β(X, Y )
γ(AX, Y ) = γ(X,AY )

,

where T is TN restricted to M . The first relation says that A sends β-orthonormal frames on
γ-orthonormal frames whereas the second one means that the endomorphism A is symmetric.
We notice that these relations are only satisfied along M = {t = 0} and can also be written
in the following way 




Ae0 = e0
g(AX,AY ) = b(X, Y )
g(AX, Y ) = g(X,AY )

.

Consequently A is an application PSO0(3,1)(β)|M −→ PSO0(3,1)(γ)|M , which can be covered by
an application still denoted A : PSpin0(3,1)(β)|M −→ PSpin0(3,1)(γ)|M . This application carries
β-spinors on γ-spinors so that we have the compatibility relation about the Clifford actions
of β and γ

A(X ·β σ) = (AX) ·γ (Aσ),

for every X ∈ Γ(T), σ ∈ Γ(Σ) and where ·β, ·γ denotes the Clifford actions respectively of β

and γ. We define a new connection ∇̃X = A(DA−1X). It is easy to check that ∇̃ is g-metric

and has torsion T̃ (X, Y ) = −((DXA)A−1Y − (DY A)A−1X). We extract some formulae for
later use

2g
(
∇̃XY −∇XY, Z

)
= g

(
T̃ (X, Y ), Z

)
− g

(
T̃ (X,Z), Y

)
− g

(
T̃ (Y, Z), X

)
.

Now we intend to compare the connexions ∇ and ∇̃ on Σ. (σs)s denotes the spinorial
frame corresponding to the orthonormal frame (ek)

3
k=0, and ω, ω̃ are the connection 1-forms

respectively of ∇ and ∇̃
ωij = g(∇ei, ej)

ω̃ij = g(∇̃ei, ej),
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and if we take a general spinor ϕ = ϕsσs, their derivatives are given by

∇ϕ = dϕs ⊗ σs +
1

2

∑

i<j

ωij ⊗ ei ·γ ej ·γ ϕ

∇̃ϕ = dϕs ⊗ σs +
1

2

∑

i<j

ω̃ij ⊗ ei ·γ ej ·γ ϕ,

and as a consequence

(∇− ∇̃)ϕ =
1

4

3∑

i,j=0

(ωij − ω̃ij) ⊗ ei ·γ ej ·γ ϕ .

3.5 Energy-momentum and imaginary Killing spinors

Remember that
∫

Mr

∣∣∣D̂ψ
∣∣∣
2

γ
=

∫

Mr

(∣∣∣∇̂ψ
∣∣∣
2

γ
+
〈
R̂ψ, ψ

〉
γ

)
−

∫

Sr

〈
∇̂Aνrψ + Aνr ·γ D̂ψ, ψ

〉
γ
dVolSr .

Remark. νr denotes the b-normal of Sr, e0 = ∂t and we set e1 = Aνr. �

We have to work on the expression
〈
∇̂Aνrψ + Aνr ·γ D̂ψ, ψ

〉
γ

in order to get the integrand

used to compute the energy-momentum.

Lemma.

∇̂Aνrψ + Aνr ·γ D̂ψ = Aνr ·γ

(
3∑

k=2

ek ·γ ∇̂ek

)
.

Proof. We only have to notice that e1 ·γ e1 ·γ ∇̂e1 = −∇̂e1 = −∇̂Aνr . �

From now on we work on
〈
Aνr ·γ

(
3∑

k=2

ek ·γ ∇̂ek

)
·γ ϕ, ϕ

〉

γ

.

Let us take σ a β-imaginary Killing spinor, that is to say a spinor field solution of D̂Xσ =
DXσ+ i

2
X ·β σ = 0, for every vector field X ∈ Γ(TM). Consider f a smooth cutoff function

which is 0 on M except on a relatively compact neighbourhood of the infinity boundary of
M where f ≡ 1. Then we have

∇̂X(fAσ) = df(X)Aσ +f∇̂X(Aσ)

= df(X)Aσ +f(∇X − ∇̃X)(Aσ) +f
(
∇̃X + i

2
X ·γ −

1
2
k(X) ·γ e0·γ

)
(Aσ),
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but since ∇̃X(Aσ) = ADXσ = − i

2
A(X ·β σ) = − i

2
(AX) ·γ (Aσ), we obtain

∇̂X(fAσ) = df(X)Aσ + f(∇X − ∇̃X)(Aσ) −
1

2
f (k(X) ·γ e0 + i(A− Id)X) ·γ (Aσ),

that we restrict to the neighbourhood where f ≡ 1

∇̂X(Aσ) = (∇X − ∇̃X)(Aσ) −
1

2
(k(X) ·γ e0 + i(A− Id)X) ·γ (Aσ).

As a consequence our boundary term becomes for r great enough (summation convention
k ∈ {2, 3})

〈
Aνr ·γ ek ·γ

(
(∇ek

− ∇̃ek
) −

1

2
(k(ek) ·γ e0 + i(A− Id)ek)·γ

)
(Aσ),Aσ

〉

γ

.

