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Counter-Examples to the

Concentration-Cancellation Property

Christophe CHEVERRY 1, Olivier GUÈS 2

Abstract. We study the existence and the asymptotic behavior of large ampli-

tude high-frequency oscillating waves subjected to the 2D Burger equation. This

program is achieved by developing tools related to supercritical WKB analysis.

By selecting solutions which are divergence free, we show that incompressible or

compressible 2D Euler equations are not locally closed for the weak L2 topology.

1 Introduction.

This article is devoted to the study of the two dimensional incompressible
Euler equation

(1.1) ∂tu + (u · ∇x)u + ∇xp = 0 , divx u = 0

as well as to the study of the two dimensional Burger equation

(1.2) ∂tu + (u · ∇x)u + f = 0 .

The time, space and state variables are respectively

t ∈ R , x = t(x1, x2) ∈ R
d , u = t(u1,u2) ∈ R

d , d = 2 .

The equations (1.1) and (1.2) are completed with some initial data having
locally finite kinetic energy

(1.3) u(0, x) = h(x) = t
(

h1(x), h2(x)
)

∈ L2
loc(R

2; R2) .
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1.1 The main result.

The analysis of the Cauchy problems (1.1)-(1.3) and (1.2)-(1.3) depends
strongly on the regularity assumptions imposed on the function h. For
instance, consider (1.1)-(1.3). When

h ∈ Es :=
{

v ∈ L2
loc(R

2; R2) ; curl v := ∂1v
2−∂2v

1 ∈ (L1∩L∞)(R2; R)
}

the solution u of (1.1)-(1.3) is global in time and is unique [2]-[4]-[24]. Now,
since the equation (1.1) can be put in the conservative form

∂tu + divx (u⊗u) + ∇xp = 0 , divx u = 0 , u⊗u := (uj ui)1≤i,j≤2 ,

one is tempted to work in a more general functional framework. This means
to enter the field of weak solutions to (1.1). In the case of vortex-sheet initial
data with vorticity of distinguished sign

(1.4) h ∈ Ew :=
{

v ∈ L2
loc(R

2; R2) ; 0 ≤ curl v ∈ M(R2; R)
}

,

existence results hold whereas the question of uniqueness is still open. The
first proof is due to J.-M. Delort [10]. Then, further informations have
been obtained. For background and expository accounts on this subject,
the reader may consult [2], [22] and the related references.

The usual way (see for instance [2], [10] and [22]) to derive existence results of
weak solutions to (1.1) is based on two steps. First, construct approximate-
solution sequences {uε}ε∈]0,1] of (1.1), either by smoothing the initial data
h or by adding to (1.1) a small viscosity (to get Navier-Stokes equations).
Secondly, exhibit a property of concentration-cancellation which means that
the family {uε}ε does not converge (as ε goes to 0) strongly in L2

loc yet all
the extracted L2

loc weak limits still satisfy (1.1).

This approach is well presented and clearly explained in the recent book of
L. Bertozzi and A. Majda [2] (read especially the surveys given in chapters
10, 11 and 12). To achieve the second step, the difficulty is to identify the
limit of the nonlinear terms contained in the expression divx (uε ⊗ uε). At
this level, the articles [10] and [22] exploit in a crucial way the informations
which can be deduced from the regularity assumption (1.4).

Now, up to the present, when d = 2, the weak limits of approximate solutions
of (1.1) have always been observed to be solutions of (1.1). Thus, one can
ask if the property of concentration-cancellation does generalize to the space
L2 of energy estimates. This question is explicitly raised in [2]-p. 479. It
makes sense also in the less restrictive framework L2

loc.

However, such a program comes again a deep objection because:
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Theorem 1.1. There is a bounded open domain Ω ⊂ R × R
2 and a family

of functions {uε}ε such that

i) uε ∈ C1(Ω) , sup
{

‖ uε ‖L∞(Ω) ; ε ∈ ]0, 1]
}

< ∞ ,

ii) uε is a solution of (1.1) on Ω,

iii) uε converges weakly (as ε goes to zero) to u0 ∈ C1(Ω).

But u0 is not a solution of (1.1).

When the space dimension is three (d = 3), the corresponding result can
easily be proved, see [11]-p. 674 or [2]-p. 478. It suffices to look at simple
waves which undergo rapid variations with respect to a linear phase k · x
where k ∈ R

3. Note θ ∈ T := R/Z a fast variable. Build the oscillation

(1.5) uε(t, x) = H(t, x, k · x/ε) , H(t, x, θ) ∈ C∞(R × R
3 × T; R3) .

The profile H can be adjusted so that uε is a solution of (1.1) and (1.2) with
respectively p constant and f ≡ 0. But the associated weak limit u0 is not
a solution to (1.1). Observe that

u0(t, x) = H̄(t, x) :=
∫ 1
0 H(t, x, θ) dθ = H(t, x, θ) − H∗(t, x, θ) .

When d = 2, such a basic procedure does not apply. Of course, there are
solutions to (1.1) of the form (1.5) with x ∈ R

2 and k ∈ R
2. However, all

known examples of such solutions produce weak limits which satisfy (1.1).
Thus, to push further the investigations, it is necessary to take into ac-
count more general structures including nonlinear phases and perturbations
of simple waves. On this way, new difficulties appear.

In fact, the study of solution sequences {uε}ε∈ ]0,1] to (1.1) can reveal very
complex phenomena. The asymptotic behavior of uε when ε goes to zero
can involve both concentrations and oscillations. Certainly, this is a current
challenge to understand what happens in the limiting process. Our aim here
is precisely to bring informations of this type. This is achieved by following
an original strategy which is presented below.

1.2 Compatibility conditions for initial data.

Section 2 is devoted to the Cauchy problem (1.2)-(1.3) which recently raised
new interests [3]-[15]-[21]. The initial data h is defined on some open set
ω ⊂ R

2. Moreover h and its derivatives up to the order one are bounded.
We take h ∈ C1

b (ω; R2). The source term f is globally defined on R × R
2

and it is of class C1, that is f ∈ C1(R × R
2; R2).
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To any parameter τ ∈ ]0, 1] is associated a set Bτ (ω) of admissible data (h, f)
and some non trivial domain Ωτ ⊂ R

+×R
2 which contains {0}×ω. Lemma

2.2 says that if (h, f) ∈ Bτ (ω) the local in time C1 solution u of (1.2)-(1.3)
can be extended to the whole domain Ωτ .

Three special cases fι ≡ ∇xpι

(

with ι ∈ {−1, 0, 1} and pι(t, x) := ι
2 |x|2

)

for the choice of f are then distinguished. When f ≡ fι, the conditions
mentioned above concern only h and are noted in abbreviated form h ∈
Bτ

ι (ω). In fact, they reduce to some control on the quantities h, divx h and
detDxh. This is the aim of Lemma 2.3 and of remarks 2.1.4 and 2.1.5.

Moreover, to each ι corresponds a nonlinear functional set Vτ
ι (ω) ⊂ Bτ

ι (ω)
which is defined through a Monge-Ampère equation and which is kept invari-
ant (Lemma 2.4) under both flows issued from (1.1) and (1.2). Therefore,
when restricted to Vτ

ι (ω), all the discussion concerning (1.1) can be trans-
fered at the level of (1.2). This argument will be used repeatedly.

An important point is that the conditions h ∈ Bτ
ι (ω) and even h ∈ Vτ

ι (ω)
do not mean a uniform control on all derivatives of h. In particular, we
can find large amplitude high-frequency oscillations {hε}ε∈]0,1] such that
hε ∈ Bτ

ι (ω) or hε ∈ Vτ
ι (ω) for all ε ∈ ]0, 1]. This gives the idea to perform a

nonlinear geometric under constraint, the nonlinear constraint being given
by hε ∈ Bτ

ι (ω) or hε ∈ Vτ
ι (ω). Section 2 is devoted to the existence of such

oscillating initial data.

- In subsection 2.2, we identify (Lemma 2.5) the necessary and sufficient
conditions to impose on the phase φ and the profile H in order to have

(1.6) hε(x) := H
(

x, φ(x)/ε
)

+ O(ε) ∈ Bτ
ι (ω) , ∀ ε ∈ ]0, 1] .

As usual, the profile H ∈ C∞(ω × T; R2) must be well polarized

(1.7) ∇xφ(x) ·H∗(x, θ) = 0 , ∀ (x, θ) ∈ ω × T .

Moreover, the phase φ must satisfy the geometric condition

(1.8) ∃ f ; ∂1φ(x) = f
(

φ(x)
)

∂2φ(x) , ∀x ∈ ω

and the mean part H̄ = t(H̄1, H̄2) of H must be subjected to

(1.9) ∃ g ; f
(

φ(x)
)

H̄1(x) + H̄2(x) = g
(

φ(x)
)

, ∀x ∈ ω .

- In subsection 2.3, we extract (Lemma 2.7) supplementary constraints (on
φ and H) which allow to get the more restrictive condition

(1.10) hε(x) := H
(

x, φ(x)/ε
)

+ O(ε) ∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .
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Couples (H,φ) adjusted so that (1.6) or (1.10) are verified are called com-
patible with respectively (1.2) or (1.1). The corresponding families {hε}ε are
said well prepared for respectively the Burger equation or the Euler equation.
Corresponding to such well prepared initial data hε, there are solutions of
(1.2) or (1.1) which exist on the whole domain Ωτ .

1.3 Existence of simple waves.

The chapter 3 is devoted to the existence and the construction of simple
waves which are solutions of (1.2) or (1.1). What we call a simple wave is
an expression of the form

(1.11) ũε(t, x) = H
(

t, x,Φ(t, x)/ε
)

, ε ∈ ]0, 1]

where H and Φ do not depend on the parameter ε ∈ ]0, 1].

- In the subsection 3.1, we seek all solutions to (1.2) which are as in (1.11).
We show that the functions H and Φ must satisfy the following system

(1.12)







∂tH + (H · ∇x)H + f = 0 , H(0, ·) = H ,
∂tΦ + (H̄ · ∇x)Φ = 0 , Φ(0, ·) = φ ,
∇xΦ(t, x) · H∗(t, x, θ) = 0 .

Of course, this system (1.12) is also sufficient for the function ũε in (1.11) to
be a solution of (1.2). The first two equations in (1.12) allow to determine
uniquely the couple (H,Φ). Then, it remains the third condition which is not
sure to be satisfied. In fact, for general initial data satisfying ∇xφ ·H∗ = 0,
the problem (1.12) has no solution.

Nevertheless, the system (1.12) can be solved when (H,φ) is compatible
with (1.2) and when f is subjected to conditions which will be made explicit
(Lemma 3.1). In that case, the profile H can be written (Lemma 3.2)

H(t, x, θ) = H⊥(Φ) + r(t, x, θ) t(−1, f(Φ)
)

.

In this formula, the function r ∈ C∞(Ωτ × T; R) is determined through the
scalar conservation law (3.10) and

H⊥(z) :=
[

1 + f(z)2
]−1

g(z) t
(

f(z), 1
)

.

Note that the relations (1.8) and (1.9) are preserved during the evolution

(1.13) ∂1Φ(t, x) = f
(

Φ(t, x)
)

∂2Φ(t, x) , ∀ (t, x) ∈ Ωτ ,

(1.14) f
(

Φ(t, x)
)

H̄1(t, x) + H̄2(t, x) = g
(

Φ(t, x)
)

, ∀ (t, x) ∈ Ωτ .
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In particular, this implies that Φ(t, x) can be determined without appealing
to the construction of H, just by solving

(1.15) ∂tΦ + g(Φ) ∂2Φ = 0 , Φ(0, ·) = φ .

- In subsection 3.2, we consider solutions of (1.1) having the form (1.11).
This time, the functions H and Φ must be subjected to

(1.16)

{

∂tH + (H · ∇x)H + ∇xp = 0 , divx H = 0 ,
∂tΦ + (H̄ · ∇x)Φ = 0 , ∇xΦ · H∗ = 0 .

