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Abstract

We give a necessary and sufficient condition for a homogeneous Markov process taking
values in R" to enjoy the time-inversion property of degree a. The condition sets the shape
for the semigroup densities of the process and allows to further extend the class of known
processes satisfying the time-inversion property. As an application we recover the result of
Watanabe in [24] for continuous and conservative Markov processes on R;. As new examples
we generalize Dunkl processes and construct a matrix-valued process with jumps related to the
Wishart process by a skew-product representation.

Keywords: homogeneous Markov processes; time-inversion property; Bessel processes; Dunkl pro-
cesses; Wishart processes; semi-stable processes.

Mathematics Subject Classification (2000): 60J25; 60J60; 60J65; 60J99.

1 Introduction

Let {(X¢,t > 0); (P,)zern} be a homogeneous Markov process with semigroup densities (assumed
to exist):
Fi(z,dy) = pi(x, y)dy. (1.1)

For all z € R™ and some « > 0, the process {(taX%,t > 0); P,} is Markov and in general
inhomogeneous. ’

Definition 1.1. The process {(X;,t > 0); P, } is said to enjoy the time-inversion property of degree
o if the Markov process {(t*X1,t > 0); P;} is homogeneous.

Celebrated examples of Markov processes, known to enjoy this property for & = 1, are Brownian
motions with drift in R™ and Bessel processes with drift (see [21, 24]). Gallardo and Yor [12] recently
worked out a sufficient condition on the semigroup densities for a Markov process to enjoy the time-
inversion property. Their argument extended the class of processes to processes with jumps such
as the Dunkl process [23] and matrix-valued processes such as the Wishart process [3]. The aim of
the paper is to show that the former condition is actually necessary and sufficient and to provide
some new examples.

Section 2 contains the main theorem of the paper, which is proved in section 3 using straightfor-
ward analytical arguments. Section 4 considers an application of the theorem to Markov processes
on Ry . The result is shown to be strong enough to entirely characterize the class of diffusion pro-
cesses on R that enjoy the time-inversion property and thus provide a different proof than that

*Laboratoire de Probabilités et Modéles Aléatoires, CNRS-UMR 7599, Université Paris VI & Université Paris
VII, 4 Place Jussieu, 75252 Paris Cedex 05, France. Email: lawiQproba.jussieu.fr.



of Watanabe in [24]. Section 5 gives new examples of processes that enjoy the time-inversion prop-
erty. We review how the generalized Dunkl process fits the requirements of the theorem and then
introduce a matrix-valued process with jumps. The relation of the latter process to the Wishart
process mimics the relation between the one-dimensional Dunkl and Bessel processes.

2 Markov processes which enjoy time-inversion

Fix z € R™. Recall that under P,, the process (tO‘X%,t > 0) is Markov, inhomogeneous, with

(z)

transitional probability densities g, (z,v), (s < t;z,y € R™), which satisfy the following relation:

s,t
E, [f(t“X;) | s°X1 = Z} = /dy Fy) 657 (=, p) (2.1)
where . .
p1 (%) pro1 (% 5%)

g% (a,b) =t (2.2)

pr (7, &)
Throughout the paper, we assume the semigroup densities p;(x,y) to be positive over the domain
and regular enough to be at least twice differentiable in the space and time variables.

The process (taX% ,t > 0) is not uniquely defined from the knowledge of the semigroup densities
pe(x,y). Actually, there exists at least one transformation that leaves the semigroup densities

qgft)(a,b) unchanged: Doob’s h-transform.

Definition 2.1. Doob’s h-transform is the transformation
h(Xt)
h(x)

Th : P:z:‘]—'t = €_Vt P$|_7.'t. (23)

for some function h and some constant v > 0.

This remark leads to our first two assertions.
Proposition 2.2. Two processes related by h-transforms yield the same process by time-inversion.
Proposition 2.3. T} is an equivalence relation over the class of homogeneous Markov processes.

It is hence legitimate to research for a criterium to classify all processes that enjoy the time-
inversion property up to h-transforms. The following theorem gives a concise statement of our main
result:

Theorem 2.4. The Markov process (tO‘X%,t > 0) is homogeneous if and only if the semigroup
densities of (Xi,t > 0) are of the form:

pw = 8 (58 o (8) o (Z) (B} e

or if they are in h-transform relationship with it. The functions ®,0, p have the following properties
for A > 0:

1. DAz, y) = @(z, \y);

2. 0(\y) = A2 O(y) for some 3 € R;

3. p(Az) = A% p(x);

Moreover, if the symmetry condition ®(x,y) = ®(y,x) is satisfied, then the semigroup densities are
related as follows:

" (a,b) =

> exp {tp(@) } pula.b) (2.5)



Definition 2.5. A Markov process (X;,t > 0) is called semi-stable with index + in the sense of
Lamperti [18] if:
{(Xct,tzo);Pm} @ {(cvxt,tz());Px/w}. (2.6)

As a consequence, the semigroup densities of a semi-stable process with index ~ have the following
property:
pla) =ty (£, L) @.7)
t ) tw? Y . .

