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A 
hara
terization of Markov pro
esses enjoying thetime-inversion propertyS. Lawi∗1st June 2005Abstra
tWe give a ne
essary and su�
ient 
ondition for a homogeneous Markov pro
ess takingvalues in R
n to enjoy the time-inversion property of degree α. The 
ondition sets the shapefor the semigroup densities of the pro
ess and allows to further extend the 
lass of knownpro
esses satisfying the time-inversion property. As an appli
ation we re
over the result ofWatanabe in [24℄ for 
ontinuous and 
onservative Markov pro
esses on R+. As new exampleswe generalize Dunkl pro
esses and 
onstru
t a matrix-valued pro
ess with jumps related to theWishart pro
ess by a skew-produ
t representation.Keywords: homogeneous Markov pro
esses; time-inversion property; Bessel pro
esses; Dunkl pro-
esses; Wishart pro
esses; semi-stable pro
esses.Mathemati
s Subje
t Classi�
ation (2000): 60J25; 60J60; 60J65; 60J99.1 Introdu
tionLet {(Xt, t ≥ 0); (Px)x∈Rn} be a homogeneous Markov pro
ess with semigroup densities (assumedto exist):

Pt(x, dy) = pt(x, y)dy. (1.1)For all x ∈ R
n and some α > 0, the pro
ess {(tαX 1

t
, t > 0); Px} is Markov and in generalinhomogeneous.De�nition 1.1. The pro
ess {(Xt, t ≥ 0); Px} is said to enjoy the time-inversion property of degree

α if the Markov pro
ess {(tαX 1
t
, t > 0); Px} is homogeneous.Celebrated examples of Markov pro
esses, known to enjoy this property for α = 1, are Brownianmotions with drift in R

n and Bessel pro
esses with drift (see [21, 24℄). Gallardo and Yor [12℄ re
entlyworked out a su�
ient 
ondition on the semigroup densities for a Markov pro
ess to enjoy the time-inversion property. Their argument extended the 
lass of pro
esses to pro
esses with jumps su
has the Dunkl pro
ess [23℄ and matrix-valued pro
esses su
h as the Wishart pro
ess [3℄. The aim ofthe paper is to show that the former 
ondition is a
tually ne
essary and su�
ient and to providesome new examples.Se
tion 2 
ontains the main theorem of the paper, whi
h is proved in se
tion 3 using straightfor-ward analyti
al arguments. Se
tion 4 
onsiders an appli
ation of the theorem to Markov pro
esseson R+. The result is shown to be strong enough to entirely 
hara
terize the 
lass of di�usion pro-
esses on R+ that enjoy the time-inversion property and thus provide a di�erent proof than that
∗Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599, Université Paris VI & Université ParisVII, 4 Pla
e Jussieu, 75252 Paris Cedex 05, Fran
e. Email : lawi�proba.jussieu.fr.1



of Watanabe in [24℄. Se
tion 5 gives new examples of pro
esses that enjoy the time-inversion prop-erty. We review how the generalized Dunkl pro
ess �ts the requirements of the theorem and thenintrodu
e a matrix-valued pro
ess with jumps. The relation of the latter pro
ess to the Wishartpro
ess mimi
s the relation between the one-dimensional Dunkl and Bessel pro
esses.2 Markov pro
esses whi
h enjoy time-inversionFix x ∈ R
n. Re
all that under Px, the pro
ess (tαX 1

t
, t > 0) is Markov, inhomogeneous, withtransitional probability densities q

(x)
s,t (z, y), (s < t; z, y ∈ R

n), whi
h satisfy the following relation:
Ex

[

f(tαX 1
t
)

∣

∣ sαX 1
s

= z
]

=

∫

dy f(y) q
(x)
s,t (z, y) (2.1)where

q
(x)
s,t (a, b) = t−nα

p 1
t

(

x, b
tα

)

p 1
s
− 1

t

(

b
tα , a

sα

)

p 1
s

(

x, a
sα

) . (2.2)Throughout the paper, we assume the semigroup densities pt(x, y) to be positive over the domainand regular enough to be at least twi
e di�erentiable in the spa
e and time variables.The pro
ess (tαX 1
t
, t > 0) is not uniquely de�ned from the knowledge of the semigroup densities

pt(x, y). A
tually, there exists at least one transformation that leaves the semigroup densities
q
(x)
s,t (a, b) un
hanged: Doob's h-transform.De�nition 2.1. Doob's h-transform is the transformation

Th : Px|Ft
7→ h(Xt)

h(x)
e−νt Px|Ft

. (2.3)for some fun
tion h and some 
onstant ν > 0.This remark leads to our �rst two assertions.Proposition 2.2. Two pro
esses related by h-transforms yield the same pro
ess by time-inversion.Proposition 2.3. Th is an equivalen
e relation over the 
lass of homogeneous Markov pro
esses.It is hen
e legitimate to resear
h for a 
riterium to 
lassify all pro
esses that enjoy the time-inversion property up to h-transforms. The following theorem gives a 
on
ise statement of our mainresult:Theorem 2.4. The Markov pro
ess (tαX 1
t
, t > 0) is homogeneous if and only if the semigroupdensities of (Xt, t ≥ 0) are of the form:

pt(x, y) = t−
nα
2 Φ

( x

t
α
2

,
y

t
α
2

)

θ
( y

t
α
2

)

exp

{

ρ
( x

t
α
2

)

+ ρ
( y

t
α
2

)

} (2.4)or if they are in h-transform relationship with it. The fun
tions Φ, θ, ρ have the following propertiesfor λ > 0:1. Φ(λx, y) = Φ(x, λy);2. θ(λy) = λβ θ(y) for some β ∈ R;3. ρ(λx) = λ
2
α ρ(x);Moreover, if the symmetry 
ondition Φ(x, y) = Φ(y, x) is satis�ed, then the semigroup densities arerelated as follows:

q
(x)
t (a, b) =

Φ (x, b)

Φ (x, a)
exp

{

tρ (x)
}

pt(a, b). (2.5)2



De�nition 2.5. A Markov pro
ess (Xt, t ≥ 0) is 
alled semi-stable with index γ in the sense ofLamperti [18℄ if:
{

(Xct, t ≥ 0); Px

}

(d)
=

{

(cγXt, t ≥ 0); Px/cγ

}

. (2.6)As a 
onsequen
e, the semigroup densities of a semi-stable pro
ess with index γ have the followingproperty:
pt(x, y) = t−nγ p1

( x

tγ
,

y

tγ

)