Again this is an over-determined system. The corresponding Cauchy prob-
lem associated with general initial data (H,φ) is not well posed. In Lemma
3.3, we detect the solutions of (1.12) which are also solutions of (1.16) with
p ≡ pι for some ι ∈ {−1, 0, 1}. In particular, the phase Φ must be constant
on parallel hyperplanes which means that it is linear

∃ (a, b) ∈ R
2 ; Φ(t, x) = a t+ b x1 + x2 .

At this stage, weak limits of solutions to (1.1) of the form (1.11) are still
solutions to (1.1). However, this will no more be true under the influence of
suitable perturbations, as we will see in the last chapter 5.

1.4 The problem of stability.

Section 4 deals with the Burger equation (1.2). It investigates in this frame-
work the stability of the family {ũε}ε. Select any solution (H0,Φ0) of (1.12),
as constructed in the chapter 3. Note

H(x, θ) := H0(0, x, θ) , φ(x) := Φ0(0, x)

their corresponding (compatible) initial values. Assume that H is a non
trivial function of θ which means that

∂θH(x, θ) = ∂θr(x, θ)
t
(

−1, f(φ)
)

6≡ 0 , r(x, θ) := r(0, x, θ) .

Now, if W ε(x, θ) is a profile which is periodic in θ and C∞ with respect
to (ε, x, θ) ∈ [0, 1] × ω × T, we know from the results of Section 2 that the
perturbed initial data

(1.17)
uε(0, x) = Hε

(

x, φ(x)/ε
)

= H
(

x, φ(x)/ε
)

+ ε W ε
(

x, φ(x)/ε
)

= H
(

x, φ(x)/ε
)

+ ε W 0
(

x, φ(x)/ε
)

+O(ε2)

is still compatible with the equation (1.2). This implies that, for all ε ∈ ]0, ε0]
with ε0 small enough, the C1 solution uε to the Cauchy problem (1.2)-(1.17)
exists on the fixed domain Ωτ .
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The main question is:

What is on the domain Ωτ the asymptotic behavior of the family {uε}ε when
ε goes to zero ?

A classical approach would be to look for a solution uε of (1.2) of the form

(1.18) uε(t, x) = Uε
(

t, x,Φ0(t, x)/ε
)

where Uε(t, x, θ) is a smooth profile which is C∞ with respect to the variables
(ε, t, x, θ) ∈ [0, 1] × Ωτ × T. Replacing the expression (1.18) in the equation
(1.2) leads to the following equation

(1.19) ∂tU
ε + (Uε · ∇x)Uε + ε−1 (∂tΦ

0 + Uε · ∇xΦ0) ∂θU
ε + f = 0 .

Of course H0 is a special solution of (1.19). Now, the linearized equation
along H0 is

(1.20) ∂tU̇
ε + (H0 · ∇x)U̇ε + (U̇ε · ∇x)H0 + ε−1 (U̇ε · ∇xΦ0) ∂θH

0 = 0 .

The factor ε−1 expresses the presence of a singularity. A usual way to
derive energy estimates is to multiply (1.20) on the left by tU̇ε. But this
method indicates that, at a fixed time t > 0, the solution U̇ε of (1.20) can
be amplified by an exponential factor such as ec t/ε with c > 0. In this sense,
the solution H0 of (1.19) is linearly unstable. The conclusion is that this
first approach does not work.

Large amplitude oscillations on the velocity field, like uε, are known to be
strongly unstable. This observation has been noticed for over a century.
It was already mentioned in works of Kelvin and Rayleigh. Since, it has
motivated many studies till for instance the recent contributions of S. Fried-
lander, W. Strauss and M. Vishik (see [12] and the related references).

The amplification phenomena under question appear also in the field of
nonlinear geometric optics [8]-[14]. There, they are often called up to explain
why classical methods do not allow to construct non trivial perturbations
uε of ũε, with uε defined on some open domain of determinacy Ω ⊂ R×R

2

which does not shrink to the empty set as ε goes to zero.

In fact, the discussion related to the construction of a solution uε in the
“proximity” of ũε depends on the size of the perturbation and, technically,
whether variations of the phase are allowed or not. In order to emphasize
these different aspects, the arguments will be presented progressively, as
indicated in the next picture.
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Of course, Section 4.3 is concerned with the more general situation. It
happens that it furnishes also the simpler and more direct approach. But we
present it without appeal. First because Sections 4.1 and 4.2 have their own
features and bring specific informations. Secondly because going through
Sections 4.1 and 4.2 gives a good idea of the difficulties to overcome.

1.4.1 Perturbations of size O(ε) with variations of the phase. In
order to absorb the O(ε) perturbation εW ε, a possible strategy is to consider
the simple wave (H0,Φ0) as a background state and to construct solutions
which are small O(ε) perturbations of (H0,Φ0), that is

(1.21)
Hε(t, x, θ̃) = H0(t, x, θ̃) + εWε(t, x, θ̃) ,
Φε(t, x, θ) = Φ0(t, x) + εΨε(t, x, θ) ,

with the following rules of substitution

T ∋ θ | Φ0(t, x)/ε , T ∋ θ̃ | Φε
(

t, x,Φ0(t, x)/ε
)

/ε .

The introduction of the expression Ψε is not surprising. Indeed, the os-
cillations {uε}ε under study belong to a regime which is supercritical for
(1.1) and also (at first sight) for (1.2) so that the classical separation be-
tween phase and amplitude is not sure to make sense. These two objects
are linked together. This is obvious when looking at (1.12) or (1.16). By
extension, when tackling the question of stability, it is natural to handle si-
multaneously perturbations on H and Φ. At the end of these manipulations,
the exact solution uε of the original problem has the form

(1.22)
uε(t, x) = Hε

(

t, x,Φε
(

t, x,Φ0(t, x)/ε
)

/ε
)

= Hε
(

t, x,Φ0(t, x)/ε+ Ψε
(

t, x,Φ0(t, x)/ε)
)

.
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The status of the function Ψε(t, x, θ) is ambiguous. On the one hand, in
(1.21), it is incorporated in the phase Φε. On the other hand, at the level of
(1.22), it plays the part of a phase shift so that it can also be considered as
a contribution to the amplitude of the wave. Indeed, it suffices to introduce
the profile amplitude

(1.23) Uε(t, x, θ) := Hε
(

t, x, θ + Ψε(t, x, θ)
)

which leads to the expected representation (1.18). Observe that a O(ε)
perturbation of Φε induces a O(1) modification of Uε. Precisely, the imple-
mentation of Ψε is the key to describe the propagation issued from the O(ε)
perturbation εW ε by using only O(ε) modifications of the profile Hε.

The transformation (1.21) corresponds to a blow up procedure since the
state variable u ∈ R

2 is replaced by (W,Ψ) ∈ R
3. It follows some overlap

of unknowns in formula (1.23). For instance, at time t = 0, it suffices to
adjust the initial data

W̃ ε(x, θ̃) := Wε(0, x, θ̃) , Ψε(x, θ) := Ψε(0, x, θ)

in such a way that

(1.24) H
(

x, θ+ Ψε(x, θ)
)

+ ε W̃ ε
(

x, θ+ Ψε(x, θ)
)

= H(x, θ) + ε W ε(x, θ) .

There is some flexibility, a possible choice being

Ψε(x, θ) = 0 , W̃ ε(x, θ̃) = W ε(x, θ̃) .

Note that a similar technique of blow up has already been employed by S.
Alinhac (see [1] and the related references) in order to precise the life spans
of solutions of two-dimensional quasilinear wave equations.

In our context, the fundamental point is that, to get a solution Uε of
(1.2) given by formula (1.22), it suffices to impose on the new unknown
(Wε,Ψε) ∈ R

3 a set of two well posed quasilinear symmetric hyperbolic sys-
tems, with coefficients smooth in t, x, θ, θ̃ and also ε ∈ [0, 1]. The first system
involves only Wε(t, x, θ̃) and writes

(1.25)

{

∂tW
ε +

(

(H0 + εWε) · ∇x

)

Wε + (Wε · ∇x)H0 = 0 ,

Wε(0, x, θ̃) = W̃ ε(x, θ̃) .

This is a Burgers type equation in (t, x) depending smoothly on the parame-
ters ε ∈ [0, 1] and θ̃ ∈ T so that Wε is a smooth profile uniquely determined
as the local solution of this system (1.25).
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The second equation concerns the unknown Ψε(t, x, θ). It is a quasi-linear
equation in the variables (t, x, θ). More precisely, we find

(1.26)















∂tΨ
ε+

(

(Hε(t, x, θ + Ψε) · ∇x

)

Ψε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0 ∂θΨ
ε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0(t, x) = 0 ,
Ψε(0, x, θ) = Ψε(x, θ) .

In (1.26) the function Hε is H0 + εWε where Wε is the fixed function
which has been previously determined by solving (1.25). Obviously, the
Cauchy problem (1.26) is locally well posed uniformly in ε ∈ [0, 1]. Hence
the nonlinear stability becomes clear, as soon as it is understood in terms
of the state variables (Wε,Ψε).

Now, a simple Taylor expansion leads to the asymptotic expansion

(1.27) uε(t, x) = H0
(

t, x,Φ0(t, x)/ε+ Ψ0
(

t, x,Φ0(t, x)/ε
))

+ O(ε)

in L∞(Ωτ ) as ε goes to 0 where Ψ0 is determined through the systems (1.25)
and (1.26) with ε = 0, that is by first solving

(1.28)

{

∂tW
0 +(H0 · ∇x)W0 + (W0 · ∇x)H0 = 0 ,

W0 (0, x, θ̃) = W̃ 0(x, θ̃) ,

and then by looking at

(1.29)















∂tΨ
0 +

(

H0(t, x, θ + Ψ0) · ∇x

)

Ψ0

+
(

W0(t, x, θ + Ψ0) · ∇x

)

Φ0 ∂θΨ
0

+
(

W0(t, x, θ + Ψ0) · ∇x

)

Φ0(t, x) = 0 ,
Ψ0 (0, x, θ) = Ψ0(x, θ) .

By the way, observe that the access to Ψ0 needs to identify W0. Thus,
it depends on the initial data W̃ 0 and Ψ0, and therefore on W 0. Now, fix
t > 0. The formula (1.23) shows explicitly that the nonlinear mapping

Hs
loc(R

2 × T) −→ Hs
loc(R

2 × T)
Hε(x, θ) 7−→ Uε(t, x, θ)

, s ∈ R

from the profile Cauchy data (with respect to φ) to the profile solution
Uε(t, ·)

(

with respect to Φ0(t, ·)
)

is not continuous. Indeed, as ε goes to zero,
the Cauchy data Hε(x, θ) converges to H(x, θ). But the solution Uε(t, x, θ)
converges to U0(t, x, θ) := H0

(

t, x, θ+Ψ0(t, x, θ)
)

where the function Ψ0 is
in general non trivial and does not depend only on H (but also on W 0 !).

10



Again, this expresses instability features of (1.19). This instability can be
removed once we allow variations of the phase. We will see in the next
subsection 4.2 that it can also be gotten round by performing a change on
the state variable Uε, a change which is singular in ε ∈ ]0, 1].

In no way, this instability of the linearized problem can ruin the existence
of the solution of the perturbed nonlinear Cauchy problem. Indeed, the
solution exists, is smooth and is uniformly bounded as ε goes to 0 on a
domain independent of ε ∈ ]0, 1]. This is the reason why we call it a weak
instability. It is very interesting to observe that the nonlinear problem (1.1),
when restricted to Vτ

ι (ω), has a better behavior than the corresponding
linearized problem which gives rise to exponentially growing up solutions as
ε goes to 0.

1.4.2 Large amplitude well polarized modifications with fixed phase.

The results of the previous section show that a perturbation of size O(ε) at
time t = 0 of the simple wave H0(t, x,Φ0/ε) produces a solution of the form
(1.18) where Uε is given by the formula (1.23). Use a first order Taylor
expansion in (1.23) to obtain

(1.30)
Uε(t, x, θ) = H0(t, x, θ)

+Ψ0(t, x, θ)
∫ 1
0 ∂θH

0
(

t, x, θ + sΨ0(t, x, θ)
)

ds+O(ε) .