Remarking that the expression for the semigroup densities in Theorem 2.4 satisfies this property
for v = a/2 yields the following corollary:

Corollary 2.6. A Markov process that enjoys the time-inversion property of degree « is a semi-
stable process with index «/2, or is in h-transform relationship with it. The converse is not true.

3 Proof of the Theorem

3.1 Sufficiency

If p(z,y) satisfies the condition (2.4), then from formula (2.2) the semigroup densities qi?(a,b)

can be written as

n

3
¢\ (a,b) = (t—5)"F [[RD)

where

@ _ g(L s a (st NT) gl )

Rsv = a(tat)(9 sa<t—s )9(5"8 )

(3) a E a b st \ 2 a st 2

R, = exp{p(zt )+p<tat > er(ta (t—s) >+P<Sa (t—s) )
et o (8 1) |

R{} = i((i:ziq’((t_bs)s’(t—asﬁ)
= o)

- el () o )}

Hence there is no separate dependence on s and ¢, but only on the difference ¢t — s, which allows to
conclude that

qgi)(av b) = QIgi)S(a’ﬂ b)
and proves homogeneity for the process (t‘lX%7t > 0). If in addition ®(z,y) = ®(y,x), we obtain
(2.5).



3.2 Necessity

For simplicity of notation, we prove the necessity of condition (2.4) in the case « = 1. The extension
to a > 0 is immediate by change of variables X; — Xj*. Recall first the following definition of
homogeneous functions:

Definition 3.1. A function f:R"™ — R that satisfies for z = (z1,...,z,), VA € Ry,
FOx) =N f(x)

is called homogeneous of degree 3 € R. If f € C1(R"), Euler’s Homogeneous Function Theorem
gives a necessary and sufficient condition for the function f(z) to be homogeneous:

S v f(a) = Bf(2).
i=1

3

Consider the function of 2n + 1 variables: I(z,y,t) = In(p(z,y)), z,y € R". From (2.2), [ must
satisfy for s =t — h:

0 1 b1 b a 1 1 a 1

3.2.1 The kernel &(z,y)

Taking derivatives with respect to b; and a; for some 0 < ¢, j < n yields:

1 1
66)6l(b a __):0.

db; Ba; Ot \t't—h't—h t
If we set ¢ (x,y,t) = a?ci aiyjl (z,y,t), the latter becomes
1 b 1 a 1 1 1
- - ha - - . _ - (== Hd =0
2(t — h) (¢+ t V1¢) t(t — h)? (¢+th V2¢> BT <t2 (th)2> $=0,
with the notation Vi = (52, 52)7, Va = (..., 50)" and ¢ = 6 (£, 1%, 725 — 1) For
clarity, we change variables to
z —9 Zg = a4 t ——1 4 ——1
1 — n ) 2 — t—h ) 1= t ) 2 = r_
Then ¢ = ¢(2172’2,t1 + t2> and
t1<¢+21'V1¢ +t 3(25) =t2(¢+2‘2-v2¢ +t2 3¢>7
or equivalently
i1 (¢+ z1-Vig + (t1 +t2) 8¢) =12 (¢+ zo- Vo + (1 +12) 8¢)- (3:2)
We change variables once more: u = %,v =t1 + t2 to get:
¢+ z1-Vi¢ +v8¢:u(¢+22~V2¢ —l—va(i)). (3.3)

This gives the following proposition.



Proposition 3.2. Equation (5.8) is satisfied if and only if

d(Az, py, A\ut) = ~— ¢(x,y,1). (3.4)

1
Ap
Proof. As the LHS of equation (3.3) is independent of u, one can readily take the equivalent con-

dition:

o+2z21-Vip +vdp = 0, (3.5)
¢+22 VQQZS + v 8(25 = 0.
Let g(A) = ¢p(Az1, 22, \v) and h(p) = ¢(z1, puz2, pv). Equation (3.5) implies g(A) +Ag’(A\) = 0, which
solves to g(A) = A71g(1) and hence

1
d(Az1, 22, A\v) = X¢(Z17Z2,U)-

Equation (3.6) implies h(u) 4+ ph'(1) = 0, which solves to h(u) = p~1h(1) and hence
1
P(21, pzo, pv) = p¢(21722,’0)-

Combining the latter two equations yields (3.4).
Conversely, if ¢g is homogeneous of degree —1 and & is homogeneous of degree —1, we get:

9(\) + Ag'(A) = h(p) + ph! (1) =0,
which is equivalent to (3.5) and (3.6) and concludes the proof. O

Note that the previous result remains valid for all second derivatives of {(x,y,t) with respect
to z; and y;, Vi,j € {1,...,n}. By integration over x; and y;, one can thus already make an
assumption on the general shape of the function I:

l(l’,y,t) = k(l’,y,t) + Qpl(xvt) + 902<y7t) + hl(m) + hZ(y) + T(t)a (37)

where k : R?"t1 - R, ¢1,¢ : R™! - R, 7:R — R and hy, hy : R® — R. Moreover, the kernel
k(x,y,t) must satisfy the following property:

k(Az, py, Aut) = k(z,y,1).