We will estimate this boundary term in several steps. From the decay assumptions stated
section in 1.2, the gauge is supposed to be of the form A = Id+B +O(|B|2), where B has
the same decay to 0 as e = g− b. In the following (ǫk = A−1ek)

3
k=0 is a β-orthonormal frame.

We begin with the easiest term

〈Aνr ·γ ek ·γ k(ek) ·γ e0 ·γ (Aσ),Aσ〉γ = 〈Aνr ·γ Aǫk ·γ k(Aǫk) ·γ Aǫ0 ·γ (Aσ),Aσ〉γ
= 〈νr ·β ǫk ·β A−1 ◦ k ◦ A(ǫk) ·β ǫ0 ·β σ, σ〉β .

But we note that A−1 ◦ k ◦A = k −B ◦ k + k ◦B +O(|B|2). Now B has the same decay as
k so B ◦ k + k ◦ B = O(|B|2), terms that we can neglect if r is great enough. We conclude
that A−1 ◦ k ◦ A ≈ k. Moreover

νr ·β

3∑

k=2

ǫk ·β k(ǫk) = ǫ1 ·β

(
3∑

k=1

ǫk ·β k(ǫk) − ǫ1 ·β k(ǫ1)

)

= k(νr) − (trbk)νr,

which implies

〈Aνr ·γ ek ·γ k(ek) ·γ e0 ·γ (Aσ),Aσ〉γ ≈ 〈k(νr) − (trbk)νr ·β ǫ0 ·β σ, σ〉β
= (iασk − (trbk)ασ) (νr),

where ασ(X) = 〈X ·β ǫ0 ·β σ, σ〉β.

The second term we study is

i 〈Aνr ·γ ek ·γ (A− Id)(ek) ·γ (Aσ),Aσ〉γ = i 〈Aνr ·γ Aǫk ·γ (A− Id)(Aǫk) ·γ (Aσ),Aσ〉γ
= i 〈νr ·β ǫk ·β A−1 ◦ (A− Id) ◦ A(ǫk) ·β σ, σ〉β
≈ i 〈νr ·β ǫk ·β B(ǫk) ·β σ, σ〉β ,
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but thanks to the same property as above

νr ·β

3∑

k=2

ǫk ·β B(ǫk) = B(νr) − (trbB)νr,

which induces

i 〈Aνr ·γ ek ·γ (A− Id)(ek) ·γ (Aσ),Aσ〉γ ≈ i 〈B(νr) − (trbB)νr ·β σ, σ〉β
= (i∇VσB − (trbB)dVσ) (νr),

where dVσ(X) = i 〈X ·β σ, σ〉β.

The last term we have to study is certainly the most difficult (summation convention k ∈
{2, 3}, l ∈ {1, 2, 3}, m ∈ {1, 2, 3})
〈
Aνr ·γ ek ·γ (∇ek

− ∇̃ek
)(Aσ),Aσ

〉
γ

= 1
4
〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ

= 1
4
〈(ωlm − ω̃lm) ◦ A(ǫk)νr ·β ǫk ·β ǫl ·β ǫm ·β σ, σ〉β

= 1
4
S

S =
3∑

k,l,m=2

〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ

+ 2
3∑

k,l=2

〈(ω1l − ω̃1l)(ek)Aνr ·γ ek ·γ e1 ·γ el ·γ (Aσ),Aσ〉γ

= S1 + 2S2.

We will give estimates of each Sk, keeping in mind that they are real and that every term
that is at least O(|B|2) can be neglected when r → +∞.

Estimate of S1

S1 =
3∑

k,l,m=2

〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ .

We can keep only the subscripts l 6= m because of the skew-symmetry of (ω− ω̃). Besides if
we suppose that k = l, we have terms like 〈Aνr ·γ em ·γ (Aσ),Aσ〉γ which belong to iR. So
we can sum over k, l,m distinct subscripts without any loss of generality. On the other hand

(ωlm − ω̃lm)(ek) =
1

2

(
−g(T̃ (ek, el), em) + g(T̃ (ek, em), el) + g(T̃ (el, em), ek)

)

where the two last terms of the right-hand side member are symmetric with respect to (l, k),
so they vanish when we sum over k and l distinct. Consequently

(ωlm − ω̃lm)(ek)ǫk ·β ǫl ·β ǫm = 1
2
b
(
A−1(Dek

A)ǫl −A−1(Del
A)ǫk, ǫm

)
ǫk ·β ǫl ·β ǫm

= b
(
A−1(Dek

A)ǫl, ǫm
)
ǫk ·β ǫl ·β ǫm,
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but
b(A−1(Dek

A)ǫl, ǫm) = b(A−1(Dek
(Aǫl) −ADek

ǫl), ǫm)
≈ b(Dǫk

(Bǫl) −B(Dǫk
ǫl), ǫm)

= b((Dǫk
B)ǫl, ǫm),

expression which is symmetric with respect to (l,m), sinceDB is a symmetric endomorphism.
Consequently ∑

k,l,m distinct

(ωlm − ω̃lm)(ek)ǫk ·β ǫl ·β ǫm ≈ 0,

when r → +∞.