Now, since

∂θH
0(t, x, θ) · ∇Φ0(t, x) = 0 , ∀ (t, x, θ) ∈ Ωτ × T ,

the relation (1.30) can be interpreted as

(1.31) Uε(t, x, θ) = H0(t, x, θ) + α(t, x, θ) ∇xΦ0(t, x)⊥ + εZε(t, x, θ) ,

where α(t, x, θ) is a scalar smooth periodic profile and where Zε(t, x, θ) is a
smooth profile valued in R

2. The formula (1.31) suggests to look for more
general oscillating solutions (1.18) with a profile Uε of the form

(1.32)
Uε(t, x, θ) = H

(

t, x, θ + Vε1(t, x, θ)
)

+Vε2(t, x, θ) ∇xΦ0(t, x)⊥ + ε Vε3(t, x, θ) ∇xΦ0(t, x)

including large amplitude perturbations in the direction of ∇xΦ0(t, x)⊥. This
corresponds again to a blow up of the state variables (Vε1 plays the part of
Ψε) which substitutes for Uε the new unknown

Vε(t, x, θ) = t(Vε1,Vε2,Vε3)(t, x, θ) ∈ C1(Ωτ × T; R3) .

11



The interest of this procedure becomes clear in Proposition 4.1. We find a
well posed hyperbolic system for Vε.

More precisely, the singular equation (1.19) is exchanged with the Burger
type equation (4.13) imposed on Vε. The advantage is that (4.13) involves
coefficients which are smooth with respect to (t, x, θ) and also ε ∈ [0, 1].
Therefore, the construction of Vε (and thereby Uε) on a domain Ωτ × T

independent of ε can be achieved.

1.4.3 The two points of view conciliated. The subsection 4.2 gives a
result (Proposition 4.1) which is more general than the one of subsection 4.1
(Theorem 4.1). Indeed, it allows to incorporate modifications of ũε which
are of size O(1) in the direction ∇xΦ0(t, x)⊥ instead of being of size O(ε).
Incidentally, this indicates that, eventually, passing through the construction
of the simple wave ũε is not necessary.

In fact, what is important is only the structures ofH⊥(z) and Φ0(t, x). Then,
it suffices to conceive that the propagation of the oscillating part polarized
according to ∇xΦ0(t, x)⊥ (including H∗ as an unknown !) is coupled with
the O(ε) terms. This observation is illustrated in subsection 4.3. There,
the informations drawn from subsections 4.2 and 4.3 are compounded to
propose a rapid and elegant version of our stability argument.

1.5 Applications.

When the oscillating initial data are well prepared for (1.1) which means
that they satisfy

(1.33) ŭε(0, x) = h̆ε(x) = H̆ε
(

x, φ(x)/ε
)

∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1]

the solution ŭε(t, x) of (1.2)-(1.33) is also a solution of (1.1)-(1.33). By this
way, the analysis of Section 4 brings informations related to the propagation
of special singularities in Euler equations. This last Section lays stress on
some consequences which can be thus extracted.

1.5.1 Various caustics phenomena for the Euler equations. The
functions ŭε(t, x) can also be interpreted as solutions of two dimensional
compressible Euler equations and, in this interpretation, they are propagated
along the derivation L := ∂t + u · ∇x. Now, in the usual classification, this
vector field L is called linearly degenerate. However, the first phase Φ0 or
the second phase Ψ0 can develop shocks. The reason of this fact is that
the nonlinearity of the transport equation enters into the eiconal equation

12



through the coupling between the profiles and the phases. In the paragraph
5.1, we do not make a systematic study of such phenomena but, instead, we
produce explicit examples.

1.5.2 Come back to Theorem 1.1. The objection to the concentration-
cancellation property which is mentioned in Theorem 1.1 comes directly from
the influence of Ψ0. The underlying mechanism is detailed in subsection 5.2.
It exploits in a crucial manner the nonlinearity of φ (which is equivalent to
the condition f ′ 6≡ 0). Now, to incorporate nonlinear phases φ, we have to
consider initial data {h̆ε}ε which do not give rise to simple waves (Lemma
3.3). Necessarily, such oscillations {h̆ε}ε contain non trivial terms of size
O(ε) or less. Under these conditions, the description of {ŭε}ε means to face
the problem of stability in a regime which is supercritical for (1.1). This
explains why the reply to the question raised in [2]-p. 479 is so delicate.

1.5.3 Interaction with small amplitude transversal waves. The blow
up procedures of Section 4 have the effect to change the status of θ. Indeed,
in the equation (1.19), the symbol θ stands for a fast variable whereas it
becomes in (1.26) a slow variable. This observation gives the idea to apply
at the level of (1.25) and (1.26) the standard results of weakly nonlinear
geometric optics (see [13], [16] and [17]). The resulting analysis and the
corresponding consequences are exposed in subsection 5.3.

In this introduction, we are satisfied with giving the idea of the underlying
mechanisms. To this end, we fix a solution Wε(t, x, θ̃) of (1.25) and we con-
sider the solution Ψε(t, x) of (1.26) apart. Of course, this manipulation does
not really work since Wε and Ψε are linked together through the relation
(1.24). We use this argument only to simplify below the presentation. The
rigorous proof is given in chapter 5.3 (see Proposition 5.1).

Thus, we just argue here about the scalar conservation law (1.26). We
consider the equation (1.26) in the neighbourhood of the basic solution
Ψ0(t, x, θ) obtained by solving (1.29) with Ψ0 ≡ 0. Nothing prevents Ψε

to still contain oscillations in x. In particular, we can seek solutions Ψε of
(1.26) which are small amplitude oscillations of the form

(1.34) Ψε(t, x, θ) = Ψ0(t, x, θ) + ε Ψ1,ε
(

t, x, θ, ζ(t, x, θ)/ε
)

where the profile Ψ1,ε(t, x, θ, z) ∈ C∞(Ωτ ×T×T; R) is smooth in ε ∈ [0, 1]
and is assumed to verify

(1.35) ∂zΨ
1,0(0, x, θ, z) 6≡ 0 .

13



The phase ζ must satisfy the eiconal equation

(1.36)
∂tζ +

(

H0(t, x, θ + Ψ0) · ∇x

)

ζ
+

(

W0(t, x, θ + Ψ0) · ∇x

)

Φ0 ∂θζ = 0 .

We decide to complete (1.36) with some smooth initial data ζ0 ∈ C∞
b (ω; R)

which does not depend on θ and which is transversal to φ. In other words

(1.37) ζ(0, x, θ) = ζ0(x) , −∂1ζ0 + f(φ) ∂2ζ0 6≡ 0 .

The equation (1.36) and the relation in (1.37) imply that

∂t(∂θζ)(0, x, θ) = ∂θr(x, θ)
(

∂1ζ0 − f(φ) ∂2ζ0
)

6≡ 0

which means that ζ depends actually on θ when t > 0 is small enough. Plug
the expression Ψε issued from (1.34) in (1.23) to find a solution uε of the
equation (1.2) given by

(1.38)
uε(t, x) = Hε

(

t, x,Φ0(t, x)/ε+ Ψ0
(

t, x,Φ0(t, x)/ε
)

+ ε Ψ1,ε
(

t, x,Φ0(t, x)/ε, ζ
(

t, x,Φ0(t, x)/ε
)

/ε
)

.

Then, a first order Taylor expansion shows that

(1.39)
uε(t, x) = U0

(

t, x,Φ0(t, x)/ε
)

+ ε Gε
(

t, x,Φ0(t, x)/ε, ζ
(

t, x,Φ0(t, x)/ε
)

/ε
)

where Gε(t, x, θ, z) ∈ C∞(Ωτ × T
2,R2) is smooth in ε ∈ [0, 1]. Moreover,

because of (1.35), it is subjected to ∂zG
0 6≡ 0 which means that, when t > 0,

the function uε(t, ·) does oscillate at the frequency ε−2. On the other hand,
at time t = 0, the initial data uε(0, ·) involves only frequencies of size ε−1.
Indeed, in view of (1.37), the trace uε(0, ·) inherits the simpler form

(1.40) uε(0, x) = H
(

x, φ(x)/ε
)

+ ε Gε
(

0, x, φ(x)/ε, ζ0(x)/ε
)

.

Thus, adding some transversal small amplitude oscillation in the Cauchy
data, as in (1.40), produces a composition of the oscillations in the solution
(1.39). In particular, the formula (1.39) shows that for all t > 0 small enough
and for some α ∈ N

2 \ {(0, 0)}, we have

∃ c ∈ R
∗
+ ; supx |∂α

x uε(t, x)| ≥ c ε1−2 |α| .

On the contrary, at time t = 0 and for the same α ∈ N
2 \ {(0, 0)}, we have

∃C ∈ R
∗
+ ; supx |∂α

x uε(t, x)| ≤ C ε1−|α| .
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The contrast between these two inequalities comes from the fact that the
nonlinear interaction of the two waves of frequency ∼ (1/ε) produces waves
with frequencies ∼ (1/ε2).

This phenomenon presents an aspect which is completely different from the
usual resonance of weakly non linear geometric optics. Indeed, in the case
of resonances, the interaction of two (or more) waves having frequencies
∼ (1/ε) gives rise to the creation of new waves oscillating with the same size
O(1/ε) of frequency.

In fact, after a convenient change of the scaling, the above phenomenon could
be regarded as resulting from a superposition (or composition) of weakly non-
linear geometric optics (see the remark 5.3.4). The subsection 5.3 contains
general examples of this sort. Also, it shows that such phenomena actually
occur at the level of Euler equations. Thereby, it contains a rigorous jus-
tification that kinetic energy of solutions to (1.1) can be transferred from
“low” wave numbers modes (namely of size ε−1) to “high” wave numbers
modes (namely of size ε−2).

Such a transfer is apt to occur also at the level of the principal term of
the oscillation (even if this subject will not be developed here). Moreover,
it seems that the basic mechanism thus revealed could be repeated. It
could be conceived as a starting point in order to study the propagation of
more complicated oscillations, involving transfer of energy from large-scale
motions to small-scale motions.

From a general point of view, all the subject of this paper falls under the
scope of supercritical WKB analysis. This approach has been initiated by G.
Lebeau [19]. Some small advancements have also been achieved in [5]-[6]-[7].
The articles [6]-[7] are specifically devoted to the propagation of oscillations
which are solutions to (1.1). However, the situations studied in [6]-[7] differ
from those under consideration here.

On the one hand, in [6]-[7], the data φ and H are selected arbitrarily leading
generically to a cascade of phases. On the contrary, we adjust here the phase
φ and the profile H so that such a cascade is avoided. This is a consequence
of the relations (2.20) and (2.21) imposed on φ and H.

On the other hand, in [6]-[7], the WKB analysis is just formal or justified in
the presence of a small anisotropic viscosity. On the contrary, our aim in the
present paper is to face the problem of stability in the hyperbolic context.
Concerning (1.1), this can be achieved here by restricting the choice of the
initial data to the set Vτ

0 (ω).
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2 Well prepared initial data.

This Section is devoted to general considerations concerning the dynamics
of a two dimensional vector field u = t(u1,u2) ∈ R

2 described by the Burger
equation (1.2). Let ω be a bounded open domain of R

2 with closure ω̄. If
necessary, make a translation in x to be sure that t(0, 0) ∈ ω. Note Ck

b with
k ∈ N ∪ {+∞} the space of functions with bounded continuous derivatives
up to the order k. Select data h and f such that

(2.1) u(0, x) = h(x) ∈ C1
b (ω̄) , f(t, x) ∈ C1(R × R

2) .
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2.1 Preliminaries.

We start by looking at the life span of solutions to (1.2)-(2.1).

2.1.1 About the life span of solutions to Burger equations.

Look at the ordinary differential equation

(2.2) d2

dt2
Ξ(t, a, b) + f

(

t,Ξ(t, a, b)
)

= 0

completed with

Ξ(0, a, b) = a ∈ R
2 , d

dt Ξ(0, a, b) = b ∈ R
2 .