. (2.7)Remarking that the expression for the semigroup densities in Theorem 2.4 satis�es this propertyfor γ = α/2 yields the following 
orollary:Corollary 2.6. A Markov pro
ess that enjoys the time-inversion property of degree α is a semi-stable pro
ess with index α/2, or is in h-transform relationship with it. The 
onverse is not true.3 Proof of the Theorem3.1 Su�
ien
yIf pt(x, y) satis�es the 
ondition (2.4), then from formula (2.2) the semigroup densities q
(x)
s,t (a, b)
an be written as

q
(x)
s,t (a, b) = (t − s)−

nα
2

3
∏

i=1

R
(i)
s,twhere

R
(1)
s,t = Φ

(

x t
α
2 ,

b

tα
t

α
2

)

Φ

(

b

tα

(

st

t − s

)
α
2

,
a

sα

(

st

t − s

)
α
2

)

Φ
(

x s
α
2 ,

a

sα
s

α
2

)−1

R
(2)
s,t = θ

(

b

tα
t

α
2

)

θ

(

a

sα

(

st

t − s

)
α
2

)

θ
( a

sα
s

α
2

)−1

R
(3)
s,t = exp

{

ρ
(

x t
α
2

)

+ ρ

(

b

tα
t

α
2

)

+ ρ

(

b

tα

(

st

t − s

)
α
2

)

+ ρ

(

a

sα

(

st

t − s

)
α
2

)

−ρ
(

x s
α
2

)

− ρ
( a

sα
s

α
2

)

}Using the properties of Φ, θ, ρ des
ribed in Theorem 2.4, we obtain:
R

(1)
s,t =

Φ(x, b)

Φ (x, a)
Φ

(

b

(t − s)
α
2

,
a

(t − s)
α
2

)

R
(2)
s,t = θ

(

b

(t − s)
α
2

)

R
(3)
s,t = exp

{

(t − s)ρ(x) + ρ

(

a

(t − s)
α
2

)

+ ρ

(

b

(t − s)
α
2

)}

.Hen
e there is no separate dependen
e on s and t, but only on the di�eren
e t− s, whi
h allows to
on
lude that
q
(x)
s,t (a, b) = q

(x)
t−s(a, b)and proves homogeneity for the pro
ess (tαX 1

t
, t > 0). If in addition Φ(x, y) = Φ(y, x), we obtain(2.5). 3



3.2 Ne
essityFor simpli
ity of notation, we prove the ne
essity of 
ondition (2.4) in the 
ase α = 1. The extensionto α > 0 is immediate by 
hange of variables Xt 7→ Xα
t . Re
all �rst the following de�nition ofhomogeneous fun
tions:De�nition 3.1. A fun
tion f : R

n → R that satis�es for x = (x1, . . . , xn), ∀λ ∈ R+,
f(λx) = λβf(x)is 
alled homogeneous of degree β ∈ R. If f ∈ C1(Rn), Euler's Homogeneous Fun
tion Theoremgives a ne
essary and su�
ient 
ondition for the fun
tion f(x) to be homogeneous:

n
∑

i=1

xi
∂

∂xi
f(x) = βf(x).Consider the fun
tion of 2n + 1 variables: l(x, y, t) = ln(pt(x, y)), x, y ∈ R

n. From (2.2), l mustsatisfy for s = t − h:
∂

∂t

[

n ln
1

t
+ l

(

x,
b

t
,
1

t

)

+ l

(

b

t
,

a

t − h
,

1

t − h
− 1

t

)

− l

(

x,
a

t − h
,

1

t − h

)]

= 0. (3.1)3.2.1 The kernel Φ(x, y)Taking derivatives with respe
t to bi and aj for some 0 ≤ i, j ≤ n yields:
∂

∂bi

∂

∂aj

∂

∂t
l

(

b

t
,

a

t − h
,

1

t − h
− 1

t

)

= 0.If we set φ (x, y, t) = ∂
∂xi

∂
∂yj

l (x, y, t), the latter be
omes
− 1

t2(t − h)

(

φ +
b

t
· ∇1φ

)

− 1

t(t − h)2

(

φ +
a

t − h
· ∇2φ

)

+
1

t(t − h)

(

1

t2
− 1

(t − h)2

)

∂φ = 0,with the notation ∇1 = ( ∂
∂x1

, . . . , ∂
∂xn

)T , ∇2 = ( ∂
∂y1

, . . . , ∂
∂yn

)T and φ = φ
(

b
t ,

a
t−h , 1

t−h − 1
t

). For
larity, we 
hange variables to
z1 =

b

t
, z2 =

a

t − h
, t1 = −1

t
, t2 =

1

t − h
.Then φ = φ(z1, z2, t1 + t2) and

t1

(

φ + z1 · ∇1φ + t1 ∂φ

)

= t2

(

φ + z2 · ∇2φ + t2 ∂φ

)

,or equivalently
t1

(

φ + z1 · ∇1φ + (t1 + t2) ∂φ

)

= t2

(

φ + z2 · ∇2φ + (t1 + t2) ∂φ

)

. (3.2)We 
hange variables on
e more: u = t1
t2

, v = t1 + t2 to get:
φ + z1 · ∇1φ + v ∂φ = u

(

φ + z2 · ∇2φ + v ∂φ
)

. (3.3)This gives the following proposition. 4



Proposition 3.2. Equation (3.3) is satis�ed if and only if
φ(λx, µy, λµt) =

1

λµ
φ(x, y, t). (3.4)Proof. As the LHS of equation (3.3) is independent of u, one 
an readily take the equivalent 
on-dition:

φ + z1 · ∇1φ + v ∂φ = 0, (3.5)
φ + z2 · ∇2φ + v ∂φ = 0. (3.6)Let g(λ) = φ(λz1, z2, λv) and h(µ) = φ(z1, µz2, µv). Equation (3.5) implies g(λ)+λg′(λ) = 0, whi
hsolves to g(λ) = λ−1g(1) and hen
e
φ(λz1, z2, λv) =

1

λ
φ(z1, z2, v).Equation (3.6) implies h(µ) + µh′(µ) = 0, whi
h solves to h(µ) = µ−1h(1) and hen
e

φ(z1, µz2, µv) =
1

µ
φ(z1, z2, v).Combining the latter two equations yields (3.4).Conversely, if g is homogeneous of degree −1 and h is homogeneous of degree −1, we get:

g(λ) + λg′(λ) = h(µ) + µh′(µ) = 0,whi
h is equivalent to (3.5) and (3.6) and 
on
ludes the proof.Note that the previous result remains valid for all se
ond derivatives of l(x, y, t) with respe
tto xi and yj , ∀i, j ∈ {1, . . . , n}. By integration over xi and yj , one 
an thus already make anassumption on the general shape of the fun
tion l:
l(x, y, t) = k(x, y, t) + ϕ1(x, t) + ϕ2(y, t) + h1(x) + h2(y) + τ(t), (3.7)where k : R

