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Abstract

We present a revised interpretation of recent analysis of supernovae data. We evaluate the effect of the priors on
the extraction of the dark energy equation of state. We find that the conclusions depend strongly on the ΩM prior
value and on its uncertainty, and show that a biased fitting procedure applied on non concordant simulated data
can converge to the ”concordance model”. Relaxing the prior on ΩM points to other sets of solutions, which are not
excluded by observational data.
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The existence and nature of dark energy is one of the
most challenging issues of physics today. The publica-
tion of high redshift supernovae discovered by the Hub-
ble Space Telescope, by the SCP collaboration [1] and
recently by Riess et al. [2], has been interpreted as agree-
ment of the data with the so named ΛCDM ”concor-
dance model” (ΩM ≈ 0.3, ΩΛ ≈ 0.7, w = p/ρ = −1). We
have reconsidered some conclusions in the light of our
previous analysis of simulated data [3].
Riess et al.[2] have selected 157 well measured SNIa,

which they call the ”gold” sample, a set of data we will
use throughout this paper. Assuming a flat Universe
(ΩT = 1) they conclude that: i) Using the strong
prior ΩM = 0.27 ± 0.04, a fit to a static dark energy
equation of state yields -1.46< w <-0.78 (95%CL);
ii) Looking at a possible redshift dependence of w(z)
(using w(z) = w0 + w1z), the data with the strong
prior indicate that the region w1 < 0 and especially the
quadrant (w0 > −1 and w1 < 0) are the least favoured.
They reject large time variation and are compatible with
the concordance model.

We have shown in [3] that it is unavoidable to get
some ambiguities when trying to fit a particular fiducial
cosmology with a ”wrong” model. This ”bias problem”
has been mentioned several times in the literature, see
e.g.[4, 5, 6, 7]. In this letter, we explore the effect of the
ΩM prior on the determination of w(z).
Following [3], we assume a flat universe and keep the

same parametrisation of w(z) as in [2], for the sake of
comparison. We call 3-fit (4-fit) the fitting procedure
which involves the 3 (4) parameters MS , ΩM and w0

(MS , ΩM , w0 and w1), MS being a normalisation pa-
rameter (see [3] for definitions and formulae). We have
performed 3-fits and 4-fits and compared the results in
different cases, varying the central value and the uncer-
tainty on the ΩM prior.

TABLE I: Fit results obtained using the gold data from [2] for
various fitting procedures. The χ2 is very stable, it is around 173
(for 157 SNIa) for all procedures except for the 3-fit with the strong
prior ΩM = 0.27± 0.04 where χ2

≈ 176.

Fit ΩM prior ΩM w0 w1

3-fit no 0.48± 0.06 −2.2± 0.95 /
3-fit 0.27± 0.2 0.45± 0.07 −1.9± 0.73 /
3-fit 0.50± 0.2 0.48± 0.06 −2.3± 0.94 /
3-fit 0.27 ± 0.04 0.28± 0.04 −1.0± 0.15 /
3-fit 0.50 ± 0.04 0.49± 0.03 −2.5± 0.77 /

4-fit no 0.48± 0.20 −2.2± 1.34 0.12 ± 23
4-fit 0.27± 0.2 0.35± 0.18 −1.6± 0.80 1.74 ± 1.3
4-fit 0.50± 0.2 0.49± 0.20 −2.6± 1.20 1.60 ± 18
4-fit 0.27 ± 0.04 0.28± 0.04 −1.3± 0.26 1.50 ± 0.84
4-fit 0.5± 0.04 0.49± 0.04 −2.6± 1.40 0.95 ± 10

Applying no prior or the strong prior on ΩM (lines 1,
4 and 9 of the Table), we recover the results obtained by
Riess et al.[2]. Nevertheless, some interesting points can
be underlined:

• With no prior or a weak prior on ΩM , the preferred
ΩM values are always greater than 0.3.
• Without any assumption on ΩM nor w1, the error on
ΩM is close to 0.2 (line 6 of Table I).
• Changing the central value of the ΩM prior leads to a
change in the w0 values of more than 1σ. The w0 values
are strongly correlated to ΩM and are thus always smaller
than the ΛCDM value, when the strong prior on ΩM is
relaxed. χ2 is very stable but the correlation matrix can
vary a lot for the 4-fits and the (w0,w1) solution.