This is immediate from (3.4) and

o 0 o 0 1 9 0
A \ut) = I(\ ut) = k() Ait) = — — k(N At
d(Ax, py, Aut) e Oy (Az, py, At) s Oy (A, py, Apt) i 0z, By (Az, py, Aut),
1 1 0 0 1 0 0
AMcé(ﬂc,y, ) i 92 0y, (z,y,1) i 921 9y (z,y,t)

This property is actually equivalent to

()i

Setting & (%, %) = exp k(z,y,t) completes the proof of the first condition of the theorem, i.e.

O(A\z,y) = O(x, Ay).



3.2.2 The function p(x)

We now focus on the functions 1 (x,t), p2(y,t). From (3.1), they must satisfy
L T AN A B A A B
ot |PP\"r) T \er) TP \ve—n ) TP s he—n
1 a 1
— — ] = —\ — || =0. 3.8
%(x’t—h) %(t—ht—hﬂ (3.8)

Recall that the variables a, b, z are independent from each other and that ¢1, o are defined to be
explicitly dependent on their variables. So taking the derivative of (3.8) with respect to z; gives

1 1 1 1
t_2 O (HU, ;) = m 01 (% m)

where 9 (z,t) = %g@l(:ﬁ, t). Hence ty (,t) must be of the form ¢ (z,t) = $911(z) +112(z), which
implies
1
pr1(z,t) = 25011(17) + p12(z).

We omit the second term as it can always be recast as part of h(z) in (3.7). There are so far no
further conditions to add on the function ¢11(z).
Taking the derivative of (3.8) with respect to b; leads to

o b 1\  t(t—h) AV
ot |72 \vr) T i)Y

which develops to

1 b 1 2% — h tHt—h) 1 tt—h) b
—t—zaﬁ@z -5 VO;p2 — t—gataitpz + Taisﬂn i t—gaﬁpu - B Voip11 = 0.
Recall that 111 (x) = 8%1_9011(33) and set s (z,t) = aimapg(x,t). In this notation, we get
1 b | % —h Ht—h)1 t(t—h) b
—;1?2 a2 Vipy — tjaﬂ/& + A Y11 — T?ﬁn B Vi1 = 0.

L(—‘:T,Z:%, t1 =

o=

, ta = ﬁ, then we have

t 1
ba(z,t1) + 2 Viha(2,t1) + 610002 (2, t) = ———— P11 (2) — ——
t1(ta —t1) to — 1ty
As the LHS is independent of t5, so must be the RHS, which implies
2 - Vhi1(2) = ¥11(2).

Hence 111 is homogeneous of degree 1. In that case,

z - lel(z)

Pa(z,t1) + 2 - Vapa(z,t1) + 110p2(2,t1) = %1/}11(2‘)-

We solve the equation for g(A) = ¥2(Az, At1) to get g(A\) = %1/}11(2) + x¢(z,t1), where ¢(z,t;) turns
out to be a homogeneous function of degree —1. Integration over z; yields some conditions for

pa2(z,t). Once again, since the index i € {1,...,n} was chosen arbitrarily, we obtain the following
characteristics:
w1(Az, \t) = 9011)\(;\2) with  11(A2) = Ap11(2)
and
wa(Az, At) = w + é(Az, At),

where @a1(A2) = A2a1(2) and even p2;(2) = ¢11(2) without loss of generality. Let p(z) = ¢11(2) =
©12(2), then we recover the third condition of the theorem, that is

p(Az) = Np(2).



3.2.3 The function 6(y)

In order to further investigate the properties of é(z,t), we derive (3.8) by a;:

99 l()_p B S Y GECI
Oa; Ot [ A S ‘\i-wi-n)|”

This leads to

-1
to

c(z,ta —t1) + 2 - Ve(z, ta — 1) + Opc(z,ta —t1) = c(z,ta) + 2 - Ve(z, t2) + ta0e(z, ta).

Since ¢(z,t) is homogeneous of degree —1, the RHS is zero. This only proves that %c(z,t) =
%%é(z,t) =0, Vi. Hence, é(z,t) = é1(z) + é2(t). Going back to equation (3.8) derived by b; gives

this time for é(z,t),
0 9 1. (b IN]_ 091 (b\]_,
a0t |\t t)| "o |\t)| T

which clearly implies él(%) = ¢11(b) + ¢12(3). Using equation (3.8) once more gives

() et Doal) e

which is equivalent to

1] a(t) + 17 &) + (t +t2) (t2 — t1) &(ta — t1) — 13 &(t2) = 0.
We set g(t) = téy(t) so that
13 &) +t1 g(tr) = ta(g(tz) — glta — t1)) — t1g(ta — t1).

p

LHS
Assuming tlimo ol € R with |8] < oo, we divide the equation by ¢; and take the limit as
1 1

t; — 0. This yields %[3 = tag'(t2) — g(t2), which solves for g(t) = ,%5 +~t, v € R. Hence,

1
éo(t) = —iﬂlnt—&—vt and ¢19(t) = flnt,

where any additional constant term has been set to 0. It will be convenient to set v = 0. A term
~ # 0 corresponds to the independent case of an affine function of ¢ in the sum (3.7) and is included
in the discussion for 7(t). To summarize, the function ¢(z,t) must be expressed as

é(z,t) = ¢1(2) — glnt,

where ¢1(z) has the following property: é(Az) = é1(2) + Bln . Let 0(z) = expéyi(z). We then
recover condition 2 of the theorem, i.e.