2n+1 → R, ϕ1, ϕ2 : R
n+1 → R, τ : R → R and h1, h2 : R

n → R. Moreover, the kernel
k(x, y, t) must satisfy the following property:

k(λx, µy, λµt) = k(x, y, t).This is immediate from (3.4) and
φ(λx, µy, λµt) =

∂

∂λxi

∂

∂µyj
l(λx, µy, λµt) =

∂

∂λxi

∂

∂µyj
k(λx, µy, λµt) =

1

λµ

∂

∂xi

∂

∂yj
k(λx, µy, λµt),

1

λµ
φ(x, y, t) =

1

λµ

∂

∂xi

∂

∂yj
l(x, y, t) =

1

λµ

∂

∂xi

∂

∂yj
k(x, y, t).This property is a
tually equivalent to

k

(

λ
x√
t
,

y√
t
, 1

)

= k

(

x√
t
, λ

y√
t
, 1

)Setting Φ
(

x√
t
, y√

t

)

= exp k(x, y, t) 
ompletes the proof of the �rst 
ondition of the theorem, i.e.
Φ(λx, y) = Φ(x, λy).5



3.2.2 The fun
tion ρ(x)We now fo
us on the fun
tions ϕ1(x, t), ϕ2(y, t). From (3.1), they must satisfy
∂

∂t

[

ϕ1

(

x,
1

t

)

+ ϕ2

(

b

t
,
1

t

)

+ ϕ1

(

b

t
,

1

t − h
− 1

t

)

+ ϕ2

(

a

t − h
,

1

t − h
− 1

t

)

− ϕ1

(

x,
1

t − h

)

− ϕ2

(

a

t − h
,

1

t − h

)]

= 0. (3.8)Re
all that the variables a, b, x are independent from ea
h other and that ϕ1, ϕ2 are de�ned to beexpli
itly dependent on their variables. So taking the derivative of (3.8) with respe
t to xi gives
1

t2
∂tψ1

(

x,
1

t

)

=
1

(t − h)2
∂tψ1

(

x,
1

t − h

)where ψ1(x, t) = ∂
∂xi

ϕ1(x, t). Hen
e ψ1(x, t) must be of the form ψ1(x, t) = 1
t ψ11(x)+ψ12(x), whi
himplies

ϕ1(x, t) =
1

t
ϕ11(x) + ϕ12(x).We omit the se
ond term as it 
an always be re
ast as part of h(x) in (3.7). There are so far nofurther 
onditions to add on the fun
tion ϕ11(x).Taking the derivative of (3.8) with respe
t to bi leads to

∂

∂bi

∂

∂t

[

ϕ2

(

b

t
,
1

t

)

+
t(t − h)

h
ϕ11

(

b

t

)]

= 0,whi
h develops to
− 1

t2
∂iϕ2 −

b

t3
· ∇∂iϕ2 −

1

t3
∂t∂iϕ2 +

2t − h

ht
∂iϕ11 −

t(t − h)

h

1

t2
∂iϕ11 −

t(t − h)

h

b

t3
· ∇∂iϕ11 = 0.Re
all that ψ11(x) = ∂

∂xi
ϕ11(x) and set ψ2(x, t) = ∂

∂xi
ϕ2(x, t). In this notation, we get

−1

t
ψ2 −

b

t2
· ∇ψ2 −

1

t2
∂tψ2 +

2t − h

h
ψ11 −

t(t − h)

h

1

t
ψ11 −

t(t − h)

h

b

t2
· ∇ψ11 = 0.Let z = b

t , t1 = 1
t , t2 = 1

t−h , then we have
ψ2(z, t1) + z · ∇ψ2(z, t1) + t1∂tψ2(z, t1) =

t2
t1(t2 − t1)

ψ11(z) − 1

t2 − t1
z · ∇ψ11(z).As the LHS is independent of t2, so must be the RHS, whi
h implies

z · ∇ψ11(z) = ψ11(z).Hen
e ψ11 is homogeneous of degree 1. In that 
ase,
ψ2(z, t1) + z · ∇ψ2(z, t1) + t1∂tψ2(z, t1) =

1

t1
ψ11(z).We solve the equation for g(λ) = ψ2(λz, λt1) to get g(λ) = 1

t1
ψ11(z)+ 1

λc(z, t1), where c(z, t1) turnsout to be a homogeneous fun
tion of degree −1. Integration over zi yields some 
onditions for
ϕ2(z, t). On
e again, sin
e the index i ∈ {1, . . . , n} was 
hosen arbitrarily, we obtain the following
hara
teristi
s:

ϕ1(λz, λt) =
ϕ11(λz)

λt
with ϕ11(λz) = λ2ϕ11(z)and

ϕ2(λz, λt) =
ϕ21(λz)

λt
+ ĉ(λz, λt),where ϕ21(λz) = λ2ϕ21(z) and even ϕ21(z) = ϕ11(z) without loss of generality. Let ρ(z) = ϕ11(z) =

ϕ12(z), then we re
over the third 
ondition of the theorem, that is
ρ(λz) = λ2ρ(z).6



3.2.3 The fun
tion θ(y)In order to further investigate the properties of ĉ(z, t), we derive (3.8) by ai:
∂

∂ai

∂

∂t

[

1

h
ϕ(a) + ĉ

(

a

t − h
,

1

t − h
− 1

t

)

− ĉ

(

a

t − h
,

1

t − h

)]

= 0.This leads to
c(z, t2 − t1) + z · ∇c(z, t2 − t1) +

t21 − t22
t2

∂tc(z, t2 − t1) = c(z, t2) + z · ∇c(z, t2) + t2∂tc(z, t2).Sin
e c(z, t) is homogeneous of degree −1, the RHS is zero. This only proves that ∂
∂tc(z, t) =

∂
∂t

∂
∂zi

ĉ(z, t) = 0,∀i. Hen
e, ĉ(z, t) = ĉ1(z) + ĉ2(t). Going ba
k to equation (3.8) derived by bi givesthis time for ĉ(z, t),
∂

∂bi

∂

∂t

[

ĉ

(

b

t
,
1

t

)]

=
∂

∂bi

∂

∂t

[

ĉ1

(

b

t

)]

= 0,whi
h 
learly implies ĉ1(
b
t ) = ĉ11(b) + ĉ12(

1
t ). Using equation (3.8) on
e more gives

∂

∂t

[

ĉ12

(

1

t

)

+ ĉ2

(

1

t

)

+ ĉ2

(

1

t − h
− 1

t

)

− ĉ2

(

1

t − h

)]