Estimate of S2

S2 =
3∑

k,l=2

〈(ω1l − ω̃1l)(ek)Aνr ·γ ek ·γ e1 ·γ el ·γ (Aσ),Aσ〉γ

= −
3∑

k=2

〈(ω1k − ω̃1k)(ek)σ, σ〉β

+
∑

k 6=l

〈(ω1l − ω̃1l)(ek)ek ·γ el ·γ (Aσ),Aσ〉γ ,

but the second sum is in iR, so it remains

ℜe(S2) = −

(
3∑

k=1

(ω1k − ω̃1k)(ek)

)
Vσ.

We only have to compute

−

3∑

k=1

(ω1k − ω̃1k)(ek) =

3∑

k=1

g((De1A)A−1ek, ek − (Dek
A)A−1e1, ek)

= S ′
2 − S ′′

2
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We focus on

S ′′
2 =

3∑

k=1

g((Dek
A)A−1e1, ek)

=
3∑

k=1

b(A−1(Dek
A)ǫ1, ǫk)

=
3∑

k=1

b(A−1Dek
(Aǫ1) −Dek

ǫ1, ǫk)

≈
3∑

k=1

b((Dek
B)ǫ1, ǫk)

≈
3∑

k=1

b(ǫ1, (Dǫk
B)ǫk)

= −divbB(νr).

As regards the first term S ′
2, we decompose the gauge endomorphism A as follows: Aǫi =∑3

k=0 A
k
i ǫk. We remind that Aǫ0 = ǫ0, A(TM) ⊂ TM and so we have Ak

0 = A0
k = 0, k ≥ 1.

S ′
2 =

3∑

k=1

g((De1A)A−1ek, ek)

=
3∑

k=1

b((A−1De1A)ǫk, ǫk)

=
3∑

k=1

b(A−1De1(Aǫk) −De1ǫk, ǫk)

≈

3∑

k,l=1

(e1 · A
l
k) {b(ǫl, ǫk) − b(Bǫl, ǫk)} −

3∑

k=1

b(De1ǫk, ǫk)

+

3∑

k,l=1

Al
k

{
b(De1ǫl, ǫk) − b(BDe1ǫl, ǫk)

}

≈ (ǫ1 · trbB) −

3∑

k=1

b(De1ǫk, ǫk) +

3∑

k,l=1

(δk
l +Bl

k)
{
b(De1ǫl, ǫk) − b(BDe1ǫl, ǫk)

}

≈ (ǫ1 · trbB) −

3∑

k=1

{
b(BDe1ǫk, ǫk) − b(De1ǫk, Bǫk)

}

= d(trbB)(νr),

that entails
ℜe(S2) ≈ Vσ(d(trbB) + divbB)(νr).
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We can conclude, taking B = −1
2
e, that the real part of our boundary integrand is nothing

but
1

4

(
−Vσ(δbe+ dtrbe) − i∇bVσ

e+ (trbe)dVσ − 2i
α

♯
σ
k + 2(trbk)ασ

)
(νr).

We can now make out the link between the energy-momentum and the imaginary Killing
spinors with the

Proposition. Let ξ = fAσ+ξ0 , where σ ∈ IKS(Σ) and ξ0 is a compactly supported spinor
field. Then we have

H(Vσ, ασ) = 4 lim
r→+∞

∫

Sr

〈
∇̂Aνrξ + Aνr · D̂ξ, ξ

〉
γ

= 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+
〈
R̂ξ, ξ

〉
γ

)
− 4

∫

M

∣∣∣D̂ξ
∣∣∣
2

γ
.

Remark. Although ξ is not an imaginary Killing spinor, we obtain H(Vσ, ασ) since the

energy-momentum only takes into account the contribution of the integrand
〈
∇̂Aνrξ + Aνr · D̂ξ, ξ

〉
γ

near the infinity of M . For r large enough this integrand is
〈
∇̂AνrAσ + Aνr · D̂Aσ,Aσ

〉
γ
.�

Now some analysis of the Dirac-Witten operator is necessary in order to obtain the non neg-
ativity of the energy-momentum functional H when it is restricted to the couples (Vσ, ασ)
with σ ∈ IKS(Σ).

3.6 A little analysis of D̂

3.6.1 M without inner boundary

We still follow the work of Andersson and Dahl [3] to study the analytical properties of D̂.
Let us consider C∞

0 (Σ) = C∞
0 the space of smooth and compactly supported spinors. We

define a sesquilinear form on C∞
0 by

a(ϕ, ψ) =

∫

M

〈
D̂ϕ, D̂ψ

〉
γ
dµg,

where dµg denotes the standard volum form of the metric g. The form a is clearly bounded
and non negative on C∞

0 .We define the usual Sobolev space

H1(Σ) =

{
ψ ∈ Σ/

∫

M

|ψ|2γ + |∇ψ|2γ <∞

}
.
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Definition. We set H(a) := C∞
0

a
.