B(A\z) = N 6(2).

3.2.4 The functions h(z), ho(y)

The obvious solution to (3.1) in this case is h(z) = hi(z) = —ha(z). exph hence defines an
h-transform, which is neglected since we classify all processes up to h-transforms.



3.2.5 The function 7(t)

It remains to explicitly formulate the form of the function 7: Ry — R that is defined to satisfy

g—nlnt—i— ! + SR By =0
ot )= y) T e=w)) T
But this equation is similar to (3.9), so we immediately have the solution (v € R):
() = ,g Int + t.

n
2

Once again e?* can be included in an h-transform, so = is set to 0 and ™) = ¢t~
factor in the semigroup densities (2.4).

gives the first

3.2.6 The general case a >0

For o > 0, we use the change of variables X; — X/*. The semigroup densities for X;* become

P (2, y) = (ﬁ,yé) J(y)

1_ 1_
where J(y) is the Jacobian of the inverse transformation, that is J(y) = ™™ y; Yooy and
1

1 1
we use the slight abuse of notation T = (:vl“ R ) The semigroup densities can be recast into

o — e (L YN go (L o (L oY
pi(zy)=t"= @ (t%’t%) b (ﬁ) eXp{p (t%)er (ﬁ)}
where ®*(z,y) = P (zé,yé) satisfies condition 1, 6%(y) = 0 (yé) J(y) satisfies condition 2 for

B = ﬁaﬁ —n and p*(z) =p (yé) satisfies condition 3 of equation (2.4).

4 Application to diffusions on R

The case of the diffusions on R was entirely characterized by Watanabe in [24]. It was shown that
only Bessel processes in the wide sense (which we recall the definition below) enjoy the time-inversion
property of degree 1.

Definition 4.1. For some v > —1 and ¢ > 0, the diffusion process generated by

192 2v+1  hl(z)) O
£—§w+( % +hc(x)>8_x (1)

is called Bessel process in the wide sense. The function h.(z) is given by
he(z) =2"T(v +1) (V2c 2)™" I,(V2c z), (4.2)

where I, is the modified Bessel function.

Remark 4.2. The Bessel process in the wide sense is in h-transform relationship, for h = h,, with
the Bessel process.

We show that the result in [24] is a consequence of Theorem 2.4, which has the following one-
dimensional formulation:



Theorem 4.3. The Markov process (t“X%,t > 0) on Ry is homogeneous if and only if the semi-
group densities of (X¢,t > 0) are of the form:

2 2
_a Ty k2 [za  ya
pe(w,y) =t~ 2D ¢(ta) v’ exp{_ 2 ( TR >} -

for k > 0, or if it is in h-transform relationship with it. Moreover, the semigroup densities are
related as follows:

x ¢ (xb) k2 2
qE )(a,b) = 4 (@a) exp | —t 5 o= pi(a,b). (4.4)
Proof. Theorem 2.4 formulated on R implies ®(z,y) = é(zy), (y) = y° and p(x) = 7%2 zo, k>
0, for the condition 1-3 to be satisfied in one dimension. O

We identify further the class of diffusion processes and provide a different proof for the result in
[24].

Proposition 4.4. If (X;,t > 0) is a diffusion process and (tX%,t > 0) is homogeneous and
conservative, then both are necessarily (possibly time-scaled) Bessel processes in the wide sense.

Proof. If (X;,t > 0) is a diffusion process, then its infinitesimal generator has the following general
structure:
02 0

L= 5(1/)672 + u(y)afy

where it remains to identify the functions s(y) and u(y). For a fixed z > 0, let £®) be the
infinitesimal generator of (tX%,t > 0). From equation (2.5), £(®) has the following relationship
with £:

which develops to
¢'(xb)
d(xb)

For the process to be conservative, we require U(x,b) = 0, which implies no killing in the interior
of the domain, that is

£ §(6) = s(b) £ (b) + {mb) 22 s(b) } £(6) + Uz, b) F(b).

o ¢ (xb) ¢'(xb) K 5
s(b) x 5(h) w(b) = oh) 2 x* =0.
We change variables to z = xb to obtain
2
s(z/a) o' () + PE i) -2 gz =0

Since the latter must be valid for all > 0, we are led to set: s(b) = % for o > 0 and pu(b) = % 24+1

for v > —1. This yields the following equation

2v+1 |, K2
5, Y53

16"(2) + (2) = 0.

