
HAL Id: hal-00005106
https://hal.science/hal-00005106

Submitted on 2 Jun 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A batch scheduler with high level components
Nicolas Capit, Georges da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille

Martin, Grégory Mounié, Pierre Neyron, Olivier Richard

To cite this version:
Nicolas Capit, Georges da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin, et al.. A batch
scheduler with high level components. Cluster computing and Grid 2005 (CCGrid05), 2005, Cardiff,
United Kingdom. �hal-00005106�

https://hal.science/hal-00005106
https://hal.archives-ouvertes.fr

A batch scheduler with high level components

Nicolas Capit Georges Da Costa Yiannis Georgiou Guillaume Huard
Cyrille Martin Grégory Mounié Pierre Neyron

Olivier Richard
Laboratoire ID-IMAG (UMR5132)/ Projet APACHE (CNRS/INPG/INRIA/UJF) Grenoble∗

{Firstname.Lastname}@imag.fr

Abstract

In this article we present the design choices and the
evaluation of a batch scheduler for large clusters, named
OAR. This batch scheduler is based upon an original de-
sign that emphasizes on low software complexity by using
high level tools. The global architecture is built upon the
scripting language Perl and the relational database engine
Mysql. The goal of the project OAR is to prove that it is pos-
sible today to build a complex system for ressource man-
agement using such tools without sacrificing efficiency and
scalability. Currently, our system offers most of the impor-
tant features implemented by other batch schedulers such
as priority scheduling (by queues), reservations, backfill-
ing and some global computing support. Despite the use of
high level tools, our experiments show that our system has
performances close to other systems. Furthermore, OAR
is currently exploited for the management of 700 nodes (a
metropolitan GRID) and has shown good efficiency and ro-
bustness.

1. Introduction

The popularity of clusters of PC and their broad accep-
tance as high performance computing platforms increases
the need for flexible and robust tools to administrate and
exploit them. For instance, the project of GNU/Linux dis-
tribution named CLIC [2] is a selection of tools for parallel
computing and clusters administration. Among the required
tools for the exploitation of a cluster, the batch scheduler is
a central element. A batch scheduler is a system that man-
ages resources, which are the nodes of the cluster. It is in
charge of accepting jobs submissions (which are sequential
or parallel computation required by the users of the clus-
ter) and schedule the execution of these jobs on resources it

∗ Supported by the ACI-GRID CIGRID and CGP2P, the project RNTL
CLIC and BULL S.A. / Project LIPS

manages. Thus, the objective of a batch scheduler is to al-
low users to use resources easily : users should not have to
worry neither about the availability of the nodes nor about
the interference of their job with some other job.

The icluster projects ([4], exploitation of a cluster of
225 PC and [5], exploitation of a cluster of 100 Bi-Itanium
Nodes), allowed our laboratory to gain some knowledge
about the wishes and needs of users of clusters and design-
ers of operating software for clusters. Currently, the main
needs of our users are reactivity of the batch scheduler (es-
pecially during the development phase of applications), sup-
port for multi-parametric applications (for large simulations
composed of many small independent computations), sup-
port for nodes reservation (for instance to plan a demonstra-
tion) and user-friendly logging information analysis.

There are plenty of available batch schedulers for clus-
ters and parallel machines. Among the most known
we can quote PBS/OpenPBS[8], LSF[21], NQS[11],
LoadLeveler[17], Condor[18], Glunix[15]. The two stud-
ies [16] and [12] list these major systems and their fea-
tures. These systems are generally developed using the C
language and implement by themselves the storage, man-
agement and logging of job submissions (because of per-
formance issues). Although they all provide an interface to
use and extend them, none of them fullfill all of our needs.
Some issues in most of these systems are the lack of sup-
port for job that might be automaticly cancelled when its
ressources are needed (which is required to implement ef-
ficiently a support for large multi-parametric applications)
and the lack of convenient exploitation of logging informa-
tion.

Recently, the Maui Scheduling Molokini Edition
[7] system introduced a database to maintain informa-
tions about users, their account and as a backup solu-
tion for the whole state of the system (for instance jobs in
progress). A similar choice can be found in connected sys-
tems like XtremWeb [14], which is a system designed to
exploit unused resources of voluntary machines (PC) con-
nected to Internet. Indeed, we believe that the use of

a general purpose database is the best choice to en-
sure friendly and powerfull data analysis and extraction.
Because this is one of our needs, we have chosen to de-
velop our system on top of a central relational database
engine (Mysql). The most important benefit of this ap-
proach is that the powerfull sql language can be used for
data analysis and extraction as well as for internal sys-
tem management.