Lemma. There is a continuous embedding H(a)�
�

//H1 .

Proof. For every ψ ∈ C∞
0 we have

(
1 +

n

4

)−1

||ψ||21 ≤

∫

M

∣∣∣D̂ψ
∣∣∣
2

γ
=

∫

M

(
|∇ψ|2γ +

n

4
|ψ|2 +

〈
R̂ψ, ψ

〉
γ

)
.

�

We notice that for r great enough and for σ ∈ IKS(Σ)

∇̂X(Aσ) = ∇X(Aσ) +
i

2
X ·γ (Aσ)

= (∇X − ∇̃X)(Aσ) −
1

2
(k(X) ·γ e0 + i(A− Id)X) ·γ (Aσ).

But the relations
{

T̃ (X, Y ) = −((DXA)A−1Y − (DY A)A−1X)

2g(∇̃XY −∇XY, Z) = g(T̃ (X, Y ), Z) − g(T̃ (X,Z), Y ) − g(T̃ (Y, Z), X)

tell us that |(ωij − ω̃ij)(ek)| ≤ C|A−1||DA|. We get an estimate

|D̂(Aσ)| ≤ C|A|(|DA| + |A − Id| + |k|)|σ| ∈ L2(M, dµg),

which infers that D̂(fAσ) ∈ L2(M, dµg). We now consider the linear form l on H(a) defined
by

l(ψ) =

∫

M

〈
D̂(fAσ), D̂ψ

〉
γ
dµg.

Thanks to our estimate above we get |l(ψ)|2 ≤
∥∥∥D̂(fAσ)

∥∥∥
2

L2
a(ψ, ψ), that gives the continuity

of l in H(a). We can claim, thanks to Lax-Milgram theorem, that there exists a unique
ξ0 ∈ H(a) such that l = a(−ξ0, ·). In other words

∫

M

〈
(D̂)∗D̂(fAσ + ξ0), ψ

〉
γ

= 0.

Since D̂
∗ = D̂ + in, we have in the distributional sense (D̂ + in)D̂ξ = 0, where we have set

ξ = fAσ + ξ0. By an elliptic regularity argument, D̂ξ is in fact smooth and (D̂)kξ are L2,
for every k ∈ N. It follows

∫

M

〈
(D̂)2ξ, (D̂)2ξ

〉
γ

=

∫

M

〈
(D̂ + in)(D̂)2ξ, D̂ξ

〉
γ

=

∫

M

〈
D̂(D̂ + in)D̂ξ, D̂ξ

〉
γ

= 0,
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that implies (D̂)2ξ = 0, but we already know that (D̂ + in)D̂ξ = 0, and thereby D̂ξ = 0.
We now apply our integration formula to ξ

H(Vσ, ασ) = lim
r→+∞

∫

Sr

〈
∇̂Aνrξ + Aνr · D̂ξ, ξ

〉
γ

= 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+
〈
R̂ξ, ξ

〉
γ

)
− 4

∫

M

∣∣∣D̂ξ
∣∣∣
2

γ

= 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+
〈
R̂ξ, ξ

〉
γ

)
≥ 0,

and we finally obtain the

Proposition. For every σ ∈ IKS(Σ) there exists a unique ξ0 ∈ H(a) such that

H(Vσ, ασ) = lim
r→+∞

∫

Sr

〈
∇̂Aνrξ + Aνr · D̂ξ, ξ

〉
γ

= 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+
〈
R̂ξ, ξ

〉
γ

)
≥ 0,

where ξ = fAσ + ξ0 ∈ KerD̂.

3.6.2 M with inner boundary

We will consider, in this section, a Riemannian slice M that has a non empty inner boundary

∂M . ğ,
⌣

∇, k̆ will denote respectively the induced metric, the connection and the second
fundamental form which is defined by

∇XY =
⌣

∇X Y − k̆(X, Y )ν

∇Xψ =
⌣

∇X ψ −
1

2
k̆(X) · ν · ψ,

where ν is the normal to ∂M pointing toward infinity (that is to say pointing inside), and ·
still denotes the Clifford action with respect to the metric γ. Consequently our integration
formula has another boundary term

∫

Mr

∣∣∣D̂ψ
∣∣∣
2

γ
=

∫

Mr

(∣∣∣∇̂ψ
∣∣∣
2

γ
+
〈
R̂ψ, ψ

〉
γ

)
−

∫

Sr

〈
∇̂Aνrψ + Aνr · D̂ψ, ψ

〉
γ
+

∫

∂M

〈
∇̂νψ + ν · D̂ψ, ψ

〉
γ
.

But if ψ is a compactly supported smooth spinor field then, making r → ∞ one finds

∫

M

∣∣∣D̂ψ
∣∣∣
2

γ
=

∫

M

(∣∣∣∇̂ψ
∣∣∣
2

γ
+
〈
R̂ψ, ψ

〉
γ

)
+

∫

∂M

〈
∇̂νψ + ν · D̂ψ, ψ

〉
γ
.