Suppose that the source term f has at most a linear growth with respect to
the space variable, uniformly in the time variable

(2.3) ∃C ∈ R+ ; |f(t, x)| ≤ C (1 + |x|) , ∀ (t, x) ∈ R × R
2 .

Then, the application Ξ is globally defined and is smooth Ξ ∈ C1(R × R
4).

Introduce the graphs

Gh :=
{ (

x, h(x)
)

; x ∈ ω̄
}

⊂ R
2 × R

2 ,

DGh :=
{ (

x, h(x), Dxh(x)
)

; x ∈ ω̄
}

⊂ R
2 × R

2 × M2(R) ,

where Md(R) is the space of d× d matrices with real coefficients.

Observe that Gh and DGh are compact sets. The speed of propagation up
to a time T > 0 of a solution u to (1.2) coming from h and f is bounded by

ch,f (T ) := ‖ h ‖L∞(ω) +T sup
{

|f
(

t,Ξ(t, a, b)
)

| ; (t, a, b) ∈ [0, T ]×Gh

}

.

This allows to define the domain of determinacy

Ωh,f (T ) :=
{

(t, x) ∈ [0, T [×R
2 ; B(x, t ch,f (T )[⊂ ω

}

6≡ ∅
where B(x, r[ with r > 0 is the open ball

B(x, r[ :=
{

x̃ = t(x̃1, x̃2) ∈ R
2 ; |x̃−x|2 = (x̃1−x1)

2+(x̃2−x2)
2 < r2

}

.

Let (t, a, b,M) ∈ R × R
2 × R

2 × M2(R). Introduce the 2 × 2 matrix

Γ(t, a, b,M) := DaΞ(t, a, b) + DbΞ(t, a, b) M

and note

R(a, b,M) := sup
{

T ∈ [0,+∞[ ; det Γ(t, a, b,M) > 0 , ∀ t ∈ [0, T [
}

.
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Lemma 2.1. The Cauchy problem (1.2)-(2.1) has a C1 solution u which is
defined on the domain

Ωh,f := ∪{T ; 0<T<Th,f} Ωh,f (T ) , Th,f := inf
{

R(z) ; z ∈ DGh

}

.

Before giving the proof of this lemma, let us introduce a useful notation.
Since Γ is a continuous function satisfying Γ(0, ·) ≡ Id, we have Th,f > 0 so
that Ωh,f 6≡ ∅. For any τ ∈ ]0, 1], define

Bτ (ω) :=
{

(h, f) ∈ C1
b (ω) × C1(R × R

2) ; |h(x)| ≤ τ−1 , ∀x ∈ ω̄ ,

R
(

x, h(x), Dxh(x)
)

∈ [τ,+∞] , ∀x ∈ ω̄ ,

|f(t, x)| ≤ τ−1 (1 + |x|) , ∀ (t, x) ∈ R × ω̄
}

.

It is clear that

cτ := sup
{

ch,f (T ) ; (h, f) ∈ Bτ (ω)
}

< ∞ ,

τ ≤ inf
{

Th,f ; (h, f) ∈ Bτ (ω)
}

.

It follows that

Ωτ :=
{

(t, x) ∈ [0, τ [×R
2 ; B(x, cτ t[⊂ ω

}

⊂ Ωh,f .

By applying Lemma 2.1, we get:

Lemma 2.2. The Cauchy problem (1.2)-(2.1) built with (h, f) ∈ Bτ (ω) has
a C1 solution u which is defined on the domain Ωτ .

Proof of Lemma 2.1. Since unicity is clear in the context of C1 functions,
it remains to show that a solution u of (1.2)-(2.1) exists on Ωh,f (T ) when
0 < T < Th,f . Classical results yield a time T̃ > 0 such that a solution u of
(1.2)-(2.1) exists on Ωh,f (t̃) for all t̃ < T̃ . Take T̃ as large as possible.

If T̃ ≥ T , there is nothing to do. Thus, suppose that T̃ < T . The continua-
tion principle (exposed in Majda [20] paragraph 2.2) says that

(2.4) sup
{

‖ Dx̃u(t̃, x̃) ‖ ; (t̃, x̃) ∈ Ωh,f (T̃ )
}

= +∞ .

To simplify the notations, define Ξ̆(t, x) := Ξ
(

t, x, h(x)
)

and

Γ̆(t, x) := Γ
(

t, x, h(x), Dxh(x)
)

, R̆(x) := R
(

x, h(x), Dxh(x)
)

.

Since u can be integrated along characteristics, for each (t̃, x̃) ∈ Ωh,f (T̃ ),
there is x ∈ ω such that

(2.5) u(t̃, x̃) = h(x) −
∫ t̃
0 f

(

t, Ξ̆(t, x)
)

dt , x̃ = Ξ̆(t̃, x) .
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It follows that

(2.6) Dx̃u(t̃, x̃) Γ̆(t̃, x) = Dxh(x) −
∫ t̃
0 Dxf

(

t, Ξ̆(t, x)
)

Γ̆(t, x) dt .

On the one hand

t̃ < T̃ < T < Th,f ≤ R̆(x) , ∀x ∈ ω .

On the other hand

det Γ̆(t, x) > 0 , ∀ (t, x) ∈ [0, R̆(x)[×ω .
In particular

det Γ̆(t, x) > 0 , ∀ (t, x) ∈ [0, T̃ [×ω .
Suppose that there is a sequence {(tn, xn)}n ∈ ([0, T̃ [×ω)N which satisfies

limn−→∞ Γ̆(tn, xn) = 0 .

Extract a subsequence (given by ℓ : N −→ N) such that

limn−→∞

(

tℓ(n), xℓ(n), h(xℓ(n)), Dxh(xℓ(n))
)

= (t̄, z̄) ∈ [0, T̃ ] ×DGh .

The continuity of Γ with respect to the variables (t, a, b,M) guarantees that
det Γ(t̄, z̄) = 0. This implies that

R(z̄) ≤ t̄ ≤ T̃ < Th,f ≤ R(z̄)

which clearly is not possible. It means that

(2.7) inf
{

det Γ̆(t, x) ; (t, x) ∈ [0, T̃ [×ω
}

= c > 0 .

Note Co (M) the co-matrix of M . Remember that

Γ̆(t̃, x)−1 =
(

det Γ̆(t̃, x)
)−1

Co
(

Γ̆(t̃, x)
)

.

Use this and the relation (2.6) to get

sup
{

‖ Dx̃u(t̃, x̃) ‖ ; (t̃, x̃) ∈ Ωh,f (T̃ )
}

< ∞
which is a contradiction with (2.4). Therefore T̃ ≥ T . ✷

Remark 2.1.2 - a more general situation. Let g : R
2 −→ R

2 be a C1

diffeomorphism. Look at the Burgers type equation

∂tu +
(

g(u) · ∇x

)

u = 0 .

In fact, this situation is equivalent to (1.2) with f ≡ 0. Indeed, it suffices to
take g(u) as the new unknown. ⋄
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2.1.2 Three special cases.

This paragraph deals with

(2.8) ∂tu + (u · ∇x)u + fι = 0 , fι(t, x) := ι x , ι ∈ {−1, 0, 1} .

First, consider the case ι = 0. When ι = 0, simplifications occur in the
preceding discussion. Introduce the domain of determinacy

Ωh :=
{

(t, x) ∈ [0,+∞[×R
2 ; B(x, t ‖ h ‖L∞(ω) [⊂ ω

}

.

Define the application

Ih : ω −→ R
2

x 7−→ Ih(x) = t
(

I1
h(x), I2

h(x)
)

:= t
(

divx h(x) , detDxh(x)
)

.

The image of ω by Ih is

Ih(ω) :=
{

Ih(x) ; x ∈ ω
}

.

Note Īh(ω) the closure of Ih(ω). This is a compact set. Compute

R(a, b) := sup
{

T ∈ R+ ; 1+a t+b t2 > 0 , ∀ t ∈ [0, T [
}

∈ R+∪{+∞} .
The result 2.3 below is true even if ω is not bounded.

Lemma 2.3. Take ι = 0. The Cauchy problem (2.8)-(2.1) has a C1 solution
u which is defined on the truncated cone

Ωh(Th) :=
{

(t, x) ∈ Ωh ; t < Th

}

, Th := inf
{

R(y) ; y ∈ Īh(ω)
}

.

Proof of Lemma 2.3. When ω is bounded, just apply the procedure of
Lemma 2.1 to find ch,f0(T ) =‖ h ‖L∞(ω) and

Ξ(t, a, b) = a+ t b , Γ(t, a, b,M) = Id + tM .

It follows that

Ωh,f0(T ) ⊂ Ωh,f0(T̃ ) , ∀T ∈ ]0, T̃ [ ,

detDxΞ̆(t, x) = det
(

Id + tDxh(x)
)

= 1 + I1
h(x) t + I2

h(x) t2 .

Now, it is easy to see that Th,f0 ≡ Th and Ωh,f0 ≡ Ωh.

When ω is not bounded, it suffices to remark that the time T r
h associated

with the restriction of h to the open domain ω ∩B(0, r[ is such that

Th ≤ T r
h , ∀ r ∈ R+ , lim r−→+∞ T r

h = Th .

Since the speed of propagation is bounded by ‖ h ‖L∞(ω), the expected result
can be obtained by passing to the limit (r −→ +∞). ✷
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Remark 2.1.3 - comparison with other results. Observe that

R−1(+∞) =
{

(a, b) ∈ R
2 ; a ≥ 0 , b ≥ 0

}

∪
{

(a, b) ∈ R
2 ; a < 0 , b ≥ a2

4

}

.

Suppose that ω = R
2. Then, the solution of (2.8)-(2.1) with ι = 0 is global

in time if and only if

(2.9) R
(

Ih(x)
)

= +∞ , ∀x ∈ R
2 .

Simple computations indicate that this criterion is equivalent with the con-
dition imposed in Theorem 2.2 of [21]. When (2.9) is violated, the preceding
analysis of the local in time existence extends what is done in [21]. ⋄

Remark 2.1.4 - the other cases. When ι = −1 or ι = 1, the solutions of (2.2)
are respectively

Ξ−1(t, a, b) = a ch t + b sh t , Ξ1(t, a, b) = a cos t + b sin t .

It follows that

Γ−1(t, a, b,M) = ch t (Id+th t M) , Γ1(t, a, b,M) = cos t (Id+tg t M) .

Thus, the stopping times Th,fι which are associated with the data (h, fι) are
given by Th,fι = Lι(Th) where L0(Th) = Th and

L−1(Th) =

{

argthTh if Th < 1 ,
+∞ if Th ≥ 1 ,

L1(Th) = arctgTh . ⋄

Remark 2.1.5 - introduction of Bτ
ι (ω). The condition (2.3) is obviously

satisfied by the functions fι. Instead of Bτ (ω), cτ and Ωτ , we can consider

Bτ
ι (ω) :=

{

h ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 , ∀x ∈ ω̄ ,

R
(

Ih(x)
)

∈ [τ,+∞] , ∀x ∈ ω̄
}

,

cτι := sup
{

ch,fι ; h ∈ Bτ
ι (ω)

}

< ∞ ,

Ωτ
ι :=

{

(t, x) ∈ [0, Lι(τ)[×R
2 ; B(x, cτι t[⊂ ω

}

.

If h ∈ Bτ
ι (ω), a C1 solution of (2.8)-(2.1) is defined on Ωτ

ι . ⋄

2.1.3 Invariant sets given by Monge-Ampère equations.

The reason why the functions fι have been distinguished is the following.
When h is conveniently adjusted, the Cauchy problem (2.8)-(2.1) furnishes
also a solution of (1.1)-(2.1). This fact is proved below. Observe that

fι(t, x) = ∇xpι(x) , pι(x) := ι 1
2 |x|2 + C .
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Therefore, the solutions of (2.8)-(2.1) which are incompressible

(2.10) divx u(t, x) = 0 , ∀ (t, x) ∈ Ωh,fι

can be interpreted as solutions of incompressible Euler equations. When
ι = 0, they satisfy (1.1) with p constant. Thus, they are also solutions of
compressible Euler equations. In fact, they are subjected to the pressureless
gas dynamics system.