• If the ΩM prior is strong, the conclusion on w0 depends
on the prior value : for ΩM=0.27, w0 is forced to values
compatible with -1, in particular for the 3-fit and the
errors are strongly reduced. For ΩM=0.5, w0 is more
negative and the errors are significantly larger.
• The only cases where “reasonable” errors can be found
on w1 occur for ΩM around 0.3.

To illustrate these points, Figure 1 shows the results in
the (ΩM ,w0) plane for the 3-fits(left) and the 4-fits(right),
using no prior on ΩM or two strong priors with the two
central values: 0.27 and 0.5. As expected the contours
strongly depend on the procedure used to analyse the
data. For instance, the 95%CL contours for the two
strong prior cases are disconnected. However, we note
that ΩM < 0.6 is valid for all procedures, hence it is one
of the strong conclusions from present SN data.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ωm

w
0

x

3-fits

q0>0

q0<0

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ωm

w
0

x

4-fits

q0>0

q0<0

FIG. 1: 95%CL contours for 3-fits(left) and 4-fits(right) with no
prior on ΩM (plain) and two strong priors ΩM = 0.27(0.5) ± 0.04
(dashed (dotted)). The (x) indicates the ΛCDM point (ΩM =
0.27, w0 = −1, w1 = 0). The plain line separates accelerating (q0 <

0) from decelerating (q0 > 0) models.

Simulation and interpretation :

We have simulated, as in our previous paper[3], SNIa
data corresponding to the same statistical power as the
data sample, where we vary the fiducial values to study
the effects of the priors (on ΩM or/and w1).

We start with some illustrations of the bias introduced
by the ΩM prior when it is different from the fiducial
value. We consider two fiducial models which are com-
patible with the data, when no prior is applied: one in
acceleration with ΩF

M
=0.5, wF

0 =-2.2, wF
1 =1.6 and one

in deceleration with ΩF

M
=0.5, wF

0 =-0.6, wF
1 =-10. We

apply the 4-fit to the two models with the two strong
priors: ΩM = 0.27± 0.04 and ΩM = 0.5± 0.04. Figure 2
shows how the prior affects the conclusions:
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FIG. 2: Fisher contours in the (w0, w1) plane at 68.3%CL for the
two fiducial models: (in acceleration) ΩF

M
=0.5, wF

0
=-2.2, wF

1
=1.6

and (in deceleration) ΩF

M
=0.5, wF

0
=-0.6, wF

1
=-10. The upper

indice F is added to avoid confusion between Fiducial values and
fitted values. The plain big and small ellipses correspond to the
first model analysed with the strong prior ΩM = 0.5 ± 0.04 (big
ellipse) or with ΩM = 0.27 ± 0.04 as in [2](small ellipse). The
dashed big and small ellipses correspond to the second model.

• When the correct prior on ΩM is applied, the central
values are not biased but the errors are very large.
• When the wrong prior ΩM = 0.27±0.04 is applied, the
fitted values are wrong but in agreement with the concor-
dance model. The statistical errors are very small. In all
cases, χ2 is good and does not indicate that something
is wrong.
• With the data, it is not possible to distinguish between
these two models, but the prior value can lead to wrong
conclusions both on values and errors of the fitted
parameters.

We have then performed a complete fit analysis on the
simulated data and scanned a large plane of fiducial val-
ues (wF

0 , w
F
1 ) with 3-fits and 4-fits, assuming a flat uni-

verse and using two fiducial values for ΩF

M
: 0.27 or 0.5.

We always use in the fitting procedures, the strong prior
ΩM = 0.27 ± 0.04. The case ΩM = ΩF

M
is equivalent

to a Fisher analysis and only the errors are studied. In
the case ΩM 6= ΩF

M
, biases are introduced in the fitted

values.
Figure 3 shows the fitted w0 and w1 iso-lines for the

4-fits in the biased case. The iso-lines are straight lines
(not shown on the figure) when ΩF

M
= 0.27 (unbiased

correct prior), but are biased when ΩF

M
= 0.5. This is

due to the strong correlations between w0 and ΩM , and
between w0 and w1.
In this configuration, we observe that, for the 4-fit,

when −5 < wF
0 < 0 (a relatively wide range), the fit-

ted values for w0 are in a narrow range centred on -1 :
−1.8 < w0 < 0. For w1, the situation is even worse since
with fiducial values −8 < wF