We then have to estimate the boundary integrand
〈
∇̂νψ + ν · D̂ψ, ψ

〉
.
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Lemma. If (ν = e1, e2, e3) is a local orthonormal frame of TM|∂M then

∇̂νψ + ν · D̂ψ = ν ·

3∑

k=2

∇̂ek
ψ .

Proof. Just remark that ∇̂νψ = −e1 · e1 · ∇̂e1ψ �

Lemma. Keeping our orthonormal frame (ν = e1, e2, e3), we have

∇̂νψ + ν · D̂ψ =

3∑

k=2

ν · ek·
⌣

∇ek
ψ +

1

2

{
−trk̆ − (n− 1)iν + (trk)ν · e0 − k(ν) · e0

}
· ψ .

Proof. Using the formula above, we then express ∇̂ in term of the 2-dimensional connec-
tion and second form, and the 3-dimensional second form. �

Let us define F ∈ End(Σ|∂M) by F (ψ) = iν · ψ. We sum up some basic properties of F in
the following

Proposition. The endomorphism F is symmetric, isometric with respect to 〈·, ·〉, commutes
to the action of ν· and anticommutes to each ek·, (k 6= 1).

Lemma. If F (ψ) = −ψ then

〈
∇̂νψ + ν · D̂ψ, ψ

〉
|∂M

=
1

2

〈
e0 ·
(
(−trk̆ + (n− 1))e0 + k(ν)

)
· ψ, ψ

〉
.

Proof. Using the proposition above we know that ν · ek (k 6= 1) anticommutes with F and
the formula follows since F respects 〈·, ·〉. �

Assumption. Let us suppose that the 4-vector ~k := (−trk̆+ (n− 1))e0 + k(ν) is causal and

positively oriented, that is to say γ(~k,~k) ≤ 0 and trk̆ ≤ (n− 1).

This assumption (which is exactly the same as for R̂) guarantees the non negativity of the

boundary integrand term
〈
∇̂νψ + ν · D̂ψ, ψ

〉
|∂M

= 1
2

〈
e0 · ~k · ψ, ψ

〉
, whenever the boundary

condition F (ψ) = −ψ is satisfied. Although this assumption is vectorial, it clearly extends
the one given in [12].
Let us define H−(a) = {ψ ∈ H(a)/F (ψ) = −ψ} where H(a) has been defined in section
3.6.1. Still taking ψ a compactly supported smooth spinor field in H−(a), we have

a(ψ, ψ) =

∫

M

(∣∣∣∇̂ψ
∣∣∣
2

γ
+
〈
R̂ψ, ψ

〉
γ

)
+

1

2

∫

∂M

〈
e0 · ~k · ψ, ψ

〉
,
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whose each single term is non negative tanks to our assumption.

Remark. Weighted Poincaré inequality

∃ω ∈ L1
loc(dVolg) essM infω > 0 ∀u ∈ C1

0

∫

M

ω|u|2dVolg ≤

∫

M

|∇̂u|2dVolg.

It is easy to see that Γ, the symmetric part of the connection ∇̂ is given by ΓX = 1
2
{k(X) · e0 − iX} ·,

and so satisfies the conditions (cf. [7]) in order to have the existence of a weighted Poincaré
inequality that is to say Γ ∈ Ln

loc(M) and lim supx→0 |xΓx| <
n−1

2
. �

Lemma. H−(a) continuously embeds in H1
loc and furthermore

(
ψk

H−(a)
//ψ

)
⇒

(
∇̂ψk

L2(M)
//∇̂ψ and ∀Ω ⊂M |Ω| <∞ ψk

H1(Ω)
//ψ

)
,

with a weighted Poincaré inequality.

Proof. Let (ψk)k∈N
∈ (C∞

0 )N a Cauchy sequence with respect to the form a whose elements
satisfy the boundary condition F (ψk) = −ψk. Then we have

∫

M

∣∣∣D̂ψk

∣∣∣
2

γ
=

∫ (∣∣∣∇̂ψk

∣∣∣
2

γ
+
〈
R̂ψk, ψk

〉
γ

)
+

1

2

∫

∂M

〈
e0 · ~k · ψk, ψk

〉
,

and thus thanks to the weighted Poincaré inequality

∀Ω ⊂M |Ω| <∞ ψk

L2(Ω)
//ψ and ∇̂ψk

L2(M)
//ρ.

Now let us take a ϕ ∈ C1
0 such that Suppϕ ⊂ K ⊂ (M \∂M) (K compact without boundary)

and then ∫
K

〈
∇̂∗ϕ, ψk

〉

k→∞
��

∫
K

〈
ϕ, ∇̂ψk

〉

k→∞

��∫
K

〈
∇̂∗ϕ, ψ

〉 ∫
K
〈ϕ, ρ〉

,

and therefore ρ = ∇̂ψ in the distributional sense. �

We consider the linear form l on H−(a) defined by

l(ψ) =

∫

M

〈
D̂(fAσ), D̂ψ

〉
γ
dµg.