Another goal with OAR is to make a research platform
suited for scheduling experiments and resulting analysis.
To help developers modifying the system, we made it very
modular and we tried to develop modules that are as sim-
ple as possible. We have chosen the scripting language Perl
to implement the executive part of the system. This choice
is motivated by two reasons : a scripting language is gen-
erally well suited for all the low-level system tasks (such
as the distant execution of jobs on the nodes of the clus-
ter) and it is fairly simple to develop simple programs using
Perl because it has built-in high level data structures and as-
sociated functions. The only requirement is to set up a strict
programming methodology because Perl lacks strong typ-
ing (and thus compile time checks for correctness). Never-
theless, due to the modular conception of OAR, it is possi-
ble to develop any part of the system in another more suited
language.

In the remaining of this article, we start in section 2 by
presenting the details of design choices and global architec-
ture of OAR. To validate our approach, we present in sec-
tion 3 the performance comparison or OAR with other sys-
tems and a Global Computing experiment using our system.
Finally, we conclude on the first results of OAR in section 4.

2. Global Architecture

A classical batch scheduler architecture is pictured in fig-
ure 1(a). This architecture is made of the following main
parts: a client part which is a module for jobs submission
that validates the query and a server part made of a schedul-
ing module associated with a resources matching mecha-
nism and an execution module which controls the actual ex-
ecution of jobs. In addition, a module is in charge of the
logging as well of accounting of the system activity and an-
other of the monitoring of the resources.

In OAR we have made essential choices that give a more
detailed picture of the overall organization of the batch
scheduler as presented in figure 1(b). We can notice on this
figure that the server part in OAR is made of two main com-
ponents : a database engine (Mysql) and an executive part
(made of Perl scripts). The database engine is used to match
ressources (using the rich expressive power of sql queries)
and to store and exploit logging and accounting informa-
tion. The actual executive part is completely written in Perl.
It is made of several modules, including one for launch-

Submission

Scheduler

Matching
of resource

Launching and
control of execution

Client

Server

Computing nodes

Users

Log, Accounting

Monitoring

(a) Global Architecture of a batch scheduler for clusters and
parallel machines.

Submission

Scheduler

Matching
of resource

Launching and
control of execution

Client

Server Computing nodes

Users

Log, Accounting
Monitoring

SQL database
Perl

(b) Global Architecture of OAR.

ing and controlling the execution of jobs and another for
scheduling jobs. The monitoring tasks are handled by a sep-
arate tool (Taktuk [20]) that is called from OAR and inter-
faced with the database.

Our choice of a database takes a central place within
the architecture of the system. Contrary to other systems
such as Maui Molokini[7] or XtremWeb[14] that also make
use of an internal database engine, in our system the use
of the database is not limited to backup purposes, but hold
all our internal data and thus is the only communication
medium between modules. Although we did not yet ad-
dress the problem of recovery on failure of the server, we
can guess that our choice of a standard database engine will
greatly help to solve it. Indeed, as long as our modules make
atomic modifications to the system that let it in a coherent
state, the database engine can handle the data safety. Thus,
we do not need to implement by ourselves complex check-
pointing or backup mechanisms.

Another advantage of using a standard database engine
is that we should benefit of its robustness and efficiency.
Although making sql queries might induce some overhead
compared to a specific implementation, the engine we use
has good behavior under high workload. The database en-
gine has few chances of being a bottleneck for system scal-
ability as it can handle efficiently thousands of queries si-
multaneously (far more than we currently need). Further-
more, robustness only depend on modules that just have to
let the system in a coherent state and might otherwise fail
without much harm.

There is no language or interface constraints to meet
in OAR but rather correct semantic when making sql
queries. Thus, the specification of the system is made of se-
mantics description for the tables and relations in the

Waiting toLaunch Launching

Error

toError

Hold

Running Terminated

toAckReservation

Figure 1. State diagram of jobs in the system.

database. One part of this specification is the state dia-
gram of a job, which describe the various states that a job
can be in and the possible transitions between them. This
diagram is presented in figure 1. Jobs are in the ’wait-
ing’ state at submission, then, before being scheduled,
they might be held for some time (on user demand). Af-
ter scheduling job that are to be started are placed in
the ’toLaunch’ state. This state is the beginning of a se-
quence that correspond to the different steps involved by
the execution up to its end. Notice that any case of ab-
normal termination of the job (including removal of the
submission) place it in the Error state. The state ’toAck-
Reservation’ is just an intermediate state involved in the
reservation negotiation.