1 < 8, we get essentially pos-
itive values for the fitted w1. The actual shapes of the
distortions between the fiducial and the fitted values are
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FIG. 3: Fitted w0 (left) and w1 (right) iso-lines with 4-fits for a
fiducial with ΩF

M
=0.5 and a prior ΩM = 0.27± 0.04, in the plane

(wF

0
, wF

1
).

readable on Fig. 3.
A similar analysis performed with the 3-fit shows that

the situation is even worse : one gets −1.5 < w0 < 0
whatever the value of wF

0 . As w1 is forced to 0 and
ΩM to 0.27, w0 is closer to -1 which corresponds to the
preferred solution for the fit.
One can illustrate further this very problematic point,

by defining “confusion contours”, namely some contours
which identify the models in the fiducial parameter space
(e.g. (wF

0 , w
F
1 )) that could be confused with another

model. For instance, the contours of Figure 4 give the
models in the plane (wF

0 , w
F
1 ) with ΩF

M
= 0.5 that can

be confused (at 1 and 2σ) with the concordance model
if the (wrong) strong prior is applied. The two models
used for the illustrative Fig. 2 are taken from extreme
positions in this confusion contour of Fig. 4.
For the 3-fit, the confusion contours with the concor-

dance model are very large and include all models having
roughly wF

1 < (−5wF
0 − 10). The situation here is par-

ticularly bad since the fitting procedure is making two
strong assumptions (w1 = 0 and ΩM = 0.27±0.04) which
are not verified by the fiducial cosmology (two biases).
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FIG. 4: Confusion contours in the fiducial plane (wF

0
, wF

1
) which

identify the models that would be confused with the concordance
model at 1 and 2σ for the 3-fit(left) and the 4-fit(right) procedures.
The strong prior is ΩM = 0.27± 0.04 whereas the fiducial model is
ΩF

M
= 0.5. The vertical line separates accelerating from decelerat-

ing models.

The next step is to study the parameter errors. We
look at the correlation of the errors using fiducial models
where ΩF

M
=0.27 or 0.5. We determine the w0 and w1

errors, scanning the full plane (wF
0 , w

F
1 ) using 4-fits.
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Some regions of the parameter space (see Figure 5) are
favoured and always produce small errors. This is due to
the correlation between w0 and w1. The error depends
strongly on the fitted w0 and w1 values but not strongly
on the ΩM value: a different value of ΩM affects the scale
of the errors but not the shape of the plots. We find a
linear scaling of the error when we change ΩM from 0.27
to 0.5 (i.e. a factor 2).
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FIG. 5: w0 and w1 errors for a 4-fit with the correct strong prior,
for a fiducial with ΩF

M
=0.27.

Combining this with the previous paragraph leads to
an interesting point, i.e. the favoured fitted values of
the fit (w0 > −1.8 and w1 > 0), which were shown to
be mainly driven by the prior value, correspond also to
the region of the plane where the parameters errors are
always small.
We conclude that the applied fitting procedure with

this strong prior can bias the conclusions by constraining
the (w0, w1) solution near the (-1,0) solution, where the
statistical error is always very small. In particular, Riess
et al.[2] found a gain factor of order 8 on the accuracy
of the neasurement compared to previous analysis. This
is mainly due to the ΩM prior and not to the inclusion
of the high z HST events. The present observational
constraints on ΩM are thus an important issue.

Revisited conclusions on existing data :

Most reviewers of cosmological parameters favour a
value close to the strong prior choice made by [2]. This
result is based on WMAP[8] data combined with 2dF
data[9] or more recently with SDSS data[10], and cor-
responds to [8]([10]) ΩM = 0.27(0.3) ± 0.04 with h =
0.71(0.70)+0.04

−0.03. However, these results are based on sev-
eral prior assumptions in order to lift the degeneracies
among the various cosmological parameters (e.g. ΩM ,
h, σ8, w ...). For instance, Spergel et al.[8] mention that
a solution with ΩM = 0.47, w = −0.5 and h = 0.57 in the
CMB is degenerate with the ΛCDM model. This kind of
solution is excluded for three reasons: the Hubble Con-
stant value is 2σ lower than the HST Key Project value
and the model is a poor fit to the 2dF and SN data.