It still is a continuous linear form on the Hilbert space H−(a) (it is complete since the con-
dition F (ψ) = −ψ is closed) and applying again Lax-Milgram theorem we get the existence
of a unique ξ0 ∈ H(a) such that l = a(−ξ0, ·). In other words

∀ψ ∈ H−(a)

∫

M

〈
χ, D̂ψ

〉
= 0,
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where we have set ξ = fAσ + ξ0 and χ = D̂ξ.

Remark. We have for any compactly supported smooth spinor fields ϕk, k = 1, 2, the
integration by parts formula

∫

M

〈
ϕ1, D̂ϕ2

〉
=

∫

M

〈
D̂

∗ϕ1, ϕ2

〉
+

∫

∂M

〈ν · ϕ1, ϕ2〉 .

�

For any ψ ∈ C1
0 we have

∫

M

〈
χ, D̂ψ

〉
= 0 =

∫

M

〈
D̂

∗χ, ψ
〉

+

∫

∂M

〈ν · χ, ψ〉 .

But remembering that C∞
0 (M \ ∂M) the space of smooth spinor fields compactly sup-

ported in M \ ∂M is dense in L2(M) then we obtain that D̂
∗χ = 0 and χ ∈ H+(a) =

{ψ ∈ H(a)/F (ψ) = +ψ}. By ellipticity χ is smooth and D̂
kχ ∈ L2(M) for every k ∈ N.

Finally we notice that
∫

M

∣∣∣D̂χ
∣∣∣
2

=

∫

M

〈
D̂

∗
D̂χ, χ

〉
+

∫

∂M

〈
ν · D̂χ, χ

〉

= 0 +

∫

∂M

〈−inν · χ, χ〉

= −n

∫

∂M

|χ|2 ,

and therefore D̂χ = 0 which implies that χ = 0. We can conclude with the

Proposition. For every σ ∈ IKS(Σ) there exists a unique ξ0 ∈ H−(a) such that

H(Vσ, ασ) = lim
r→+∞

∫

Sr

〈
∇̂Aνrξ + Aνr · D̂ξ, ξ

〉
γ

= 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+
〈
R̂ξ, ξ

〉
γ

)
+ 2

∫

∂M

〈
e0 · ~k · ψ, ψ

〉
≥ 0,

where ξ = fAσ + ξ0 ∈ KerD̂
⋂
H−(a).

4 Proofs of the theorems

4.1 Positivity

On one hand we have found an application

K : IKS(Σ) ∼= C2 ⊕ C2 −→ (M ⊕ sl2(C))∗R ∼= Ker dΦ∗
(b,0)

w ⊕ u 7−→ (Vw⊕u ⊕ αw⊕u)
,
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which is SL(2,C)-equivariant. On the other hand we know that the energy-momentum
functional H can be seen as a real linear form on (M ⊕ sl2(C))∗R that is to say, as a vector
H = M⊕Ξ ∈ M⊕sl2(C). In the following, we will adopt the notations Ξ = N⊕iR ∈ G⊕iG,
and M = Λ(m0, m), N = Λ(0, n), R = Λ(0, r), where Λ is the isomorphism defined in section
2.2. Thanks to the computations of section 2.4 we have

Kw⊕uH = Vw⊕u(M) + αw⊕u(Ξ)

= 2(w∗M̂w + u∗Mu) + 2(w∗Ξu+ u∗Ξ∗w),

and consequently the application w⊕u 7−→ Kw⊕uH is a sesquilinear form on C
2 ⊕C

2 whose
matrix is

Q = 2

(
M̂ Ξ
Ξ∗ M

)
= 2

(
Λ(m0,−m) Λ(0, n) + iΛ(0, r)

Λ(0, n) − iΛ(0, r) Λ(m0, m)

)
.

Putting together the propositions of section 3.6 and the proposition and remark of section
3.5, we get the non negativity of Q and consequently the positive energy-momentum theorem
stated in section 1.3. �

Corollary. m0 = 0 implies H = 0.
Proof. Making the sum of the order 2 principal minors of the matrix Q (cf. section 5) one
gets 3m2

0 − (|m|2 + |n|2 + |r|2) ≥ 0. �

Proposition. If M is timelike, there exists a (non unique) representative element of the
orbit of H = M ⊕ Ξ under the natural action (cf. section 2.4) of SL(2,C) on M ⊕ sl2(C)
which can be written

m0

(
1 0
0 1

)
⊕ n1

(
1 0
0 −1

)
⊕ i

(
r1 r2
r2 −r1

)
,

with m0, n1, r1, r2 ∈ R. The positive energy-momentum theorem then reduces to m0 ≥√
(|n1| + |r2|)2 + r2

1.