= 0, (3.9)whi
h is equivalent to
t21 ĉ′12(t1) + t21 ĉ′2(t1) + (t1 + t2)(t2 − t1) ĉ′2(t2 − t1) − t22 ĉ′2(t2) = 0.We set g(t) = tĉ′2(t) so that

t21 ĉ′12(t1) + t1 g(t1) = t2
(

g(t2) − g(t2 − t1)
)

− t1g(t2 − t1).Assuming lim
t1→0

LHS

t1
=

β

2
∈ R with |β| < ∞, we divide the equation by t1 and take the limit as

t1 → 0. This yields 1
2β = t2g

′(t2) − g(t2), whi
h solves for g(t) = − 1
2β + γt, γ ∈ R. Hen
e,

ĉ2(t) = −1

2
β ln t + γt and ĉ12(t) = β ln t,where any additional 
onstant term has been set to 0. It will be 
onvenient to set γ = 0. A term

γ 6= 0 
orresponds to the independent 
ase of an a�ne fun
tion of t in the sum (3.7) and is in
ludedin the dis
ussion for τ(t). To summarize, the fun
tion ĉ(z, t) must be expressed as
ĉ(z, t) = ĉ1(z) − β

2
ln t,where c1(z) has the following property: ĉ1(λz) = ĉ1(z) + β lnλ. Let θ(z) = exp ĉ1(z). We thenre
over 
ondition 2 of the theorem, i.e.

θ(λz) = λβ θ(z).3.2.4 The fun
tions h1(x), h2(y)The obvious solution to (3.1) in this 
ase is h(z) = h1(z) = −h2(z). exp h hen
e de�nes an
h-transform, whi
h is negle
ted sin
e we 
lassify all pro
esses up to h-transforms.

7



3.2.5 The fun
tion τ(t)It remains to expli
itly formulate the form of the fun
tion τ : R+ → R that is de�ned to satisfy
∂

∂t

[

−n ln t + τ

(

1

t

)

+ τ

(

1

t − h
− 1

t

)

− τ

(

1

t − h

)]

= 0.But this equation is similar to (3.9), so we immediately have the solution (γ ∈ R):
τ(t) = −n

2
ln t + γt.On
e again eγt 
an be in
luded in an h-transform, so γ is set to 0 and eτ(t) = t−

n
2 gives the �rstfa
tor in the semigroup densities (2.4).3.2.6 The general 
ase α > 0For α > 0, we use the 
hange of variables Xt 7→ Xα

t . The semigroup densities for Xα
t be
ome

pα
t (x, y) = pt

(

x
1
α , y

1
α

)

J(y)where J(y) is the Ja
obian of the inverse transformation, that is J(y) = α−n y
1
α
−1

1 · · · y
1
α
−1

n , andwe use the slight abuse of notation x
1
α =

(

x
1
α

1 , . . . , x
1
α
n

). The semigroup densities 
an be re
ast into
pα

t (x, y) = t−
nα
2 Φα

( x

t
α
2

,
y

t
α
2

)

θα
( y

t
α
2

)

exp

{

ρα
( x

t
α
2

)

+ ρα
( y

t
α
2

)

}where Φα(x, y) = Φ
(

x
1
α , y

1
α

) satis�es 
ondition 1, θα(y) = θ
(

y
1
α

)

J(y) satis�es 
ondition 2 for
β̄ = β+n

α − n and ρα(x) = ρ
(

y
1
α

) satis�es 
ondition 3 of equation (2.4).4 Appli
ation to di�usions on R+The 
ase of the di�usions on R+ was entirely 
hara
terized by Watanabe in [24℄. It was shown thatonly Bessel pro
esses in the wide sense (whi
h we re
all the de�nition below) enjoy the time-inversionproperty of degree 1.De�nition 4.1. For some ν > −1 and c ≥ 0, the di�usion pro
ess generated by
L =

1

2

∂2

∂x2
+

(

2ν + 1

2x
+

h′
c(x)

hc(x)

)

∂

∂x
(4.1)is 
alled Bessel pro
ess in the wide sense. The fun
tion hc(x) is given by

hc(x) = 2νΓ(ν + 1) (
√

2c x)−ν Iν(
√

2c x), (4.2)where Iν is the modi�ed Bessel fun
tion.Remark 4.2. The Bessel pro
ess in the wide sense is in h-transform relationship, for h ≡ hc, withthe Bessel pro
ess.We show that the result in [24℄ is a 
onsequen
e of Theorem 2.4, whi
h has the following one-dimensional formulation:
8



Theorem 4.3. The Markov pro
ess (tαX 1
t
, t > 0) on R+ is homogeneous if and only if the semi-group densities of (Xt, t ≥ 0) are of the form:

pt(x, y) = t−
α
2 (1+β) φ

(xy

tα

)

yβ exp

{

−k2

2

(

x
2
α

t
+

y
2
α

t

)} (4.3)for k > 0, or if it is in h-transform relationship with it. Moreover, the semigroup densities arerelated as follows:
q
(x)
t (a, b) =

φ (xb)

φ (xa)
exp

(

−t
k2

2
x

2
α

)

pt(a, b). (4.4)Proof. Theorem 2.4 formulated on R+ implies Φ(x, y) = φ(xy), θ(y) = yβ and ρ(x) = −k2

2 x
2
α , k >

0, for the 
ondition 1-3 to be satis�ed in one dimension.We identify further the 
lass of di�usion pro
esses and provide a di�erent proof for the result in[24℄.Proposition 4.4. If (Xt, t ≥ 0) is a di�usion pro
ess and (tX 1
t
, t > 0) is homogeneous and
onservative, then both are ne
essarily (possibly time-s
aled) Bessel pro
esses in the wide sense.Proof. If (Xt, t ≥ 0) is a di�usion pro
ess, then its in�nitesimal generator has the following generalstru
ture:

L = s(y)
∂2

∂y2
+ µ(y)

∂

∂ywhere it remains to identify the fun
tions s(y) and µ(y). For a �xed x > 0, let L(x) be thein�nitesimal generator of (tX 1
t
, t > 0). From equation (2.5), L(x) has the following relationshipwith L:

L(x) : f(b) 7→ 1

φ(xb)
L

(

φ(xb)f(b)
)

− k2

2
x2f(b),whi
h develops to

L(x)f(b) = s(b)f ′′(b) +

{

µ(b) + 2x s(b)
φ′(xb)

φ(xb)

}

f ′(b) + U(x, b)f(b).For the pro
ess to be 
onservative, we require U(x, b) = 0, whi
h implies no killing in the interiorof the domain, that is
s(b) x2 φ′′(xb)

φ(xb)
+ µ(b) x

φ′(xb)

φ(xb)
− k2

2
x2 = 0.We 
hange variables to z = xb to obtain

s(z/x) φ′′(z) +
µ(z/x)

x
φ′(z) − k2

2
φ(z) = 0.Sin
e the latter must be valid for all x > 0, we are led to set: s(b) = σ2