2

The general solution (non-singular at 0 and up to a constant factor) is expressed through the
modified Bessel function of the first kind as follows:

o-(5)u %)



Gathering the different factors in (4.3) leads to

_148 [TY\ "V k xy k2 (22 o
) =N (Z) " 0 (22) o ey (S + L)1
pe(T,9) (5 <Jt)y eXp{ 2<t+t

where N is a normalization factor. The additional condition that }ir% pi(z,y) = 6(x — y) implies

B=2v+1and k = %, which leads to the semigroup densities of a time-scaled Bessel process of

dimension v:
@ =2 (0 1 () eo{-ThL
T,y == (= 2 ) exp? — .
Pe\® Y ot \z Y\o2t P 202t

The infinitesimal generator for (tX1,t > 0) is given by

ROPECAAES U5 S SR ACO R )
2 0b? 2b ¢(xb) | Ob’
where one recognizes expression (4.1) for h.(b) = ¢(zb) and a time-scale t s o>t O

Proposition 4.4 smoothly extends to any power a > 0 of the Bessel process through the mapping
X; — X', In particular, it is worth remarking that the case a = 2 gives rise to squares of Bessel
processes, which leads to the following result:

Proposition 4.5. If (X;,t > 0) is a diffusion process and (tQX%,t > 0) is homogeneous and
conservative, then both are necessarily (possibly time-scaled) squares of Bessel processes in the wide
sense.

5 Examples

5.1 Generalized Dunkl processes and Jacobi-Dunkl processes
5.1.1 Multidimensional Dunkl processes
We briefly review the construction of the Dunkl process in R™ (see [22, 23]).

Definition 5.1. The Dunkl process in R” is the Markov cadlag process with infinitesimal generator
1 1o
—pk) — = T2 5.1
5L 3 ; ; (5.1)

where T;, 1 < i < n, is a one-dimensional differential-difference operator defined for v € C*(R") by

- u(oam).

(@ z) (5.2)

Tou(z) = ag—z) + Y k(a)aiu(:v)

a€Ry

(+,+) is the usual scalar product. R is a root system in R™ and R a positive subsystem. k(«) is
a non-negative multiplicity function defined on R and invariant by the finite reflection group W
associated with R. o is the reflection operator with respect to the hyperplane H, orthogonal to
a such that 0,2 = & — (o, z)a and for convenience (o, a) = 2 (see [8, 9]).

A result obtained by M. Rasler [22] yields the semigroup densities as follows:

K)oy L =P+ 1yl Ty
W) = s oo (<) b (22 ) (53

10



where Dy (x,y) > 0 is the Dunkl kernel, wg(y) = H [{c, ) [#*(®) the weight function which is
aERy
.12
homogeneous of degree 2y = 2 Z k(a) and ¢ = / e 3 wi(x)dx.
acRy "

Following a thorough study of the properties of the one-dimensional Dunkl process in [13], it
was remarked in [12] that the Dunkl process in R™ enjoys the time-inversion property of degree 1.
Considering that the Dunkl kernel satisfies

Dy(x,y) = Di(y,z) and Dy(px,y) = Dy(x, ny), (5.4)

the proof is straightforward with

2
x
@(r,9) = Dyly). Oly) =wnly), o) = 2. (55
By equation (2.5), the semigroup densities of the time-inverted process is even in h-transform
relationship with the semigroup densities of the original Dunkl process:

(z) _ Dy(z,b) Jz? (k)
4t (a‘ab)_ T.a exp ) t Pt (a'vb)' (56)

5.1.2 Generalized Dunkl processes

In an attempt to generalize the Dunkl process, we extend the definition of the infinitesimal generator
to

LEN f(z) = —Af + ) k(e + > Ao #f@) (5.7)

a€ERy a€Ry

where A is the usual Laplacian, f € C?(R") and \(«) is a non-negative multiplicity function defined
on R and invariant by the finite reflection group W, similarly as k(«). We retrieve the Dunkl process
for M(a) = k(o). Note that these processes are no longer martingales for A(a) # k(«).

The one-dimensional case was introduced in [13], where the semigroup densities were explicitly

derived,
24,2
(k,A) R ! T4y Ty
W o) = gy o r e (<S50 ) D (%) 6.9
with the generalized Dunkl kernel, (v =k — 3, p= V12 +4X),
1 1
Di (2) = Yyyer y 5 (I = Iu) (=2) + Liyeryy 53 (I + 1) (2) (5.9)
for z = Z£. From (5.4), the generalized Dunkl kernel satisfies
Dya(@,y) = Dra(y,x) and  Dya(pz,y) = Dia(z, py), (5.10)

which readily implies that the generalized Dunkl process also enjoys the time-inversion property of
degree 1. The semigroup densities were derived as an application of the skew-product representation
of the generalized Dunkl process (X;,¢ > 0) in terms of its absolute value (a Bessel process) and

an independent Poisson process Nto‘)