As an illustrative example, the sql table we use for jobs
is presented in figure 2 along with a short description of its
fields. Some parts of the table are rather complex, especially
regarding reservation of precise time slots for jobs. Reser-
vations occur when jobs are in the ’Waiting’ state (and still
can be held or cancelled). The negotiation within the sys-
tem involve two substates stored in the field ’reservation’
and one global state of final negotiation with the user. We
use these substates to keep track of the reservation progress
while the job is still in the ’Waiting’ state for the rest of the
system (and thus can still be held or cancelled). For the sake
of simplicity, we do not include the other tables in this ar-
ticle. They include a table for describing nodes, a table for
describing the assignment of nodes to jobs, and so on.

To develop the existing modules, we choose the inter-
preted scripting language Perl. This language has a straight-
forward syntax with built-in high-level data structures such
as hash tables and regular expressions which make the de-
velopment cycle short and the code both simple and con-
cise. Perl is compiled on-the-fly during the execution of the
script, so an overhead is to be expected compared to com-
piled languages such as C. Our first evaluations led us to the
conclusion that this overhead remains small.

The executive part of OAR is made of a collection
of independent modules. Each of them is in charge of a
small specific task. For instance, tasks such as jobs moni-

fields comment
idJob numeric identifier of the job
jobType either INTERACTIVE or PASSIVE
infoType machine to contact for interactive jobs
state either ’Waiting’, ’Hold’, ’toLaunch’, ’to-

Error’, ’toAckReservation’, ’Launching’,
’Running’, ’Terminated’ or ’Error’

reservation either ’None’ (general case), ’toSchedule’
or ’Scheduled’ (reservation of a precise
time slot)

message additional information (warnings, reason
for termination, ...)

user user that request the job execution
nbNodes number of nodes required
weight correspond to the number of processors re-

quired on each node (if several are avail-
able)

command command to execute (the job itself)
bpid PID used to kill the job when needed
queueName queue in which the job is waiting for

scheduling
maxTime maximal execution time of the job
properties sql expression used to match ressources

compatible with the job
launchingDirectory directory in which the command has to be

executed
submissionTime date of submission
startTime date of beginning of the execution
stopTime date of termination of the execution

Figure 2. Table for jobs in OAR.

toring, jobs deletion, jobs submission, jobs execution, jobs
scheduling, errors logging are all handled by separate mod-
ules. All these modules are executed each time the accord-
ing task has to be performed. They all interact with the sys-
tem using the database. The whole system is managed by a
central module which is in charge of calling the other mod-
ules to perform either regular tasks (such as monitoring) or
on-demand tasks (such as submission).

2.1. Submission of jobs

The submission of jobs in OAR works like PBS : the
interface is made of independent commands for submis-
sion (command oarsub), cancellation (command oardel)
or the monitoring (command oarstat). These commands are
as separated as possible from the rest of the system, they
send or retrieve information using directly the database and
they interact with OAR modules by sending notifications to
the central module.

The figure 3 pictures the progress of a job submission.
It starts by a connection to the database to get the appropri-
ate admission rules. These rules are used to set the value of
parameters that are not provided by the user and to check
the validity of the submission. Possible parameters include
a queue name, a limit on the execution time, the number of
needed nodes and so on. The rules are stored as Perl code in
the database and might be used to call an intermediate pro-
gram so the admission can be as elaborate and general as

DataBase ServerClient

Apply admission
rules

Notify server

Insertion of Job

Return Id from Job

Retrieve admission
rules

Acknowledgement

Connection

Disconnection

Figure 3. Job submission progress.

needed. Currently the default admissions rules in OAR set
the missing parameters and ensure that no user ask for too
much resources at once.

Once accepted by the admission process, the job is in-
serted in the database, given an identifier (which is its in-
dex number in the table of the jobs) and a return message
inform the user that its query is ongoing. To make the sys-
tem responsive, it is necessary to schedule the new job as
soon as possible after its submission. Thus, a notification is
send to the central module. This notification is taken into ac-
count only if no scheduling was already planned.

2.2. Central module

When designing OAR we wanted to guarantee both the
reactivity and the robustness of the system. These objectives
led us to the structure of the central module.The goal of this
module is to ensure that all the important tasks in the system
(scheduling, executing, monitoring) are executed both when
needed (e.g. scheduling on job submission) and on a regu-
lar basis (e.g. monitoring). This module is also in charge of
planning redundant work (such as rescheduling on a regu-
lar basis) if requested by the configuration parameters. This
redundant work is not a functional requirement but rather a
feature that bring more robustness to the system when mod-
ules are being developed and may fail, when communica-
tions can be lost or when modifications are made by hand to
the database and have to be taken into account.