2 for σ > 0 and µ(b) = σ2

2
2ν+1

bfor ν > −1. This yields the following equation
1

2
φ′′(z) +

2ν + 1

2z
φ′(z) − k2

2σ2
φ(z) = 0.The general solution (non-singular at 0 and up to a 
onstant fa
tor) is expressed through themodi�ed Bessel fun
tion of the �rst kind as follows:

φ(z) =

(

kz

σ

)−ν

Iν

(

kz

σ

)

.9



Gathering the di�erent fa
tors in (4.3) leads to
pt(x, y) = N t−

1+β
2

(xy

t

)−ν

Iν

(

k

σ

xy

t

)

yβ exp

{

−k2

2

(

x2

t
+

y2

t

)}

,where N is a normalization fa
tor. The additional 
ondition that lim
t→0

pt(x, y) = δ(x − y) implies
β = 2ν + 1 and k = 1

σ , whi
h leads to the semigroup densities of a time-s
aled Bessel pro
ess ofdimension ν:
pt(x, y) =

y

σ2t

(y

x

)ν

Iν

( xy

σ2t

)

exp

{

−x2 + y2

2σ2t

}

.The in�nitesimal generator for (tX 1
t
, t > 0) is given by

L(x) =
σ2

2

∂2

∂b2
+ σ2

{

2ν + 1

2b
+ x

φ′(xb)

φ(xb)

}

∂

∂b
,where one re
ognizes expression (4.1) for hc(b) = φ(xb) and a time-s
ale t 7→ σ2t.Proposition 4.4 smoothly extends to any power α > 0 of the Bessel pro
ess through the mapping

Xt 7→ Xα
t . In parti
ular, it is worth remarking that the 
ase α = 2 gives rise to squares of Besselpro
esses, whi
h leads to the following result:Proposition 4.5. If (Xt, t ≥ 0) is a di�usion pro
ess and (t2X 1

t
, t > 0) is homogeneous and
onservative, then both are ne
essarily (possibly time-s
aled) squares of Bessel pro
esses in the widesense.5 Examples5.1 Generalized Dunkl pro
esses and Ja
obi-Dunkl pro
esses5.1.1 Multidimensional Dunkl pro
essesWe brie�y review the 
onstru
tion of the Dunkl pro
ess in R

n (see [22, 23℄).De�nition 5.1. The Dunkl pro
ess in R
n is the Markov 
àdlàg pro
ess with in�nitesimal generator
1

2
L(k) =

1

2

n
∑

i=1

T 2
i (5.1)where Ti, 1 ≤ i ≤ n, is a one-dimensional di�erential-di�eren
e operator de�ned for u ∈ C1(Rn) by

Tiu(x) =
∂u(x)

∂xi
+

∑

α∈R+

k(α)αi
u(x) − u(σαx)

〈α, x〉 . (5.2)
〈·, ·〉 is the usual s
alar produ
t. R is a root system in R

n and R+ a positive subsystem. k(α) isa non-negative multipli
ity fun
tion de�ned on R and invariant by the �nite re�e
tion group Wasso
iated with R. σα is the re�e
tion operator with respe
t to the hyperplane Hα orthogonal to
α su
h that σαx = x − 〈α, x〉α and for 
onvenien
e 〈α, α〉 = 2 (see [8, 9℄).A result obtained by M. Rösler [22℄ yields the semigroup densities as follows:

p
(k)
t (x, y) =

1

cktγ+n/2
exp

(

−|x|2 + |y|2
2t

)

Dk

(

x√
t
,

y√
t

)

ωk(y) (5.3)
10



where Dk(x, y) > 0 is the Dunkl kernel, ωk(y) =
∏

α∈R+

|〈α, y〉|2k(α) the weight fun
tion whi
h ishomogeneous of degree 2γ = 2
∑

α∈R+

k(α) and ck =

∫

Rn

e−
|x|2

2 ωk(x)dx.Following a thorough study of the properties of the one-dimensional Dunkl pro
ess in [13℄, itwas remarked in [12℄ that the Dunkl pro
ess in R
n enjoys the time-inversion property of degree 1.Considering that the Dunkl kernel satis�es

Dk(x, y) = Dk(y, x) and Dk(µx, y) = Dk(x, µy), (5.4)the proof is straightforward with
Φ(x, y) ≡ Dk(x, y), θ(y) ≡ ωk(y), ρ(x) ≡ −|x|2

2
. (5.5)By equation (2.5), the semigroup densities of the time-inverted pro
ess is even in h-transformrelationship with the semigroup densities of the original Dunkl pro
ess:

q
(x)
t (a, b) =

Dk(x, b)

Dk(x, a)
exp

(

−|x|2
2

t

)

p
(k)
t (a, b). (5.6)5.1.2 Generalized Dunkl pro
essesIn an attempt to generalize the Dunkl pro
ess, we extend the de�nition of the in�nitesimal generatorto

L(k,λ)f(x) =
1

2
∆f(x) +

∑

α∈R+

k(α)
〈∇f(x), α〉

〈x, α〉 +
∑

α∈R+

λ(α)
f(σαx) − f(x)

〈x, α〉2 (5.7)where ∆ is the usual Lapla
ian, f ∈ C2(Rn) and λ(α) is a non-negative multipli
ity fun
tion de�nedon R and invariant by the �nite re�e
tion group W , similarly as k(α). We retrieve the Dunkl pro
essfor λ(α) = k(α). Note that these pro
esses are no longer martingales for λ(α) 6= k(α).The one-dimensional 
ase was introdu
ed in [13℄, where the semigroup densities were expli
itlyderived,
p
(k,λ)
t (x, y) =

1

tk−
1
2

yk− 1
2 exp

(

−x2 + y2

2t

)

Dk,λ

(xy

t

) (5.8)with the generalized Dunkl kernel, (ν = k − 1
2 , µ =

√
ν2 + 4λ),

Dk,λ (z) = 1{y∈R−}
1

2zν
(Iν − Iµ) (−z) + 1{y∈R+}

1

2zν
(Iν + Iµ) (z) , (5.9)for z = xy

t . From (5.4), the generalized Dunkl kernel satis�es
Dk,λ(x, y) = Dk,λ(y, x) and Dk,λ(µx, y) = Dk,λ(x, µy), (5.10)whi
h readily implies that the generalized Dunkl pro
ess also enjoys the time-inversion property ofdegree 1. The semigroup densities were derived as an appli
ation of the skew-produ
t representationof the generalized Dunkl pro
ess (Xt, t ≥ 0) in terms of its absolute value (a Bessel pro
ess) andan independent Poisson pro
ess N