X, @ |x ) (—1) VA (5.11)
t ds
0 X2
In the n-dimensional case, the application of the skew-product representation derived by Chy-
biryakov [6] shows that the generalized Dunkl process enjoys time-inversion for some specific root
systems. We first recall one of the main results of [6].

where A; =

11



Proposition 5.2. Let (X;,t > 0) be the generalized Dunkl process generated by (5.7), with (X}V,t >
0) its radial part, i.e. the process confined to a Weyl chamber. Let Ry = {aq,...,a;} for somel € N
be the corresponding positive root system and let (N}t > 0), i = 1,...,1 be independent Poisson
processes of respective intensities \(c;). Then X; may be represented as Y}, which is defined by
induction as follows:

. NL,o
YO =X" and Vi =0o,"t Vil i=1,...,1,
t
; d
where Aj :/ %
0 (Y5 aq)?
The proof follows the argument in [6], while replacing k(c;) by A(«;) appropriately.
From now on, let Ry = {a1,...,q;} for some [ < n be an orthogonal positive root system, that

is (v, oj) = 26;5. For this particular root system, one can show that the generalized Dunkl process
enjoys time-inversion of degree 1. We first prove the following absolute continuity relation:

Lemma 5.3. Let (X}V ¢t > 0) be the radial Dunkl process with infinitesimal generator

(00, V(@)

(o ) (5.12)

1
Ly fz) = §Af(l‘) + Zk‘(aﬂ
Fized v € {1,...,1}. Let k'(«) be another coefficient function on the root system R, such that
k(o) > k(o) and k' (o) = k(oy) for i # v. Then, denoting PY) the law of the radial Dunkl

process XV starting from x, we have
k' (o) —k(ay 2 2
= 7{04,,th> e exp | — (K (o) — 5)" — (k(aw) — 5) /t ds .P(k)|
e (aw, ) 2 o (ay, XI)2| %
(5.13)

Proof. Let ko(c) be a coefficient such that ko(e,) = 1 for some fixed i € {1,...,1}. X" has the
following martingale decomposition (see [11]):

pE)

T

l t
ds
X = B Dt [ ey
i=1 pets

where Bt(ko) is a (P&k°)7ft)—Brownian motion. Consider the local martingale

) _ , 1\ ("o dBFY) (W) =3)° 1t ds
o (v100-3) [ Gt - 0 | )

for some coefficient function k’(«) such that k'(ey,) > % and k'(e;) = ko(ey) for i # v. The Ito
formula for In ({c,, X}V')) combined with the orthogonality of the roots yields

k (o, —% 2
L) _ {a,, XV (o) o [ (K (aw) — 3) /t ds
t (o, 7) P 2 o (o, X2 |

W) = L.

Define the new law P; p{ko) | 7,- By the Girsanov theorem,

1 ¢ ds
B*) = ptko) _ (s V,,/
@73) Jy T X

1S a (:F);E(k/)7 .; t)—BI()WIHan IIl()ll()Il alld heIlce,
t - E k/ Z 7‘1, '3
.X =X + 13 + a > (0%

12



is a radial Dunkl process under (ng/), F).

Define k as another coefficient on the root system that satisfies the conditions enunciated in the
lemma. The absolute continuity relation is then a consequence of the successive application of the
latter result to the indices k" and k. O

Now as an application of Proposition 5.2, we prove the following;:

Proposition 5.4. Let R, = {a1,...,q} be an orthogonal positive root system for | < n. Then
the generalized Dunkl process (Xi,t > 0) generated by (5.7) enjoys the time-inversion property of
degree 1.

Proof. Using orthogonality of the roots, remark that

<O‘i70j‘r>2 = <O‘i7x - <O‘j7x>aj>2 = <O‘i7x>27

which implies in particular ‘
<aithZ>2 = <ai7XtVV>27
so that the inductive representation of X; in Proposition 5.2 becomes

i

LN ; K ds
Xt = Ho'aiAt Xth for A; = /0 W

i=1 s
The radial part of a Dunkl process enjoys the time-inversion property of degree 1. We need to show
that the semigroup densities of the generalized Dunkl process are related to the semigroup densities
of its radial parts. For f € C?(R"),
Eaf [f(}/tz)jl = E:E [.f()/tz_l)l{Nf41 is even}} =+ Ew [f(o'ai}/ti_l)l{NZi is odd}] .
t t

Since P(N{ is even) = 3 (1 + exp(—2A(a;)u)), we obtain

_ | ; | ;
B[] = Bo | #0471) 5 (1-+ exp(-2A(@) D) | + s |Flon, 1670 5 (1 = expl(-2A(a) D)
The expectation E,, [f(Xt)] can thus be evaluated by induction on i € {1,...,1}. It follows that the
semigroup densities of X; can be expressed as the product of the semigroup densities of its radial

parts times a function involving expectations of the form

E;k) [exp (—2X (o) AY)