Suppose to simplify the discussion that ω is simply connected in R
2. Then,

look at the nonlinear functional set

Vτ
ι (ω) :=

{

h = t(−∂2̺, ∂1̺) ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 ,

̺ ∈ C2(ω; R) , det D2
xx ̺ ≡ ι

}

.

According to the usual terminology, this definition involves a Monge-Ampère
equation (on ̺) which is called hyperbolic, degenerate or elliptic when re-
spectively ι = −1, ι = 0 or ι = 1. Obviously, the subset Vτ

ι (ω) is not
empty.

Lemma 2.4. The C1 solution u of the Cauchy problem (2.8)-(2.1) is sub-
jected to (2.10) if and only if h ∈ Vτ

ι (ω) for some τ ∈ ]0, 1].

Remark 2.1.6 - another interpretation of Vτ
ι (ω). Introduce

Ṽτ
ι (ω) :=

{

h ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 , Ih(x) = t(0, ι) , ∀x ∈ ω

}

.

Let h = t(−∂2̺, ∂1̺) ∈ Vτ
ι (ω). Obviously

I1
h(x) = 0 , I2

h(x) = detD2
xx̺(x) = ι , R

(

Ih(x)
)

≥ 1 , ∀x ∈ ω .

It follows that

Vτ
ι (ω) ⊂ Ṽτ

ι (ω) ⊂ B1
ι (ω) , ∀ τ ∈ ]0, 1] .

Now, if h ∈ Ṽτ
ι (ω), the restriction I1

h ≡ 0 means that h coincide with
t(−∂2̺, ∂1̺) for some scalar function ̺ ∈ C2(ω; R). Then, the condition
I2
h ≡ ι is equivalent to detD2

xx ̺ ≡ ι. Therefore Ṽτ
ι (ω) ≡ Vτ

ι (ω).

If h ∈ Vτ
0 (R2), the solution u of (1.2)-(2.1) or (1.1)-(2.1) is global in time.

Moreover, the set Vτ
0 (R2) is invariant under the flow

h ∈ Vτ
0 (R2) =⇒ u(t, ·) ∈ Vτ

0 (R2) , ∀ t ∈ R+ . ⋄

Proof of Lemma 2.4. When ι = 0, the result 2.4 can be deduced from
Theorem 2.6 in [9]. The proof given below is different and more direct. It
is also more general since it allows to incorporate the cases ι = ±1.
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◦ Suppose that u is a solution of (2.8)-(2.1) which is subjected to (2.10). On
the one hand, the relation (2.10) means that the two (complex) eigenvalues
λ1 and λ2 of the matrix Dxu(t, x) are opposite, say λ1 = −λ2 = λ. On the
other hand, the equation (2.8) implies that

(∂t + u · ∇x)Dxu + (Dxu)2 + ι Id = 0 , ∀ (t, x) ∈ Ωh,fι .

Take the trace to get

Tr (Dxu)2 + 2 ι = 2 (λ2 + ι) = 0 , ∀ (t, x) ∈ Ωh,fι .

Look at what happens when t = 0. Since ω is supposed to be simply
connected in R

2, there is ̺ ∈ C2(ω; R) such that

u(0, x) = h(x) = t∇x̺(x)
⊥ := t

(

−∂2̺(x), ∂1̺(x)
)

, ∀x ∈ ω

and the preceding condition reduces to

−λ(0, x)2 = detDxu(0, x) = detDxh(x) = detD2
xx̺(x) = ι .

Take τ small enough to be sure that h ∈ Vτ
ι (ω).

◦ Conversely, suppose that h ∈ Vτ
ι (ω). Apply Lemma 2.1 to find a solution

u of (2.8)-(2.1) on Ωh,fι . Note λ1 and λ2 the two eigenvalues of Dxu. Deduce
from (2.8) that

(∂t + u · ∇x) (Dxu)2 + 2 (Dxu)3 + 2 ι Dxu = 0 , ∀ (t, x) ∈ Ωh,fι .

Observe that

Tr (Dxu)3 = λ 3
1 + λ 3

2 = (λ1 + λ2) (λ 2
1 − λ1 λ2 + λ 2

2 ) .

It follows that
{

(∂t + u · ∇x) divx u +
[

Tr (Dxu)2 + 2 ι
]

= 0 ,
(∂t + u · ∇x)

[

Tr (Dxu)2 + 2 ι
]

+ 2 (λ 2
1 − λ1 λ2 + λ 2

2 + ι) divx u = 0 .

By hypothesis, at time t = 0, we start with

divx h(x) = 0 , TrDxh(x)
2 + 2 ι = 2 (−detD2

xx̺(x) + ι) = 0 .

Observe that
{

(∂t + u · ∇x)Z = B Z , Z(0, ·) ≡ 0 , Z := t
(

divx u,Tr (Dxu)2 + 2 ι
)

where B(t, x) is a continuous and bounded function. Applying Gronwall’s
Lemma gives rise to Z ≡ 0, that is

divx u(t, x) = 0 , TrDxu(t, x)2 + 2 ι = 0 , ∀ (t, x) ∈ Ωh,fι .

In particular, the divergence free condition (2.10) is verified. ✷
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Remark 2.1.7 - about the choice of ι. In the preceding proof, the value
of ι can be fixed arbitrarily in R. We take ι ∈ {−1, 0, 1} because, when
ι ∈ R

∗, the change of time-space variables (t, x) / |ι|−1/2 (t, x) reduces to the
situation ι ∈ {−1, 1}. In fact, what is important in the demonstration is
that ι does not depend on (t, x). ⋄

2.1.4 Large amplitude monophase oscillations.

According to the preceding construction, solutions u of (2.8)-(2.1) issued
from h ∈ Bτ

ι (ω) are defined on Ωτ . Now, the constraint h ∈ Bτ
ι (ω) does not

imply a bound on all derivatives contained in Dxh. In particular, with τ
fixed, it is possible to find families {hε}ε∈ ]0,1] which satisfy

(2.11) hε ∈ Bτ
ι (ω) , ∀ ε ∈ ]0, 1] ,

or

(2.12) hε ∈ Vτ
ι (ω) , ∀ ε ∈ ]0, 1] .

but whose derivatives {Dxh
ε}ε are not uniformly bounded. For instance, we

can seek

(2.13) lim
ε−→ 0

‖ Dxh
ε ‖L2(ω) = +∞ .

Passing to the weak L2−limit in (2.11) or (2.12) allows to capture the weak
L2−closures B̄τ

ι (ω) and V̄τ
ι (ω) of respectively Bτ

ι (ω) and Vτ
ι (ω). Since the

functional sets Bτ
ι (ω) and Vτ

ι (ω) are nonlinear (their definitions involve the
computation of detDxh), the sets B̄τ

ι (ω) and V̄τ
ι (ω) can be much bigger than

Bτ
ι (ω) and Vτ

ι (ω).

This is precisely through the flexibility of the selected weak L2−topology
that complicated phenomena occurring at the level of Euler equations can
be investigated even if the initial data hε are very constrained.

Now, the idea is to perform a nonlinear geometric optics under constraint,
the constraint being given by Bτ

ι (ω) or Vτ
ι (ω). To put this in concrete form,

we need to consider families {hε}ε having a specific behaviour as ε goes
to zero. Some material is needed to describe the preliminary oscillating
structure of hε. Fix J ∈ N. Introduce :

2.a) a phase φ ∈ C∞(ω; R) with ∇xφ ∈ C∞
b (ω; R). Assume that φ is not

stationary. More precisely, impose

(2.14) ∃ c > 0 , ∂2φ(x) ≥ c , ∀x ∈ ω ,
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2.b) a profile H ≡ H−1 = t(H1,H2) ∈ C∞
b (ω × T; R2) which is non trivial

(2.15) ∃ (x, θ) ∈ ω × T ; ∂θH(x, θ) 6= 0 ,

2.c) other profiles

Hj = t(H1
j ,H

2
j ) ∈ C∞

b (ω × T; R2) , j ∈ {0, · · · , J − 1} ,
2.d) a function rhε ∈ C∞

b (ω; R2) which is controlled by

(2.16) sup
{

‖ rhε ‖L∞(ω) + εJ−1 ‖ Dx rh
ε ‖L∞(ω) ; ε ∈ ]0, 1]

}

< ∞ .

With all these ingredients, build the asymptotic expansion

(2.17) hε(x) =
∑J−1

j=−1 ε
j+1 Hj

(

x, φ(x)/ε
)

+ εJ+1 rhε(x) .

Observe that hε is a large amplitude oscillating wave

hε(x) = H
(

x, φ(x)/ε
)

+ O(ε) , ∂θH 6≡ 0 .

In the next subsection, we identify necessary and sufficient constraints to
impose on φ and the Hj in order to have (2.11) for some fixed τ ∈ ]0, 1].

2.2 Well prepared families for the Burger equation.

The hypothesis 2.a), · · · , 2.d) guarantee (2.13) and the fact that

∃ τ ∈ R+ ; sup
{

|hε(x)| ; (ε, x) ∈ ]0, 1] × ω
}

≤ τ−1 < ∞ .

Now, to obtain a family {hε}ε ∈ Bτ
ι (ω)]0,1] with corresponding solutions

{uε}ε defined on the domain Ωτ
ι (which does not shrink to the empty set as

ε goes to 0), it suffices to check the condition on Ihε which is stated below.

Definition 2.1. We say that the family {hε}ε, where hε is defined as in
(2.17) and is made of ingredients satisfying 2.a), · · · , 2.d), is well prepared
on ω for the Burger equation (1.2) if

(2.18) ∃ τ ∈ R+ ; R
(

Ihε(x)
)

∈ [τ,+∞] , ∀ (x, ε) ∈ ω× ]0, 1] .

Any function u ∈ L1(ω × T) can be decomposed according to

u(x, θ) = 〈u〉(x) + u∗(x, θ) = ū(x) + u∗(x, θ)

where 〈u〉 ≡ ū is the mean value

〈u〉(x) = ū(x) :=
∫

T
u(x, θ) dθ .

Introduce the oscillating support of u which is
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osup u :=
{

x ∈ ω ; u∗(x, ·) 6≡ 0
}

.

Define also

(∂−1
θ u∗)(x, θ) :=

∫ θ
0 u∗(x, θ̃) dθ̃ −

∫ 1
0

(∫ θ
0 u∗(x, θ̃) dθ̃

)

dθ .

In view of (2.14), for each x1 ∈ R, the application

ω(x1) :=
{

x2 ; (x1, x2) ∈ ω
}

−→ R

x2 7−→ φ(x1, x2)

is strictly increasing. The image set

I(x1) :=
{

φ(x1, x2) ; x2 ∈ ω(x1)
}

is open. Introduce the other open set

I := ∪x1∈R I(x1) ⊂ R .

Seek a family {hε}ε which is well prepared on ω for (1.2). Easy computations
indicate that the analysis can be reduced to the case ω = osupH. Thus,
from now on, we can suppose that ω = osupH∗. We suppose moreover that
the curve {x ∈ ω ; φ(x) = z} is connected for all z ∈ I. These are technical
assumptions which simplify the following statements.

Lemma 2.5. Under the assumptions mentioned above, the family {hε}ε

is subjected to the condition (2.18) if and only if (H,φ) satisfy the three
following conditions:

i) the profile H∗ is polarized according to

(2.19) ∇xφ(x) ·H∗(x, θ) = 0 , ∀ (x, θ) ∈ ω × T .

ii) there exists f in C∞
b (I; R) such that

(2.20) ∂1φ(x) = f
(

φ(x)
)

∂2φ(x) , ∀x ∈ ω .

iii) there exists g in C∞
b (I; R) such that

(2.21) f
(

φ(x)
)

H̄1(x) + H̄2(x) = g
(

φ(x)
)

, ∀x ∈ ω .

Couples (H,φ) which satisfy (2.19), (2.20) and (2.21) for some f and g are
called compatible with (1.2).