(λ)
t :

Xt
(d)
= |Xt|(−1)N

(λ)
At (5.11)where At =

∫ t

0
ds
X2

s
.In the n-dimensional 
ase, the appli
ation of the skew-produ
t representation derived by Chy-biryakov [6℄ shows that the generalized Dunkl pro
ess enjoys time-inversion for some spe
i�
 rootsystems. We �rst re
all one of the main results of [6℄.11



Proposition 5.2. Let (Xt, t ≥ 0) be the generalized Dunkl pro
ess generated by (5.7), with (XW
t , t ≥

0) its radial part, i.e. the pro
ess 
on�ned to a Weyl 
hamber. Let R+ ≡ {α1, . . . , αl} for some l ∈ Nbe the 
orresponding positive root system and let (N i
t , t ≥ 0), i = 1, . . . , l be independent Poissonpro
esses of respe
tive intensities λ(αi). Then Xt may be represented as Y l

t , whi
h is de�ned byindu
tion as follows:
Y 0

t = XW
t and Y i

t = σ
Ni

Ai
t

αi Y i−1
t , i = 1, . . . , l,where Ai

t =

∫ t

0

ds

〈Y i−1
s , αi〉2

.The proof follows the argument in [6℄, while repla
ing k(αi) by λ(αi) appropriately.From now on, let R+ ≡ {α1, . . . , αl} for some l ≤ n be an orthogonal positive root system, thatis 〈αi, αj〉 = 2δij . For this parti
ular root system, one 
an show that the generalized Dunkl pro
essenjoys time-inversion of degree 1. We �rst prove the following absolute 
ontinuity relation:Lemma 5.3. Let (XW
t , t ≥ 0) be the radial Dunkl pro
ess with in�nitesimal generator

LW
k f(x) =

1

2
∆f(x) +

l
∑

i=1

k(αi)
〈αi,∇f(x)〉

〈αi, x〉
. (5.12)Fixed ν ∈ {1, . . . , l}. Let k′(α) be another 
oe�
ient fun
tion on the root system R+ su
h that

k′(αν) > k(αν) and k′(αi) = k(αi) for i 6= ν. Then, denoting P
(k)
x the law of the radial Dunklpro
ess XW

t starting from x, we have
P(k′)

x

∣

∣

Ft
=

( 〈αν ,XW
t 〉

〈αν , x〉

)k′(αν)−k(αν)

exp

[

−
(

k′(αν) − 1
2

)2 −
(

k(αν) − 1
2

)2

2

∫ t

0

ds

〈αν ,XW
s 〉2

]

·P(k)
x

∣

∣

Ft
.(5.13)Proof. Let k0(α) be a 
oe�
ient su
h that k0(αν) = 1

2 for some �xed i ∈ {1, . . . , l}. XW
t has thefollowing martingale de
omposition (see [11℄):

XW
t = x + B

(k0)
t +

l
∑

i=1

k0(αi)

∫ t

0

ds

〈αi,XW
s 〉 αiwhere B

(k0)
t is a (P

(k0)
x ,Ft)-Brownian motion. Consider the lo
al martingale

L
(k′)
t = exp

(

(

k′(αν) − 1

2

)
∫ t

0

〈αν , dB
(k0)
s 〉

〈αν ,XW
s 〉 −

(

k′(αν) − 1
2

)2

2

∫ t

0

ds

〈αν ,XW
s 〉2

)

,for some 
oe�
ient fun
tion k′(α) su
h that k′(αν) > 1
2 and k′(αi) = k0(αi) for i 6= ν. The It�formula for ln

(

〈αν ,XW
t 〉

) 
ombined with the orthogonality of the roots yields
L

(k′)
t =

( 〈αν ,XW
t 〉

〈αν , x〉

)k′(αν)− 1
2

exp

(

−
(

k′(αν) − 1
2

)2

2

∫ t

0

ds

〈αν ,XW
s 〉2

)

.De�ne the new law P
(k′)
x |Ft

= L
(k′)
t · P(k0)

x |Ft
. By the Girsanov theorem,

B
(k′)
t = B

(k0)
t −

(

k′(αν) − 1

2

)
∫ t

0

ds

〈αν ,XW
s 〉is a (P

(k′)
x ,Ft)-Brownian motion and hen
e,

XW
t = x + B

(k′)
t +

l
∑

i=1

k′(αi)

∫ t

0

ds

〈αi,XW
s 〉 αi12



is a radial Dunkl pro
ess under (P
(k′)
x ,Ft).De�ne k as another 
oe�
ient on the root system that satis�es the 
onditions enun
iated in thelemma. The absolute 
ontinuity relation is then a 
onsequen
e of the su

essive appli
ation of thelatter result to the indi
es k′ and k.Now as an appli
ation of Proposition 5.2, we prove the following:Proposition 5.4. Let R+ ≡ {α1, . . . , αl} be an orthogonal positive root system for l ≤ n. Thenthe generalized Dunkl pro
ess (Xt, t ≥ 0) generated by (5.7) enjoys the time-inversion property ofdegree 1.Proof. Using orthogonality of the roots, remark that

〈αi, σjx〉2 = 〈αi, x − 〈αj , x〉αj〉2 = 〈αi, x〉2,whi
h implies in parti
ular
〈αi, Y

i
t 〉2 = 〈αi,X

W
t 〉2,so that the indu
tive representation of Xt in Proposition 5.2 be
omes

Xt =

l
∏

i=1

σ
Ni

Ai
t

αi XW
t for Ai

t =

∫ t

0

ds

〈XW
s , αi〉2

.The radial part of a Dunkl pro
ess enjoys the time-inversion property of degree 1. We need to showthat the semigroup densities of the generalized Dunkl pro
ess are related to the semigroup densitiesof its radial parts. For f ∈ C2(Rn),
Ex

[

f(Y i
t )

]

= Ex

[

f(Y i−1
t )1{Ni

Ai
t

is even}
]

+ Ex

[

f(σαi
Y i−1

t )1{Ni

Ai
t

is odd}
]

.Sin
e P(N i
u is even) = 1

2 (1 + exp(−2λ(αi)u)), we obtain
Ex

[

f(Y i
t )

]

= Ex

[

f(Y i−1
t )

1

2

(

1 + exp(−2λ(αi)A
i
t)

)

]

+ Ex

[

f(σαi
Y i−1

t )
1

2

(

1 − exp(−2λ(αi)A
i
t)

)

]

.The expe
tation Ex

[

f(Xt)
] 
an thus be evaluated by indu
tion on i ∈ {1, . . . , l}. It follows that thesemigroup densities of Xt 
an be expressed as the produ
t of the semigroup densities of its radialparts times a fun
tion involving expe
tations of the form