This central module is made of two interconnected parts.
The main part is an automaton that reads its entries from a
buffer of events and from the return values of the modules.
The second part of the central module is in charge of listen-
ing for external notifications, discarding the redundant ones
and planing the next tasks required by users.

This notification system makes the system responsive:
as soon as a module or a command updates the database,
it also notifies the central module which can react immedi-
ately if it is not busy doing some other task. To complete
a job execution, the submission module has to send infor-
mations to the database, the scheduling module has to be

executed and then the execution module. So as long as the
central module ensure the periodic launch of each submod-
ule, even if some notifications are lost, the whole system
is kept in a correct behavior. In the case of massive arrival
of requests, the tolerance to workload only depend on the
database tolerance and, because of the periodicity of its ac-
tions, the central module is not a bottleneck. This separation
between the transmission of informations and the notifica-
tions makes the system more robust.

2.3. Scheduling

One of the objectives of OAR is to be a simple and
opened platform for experimentations and research. So, al-
though the scheduler implemented in OAR is rich in func-
tionalities, the algorithms its uses are still rather simple.
All the most important functionalities such as priorities on
jobs, reservations, resources matching and backfilling are
implemented. The priorities are managed through submis-
sion queues. All the jobs are submitted to a particular queue
which has its own admission rules, scheduling policy and
priority. Reservations are a special case in which the user
asks for a specific time slot. In this case, as long as the job
meet the admission rules and the ressources are available
during the requested time slot, the schedule date of the job
is definitively set. In our scheduler, resources required by
jobs are matched with available ones as a user might need
nodes with special properties (like single switch intercon-
nection, or a mandatory quantity of RAM). Our scheduler
also perform backfilling (use of idle time slots when large
parallel jobs are waiting for execution) and handle Best Ef-
fort jobs (jobs that can be cancelled before the end of their
allowed time).

The scheduling of all the jobs in the system is computed
by a module we called ”meta-scheduler” which manages
reservations and schedule each queue using its own sched-
uler. This module maintains an internal representation of the
available ressources similar to a Gantt diagram and updates
this diagram by removing time slots already reserved. Ini-
tially, the only occupied time slots are the ones on which
some job is executing and the ones that have been reserved.
The whole algorithm schedules each queue in turn by de-
creasing priority using it associated scheduler. At the end of
the process, the state of the job that should be executed is
changed to ”toLaunch”.

Compared to approaches like Maui in which all the jobs
are given an individual priority, OAR determines jobs prior-
ity using their queue. Of course both approaches are equiv-
alent (it is sufficient to define a new queue for each dis-
tinct priority value) but queues make a partition of jobs into
groups. This is easier to handle for the administrator (an en-
tire queue can be interrupted for some time or cancelled if
needed) and this make possible different scheduling opti-

mizations for different queues (response time for interac-
tive jobs, throughput for large and slow computations, and
so on). This represents a good tradeoff between simplicity
and expression power and both the design and the under-
standing of the scheduler are extremely simple (policy for
the choice of a queue and policy for the choice of a job in a
queue).

2.4. Monitoring

Usually, launching, displaying and monitoring in batch
schedulers is performed by specific daemon processes run-
ning on the nodes of the underlying platform. In OAR this
kind of tasks is performed using Taktuk[19, 20]. Although
Taktuk is a tool for the deployment of parallel applications
on clusters of large size (thousands of nodes), it can be used
to perform administration tasks on clusters as it provides an
efficient remote parallel execution service. Its use is simi-
lar to other standard commands for distant execution (ssh or
rsh). Nevertheless, in order to scale well, Taktuk is highly
parallelized and distributed. Each distant remote execution
call is actually made through some standard protocol (rsh,
ssh, rexec depending on which one is available) and by us-
ing standard clients associated to these protocols. Taktuk is
independent of the protocol chosen (or available on the plat-
form).

To avoid load imbalance among the nodes that take part
in the deployment and to scale to thousands of nodes, Taktuk
uses a dynamic work stealing algorithm to distribute work
among working nodes. This load balancing strategy adapts
to load variation in the network as well as in the nodes.