However, i) in spite of the precise HST result, the
Hubble constant value is still controversial[11, 12]. ii)
We have shown in the previous section that the SN data
analysis can only conclude that ΩM < 0.6 (see Fig. 1).
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FIG. 6: The shaded region is excluded at 95%CL when no prior
on ΩM is applied. The ellipse corresponds to the strong prior
constraints as in [2]. The (x) is ΛCDM . The dotted line separates
accelerating from decelerating models.

iii) The 2dF and the SDSS Collaborations [9, 13] have
extracted ΩMh from an analysis of the power spectrum
of galaxy redshift surveys. The degeneracy between ΩMh
and the baryon fraction is lifted thanks mainly to the pre-
cise determination of the baryon fraction by CMB data
(see Fig.38 of [13]). Should that prior change, the pre-
ferred values from SDSS would indicate a higher value of
ΩMh.
In addition, a large variety of observations give con-

straints on ΩM , which is found to vary from 0.16 ± 0.05
[14] up to a value above 0.85 [15].
Conversi et al.[12] provide an interesting critical anal-

ysis on the present constraints on cosmological parame-
ters, especially on ΩM , h, and w. Through the study of
the degeneracies, they show that the result ΩM = 0.27±
0.04 is obtained under the assumption of the ΛCDM
model, and provide specific examples with smaller h
(h < 0.65) and higher ΩM (ΩM > 0.35) which are in
perfect agreement with the most recent CMB and galaxy
redshift surveys.
In conclusion, we follow the point of view of Bridle

et al.[16], who argue that it may be ”that the real un-
certainty is much greater” than the 0.04 error obtained
from the combination of CMB and large scale structure
data.

Returning to SN data analysis, we suggest, for the time
being, to reevaluate the conclusions by relaxing the ΩM

central value. Figure 6 shows the 95%CL constraints
in the (w0,w1) plane obtained from the gold sample [2]
with no prior assumption on ΩM . Taking an uncertainty
of 0.2, which is the intrinsic sensitivity of SN results (see
Table I, line 6), does not change the conclusions:
• Large positive variations in time of the equation of state
are excluded (at 95%CL) since the dark energy density
blows up as e3w1z [17].
• The quintessence models which have in general (w0 >
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−1, 1 > w1 > 0) [5] are seriously constrained. For in-
stance, the SUGRA model [18] characterized by w0 ≈
−0.8 and w1 ≈ 0.3[5] is close to the border of the 95%CL
contour (precisely, one gets ∆χ2=3.5 corresponding to an
exclusion at 80%CL).
• The quadrant (w0 > −1, w1 < 0) corresponding to k-
essence models [19] or some Big Crunch models [2, 20],
is not the “least favoured”, contrary to the conclusions
drawn with the strong prior [2]. We find that if w0 goes
towards 0, then w1 should be more and more negative.
• If w0 < −1, the constraints on w1 are weak (except
for large positive values). This region of the plane corre-
sponds to phantom models [21] which have unusual prop-
erties and may have very different consequences for the
fate of the Universe (e.g. models with w1 > w0 + 1 will
end in a Big Rip [17]). Models with very exotic w(z) may
come from modified gravity[22]. The class of models with
w1 < 0 is roughly excluded at 95%CL, if the strong prior
ΩM = 0.27± 0.04 is used [2], but is perfectly allowed for
higher ΩM values (or larger prior errors).
• As can be seen on Fig. 6 (and also on Figures 1, 4
and the decelerating model used to draw Fig.2), our
analysis without assumptions on ΩM and w1, allows
decelerating models with specific properties : low w0,
ΩM ≈ 0.5 and w1 << 0. One can wonder if this result
is not in tension with the geometrical test performed
in [2] where the only assumption is to use a linear
functional form for q(z) (i.e. q0 + q1z). It can be shown

that a varying equation of state implies a non-linear
q(z), in particular, the linear approximation breaks
down if wF

1 < −1.5. More details on this more sub-
tle analysis will be presented in a forthcoming paper [23].

To go further, a coherent combined analysis of all data
is mandatory, with a proper treatment of correlations
and no prior assumptions. Some recent papers go in that
direction [17, 24, 25, 26].

In addition, as soon as the statistical errors will
become smaller, systematic questions cannot be ne-
glected and should be controlled at the same level of
precision. This is the challenge for the next generation of
experiments. A promising approach is to combine SNIa
with weak lensing, as proposed by the future dedicated
SNAP/JDEM mission [27].
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