E(k)
x

[

exp (−2λ(αν)Aν
t )

∣

∣

∣

∣

XW
t = y

]

,for ν ∈ {1, . . . , l}. From Lemma 5.3,
E(k)

x

[

exp (−2λ(αν)Aν
t )

∣

∣

∣

∣

XW
t = y

]

=
p
(k′)
t (x, y)

p
(k)
t (x, y)

( 〈αν , y〉
〈αν , x〉

)k(αν)−k′(αν)

,where k′(αi) = k(αi) for i 6= ν and k′(αν) = 1
2 +

√

(

k(αν) − 1
2

)2
+ 4λ(αν). The form of thesemigroup densities in (5.3) implies that the expe
tation is a ratio of Dunkl kernels,

E(k)
x

[

exp (−2λ(αν)Aν
t )

∣

∣

∣

∣

XW
t = y

]

=
ck

ck′

Dk′

(

x√
t
, y√

t

)

Dk

(

x√
t
, y√

t

)

wk′

(

y√
t

)

wk

(

y√
t

)

(

〈αν , y√
t
〉

〈αν , x√
t
〉

)k(αν)−k′(αν)

,whi
h redu
es to
E(k)

x

[

exp (−2λ(αν)Aν
t )

∣

∣

∣

∣

XW
t = y

]

=
ck

ck′

Dk′

(

x√
t
, y√

t

)

Dk

(

x√
t
, y√

t

)

(

〈αν ,
y√
t
〉〈αν ,

x√
t
〉
)k′(αν)−k(αν)

,13



by de�nition of k′(α). The 
onditional expe
tation thus satis�es 
ondition 1 of Theorem 2.4. As a
onsequen
e, the 
onditions of Theorem 2.4 are satis�ed for
Φ(x, y) ≡ Dk,λ(x, y), θ(y) ≡ ωk(y), ρ(x) ≡ −|x|2

2where Dk,λ(x, y) is a generalized Dunkl kernel given expli
itly in terms of radial Dunkl kernels andsatisfying equivalent 
onditions (see (5.4)).5.1.3 Ja
obi-Dunkl pro
essesGallardo et al. [5℄ derived the Ja
obi-Dunkl pro
ess as the hyperboli
 analog of the one-dimensionalDunkl pro
ess. It is de�ned as the pro
ess generated by
L(α,β)f(x) =

∂2f(x)

∂x2
+

A′(x)

A(x)

∂f(x)

∂x
+

∂

∂x

(

A′(x)

A(x)

) (

f(x) − f(−x)

2

)

, (5.14)where A(x) =
(

sinh2(x)
)α+ 1

2
(

cosh2(x)
)β+ 1

2 . From the expression of the semigroup densities de-veloped in [5℄, this pro
ess does not enjoy the time-inversion property. Its radial part however
orresponds to the Ja
obi pro
ess of index (α, β) on R+ (see [15, 16℄). The in�nitesimal generatorof the Ja
obi pro
ess, expressed by
L(α,β)f(x) =

1

2

∂2f(x)

∂x2
+

A′(x)

A(x)

∂f(x)

∂x
, (5.15)is in h-transform relationship with the Lapla
ian operator for h(x) =

√

A(x). Sin
e the Brownianmotion enjoys the time-inversion property of degree 1, so does the Ja
obi pro
ess by Theorem 2.4.5.2 Matrix-valued pro
esses5.2.1 Eigenvalue pro
essesDyson in [10℄ des
ribed the eigenvalues of a Hermitian Brownian motion as the joint evolution ofindependent Brownian motions 
onditioned never to 
ollide (see also [14℄ and [4℄). It was furtherremarked that the pro
ess version of the Gaussian orthogonal ensemble does not admit su
h arepresentation for its eigenvalues. This work was extended by König and O'Connell in [17℄ to thepro
ess version of the Laguerre ensemble, denominated the Laguerre pro
ess and de�ned as follows:De�nition 5.5. Let Bt be an n×m matrix with independent standard 
omplex Brownian entries.The Laguerre pro
ess is the matrix-valued pro
ess de�ned by {Xt = B′
tBt, t ≥ 0}, where B′

t is thetranspose of Bt.From [17℄, the eigenvalues of the Laguerre pro
ess evolve like m independent squared Bessel pro-
esses 
onditioned never to 
ollide. No su
h representation however exists for the 
ase where theentries of Bt are real Brownian motions, i.e. the Wishart pro
ess 
onsidered by Bru in [3℄.The main result of [17℄ is that both of the above mentioned eigenvalues pro
esses (in the 
omplexBrownian 
ase) 
an be obtained as the h-transform of pro
esses with m independent 
omponents.The joint eigenvalues pro
ess is thus in h-transform relationship with a pro
ess that enjoys the timeinversion property of degree 1 in the 
ase of the m-dimensional Brownian motion and degree 2 inthe 
ase of the m-dimensional squared Bessel pro
ess, as made expli
it in the following proposition:Proposition 5.6. Let pt(xi, yi) (i = 1, . . . ,m) be the semigroup densities of squared Bessel pro
esses(respe
tively Brownian motions), and let
h(x) =

m
∏

i<j

(xj − xi) (5.16)14



for x = (x1, . . . , xm). Then, the semigroup densities of the joint eigenvalues pro
ess of the Laguerrepro
ess (respe
tively the Hermitian Brownian motion) are given by
p̃t(x, y) =

h(y)

h(x)

m
∏

i=1

pt(xi, yi) (5.17)with respe
t to the Lebesgue measure dy =

m
∏

i=1

dyi.It follows immediately by Theorem 2.4 that the eigenvalues pro
esses enjoy the time-inversionproperty. Moreover by Proposition 2.2, they yield the same pro
ess under time-inversion as the
m-dimensional Brownian motion or the m-dimensional squared Bessel pro
ess respe
tively.5.2.2 Wishart pro
essesThe Wishart pro
ess WIS(δ, tIm, 1

t x), introdu
ed by Bru in [2℄, is a 
ontinuous Markov pro
esstaking values in the spa
e of real symmetri
 positive de�nite m × m matri
es S+
m. It is solution tothe following sto
hasti
 di�erential equation:

dXt =
√

XtdBt + dB′
t

√

Xt + δImdt, X0 = x, (5.18)where Bt is an m × m matrix with Brownian entries and Im the identity matrix. Further resultshave been obtained in [1℄ and [3℄. In [7℄, among other major �ndings about the Wishart pro
ess,the transition probability densities expressed with respe
t to the Lebesgue measure dy =
∏

i≤j

(dyij)were derived in terms of generalized Bessel fun
tions (we refer to the appendix for the de�nition):
pt(x, y) =

1

(2t)
m(m+1)