Proof. Let us suppose that M ∈ M is timelike. Thus considering the action of SL(2,C)
on M ⊕ sl2(C) (cf. section 2.4), then there exists an element in the orbit of H that can be

writtenm0

(
1 0
0 1

)
⊕Ξ′. Since the isotropy group of

(
1 0
0 1

)
is SU(2) whose action on G is

transitive, then there exists an element in the orbit of H that can be written m0

(
1 0
0 1

)
⊕

n1

(
1 0
0 −1

)
⊕ iR′. But the isotropy group of

(
1 0
0 −1

)
is the one parameter group

{(
eiθ 0
0 e−iθ

)
, θ ∈ R

}
. Finally there exists an element (not unique since the isotropy
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group of

(
0 1
1 0

)
is isomorphic to Z2) in the orbit of H that can be written as announced

in the proposition. The corresponding Hermitian matrix is

Q = 2




m0 0 n1 + ir1 ir2
0 m0 ir2 −n1 − ir1

n1 − ir1 −ir2 m0 0
−ir2 −n1 + ir1 0 m0


 .

Since Q is non negative we have

m0 ≥ 0

m0(m
2
0 − (n2

1 + r2
1 + r2

2)) ≥ 0

(m2
0 − (n2

1 + r2
1 + r2

2))
2 ≥ 4(n1r2)

2,

which implies m0 ≥
√

(|n1| + |r2|)2 + r2
1. �

Remark. The Kerr AdS metrics are asymptotically hyperbolic and parametrized by 2 real
parameters: the mass and the angular momentum. The proposition above then shows that an
asymptotically hyperbolic metric with non zero energy-momentum coefficients m0, n1, r1, r2
could not be obtained by the action of SL(2,C) on a Kerr AdS solution. As a consequence,
an interesting question would be to find some (new!) asymptotically hyperbolic metrics
which have an energy-momentum of the form given in the proposition above with non zero
coefficients m0, n1, r1, r2, and satisfy the dominant energy condition or the (stronger) cosmo-
logical vacuum constraints. �

4.2 Rigidity

Let us suppose thatQ is degenerate. Consequently, there exists some non zero w⊕u ∈ C2⊕C2

such that Kw⊕uH = 0. Let us denote by σ the corresponding β-imaginary Killing spinor
σ−1

w⊗( 1
−i)

+ σ∗
u⊗(1

i)
, and by ξ = fAσ + ξ0 (cf. the proposition of section 3.6) the unique

corresponding spinor such that

Kw⊕uH = H(Vσ, ασ) = 4

∫

M

(∣∣∣∇̂ξ
∣∣∣
2

γ
+ 〈Rξ, ξ〉γ

)
= 0.

This implies that ∇̂ξ = 0 on M which means ξ is a imaginary Killing spinor with respect to

the metric γ, and
〈
R̂ξ, ξ

〉
= 0. Besides it is important to notice that the function 〈ξ, ξ〉 > 0

since the spinor ξ cannot vanish on M .

Proposition. For every X, Y ∈ Γ(TM) we have

Rγ
X,Y = Rg

X,Y −
1

2

(
d∇k(X, Y ) · e0 +

1

2

(
k(X) · k(Y ) − k(Y ) · k(X)

))
· ,
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where · denotes the Clifford action with respect to the metric γ.

Proof. It is a straightforward computation

∇X∇Y = ∇X

(
∇Y −

1

2
k(Y ) · e0·

)

= ∇X∇Y −
1

2
k(X) · e0 · ∇Y

−
1

2
(∇Xk(Y ) · e0 · +k(Y ) · (∇Xe0) · +k(Y ) · e0 · ∇X)

= ∇X∇Y −
1

2

(
k(X) · e0 · ∇Y + k(Y ) · e0 · ∇X

)
−

(
1

2
∇Xk(Y ) · e0 +

1

4
k(X) · k(Y )

)
· ,

and the curvature formula above follows. �

Let us denote by V the function < ξ, ξ >, α the real 1-form defined by α(Y ) = 〈Y · e0 · ξ, ξ〉
and finally the real symmetric 2-tensor E by

E := Ricg + (n− 1)g + (trgk)k − k ◦ k.

A consequence of the curvature formula above is the usual Codazzi and Gauss equations
that are obtained thanks to the natural isomorphism between Cℓ3,1 and Λ2(R3,1) (cf. [17]
proposition 6.2):

Rγ = Rg −
1

2
k ? k

Rγ(X, Y, Z, e0) = d∇k(X, Y, Z),

where ? denotes the Kulkarni-Nomizu product of two symmetric 2-tensors (cf. definition
1.110 of [11]). Using these equations, one finds

3∑

k=1

ek · R
γ
X,ek

=
1

2

3∑

k=1

3∑

l,m=0

Rγ(X, ek, el, em)ek · el · em ·

=
3∑

k,m=1

Rγ(X, ek, e0, em)ek · e0 · em · +
1

2

3∑

k,l,m=1

Rγ(X, ek, el, em)ek · el · em ·

=
3∑

k=1

Rγ(X, ek, e0, ek)e0 · +
1

2

3∑

k,m=1

Rγ(X, ek, ek, em)ek · ek · em ·

= −
3∑

k=1

{
∇Xk(ek, ek) −∇ek

k(ek, X)
}
· e0 ·

−
1

2

3∑

k,m=1

{Rg(X, ek, ek, em) − k(X, ek)k(ek, em) + k(X, em)k(ek, ek)} ·

=
1

2

(
− Ricg(X) − (trgk)k(X) + k ◦ k(X) − 2(dtrgk + δk)(X)e0

)
· ,
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but since ξ is a γ-imaginary Killing spinor Rγ
X,Y ξ = 1