X = y] ,
for v € {1,...,1}. From Lemma 5.3,
(k")

XW y} _p (@) <<ay,y>

PP (a,y) \law, )

i

k(O‘V)fkl(au)
E® [exp (—2\(a) A) )

2
semigroup densities in (5.3) implies that the expectation is a ratio of Dunkl kernels,

; E(ay)—K (ay)
(o, %>>
<<0¢,,, %)

Dy (2,2 K (aw)—h(aw)
c Vi Vi y x
XtW—y} =t (() <<ozy, ><au,>)

where k'(a;) = k(a;) for i # v and k(o) = 1 + \/(k(al,) — l)2 +4X(ay). The form of the

EH) [exp(—%(au)Atu) XW ] _a Dy (%%) o (%)

which reduces to

9

E(® [exp (—2X(a,)AY)




by definition of k’(«). The conditional expectation thus satisfies condition 1 of Theorem 2.4. As a

consequence, the conditions of Theorem 2.4 are satisfied for
_ _ _ =P
®(z,y) = Dpalz,y), 0(y) =wn(y), ple) ==

where Dy, (z,y) is a generalized Dunkl kernel given explicitly in terms of radial Dunkl kernels and
satisfying equivalent conditions (see (5.4)). O

5.1.3 Jacobi-Dunkl processes

Gallardo et al. [5] derived the Jacobi-Dunkl process as the hyperbolic analog of the one-dimensional
Dunkl process. It is defined as the process generated by

ooy - ZL0) A0 0 (A0 ([0S gy

0x? () Ox oz \ A(x) 2

1 1
where A(x) = (sinhQ(ac))a+§ (cosh2(x))ﬁ+§. From the expression of the semigroup densities de-
veloped in [5], this process does not enjoy the time-inversion property. Its radial part however
corresponds to the Jacobi process of index (o, 3) on Ry (see [15, 16]). The infinitesimal generator
of the Jacobi process, expressed by

1) | (@) 0f(a)

Emﬁ)f(w)iQ Oz A(x) Oz’

(5.15)

is in h-transform relationship with the Laplacian operator for h(z) = y/A(x). Since the Brownian
motion enjoys the time-inversion property of degree 1, so does the Jacobi process by Theorem 2.4.

5.2 Matrix-valued processes
5.2.1 Eigenvalue processes

Dyson in [10] described the eigenvalues of a Hermitian Brownian motion as the joint evolution of
independent Brownian motions conditioned never to collide (see also [14] and [4]). It was further
remarked that the process version of the Gaussian orthogonal ensemble does not admit such a
representation for its eigenvalues. This work was extended by Koénig and O’Connell in [17] to the
process version of the Laguerre ensemble, denominated the Laguerre process and defined as follows:

Definition 5.5. Let B; be an n X m matrix with independent standard complex Brownian entries.
The Laguerre process is the matrix-valued process defined by {X; = B|B;,t > 0}, where B; is the
transpose of B;.

From [17], the eigenvalues of the Laguerre process evolve like m independent squared Bessel pro-
cesses conditioned never to collide. No such representation however exists for the case where the
entries of B; are real Brownian motions, i.e. the Wishart process considered by Bru in [3].

The main result of [17] is that both of the above mentioned eigenvalues processes (in the complex
Brownian case) can be obtained as the h-transform of processes with m independent components.
The joint eigenvalues process is thus in hA-transform relationship with a process that enjoys the time
inversion property of degree 1 in the case of the m-dimensional Brownian motion and degree 2 in
the case of the m-dimensional squared Bessel process, as made explicit in the following proposition:

Proposition 5.6. Let pi(x;,y;) (i =1,...,m) be the semigroup densities of squared Bessel processes
(respectively Brownian motions), and let

h(z) = H(xj — ;) (5.16)



forz = (z1,...,2m). Then, the semigroup densities of the joint eigenvalues process of the Laguerre
process (respectively the Hermitian Brownian motion) are given by

_ _ h(y) T
WU ﬂfzayz (5-17)

with respect to the Lebesgue measure dy = H dy;.

i=1
It follows immediately by Theorem 2.4 that the eigenvalues processes enjoy the time-inversion
property. Moreover by Proposition 2.2, they yield the same process under time-inversion as the
m-~dimensional Brownian motion or the m-dimensional squared Bessel process respectively.