Proof of Lemma 2.5. Note that

R(a, b) :=







+∞ if a < 0 and b > 1
4 a

2 ,
+∞ if a ≥ 0 and b ≥ 0 ,
− 1

a if a < 0 and b = 0 .
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For all other values of (a, b), one has

R(a, b) = − a
2 b − (a2−4 b)

1

2

2 b .

It follows that

R−1([τ,+∞]) :=
{

(a, b) ∈ R
2 ; a ≤ − 2 τ−1 , b > 1

4 a
2
}

∪
{

(a, b) ∈ R
2 ; a ≥ − 2 τ−1 , b ≥ − τ−2 (τ a+ 1)

}

.

◦ Suppose that {hε}ε is subjected to (2.18). Observe that

Ihε(x) = ε−1 I−1

(

x, ε−1 φ(x)
)

+ O(1) , I−1(x, θ) = t(I1
−1, I

2
−1)(x, θ)

with I1
−1 = ∇xφ · ∂θH

∗ and

I2
−1 = ∂1φ (∂θH

1 ∂2H
2−∂θH

2 ∂2H
1) + ∂2φ (∂θH

2 ∂1H
1−∂θH

1 ∂1H
2) .

Select any (x, θ) ∈ ω × T such that φ(x) 6= 0. Introduce

εk := φ(x) (θ + ι k)−1 , ι := sgn φ(x) , k ∈ N \ {0, 1} .
By construction

(2.22) Ihεk (x) = ε−1
k I−1(x, θ) + O(1) .

This indicates that the sequence
{

Ihεk (x)
}

k
is asymptotic when k goes to

∞ with the half line

D :=
{

λ I−1(x, θ) ; λ ∈ R+

}

.

In view of the geometry of the set R−1([τ,+∞]), this is compatible with
(2.18) only if I1

−1(x, θ) ≥ 0. Because of (2.14) and the continuity of the
function I1

−1, it leads to

I1
−1(x, θ) ≥ 0 , ∀ (x, θ) ∈ ω × T .

The foregoing shows that I1
−1 is a positive function. On the other hand,

it is obviously a periodic function with mean zero. Therefore, it must be
zero which is exactly the polarization condition (2.19). There is some scalar
function s ≡ s∗ ∈ C∞(ω × T) which is such that

(2.23) H(x, θ) = H̄(x) + s∗(x, θ) ∇xφ(x)⊥ , ∇xφ
⊥ :=

(

−∂2φ
∂1φ

)

.

The information (2.23) allows to simplify the expression of

I2
−1 =

[

∂1φ ∂2φ (∂1H̄
1 − ∂2H̄

2) − (∂1φ)2 ∂2H̄
1 + (∂2φ)2 ∂1H̄

2
]

∂θs
∗

+
[

− 2 ∂1φ ∂2φ ∂
2
12φ + (∂1φ)2 ∂2

22φ + (∂2φ)2 ∂2
11φ

]

s∗ ∂θs
∗ .
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Since now I1
−1(x, θ) = 0, the sequence

{

Ihεk (x)
}

k
is asymptotic when k goes

to ∞ with

D± :=
{

(0, b) ; ±b > 0
}

if ± I2
−1(x, θ) > 0 .

In view of the geometry of the set R−1([τ,+∞]), this is compatible with
(2.18) on condition that I2

−1(x, θ) ≥ 0. Because of (2.14) and the continuity
of the function I2

−1, it leads to

I2
−1(x, θ) ≥ 0 , ∀ (x, θ) ∈ ω × T .

Again I2
−1 is a positive function. It is periodic and the formula given above

indicates that it is with mean zero. Therefore, it must be zero. Since by
hypothesis ω = osup s∗, the condition I2

−1 ≡ 0 amounts to the same thing
as imposing for all x ∈ ω the two relations

∂1φ ∂2φ (∂1H̄
1 − ∂2H̄

2) − (∂1φ)2 ∂2H̄
1 + (∂2φ)2 ∂1H̄

2 = 0 ,(2.24)

2 ∂1φ ∂2φ ∂
2
12φ − (∂1φ)2 ∂2

22φ − (∂2φ)2 ∂2
11φ = 0 .(2.25)

In view of (2.14), the identity (2.25) is equivalent to

(2.26) (−∂2φ ∂1 + ∂1φ ∂2) (∂1φ/∂2φ) = 0 , ∀x ∈ ω .

This differential equation implies that the quotient ∂1φ/∂2φ is locally con-
stant on each level curve of φ. In fact, it is constant on the whole curve
because by hypothesis the curve is connected. Since moreover the appli-
cation x2 7−→ φ(x1, x2) is a local C∞ diffeomorphism, the property (2.20)
must be achieved for some f ∈ C∞

b (I; R).

Since φ is now subjected to the restriction (2.20), the relation (2.24) can be
simplified according to

(2.27) (−∂2φ ∂1 + ∂1φ ∂2)
(

H̄2 + f(φ) H̄1
)

= 0 .

The same argument as above gives (2.21).

◦ Conversely, choose any couple (H̄, φ) satisfying (2.20) and (2.21). Select
any profile s∗. Define H as in (2.23). It implies that I−1 ≡ 0 so that

∃C > 0 ; |I1
hε(x)| ≤ C , |I2

hε(x)| ≤ C , ∀ (ε, x) ∈ ]0, 1] × ω .

In particular, we find (2.18) for some τ ∈ ]0, 1]. ✷

Remark 2.2.1 - existence of compatible couples. Take any f ∈ C∞
b (R; R)

with f ′ ≤ 0 and any g ∈ C∞
b (R; R). Select any function φ0 with

φ0 ∈ C∞(R) , φ′0 ∈ C∞
b (R) , φ′0(x2) ≥ 2 c > 0 , ∀x2 ∈ R .
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Solve the quasilinear equation (2.20) where x1 is interpreted as a time vari-
able and the Cauchy data is φ(0, x2) = φ0(x2). It furnishes a solution of
(2.20) which is defined on a domain of the form

ω̆ = {x = t(x1, x2) ∈ R
2 ; |x1| < η } , η > 0 .

If necessary, restrict η to be sure that (2.14) is verified. Take any s∗ and
any H̄1. Extract H̄2 through (2.21). Then, piece together these ingredients
to obtain a compatible couple (H,φ) which is defined on ω̆.

When f ′ is not constant, the construction of a compatible couple (H,φ)
which is globally defined on R

2 is not possible. This is due to (2.20). When
f ′′ ≡ 0, the characteristics are straight lines which cross. ⋄
Introduce the family of lines

E(z) :=
{

λ t
(

−1, f(z)
)

; λ ∈ R
}

⊂ R
2 , z ∈ I .

The proof of Lemma 2.5 is based on a decomposition of the profile H in its
oscillating part H∗ and its mean value H̄. Another point of view consists
in looking at the vector valued function H in the basis (t∇xφ,∇φ⊥). This
changes the presentation of H.

Lemma 2.6. Let φ ∈ C∞
b (ω; I) satisfying (2.20). The profile H satisfies

the relations (2.19) and (2.21) for some function g ∈ C∞
b (I; R) if and only

if there exists a scalar function r ∈ C∞
b (ω×T; R) and two smooth vector field

H⊥ ∈ C∞
b (I; R2), and H‖ ∈ C∞

b (I ×R; R2) which are polarized according to

(2.28) H⊥(z) ∈ E(z)⊥ , H‖(z, y) ∈ E(z) , ∀ (z, y) ∈ I × R

such that the following decomposition holds

(2.29) H(x, θ) = H⊥

(

φ(x)
)

+ H‖

(

φ(x), r(x, θ)
)

, ∀ (x, θ) ∈ ω × T .

Of course, when such a decomposition (2.29) exists, it is not unique: one can
change the scalar function r and make the corresponding convenient change
of the function H‖ to get a new decomposition. In the sequel, functions like
r will be called underlying scalar profiles.

Proof of Lemma 2.6. Decompose H according to H = Hc
⊥ +Hc

‖ with

Hc
⊥(x, θ) = |∇xφ(x)|−2

(

∇xφ(x) ·H(x, θ)
)

∇xφ(x) ,

Hc
‖(x, θ) = |∇xφ(x)|−2

(

∇xφ(x)⊥ ·H(x, θ)
)

∇xφ(x)⊥ .

Suppose first that (2.19) and (2.21) hold. Then

Hc
⊥(x, θ) = H⊥

(

φ(x)
)

, H⊥(z) :=
[

1 + f(z)2
]−1

g(z) t
(

f(z), 1
)

.
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On the other hand, with the choices

H‖(z, y) := y t
(

−1, f(z)
)

, r(x, θ) =
[

1+f(φ)2
]−1 t

(

−1, f(φ)
)

·H(x, θ) ,

we recover

Hc
‖(x, θ) = H‖

(

φ(x), r(x, θ)
)

.

With these definitions, we have (2.28) and (2.29). Conversely, suppose (2.28)
and (2.29). Then

∇xφ(x) ·H∗(x, θ) = ∇xφ(x) ·
[

H‖

(

φ(x), r(x, θ)
)]∗

= 0

and we obtain (2.21) with g(z) = t
(

f(z), 1
)

·H⊥(z). ✷

2.3 Well prepared families for the Euler equation.

Our aim in this subsection is to identify the constraints to impose on φ and
H in order to have

(2.30) hε ∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .

We work with f0 ≡ 0. The other cases ι = 1 and especially ι = −1 are
interesting but they will not be considered here.

Definition 2.2. We say that the family {hε}ε, where hε is defined as in
(2.17) and is made of ingredients satisfying 2.a), · · · , 2.d), is well prepared
on ω for the incompressible Euler equation (1.1) if

I1
hε(x) = divx h

ε(x) = 0 , ∀ (x, ε) ∈ ω×]0, 1] ,(2.31)

I2
hε(x) = det

(

Dxh
ε(x)

)

= 0 , ∀ (x, ε) ∈ ω×]0, 1] .(2.32)

In other words, a well prepared family {hε}ε for (1.1) is well prepared for
(1.2) and is made of functions hε which are contained in Vτ

0 (ω).

Suppose that {hε}ε is well prepared on ω for (1.1). According to Lemma 2.5,
we have (2.17) with a phase φ and a principal profile H adjusted according
to (2.19), (2.20) and (2.21). It is interesting to identify the other constraints
satisfied by such φ and H. In fact, these supplementary conditions concern
only the choice of g and of the function s∗ defined in (2.23).

Lemma 2.7. Select any functions φ ∈ C∞
b (ω; R) and f ∈ C∞

b (I; R) satis-
fying (2.20). Select any functions K ∈ C∞

b (I × T; R) and f0 ∈ C∞
b (I; R).

There exist some open set ω̆ ⊂ ω and a family {h̆ε}ε which is given by an
asymptotic expansion like (2.17) with J ≥ 0 and which is well prepared on
ω̆ for (1.1).
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Moreover, the family {h̆ε}ε is associated with the phase φ and the profile

(2.33) H(x, θ) = K
(

φ(x), θ + φ0(x, θ)
)

(

1
− f ◦ φ(x)

)

+

(

0
g ◦ φ(x)

)

where the function g(z) giving rise to (2.21) is

(2.34) g(z) := K(0, 0) f(0) +

∫ z

0
K̄(y) f ′(y) dy , z ∈ I

and where φ0 is subjected to the scalar quasilinear equation

(2.35)
∂1φ0 − f(φ) ∂2φ0 +

(

−f ′(φ) φ0 + f0(φ)
)

∂2φ ∂θφ0

+
(

−f ′(φ) φ0 + f0(φ)
)

∂2φ = 0 .

Proof of Lemma 2.7. The restriction (2.32) means that we can find

h̃ε = t(h̃ε1, h̃ε2) ∈ C∞
b (I; R2) , ϕε ∈ C∞(ω; I) , ε ∈ ]0, 1]

such that

(2.36) h̆ε(x) = t
(

h̆ε1(x), h̆ε2(x)
)

= h̃ε
(

ϕε(x)
)

, ∀ (x, ε) ∈ ω×]0, 1] .