Failure detection of nodes is made by testing their re-
sponsiveness to attempts for connection (reachability).
Standard clients for remote execution have their own mech-
anisms to detect a failure on a single connection. These
mechanisms rely on timeouts (during the response wait) and
any node that is not reached by the time allowed for the ini-
tiation of the connection is considered as failed. As
Taktuk uses an adaptative deployment tree, non respon-
sive nodes do not take part in the deployment process.
Thus, the duration of the failure detection last for the de-
ployment time added to the timeout for the last connection.
To improve the responsiveness and thereby the overall de-
ployment time, timeouts for connection can be changed
in Taktuk. This approach is the most flexible as it al-
lows the user to choose the quality of service it needs:
a very reactive behavior (with the risk of wrongly con-
sidering some nodes as failing) or a behavior closer to
the actual nodes state (with a high confidence in fail-
ure detection but a low performance due to large time-
outs).

OpenPBS Maui Scheduler Maui Scheduler Taktuk OAR
(+ OpenPBS) Molokini (+Taktuk)

Version 2.3.16 3.2.5 1.5.2 3.0 -
Main language C C Java C++ Perl
Sources files 350 142 116 120 30
Sources lines 148k 142k (290k) 25k 20k 5k (25k)

Table 1. Software complexity of several re-
source managers.

3. Evaluations

We conducted three different evaluations to validate our
approach. The first one is a qualitative comparison of some
elements that constitute the software complexity of popu-
lar systems for resources management. The second one pro-
vide performance figures of OAR relative to other systems.
The third one illustrate the extensibility of our system.

3.1. Complexity

As we highlighted previously, OAR has been developed
as an experimentation and research platform, thus its soft-
ware complexity is important when new functionalities are
quickly prototyped. From the beginning the design philoso-
phy of OAR has been radically different compared to other
systems : there is no language interface so every modifica-
tion is possible. Nevertheless, this approach work only if the
software complexity remains low because the system has to
be understood by new developers. This is why we have cho-
sen to develop OAR using very high level component.

The volume of the source code along with the imple-
mented functionalities give an insight of the overall com-
plexity. But the software architecture and the programming
methodology are other elements whose evaluation is far
more subjective.

In table 1 we gather the following elements: the main
language used in the system sources, the number of source
files and the total number of lines in the source code,
taking into account for each case only the files needed
by the system to operate. In term of functionalities, ta-
ble 2, OAR is positioned between OpenPBS or SGE and
OpenPBS+Maui. Most major functions, which are com-
mon in resource managers are supported except file staging
and jobs dependences. Moreover, features from advanced
schedulers (Maui), like backfilling and reservations, which
are well known to increase utilization ratio and manageabil-
ity are present in OAR.

These results show that, for a comparable set of func-
tionalities, the volume of source code in OAR is far more
smaller.

3.2. Performances

We evaluated the performance of OAR on two platforms.
The first one named Xeon is a small cluster of 18 modern

OpenPBS SGE Maui Scheduler OAR
(+ OpenPBS)

Interactive mode × × × ×

Batch mode × × × ×

Parallel jobs support × × × ×

Multiqueues with priorities × × × ×

Resources matching × × × ×

Admission policies × × × ×

File staging × × ×

Jobs dependences × × ×

Backfilling × ×

Reservations × ×

Table 2. Functionalities of several resource
managers.

PC (bi-Xeon 2,4Ghz, 512Mb RAM, Ethernet 1 Gbit/s), on
which we use 17 PC as computing nodes (34 processors)
and 1 server which is hosting the batch scheduler. The sec-
ond platform named Icluster is a cluster of 119 old PC (PIII
733MHz, 256Mb RAM, Ethernet 100 Mbit/s) with an addi-
tional different node (PIII 866Mhz, 256Mb RAM, Ethernet
100 Mbit/s) to host the batch scheduler.

3.2.1. Raw scheduling performance : We start our eval-
uation by analyzing the decisions taken by the scheduler.

We have compared OAR with three well known systems
in their default scheduling configuration :

– Torque [10] : based on version 2.3.12 of OpenPBS,
it includes additional features such as scalability, fault
tolerance, and feature extension.

– Maui scheduler [6] : often considered as the best
scheduler. It only provides a scheduler and has
to be used in conjunction with a ressources man-
ager. We choose Torque as the underlying ressources
manager.

– Sun Grid Engine (SGE) [9] : a recent batch scheduler
that emphasizes on heterogeneity and fault tolerance in
grid environments.