2

exp

(

− 1

2t
T r(x + y)

) (

det(y)

det(x)

)

δ−m−1
4

Ĩ δ−m−1
2

( xy

4t2

)

, (5.19)for x, y ∈ S+
m and δ > m − 1. From the shape of its densities, the Wishart pro
ess was statedin [12℄ as an example of Markov pro
esses enjoying the time-inversion property of degree 2. Thehypothesis of Theorem 2.4 is indeed satis�ed for n = 1

2m(m + 1) and
Φ(x, y) ≡ (det(x) det(y))

− δ−m−1
4 Ĩ δ−m−1

2

(xy

4

)

, θ(y) ≡ 1

2n
(det(y))

δ−m−1
2 , ρ(x) ≡ −1

2
Tr(x).(5.20)Next we use a skew-produ
t representation, as for the Dunkl pro
ess, to elaborate on the Wishartpro
ess and derive a matrix-valued pro
ess with jumps. The skew-produ
t representation allowsthe expression of the semigroup densities in terms of the Wishart transition probability densities.De�nition 5.7. Let (N

(λ)
t , t ≥ 0) be a Poisson pro
ess with intensity λ. Let (Xt, t ≥ 0) be aWishart pro
ess WIS(δ, tIm, 1

t x) independent of the Poisson pro
ess. The skew-Wishart pro
ess
(X

(λ)
t , t ≥ 0) is de�ned through the skew-produ
t

X
(λ)
t = Xt (−1)N

(λ)
At (5.21)where At =

∫ t

0

Tr(X−1
s )ds.Proposition 5.8. The transition probability densities of the skew-Wishart pro
ess are related tothe semigroup densities pt(x, y) of the Wishart pro
ess Xt as follows

p
(λ)
t (x, y) = pt(x, |y|)

{

1{y∈S+
m}

1

2

(

1 +

(

Ĩν′

Ĩν

)

( xy

4t2

)

)

+ 1{y∈S−
m}

1

2

(

1 −
(

Ĩν′

Ĩν

)

(−xy

4t2

)

)}

.(5.22)for ν = δ−m−1
2 , ν′ =

√
ν2 + 4λ and |y| = y(1{y∈S+

m} − 1{y∈S−
m}).15



Proof. Let (Pt)t>0 be the semigroup of the Dunkl-Wishart pro
ess. For x > 0 and f ∈ Cc(Mm(R)),
Ptf(x) = Ex

[

f(X
(λ)
t )

]

= Ex

[

f(Xt) 1{N
(λ)
At

is even}

]

+ Ex

[

f(−Xt) 1{N
(λ)
At

is odd}

]

.With P(N
(λ)
u is even) = 1

2 (1 + exp(−2λu)), we have
Ptf(x) = Ex

[

f(Xt)
1

2
(1 + exp(−2λAt))

]

+ Ex

[

f(−Xt)
1

2
(1 − exp(−2λAt))

]

. (5.23)Let Q
(ν′)
x with ν′ = δ′−m−1

2 denote the probability law of a Wishart pro
ess WIS(δ′, tI, 1
t x), and

Q
(ν)
x with ν = δ−m−1

2 the probability law of Xt. A

ording to Theorem 1.2 (Remark 2.3) in [7℄,the probability laws are related as follows:
Q(ν′)

x

∣

∣

Ft
=

(

det Xt

det x

)

ν′−ν
2

exp

(

−ν′2 − ν2

2

∫ t

0

Tr(X−1
s )ds

)

· Q(ν)
x

∣

∣

Ft
,from whi
h we dedu
e

p
(ν′)
t (x, y)

p
(ν)
t (x, y)

=

(

det y

det x

)

ν′−ν
2

Q(ν)
x

[

exp

(

−ν′2 − ν2

2

∫ t

0

Tr(X−1
s )ds

) ∣

∣

∣

∣

Xt = y

]

.Thus, from the expression of the semigroup densities in (5.19), we have
E(ν)

x

[

exp

(

−2λ

∫ t

0

Tr(X−1
s )ds

)
∣

∣

∣

∣

Xt = y

]

=

(

Ĩ√ν2+4λ

Ĩν

)

( xy

4t2

)

.Combining the latter with (5.23) yields the semigroup densities for the skew-Wishart pro
ess.The skew-Wishart is an example of matrix-valued pro
ess with jumps that enjoys the time-inversion property of degree 2. Indeed, by setting
Φ(x, y) ≡ (det(x) det(|y|))−

ν
2

{

1{y∈S+
m}

1

2

(

Ĩν + Ĩν′

)(xy

4

)

+ 1{y∈S−
m}

1

2

(

Ĩν − Ĩν′

)

(−xy

4

)}

,

θ(y) ≡ 1

2n
(det(|y|))ν , ρ(x) ≡ −1

2
Tr(|x|), (5.24)the 
onditions of Theorem 2.4 are satis�ed for α = 2.
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A Generalized hypergeometri
 fun
tionsUsing the notation in Muirhead [20℄, hypergeometri
 fun
tions of matrix arguments are de�ned fora real symmetri
 m × m matrix X, ai ∈ C and bj ∈ C\{0, 1
2 , 1, . . . , m−1

2 } by
pFq(a1, . . . , ap; b1, . . . , bq;X) =

∞
∑

k=0

∑

κ

(a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

Cκ(X)

k!
(A.1)where the se
ond summation is over all partitions κ = (k1, . . . , km), k1 ≥ · · · ≥ km ≥ 0, of

k =
∑m

i=1 ki, k! = k1! · · · km! and the generalized Po
hhammer symbols are given by
(a)κ =

m
∏

i=1

(

a − i − 1

2

)

ki

, (a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1.

Cκ(X) is the zonal polynomial 
orresponding to κ, whi
h is a symmetri
, homogeneous polynomialof degree k in the eigenvalues of X that satis�es
Cκ(Y X) = Cκ(

√
Y X

√
Y ) (A.2)for some Y ∈ S+

m. The fun
tion pFq(a1, . . . , ap; b1, . . . , bq;Y X) thus makes sense. Finally, we de�nethe generalized modi�ed Bessel fun
tion by
Ĩν(X) =

(det(X))
ν
2

Γm

(

ν + m+1
2

) 0F1

(

ν +
m + 1

2
;X

) (A.3)where the generalized gamma fun
tion is given as a produ
t of the usual gamma fun
tions,
Γm (α) = π

m(m−1)
4

m
∏

i=1

Γ

(

α − i − 1

2

) (A.4)for Re(α) > m−1
2 . Note that the generalized modi�ed Bessel for m = 1 relates to the usual modi�edBessel fun
tion Iν(x) by Ĩν(x) = Iν(2

√
x) (see [19℄).Referen
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