5.2.2 Wishart processes

The Wishart process WIS(6, t1,,, %x), introduced by Bru in [2], is a continuous Markov process
taking values in the space of real symmetric positive definite m x m matrices S;b. It is solution to
the following stochastic differential equation:

dX; = \/XydBy + dBIN/X; + 6Idt, Xo =, (5.18)

where B; is an m X m matrix with Brownian entries and I,,, the identity matrix. Further results
have been obtained in [1] and [3]. In [7], among other major findings about the Wishart process,

the transition probability densities expressed with respect to the Lebesgue measure dy = H(dyij)

1<j
were derived in terms of generalized Bessel functions (we refer to the appendix for the definition):
d—m—1
1 1 det(y) T xy
Y) = —oy =T Tom (—) 5.19
Pl y) (2t)—m(rg+1> P ( 2t r@+ y)) (det(x) == 42 (5.19)

for z,y € St and § > m — 1. From the shape of its densities, the Wishart process was stated
in [12] as an example of Markov processes enjoying the time-inversion property of degree 2. The
hypothesis of Theorem 2.4 is indeed satisfied for n = 2m(m + 1) and

Cem—1 ~ T m— 1
(a,y) = (det(@)det(y)) T Loy () . 0)= 2—<det< V)T o) = —5Tr(@).
2
(5.20)
Next we use a skew-product representation, as for the Dunkl process, to elaborate on the Wishart
process and derive a matrix-valued process with jumps. The skew-product representation allows
the expression of the semigroup densities in terms of the Wishart transition probability densities.

Definition 5.7. Let (Nt(/\),t > 0) be a Poisson process with intensity A. Let (X ¢ > 0) be a
Wishart process WIS(4, t1,,, %:17) independent of the Poisson process. The skew-Wishart process

(Xto‘), t > 0) is defined through the skew-product
o)
X = x, (—n)Na (5.21)
¢
where A; = / Tr(X;1)ds.
0

Proposition 5.8. The transition probability densities of the skew-Wishart process are related to
the semigroup densities p:(x,y) of the Wishart process Xy as follows

A 1 i,/ Ty 1 i,/ —xY
P () = pe(, |y]) {1{yesrt}§ (1 + (I ) <4t2)> tliyesnys (1 - (i_ e :

(5.22)
forv==2=1 ) = U2 44X and |y| = Y1 yesty — Liyesny)
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Proof. Let (P;)¢>0 be the semigroup of the Dunkl-Wishart process. For z > 0 and f € C.(M,,(R)),
Ptf(m) =E, [f(Xt(A)):| =E,; |:f(Xt) 1{N1(4);) is even}] +E; |:f(_Xt) 1{NX;) is odd}:| :
With P(NSY is even) = 1(1 + exp(—2Xu)), we have
1 1
Puja) = B. [106) 51+ exp(-204)] + B, [7(-X0) S0 - ep(-2ra0)|. 629

Let Qg/) with v/ = %Tmfl denote the probability law of a Wishart process WIS(d’,¢1, %:c) and

) with v = 9=m=1 the probability law of X;. According to Theorem 1.2 (Remark 2.3) in [7],
the probability laws are related as follows:

det Xt U/;U V’Q — V2 t -1 v)
a < detm) op <_ 2 /o TrxDds ) Qg

from which we deduce

") L2_11 2 _ 2 t
P (2,y) _ (dety> QW {exp (—” v / Tr(Xsl)dS) ‘th]-
0

p(ay)  \detz 2

Q"

Thus, from the expression of the semigroup densities in (5.19), we have

t I
w oo (- [ o) o] - (M52 ()
0 v

Combining the latter with (5.23) yields the semigroup densities for the skew-Wishart process. O

The skew-Wishart is an example of matrix-valued process with jumps that enjoys the time-
inversion property of degree 2. Indeed, by setting

®(z,y) = (det(z) det(|y|)) "2 {l{yesfz}% (i,, + iy/) (%) + 1{y657n}% (L, - Iu/> <—T1:y> } )

oy) = o (et ple) =~ Tr(lal) (5.24)

the conditions of Theorem 2.4 are satisfied for o = 2.
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A Generalized hypergeometric functions

Using the notation in Muirhead [20], hypergeometric functions of matrix arguments are defined for

a real symmetric m X m matrix X, a; € C and b; € C\{0, 3,1,.. ., mTfl} by
- (a1)r -~ (ap)x Cu(X)
F ey Gpi by, b X)) = Al
Palanostibi o B XV =00 G5 G, (A1
where the second summation is over all partitions £ = (k1,...,kn), k1 > -+ > k, > 0, of

k= E:’;l ki, k!'=kq!---k,,! and the generalized Pochhammer symbols are given by

m

(a)K:H(a_i2l>k , (@p=ala+1)---(a+k—1), (a)=1.

=1 i

C(X) is the zonal polynomial corresponding to x, which is a symmetric, homogeneous polynomial
of degree k in the eigenvalues of X that satisfies

C.(YX) =C.(VYXVY) (A.2)

for some Y € S;.. The function ,Fy(aq,...,ap;b1,...,bs; Y X) thus makes sense. Finally, we define
the generalized modified Bessel function by

e 1

~ (det(X))*® Lo mtl
v(X) = ) 0F1< +,X) (A.3)

T (v + 250 5

where the generalized gamma function is given as a product of the usual gamma functions,

rm(a)—ﬂ"‘“'i‘”f[lr(ai;l) (A.4)

for Re(a) > ™=1. Note that the generalized modified Bessel for m = 1 relates to the usual modified
Bessel function I,,(z) by I,(z) = I,(2y/Z) (see [19]).
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