Choose any sequence

Kj ∈ C∞(I × T; R) , j ∈ {0, · · · , J − 1} .
Define

h̃ε1(z) = Kε
(

z, z
ε

)

:= K
(

z, z
ε

)

+ε
∑J−1

j=0 εj Kj

(

z, z
ε

)

, (z, ε) ∈ I× ]0, 1] ,

h̃ε2(z) =
∫ z
0

(

−f(y) + ε fε(y)
)

(h̃ε1)′(y) dy , (z, ε) ∈ I×]0, 1] ,

where

fε(z) =
∑J−1

j=0 εj fj(z) , fj ∈ C∞
b (R; R) , j ∈ {0, · · · , J − 1} .

Two integrations by parts lead to

h̃ε2(z) =
(

−f(z) + ε fε(z)
)

h̃ε1(z) −
(

−f(0) + ε fε(0)
)

h̃ε1(0)

−
∫ z
0

(

−f ′(y) + ε (fε)′(y)
)

K̄ε(y) dy

− ε
(

−f ′(z) + ε (fε)′(z)
)

(∂−1
θ Kε∗)

(

z, z
ε

)

+ ε
(

−f ′(0) + ε (fε)′(0)
)

(∂−1
θ Kε∗)(0, 0)

+ ε
∫ z
0

(

−f ′′(y) + ε (fε)′′(y)
)

(∂−1
θ Kε∗)

(

y, y
ε

)

dy

+ ε
∫ z
0

(

−f ′(y) + ε (fε)′(y)
)

(∂y∂
−1
θ Kε∗)

(

y, y
ε

)

dy .

The procedure can be repeated since for instance

(∂−1
θ Kε∗)

(

y, y
ε

)

= ε ∂y

[

(∂−1
θ ∂−1

θ Kε∗)
(

y, y
ε

) ]

− ε (∂y ∂
−1
θ ∂−1

θ Kε∗)
(

y, y
ε

)

.
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It furnishes

h̃ε2(z) = H̃2
(

z, z
ε

)

+ ε
∑J−1

j=0 εj H̃2
j

(

z, z
ε

)

+ O(εJ+1)

with in particular

(2.37) H̃2(z, θ) := − f(z) K(z, θ) + f(0) K(0, 0) +
∫ z
0 K̄(y) f ′(y) dy ,

(2.38) H̃2
0 (z, θ) := −f(z) K0(z, θ) + f0(z) K(z, θ) + f(0) K0(0, 0)

− f0(0) K(0, 0) +
∫ z
0 f ′(y) K̄0(y) dy −

∫ z
0 f ′0(y) K̄(y) dy

+ f ′(z) (∂−1
θ K∗)(z, θ) − f ′(0) (∂−1

θ K∗)(0, 0) .

The expression h̃ε is adjusted so that (2.31) becomes the consequence of

(2.39) ∂1ϕ
ε +

(

−f(ϕε) + ε fε(ϕε)
)

∂2ϕ
ε = 0 .

Seek solutions ϕε of (2.39) in the form

(2.40) ϕε(x) = φ(x) + ε φε
(

x, φ(x)/ε
)

, φε ∈ C∞
b (ω̆ × T; R)

where φ(x) is subjected to (2.20) and φε(x, θ) can be expanded according to

φε(x, θ) =
∑J+1

j=0 εj φj(x, θ) + εJ+2 rφε(x, θ) .

The expression φε must satisfy

(2.41) ∂1φ
ε + a(ε, t, x, φε) ∂2φ

ε + b(ε, t, x, φε) ∂θφ
ε + b(ε, t, x, φε) = 0

with

a(ε, t, x, z) := − f(φ+ ε z) + ε fε(φ+ ε z) ,

b(ε, t, x, z) :=
[

− z
∫ 1
0 f ′(φ+ ε s z) ds + fε(φ+ ε z)

]

∂2φ .

Look at (2.41) as an evolution equation in the variable x1. Remark that
J := ω(0) ⊂ R is an open interval containing 0. Choose functions

φ0j ∈ C∞
b (J ×T; R) , rφε

0 ∈ C∞
b (J ×T; R) , j ∈ {0, · · · , J +1}

where the family {rφε
0}ε is such that

sup
{

‖ rφε
0 ‖L∞(J×T) + εJ−2 ‖ Dx2,θ rφ

ε
0 ‖L∞(J×T) ; ε ∈ ]0, 1]

}

< ∞ .

Complete (2.41) with the initial data

(2.42) φε(0, x2, θ) = φε
0(x2, θ) , φε

0 =
∑J+1

j=0 εj φ0j + εJ+2 rφε
0 .

Under these conditions, it is possible to find some open set ω̆ ⊂ ω ⊂ R
2 with

ω̆(0) = J and, for all ε ∈ ]0, 1], a solution φε of (2.41)-(2.42) on ω̆.
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The term φ0 is subjected to (2.35) and the remainder rφε is controlled by

sup
{

‖ rφε ‖L∞(ω̆×T) + εJ−2 ‖ Dx,θ rφ
ε ‖L∞(ω̆×T) ; ε ∈ ]0, 1]

}

< ∞ .

By way of formula (2.40), this furnishes a solution ϕε of (2.39). Plug ϕε in
h̃ε as in (2.36) to get with K−1 ≡ K and H̃2

−1 ≡ H̃2

h̆ε1(x) =
∑J−1

j=−1 ε
j+1 Kj

(

φ(x) + ε φε(x), φ(x)/ε+ φε(x)
)

,

h̆ε2(x) =
∑J−1

j=−1 ε
j+1 H̃2

j

(

φ(x) + ε φε(x), φ(x)/ε+ φε(x)
)

+ O
(

εJ+1
)

.

Use a Taylor formula to recover (2.17) with ingredients satisfying 2.a), · · · ,
2.d). The relation (2.37) leads to (2.33) with g as indicated. Obviously, the
family {h̆ε}ε is well prepared on ω̆ for (1.1). ✷

We can also deduce from the preceding construction the following more
refined informations.

Lemma 2.8. Select any functions K0 ∈ C∞
b (I × T; R) and f1 ∈ C∞

b (I; R).
In the framework of Lemma 2.7 applied with J ≥ 1, the second profile H0

can be put in the form

H0(x, θ) = Ȟ0

(

x, φ(x), θ + φ0(x, θ)
)

, Ȟ0 ∈ C∞
b (ω̆ × R × T; R2) .

Above, the function Ȟ0 = t(Ȟ1
0 , Ȟ

2
0 ) can be adjusted so that

Ȟ1
0 (x, z, θ) = φ0(x, θ) (∂zK)(z, θ) + φ1(x, θ) (∂θK)(z, θ) + K0(z, θ) ,

Ȟ2
0 (x, z, θ) = φ0(x, θ) (∂zH̃

2)(z, θ) + φ1(x, θ) (∂θH̃
2)(z, θ) + H̃2

0 (z, θ) ,

with H̃2 and H̃2
0 defined according to (2.37) and (2.38), and with φ1 subjected

to the scalar quasilinear equation

(2.43)
∂1φ1 − f(φ) ∂2φ1 + ∂2φ

(

− f ′(φ) φ0 + f0(φ)
)

∂θφ1

− ∂2φ (1 + ∂θφ0) f
′(φ) φ1 + ∂2φ0

(

− f ′(φ) φ0 + f0(φ)
)

+ ∂2φ (1 + ∂θφ0)
(

− 1
2 f

′′(φ) φ 2
0 + f ′0(φ) φ0 + f1(φ)

)

= 0 .

Remark 2.3.2 - more general constructions. The preceding description of
families which are well prepared for (1.1) is not exhaustive. For instance,
for all j ∈ {0, · · · , J − 1}, the function fj(z) can be replaced by fj

(

z, z
ε

)

which yields more complicated formulae. ⋄

3 Simple waves.

A simple wave is a solution of (1.1) or (1.2) having the form (1.11) where
the profile H and the phase Φ do not depend on ε. The functions H and Φ
are chosen smooth on some domain of determinacy Ω ⊂ R × R

2, say

H ∈ C∞
b (Ω × T; R2) , Φ ∈ C∞(Ω; R) , ω = ({0} × R

2) ∩ Ω .
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3.1 The case of Burger equations.

The aim of this subsection 3.1 is to construct all simple waves which are
associated with (1.2). Suppose that a family {ũε}ε∈ ]0,1] is made of C1 solu-
tions on Ω to the Burger equation (1.2) and is given by a formula like (1.11).
Then, the corresponding initial data is

H
(

0, x,Φ(0, x)/ε
)

= H
(

x, φ(x)/ε
)

with

H(x, θ) = t(H1,H2)(x, θ) := H(0, x, θ) , φ(x) := Φ(0, x) .

To avoid inside Ω the crossing of characteristics, necessarily the couple (H,φ)
must be compatible. It means that the expressions H and φ are adjusted
as in Lemma 2.5, with ingredients f , g and s∗ yielding (2.20), (2.21) and
(2.23). Now, there is a natural way to associate with such (H,φ) a simple
wave. Define

s(x, θ) := − H̄1(x) / ∂2φ(x) + s∗(x, θ) ∈ C1(ω × T; R) .

Introduce the eiconal equation

(3.1) ∂tΦ + g(Φ) ∂2Φ = 0

and the quasi-linear equation

(3.2)
∂ts + g(Φ) ∂2s + s (−∂2Φ ∂1 + ∂1Φ ∂2) s

= ∂2Φ s
(

g′(Φ) + f ′(Φ) ∂2Φ s
)

− |∇xΦ|−2 t∇xΦ⊥ · f .

Complete these equations with the initial data

(3.3) Φ(0, x) = φ(x) , s(0, x, θ) = s(x, θ) .

Lemma 3.1. Select any compatible couple (H,φ). There is a domain of
determinacy Ωτ of the form

Ωτ :=
{

(t, x) ∈ [0, τ [×R
2 ; B(x, cτ t[⊂ ω

}

, τ ∈ ]0, 1]

such that the Cauchy problems (3.1)-(3.3) and (3.2)-(3.3) have solutions Φ
and s respectively on Ωτ and Ωτ ×T. With these ingredients, build the large
amplitude wave

(3.4)
ũε(t, x) = H

(

t, x,Φ(t, x)/ε
)

:= s
(

t, x,Φ(t, x)/ε
)

(

−∂2Φ(t, x)
∂1Φ(t, x)

)

+

(

0
g
(

Φ(t, x)
)

)

.
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At the time t = 0, one has

ũε(0, x) = h̃ε(x) := H
(

x, φ(x)/ε
)

.

Assume that the source term f(t, x) is adjusted so that ∇xΦ·f ≡ 0. Then, the
expression ũε is a simple wave which is a solution on Ωτ of (1.2). Moreover,
the relations (2.20) and (2.21) are conserved during the evolution.

Proof of Lemma 3.1. Start by checking the initial data. Use (2.20), (2.21)
and (2.23) to obtain

H(0, x, θ) = s(0, x, θ) ∇xφ(x)⊥ + t
(

0 , g ◦ φ(x)
)

= H̄(x) + s∗(x, θ) ∇xφ(x)⊥ = H(x, θ) .

The definition (3.4) clearly implies that

H∗(t, x, θ) · ∇xΦ(t, x) = 0 , ∀ (t, x, θ) ∈ Ωτ × T .

Plug (3.4) at the level of (1.2). Say that the expressions with ε−1 and
ε0 in factor are separately equal to zero. Then, collect all the preceding
informations to get the system (1.12) which is over-determined. For general
choices of (H,φ), the system (1.12) has no solution.

In fact, the matter is to show that the Cauchy problem (1.12) is (locally in
time) well-posed once the couple (H,φ) is compatible with (1.2). Lemma
3.1 proposes to solve (1.12) by using the formula

(3.5) H(t, x, θ) = s(t, x, θ)

(

−∂2Φ(t, x)
∂1Φ(t, x)

)

+

(

0
g
(

Φ(t, x)
)

)

.