To evaluate the scheduling performance of these sys-
tems, we have used the ESP2 benchmark [3]. This bench-
mark has been designed to measure effective system perfor-
mance in a real-world environment. The performance mea-
sure is the time taken by the batch scheduler to run a fixed
number of various jobs (including large, medium and small
sequential or parallel jobs). These jobs have been specifi-
cally tailored such that their elapsed run time is close to a
fixed target run time. Thus, the complete test is independent
of processors speed and is completely determined by the
performance of the scheduler and the overhead of launch-
ing each individual job. This test is composed of 230 jobs
taken from 14 different job types and exists in two variants :
throughput test and multimode test.

We have chosen to include in this article the measure-
ments for the throughput test on the Xeon platform with

 0

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
ar

tit
io

n
S

iz
e

U
til

iz
at

io
n

Time sec

TORQUE
Job Start Time Impulse

Figure 4. ESP2 benchmark on Torque.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
ar

tit
io

n
S

iz
e

U
til

iz
at

io
n

Time sec

TORQUEMAUI
Job Start Time Impulse

Figure 5. ESP2 benchmark on Maui/Torque.

17 nodes (thus 34 processors exploited by the batch sched-
ulers), they are presented in figures 4, 5, 6 and 7. In these
figures, the resources usage at each instant is represented by
the plain line. The dashed vertical lines mark start time of
individual jobs, their height is the number of processors re-
quired by the job. In this test all the jobs are submitted to
the batch scheduler at time 0. The table 3 summarizes the
total execution time that each batch scheduler obtained and
the according efficiency relative to the absolute lower bound
(total work divided by the number of ressources).

At first glance, the four systems use two radically dif-
ferent approaches that correspond to two different perfor-

 0

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
ar

tit
io

n
S

iz
e

U
til

iz
at

io
n

Time sec

SGE
Job Start Time Impulse

Figure 6. ESP2 benchmark on SGE.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
ar

tit
io

n
S

iz
e

U
til

iz
at

io
n

Time sec

OAR
Job Start Time Impulse

Figure 7. ESP2 benchmark on OAR.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000 16000

P
ar

tit
io

n
S

iz
e

U
til

iz
at

io
n

Time sec

OAR
Job Start Time Impulse

Figure 8. ESP2 benchmark on OAR after the
change of scheduling policy.

mance figures. SGE and Torque are both the most through-
put efficient with a solid advantage to SGE, while OAR
and Maui are relatively close to each other and both slower
than SGE and Torque. We can notice on the figures that
the schedulers of Torque and SGE have a very odd struc-
ture : all the jobs requiring few processors are scheduled
first while all the big parallel jobs are delayed until the end
of the schedule. This is good to minimize the average com-
pletion time (more jobs completed near the beginning) and
in this case it also helps filling the ressources more effi-
ciently. Nevertheless, this also causes famine for big jobs
that could be delayed for a long time.

Although it might appear that raw throughput is the most
important figure, the scheduling performance is not deter-
mined by a single criterion and mostly depend on the local
policy used for the target cluster. Most of the time all these
different criteria are mutually exclusive.

SGE TORQUE TORQUE+MAUI OAR OAR(2)
Available Processors 34 34 34 34 34

Jobmix work (CPU-sec) 443340 443340 443340 443340 443340
Elapsed Time 14164 14818 15115 15264 14037

Efficiency 0,9206 0,8800 0,8627 0,8543 0.9289

Table 3. ESP benchmark results.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Number of jobs submitted

OAR
TORQUE(openpbs)

TORQUE+MAUI
SGE

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Number of jobs submitted

OAR
TORQUE(openpbs)

TORQUE+MAUI
SGE

Figure 9. Average response time of small
jobs depending on the total number of sub-
missions on the Xeon platform (17 nodes).

In OAR we wanted from start to avoid famine by de-
fault (which seems fair to users) so we do not allow jobs
to be delayed within a given queue, which can be bad for
throughput. But if we change this policy, we should be able
to optimize other criteria such as the throughput. To vali-
date this claim, we changed the scheduling policy within a
queue in OAR from FIFO order to increasing number of re-
quired ressources order. We get the results presented in fig-
ure 8 and the last column of table 3 in which the perfor-
mance of OAR reaches the performance of SGE. Our con-
clusion is that for a given policy, OAR has good perfor-
mance compared to other systems.

3.2.2. Submissions burst : With this second test we aim
at evaluating how our system manages the arrival of a mas-
sive number of requests. This test is important because of
our choice of high level components. We have to be sure
that the overhead associated with these components do not
compromise the reactivity of the system even when stressed
by sudden variations in charge. The reactivity is especially
important when the platform is used for interactive submis-
sions.