4
(X · Y − Y · X) · ξ, and thereby

E(X) · ξ = −2(dtrgk + δk)(X)e0 · ξ. Then we compute

E(X, Y )V = ℜe 〈E(X) · ξ, Y · ξ〉

= −2(dtrgk + δk)(X)ℜe 〈e0 · ξ, Y · ξ〉

= 2(dtrgk + δk) ⊙ α(X, Y ),

where ⊙ denotes the symmetric product of 1-forms. Taking the trace of this expression with
respect to g, one finds that

V
(
Scalg + n(n− 1) + (trgk)

2 − |k|2g
)

= 2 < (dtrgk + δk), α > .

But the condition
〈
R̂ξ, ξ

〉
= 0 implies

V
(
Scalg + n(n− 1) + (trgk)

2 − |k|2g
)

= −2 < (dtrgk + δk), α > .

It follows, since the function V cannot vanish on M , that Scalg +n(n−1)+(trgk)
2−|k|2g = 0

and dtrgk + δk = 0 because of the dominant energy condition of section 3.3. But using
EV = 2(dtrgk + δk) ⊙ α = 0, we can conclude that E = 0. But in dimension n = 3, Rg is
totally determined by the Ricci curvature so that it is easy to see

Rg =
1

2

(
g ? g + k ? k

)
,

as regards the Riemannian curvature and

Rg
X,Y =

1

4

(
X · Y − Y ·X + k(X) · k(Y ) − k(Y ) · k(X)

)
· ,

for the spinorial curvature. Finally using the formula of the proposition above against ξ one

gets that d∇k(X, Y ) · ξ = 0 which implies that d∇k(X, Y ) = 0. Consequently we obtain

Rg =
1

2

(
g ? g + k ? k

)

d∇k = 0.

Furthermore, the couple (V, Y ) := (V,−α♯) is a Killing Initial Data (KID) [10]. If we consider

(M̃, g̃, k̃) the universal Riemannian covering of (M, g, k), then we can make the Killing

development of (M̃, g̃, k̃) with respect to the KID (Ṽ , Ỹ ) which by definition is R×M̃ endowed

with the Lorentzian metric γ̃ =
(
−Ñ2 + |Ỹ |2

)
du2 + 2Ỹ ♭ ⊙ du + g̃. By construction, M̃ is

embedded in (R×M̃, γ̃) with induced metric g̃ and second fundamental form k̃. Besides R×M̃
is the universal covering ofN , and γ̃ which has sectional curvature -1, is a stationnary solution
of the vacuum Einstein equations with cosmological constant that is to say Gγ̃ = n(n−1)

2
γ̃.

But (M̃, g̃) is complete since (M, g) is complete and therefore [1] (R × M̃, γ̃) is geodesically
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complete. It follows that (R × M̃, γ̃) is AdS. It only remains to show that M is simply

connected. We know that R×M̃ ∼= R4 and thereby using the following compactly supported
de Rham cohomology isomorphisms {0} = H2

dR,c(R × M̃) = H2
dR,c(R

4) = H1
dR,c(M̃), we

obtain that M̃ has only one asymptotic end. This last fact compels the universal covering
map M̃ → M to be trivial and as a consequence (M, g, k) ≡ (M̃, g̃, k̃) is isometrically

embedded in AdS≡ (Ñ , γ̃).

5 Appendix

Classical linear algebra results state that every principal minor of Q must be non negative
which give rise to a set of inequalities on the coefficients of H.

Order 1 principal minors
{
m0 +m1 ≥ 0
m0 −m1 ≥ 0

,

Order 2 principal minors




m2
0 − |m|2 ≥ 0

(m0 +m1)
2 − (n2 + r3)

2 − (r2 − n3)
2 ≥ 0

(m0 −m1)
2 − (n2 − r3)

2 − (r2 + n3)
2 ≥ 0

m2
0 −m2

1 − n2
1 − r2

1 ≥ 0

.

Order 3 principal minors





(m0 +m1)(m
2
0 − (|m|2 + n2

1 + r2
1)) − (m0 −m1)((n2 + r3)

2 + (n3 − r2)
2)

−2((n2 + r3)(m2n1 +m3r1) + (−n3 + r2)(m2r1 −m3n1) ≥ 0
(m0 −m1)(m

2
0 − (|m|2 + n2

1 + r2
1)) − (m0 +m1)((n2 − r3)

2 + (n3 + r2)
2)

+2((n2 − r3)(m2n1 −m3r1) + (n3 + r2)(m2r1 +m3n1) ≥ 0

.

Determinant of Q

(m2
0 − (|m|2 + |n|2 + |r|2))2 − 4(|m|2|n|2 + |m|2|r|2 + |n|2|r|2)

+4(< m, n >2 + < m, r >2 + < n, r >2) + 8m0detR3(m,n, r) ≥ 0.
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