This test is constituted of a large number of very small
identical sequential jobs that should be optimally scheduled
by any scheduling algorithm. Thus the scheduling perfor-
mance has no influence on the result and only the system
overhead is evaluated. The submissions of jobs are requests
for execution of the system command date, using the num-
ber of nodes as parameter.

The figure 9 shows the scores obtained on the Xeon plat-
form with 17 nodes. The test is a measure of the average
response time of these small jobs asking for a node depend-
ing on the total number of simultaneous submissions. The
response time is defined as the difference between the ter-
mination date and the submission date of a job. The differ-
ent curves correspond to the time obtained by the four sys-
tems. The performance of Torque and Torque+Maui is de-

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100
number of nodes per jobs submitted

av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

OAR (ssh check)
OAR (rsh check)

OAR (rsh)
TORQUE(openpbs)

Figure 10. Average response time of paral-
lel jobs depending on the total number of
submissions on the Icluster platform (119
nodes).

finetely better under loads up to 70 simultaneous submis-
sions but become unstable beyond this limit. OAR and SGE
showed a great stability even under high loads up to 1000
simultaneous submissions. Furthermore, our system has a
much better requests handling rate than the one obtained
from SGE.

Thus, despite a high-level approach and the use of an
interpreted language, our system can handle higher loads.
The database receives 350 SQL queries for the processing
of 10 jobs, which is roughly 70 queries/sec. This is low in
comparison to the capacity of the database system (>3000
queries/sec). That shows that the use of the database is not a
bottleneck and that our system should scale to higher loads.

Notice that this overhead is lessened when jobs ask for
parallel ressources since a smaller number of jobs have to
be scheduled simultaneously. This is demonstrated by fig-
ure 10, which shows the average response time of a job de-
pending on the number of nodes it requires, on the Icluster
platform with 119 nodes. The four settings of OAR depend
on the command used for distant execution (rsh – insecure –
or ssh – secure –) and the checking for node failure prior ex-
ecution or not. The check is a simple accessibility test using
the distant execution (through rsh or ssh) of an empty com-
mand. With the check of nodes state and using ssh, the per-
formance of OAR is noticeably lower than the performance
of Torque. Nevertheless it is almost as good when using rsh
and definitely better without checking the nodes state. No-
tice that Torque does not perform such check of the nodes
state before the launch of the job even if such check is nec-
essary in grid environment, when a quality of service is re-
quired by the application.

Summarizing these experiments, the overall perfor-
mances under submissions burst are good on recent ma-
chines for which the use of a high-level language does not

induce a large additional cost.

3.3. Extension : Global or Desktop computing

More and more systems are being constituted using idle
machines of local private networks, accesses to clusters or
even machines on the Internet. The use of such systems is
termed either Global or Desktop computing (Condor [18],
XtremWeb [14]). This is usually implemented using some
mechanism that detect idleness of a resource, get some task
to be executed and perform the work. When the host re-
source is claimed back for its normal use, it is immediately
restored (possibly aborting a Desktop computing task also
termed Best effort task).

Most of the time, these systems are designed to be as
transparent as possible to the user. However, when using
idle nodes of a cluster for Global computing, this trans-
parency is not necessarily desired. The main problem is that
regular jobs submitted to the batch scheduler are parallel
which is not compatible with best effort jobs managed by
the node itself (because all the nodes have to be freed in par-
allel). Furthermore, only a batch scheduler can manage par-
allel best effort jobs (because when one participating node
is claimed by the user all the other should stop as well). So,
to handle correctly best effort jobs, the batch scheduler has
to manage them itself.

We have implemented this extension in OAR by adding
a property to the submitted jobs (best effort or not). This
property is set by the module that validates incoming jobs.
It is currently done when submitting a job to a waiting
queue dedicated to best effort tasks. The scheduler should
also have the possibility to cancel these jobs when their re-
sources are required for the execution of some other task.
In OAR this is made in two step : first by setting flags on
jobs from the scheduler (request for cancellation) which is
then handled by a generic module in charge of all cancel-
lations in the system, then by scheduling the waiting job
when coming back to the scheduler. Implementing Global
computing this way forces information for best effort jobs
management to be propagated from resources management
function, through the scheduler, up to the central module to
be thereafter transmitted to the cancellation module.

Although several layers of the system are changed, this
approach is still compatible with our initial layout of mod-
ules organization. It demonstrates the extensibility of OAR :
because the system is small, it is still possible to modify
several modules from all layers of the system. Further ex-
tensions could include choice policies for the job to can-
cel (for instance by startup date order, so that the youngest
job is cancelled first in an attempt to let the oldest progress,
or by the number of used nodes, so that the number of can-
celed jobs is minimized). Once again these modifications to
the system are quite small and simple to perform. This is the

consequence of good modularity, opened internal state (the
database) and high level design (Perl) in OAR.

4. Conclusion

In this article, we have presented a new system of re-
sources management for clusters, named OAR. From start,
OAR has been designed as an opened platform for research
and experiments. The main contribution of OAR is its de-
sign, based on two high-level components: a SQL database
and the scripting language Perl. The database is used as the
only mean to exchange information between modules, thus
ensuring a complete opening of the system, while all the
modules are written in Perl, which is perfectly suited for
system tasks (executive part). The design of the system is
modular and the implementation in a high-level language
makes the system rather small and extensible. We have val-
idated our design objectives for OAR, on one hand by im-
plementing from the initial system a policy of Global Com-
puting type for jobs and on the other hand by showing the
good level of performance of our system in comparison with
other systems. Another convincing validation is that OAR
is currently used for the exploitation of a lightweight Grid
of 700 processors in the project CiGri [1] and has shown
very good robustness up to now. Ultimately, OAR demon-
strate that it is possible to build a complete functional and
efficient batch scheduler from just a database engine and a
scripting language, which was not obvious from start. Fu-
ture works on OAR will be aimed at the exploitation of this
platform for research purposes including the implementa-
tion of theoretical advances in scheduling and clusters man-
agement (such as malleable jobs [13], heterogeneous plat-
forms, unreliable network, Grid Computing ,and so on).

References

[1] CiGri. http://cigri.imag.fr/.
[2] Distribution CLIC (Cluster Linux pour le calcul).

http://clic.mandrakesoft.com/.
[3] ESP: A System Utilization Benchmark.

http://www.nersc.gov/ dhbailey/dhbpapers/esp-sc2000.pdf.
[4] icluster project. http://icluster.imag.fr/.
[5] icluster2 project. http://www.inrialpes.fr/sed/i-

cluster2/welcome.html.
[6] Maui Scheduler. http://www.supercluster.org/maui.
[7] Maui Scheduler Molokini Edition.

http://mauischeduler.sourceforge.net/.
[8] OpenPBS. http://www.openpbs.org.
[9] Sun Grid Engine. http://gridengine.sunsource.net/.

[10] Torque. http://www.supercluster.org/projects/torque/.
[11] Carl Albing. Cray NQS: production batch for a distributed

computing world. In Proceedings of the 11th Sun User
Group Conference and Exhibition, pages 302–309, Brook-
line, MA, USA, December 1993. Sun User Group, Inc.

[12] M. Baker, G. Fox, and H. Yau. Cluster computing review.
Technical report, Northeast Parallel Architectures Center,
Syracuse University, 1995.

[13] Pierre-François Dutot, Gr égory Mouni é, and Denis Trys-
tram. Scheduling Parallel Tasks - Approximation Algorithms,
chapter 26. CRC Press, to appear.

[14] G. Fedak, C. Germain, V. N’eri, and F. Cappello. Xtremweb:
A generic global computing system. In In IEEE Int. Symp.
on Cluster Computing and the Grid, 2001.

[15] D. R. Ghormley, D. Petrou, S. H. Rodrigues, and A. M. Vah-
dat. GLUnix: A Global Layer Unix for a network of work-
stations. Software Practice and Experience, 28(9), 1998.

[16] National HPCC. Software exchange review. http://-
www.crpc.rice.edu/NHSEreview, 1996.

[17] IBM Corporation. Using and Administering LoadLeveler –
Release 3.0, 4 edition, August 1996. Document Number
SC23-3989-00.

[18] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A
hunter of idle workstations. In 8th International Confer-
ence on Distributed Computing Systems, pages 104–111,
Washington, D.C., USA, June 1988. IEEE Computer Soci-
ety Press.

[19] Cyrille Martin and Wilfrid Billot. Lancement d’application
sur des grappes de grande taille. In proceedings of Ren-
Par’14, pages 17–24, 2002.

[20] Cyrille Martin and Olivier Richard. Algorithme de vol de
travail appliqu au dploiement d’applications parallles. In
Soumis RenPar’15, 2003.

[21] Songnian Zhou. LSF: load sharing in large-scale heteroge-
neous distributed systems. In Proceedings of the Workshop
on Cluster Computing, Tallahassee, FL, December 1992.
Supercomputing Computations Research Institute, Florida
State University.