This formulation (3.5) contains obviously the polarization condition on H∗.
It is adjusted so that the second equation of (1.12) (on Φ) gives rise to (3.1).
From (3.1), it is also possible to extract

[

∂t + g(Φ) ∂2 + ∂2Φ g′(Φ)
] (

∂1Φ − f(Φ) ∂2Φ
)

= 0 .

It follows that the relation (2.20) and hence the condition (2.21) are propa-
gated during the evolution. In other words

(3.6) ∂1Φ(t, x) = f
(

Φ(t, x)
)

∂2Φ(t, x) , ∀ (t, x) ∈ Ωτ ,

(3.7) H̄2(t, x) + f
(

Φ(t, x)
)

H̄1(t, x) = g
(

Φ(t, x)
)

, ∀ (t, x) ∈ Ωτ .

Consider now the first equation in (1.12). Because of (3.2), it reduces to

(3.8)
∂t∇xΦ⊥ + g(Φ) ∂2∇xΦ⊥ + ∂2Φ g′(Φ) ∇xΦ⊥

+ s
[

(∇xΦ⊥ · ∇x)∇xΦ⊥ + f ′(Φ) (∂2Φ)2 ∇xΦ⊥
]

= 0 .
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On the one hand, the equation (3.6) guarantees that

(−∂2Φ ∂1 + ∂1Φ ∂2)∇xΦ⊥ = − f ′(Φ) (∂2Φ)2 ∇xΦ⊥ .

On the other hand, the derivation of (3.1) furnishes

∂t∇xΦ⊥ + g(Φ) ∂2∇xΦ⊥ + ∂2Φ g′(Φ) ∇xΦ⊥ = 0 .

Thus, the identity (3.8) is verified. ✷

There is another way to consider H. This point of view consists in appealing
to the framework of Lemma 2.6.

Lemma 3.2. The profile H can be written

H(t, x, θ) = H̃
(

Φ(t, x), r(t, x, θ)
)

, H̃(z, y) = H⊥(z) + H‖(z, y)

where the phase Φ is given by

(3.9) ∂tΦ +
(

H⊥(Φ) · ∇x

)

Φ = 0 , Φ(0, x) = φ(x)

whereas the function r is obtained by solving the scalar quasilinear equation

(3.10)

{

∂tr +
(

H̃(Φ, r) · ∇x

)

r +
(

1 + f(Φ)2
)−1 t

(

−1, f(Φ)
)

· f = 0 ,
r(0, x, θ) = r(x, θ) .

Remark 3.1.1 - about r. Thus, to solve (1.12), it suffices first to consider
the eiconal equation (3.9) and then to look at the transport equation (3.10).
Again, the function r is called an underlying scalar profile. Taking into
account the definitions of H⊥ and H‖, we get the decomposition

H(t, x, θ) =
g(Φ)

1 + f(Φ)2

(

f(Φ)
1

)

+ r(t, x, θ)

(

−1
f(Φ)

)

, Φ = Φ(t, x) .

⋄
Proof of Lemma 3.2. In view of Lemma 2.6, we have

H(0, x, θ) = H(x, θ) = H̃
(

φ(x), r(x, θ)
)

.

The solution of (1.12), once it exists, is unique. Therefore, it suffices to show
that the expressions Φ and H which can be extracted from (3.9) and (3.10)
satisfy the system (1.12). The condition (3.9) implies that

[

∂t + H⊥(Φ) · ∇x + H ′
⊥(Φ) · ∇xΦ

] (

∂1Φ − f(Φ) ∂2Φ
)

= 0 .

One has (3.6) which means that ∇xΦ ⊥ E(Φ). Using (2.28), it gives rise to

H̄ · ∇xΦ = H⊥(Φ) · ∇xΦ , ∇xΦ · H∗ = ∇xΦ ·H‖(Φ, r)
∗ = 0 .
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Thus, (3.9) is the same as the second equation of (1.12) whereas the third
equation of (1.12) is verified. It remains to compute

∂tH + (H · ∇x)H + f =
[

∂tr + (H · ∇x)r
]

∂yH‖(Φ, r) + f

which is equal to zero because of (3.10). ✷

Remark 3.1.2 - weak convergence. Look at the special choices

s(t, x, θ) = x1 cos (2π θ) /
(

1 + t cos (2π θ)
)

, Φ(t, x) = −x2 ,

which satisfy all the required conditions (with f ≡ 0, g ≡ 0 and f ≡ 0). The
weak limit ū of the corresponding family {ũε}ε is

ū(t, x) = x1

∫ 1
0

[

cos (2π θ) /
(

1 + t cos (2π θ)
)]

dθ t(1, 0) .

Observe that ū is not a solution of (1.2) since
(

∂tū1 + (ū · ∇x)ū1

)

(0, x) = −x1

∫ 1
0

(

cos (2π θ)
)2

dθ 6≡ 0 .

It means that (1.2) is not closed for the weak topology of L2. Now, this is
a very natural expectation since (1.2) has no conservative form. ⋄
Remark 3.1.3 - special diffeomorphisms. Select again a couple (H,φ) which
is compatible with (1.2). The application

Ξε
t : x 7−→ x + t H

(

x, φ(x)/ε
)

is a local diffeomorphism whose inverse can be made explicit. It is

(Ξε
t )

−1 : x 7−→ x − t H
(

t, x,Φ(t, x)/ε
)

where H and Φ are obtained by solving the nonlinear system (1.12). ⋄
Remark 3.1.4 - caustics of the first type. There is no constraint (except the
regularity) on the choice of g. When the function g is non increasing the
solution Φ of (3.1) develops shocks which correspond to the formation of
caustics for the Burger equation. ⋄

3.2 The case of incompressible equations.

The study of the over-determined system (1.16) is more delicate than the one
of (1.12). We restrict here our attention to the case p ≡ pι. In this particular
context, the construction of simple waves which are incompressible needs to
restrict the choice of the ingredients f , g and r.

Lemma 3.3. Among the simple waves which are solutions to (1.2) where
f = ∇xpι for some ι ∈ {−1, 0, 1}, that is which are given by Lemma 3.1,
those who satisfy also (1.16) are plane waves.
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More precisely, they take the form

(3.11) ǔε(t, x) =
[

k
(

z,
ψ(z)

ε

)

ψ′(z)
]

| z=a t+b x1+x2

(

−1
b

)

−
(

0
a

)

where k ∈ C∞
b (R × T; R), ψ ∈ C∞(R; R) and (a, b) ∈ R

2.

Proof of Lemma 3.3. Select a general simple wave ũε as in (3.4), involving
ingredients Φ, s and H as in (3.1), (3.2) and (3.5). In fact, the matter is
to solve (1.12) where f ≡ fι and where the condition divx H ≡ 0 is added.
This amounts to the same thing as looking at the scalar quasilinear equation
(3.2) completed with the constraints

(3.12) ∇xΦ⊥ · ∇xs
∗ = 0 , ∇xΦ⊥ · ∇xs̄ + g′(Φ) ∂2Φ = 0 .

The first condition means that s∗(t, ·) is a function of Φ(t, ·). The second
condition, when imposed at time t = 0, must be preserved during the evo-
lution induced by (3.2). The initial data φ and s must be adjusted to this
end. However, it is delicate to identify at the level of (3.2) the constraints
to impose on φ and s. The difficulties are due to the interplay between the
oscillating part s∗ and the mean value s̄.

Below, we adopt another point of view. Our argument consists in appealing
to the criterion of the paragraph 2.1.3. The expression

h̃ε(x) = ũε(0, x) = H
(

0, x,Φ(0, x)/ε
)

= H
(

x, φ(x)/ε
)

must satisfy

(3.13) divx h̃
ε(x) = 0 , detDxh̃

ε(x) = ι , ∀x ∈ ω .

The divergence free condition yields

divx h̃
ε(x) = ∇xs

(

x, φ(x)/ε
)

· ∇xφ(x)⊥ + g′
(

φ(x)
)

∂2φ(x) = 0 .

Pass to the weak limit (ε −→ 0) to find

∇xs(x, θ) · ∇xφ(x)⊥ + g′
(

φ(x)
)

∂2φ(x) = 0 , ∀ (x, θ) ∈ ω × T .

Separate the mean value

(3.14) − ∂2φ(x) ∂1s̄(x) + ∂1φ(x) ∂2s̄(x) + g′
(

φ(x)
)

∂2φ(x) = 0

from the oscillating part

(3.15) ∇xs
∗(x, θ) · ∇xφ(x)⊥ = 0 .
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As expected, the conditions (3.14) and (3.15) are the same as (3.12) written
at time t = 0. In particular, there is k∗ ∈ C∞

b (I × T; R) such that

(3.16) s∗(x, θ) = k∗
(

φ(x), θ
)

, k∗ 6≡ 0 , ∀ (x, θ) ∈ ω × T .

For j = 1 or for j = 2, one has

∂j h̃
ε(x) = ∂j

[

∂2φ(x) s
(

x, φ(x)
ε

)]

t
(

−1, f(φ(x))
)

+ ∂jφ(x)
[

∂2φ(x) f ′
(

φ(x)
)

s
(

x, φ(x)
ε

)

+ g′
(

φ(x)
) ]

t(0, 1) .

Mark the coefficients

aε(x) := ∂2φ(x) f ′
(

φ(x)
)

s
(

x, φ(x)
ε

)

+ g′
(

φ(x)
)

= ā(x) + m̄a(x) k
∗
(

φ(x), φ(x)
ε

)

.

bε(x) := ∂1

[

∂2φ(x) s
(

x, φ(x)
ε

)]

− f
(

φ(x)
)

∂2

[

∂2φ(x) s
(

x, φ(x)
ε

)]

= 0 .

= ∂2φ(x) ∂1s̄(x) − ∂1φ(x) ∂2s̄(x) + f ′
(

φ(x)
) (

∂2φ(x)
)2
s
(

x, φ(x)
ε

)

= b̄(x) + m̄b(x) k
∗
(

φ(x), φ(x)
ε

)

.

Now, examine the second condition in (3.13) which is equivalent to

∂2φ(x) aε(x) bε(x) + ι = 0 , ∀ ε ∈ ]0, 1] .

Pass to the weak limit (ε −→ 0) to find

ā(x) b̄(x) + ι/∂2φ(x) +
(

m̄a(x) + m̄b(x)
)

k∗
(

φ(x), θ
)

+ m̄a(x) m̄b(x) k
∗
(

φ(x), θ
)2

= 0 .

Since this must be true for all (x, θ) ∈ ω × T, this is the same as

ā(x) b̄(x) = 0 , m̄a(x) + m̄b(x) = 0 , m̄a(x) m̄b(x) = 0 .

In particular

m̄a(x) m̄b(x) =
(

∂2φ(x)
)3
f ′

(

φ(x)
)2

= 0 .

Necessarily f is a constant, say f = b ∈ R. In view of (2.20), one has

∃ψ ∈ C∞(R; R) ; ±ψ′ > 0 , φ(x) = ψ(b x1 + x2) .

Now, remember that the construction of Lemma 3.1 requires a condition on
f . This condition concerns here fι and, at time t = 0, it is

∇xΦ(0, x) · fι(0, x) = ι (b x1 + x2) ψ
′(b x1 + x2) = 0 , ∀x ∈ ω .

Since ψ′ 6≡ 0, this is possible only if ι = 0. Therefore, the cases ι = −1 and
ι = 1 are excluded. From now on, take ι = 0.
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Use (3.14) to extract

ā(x) b̄(x) = ∂2φ(x) g′
(

φ(x)
)2

= 0 .

It means that g is a constant, say g = −a ∈ R. In view of (3.14), one has

∃ k̄ ∈ C∞(R; R) ; s̄(x) = k̄(b x1 + x2) .

Solve (3.1) to get

Φ(t, x) = ψ(a t+ b x1 + x2) .

It remains to look at (3.2) that is

∂ts − a ∂2s + s ψ′ (− ∂1 + b ∂2) s = 0 .

Observe that the choice

s(t, x, θ) = k̄(z) + k∗
(

ψ(z), θ
)

ψ′(z) t(−1, b) , z = a t+ b x1 + x2

is convenient. This is the expected result. ✷

Remark 3.2.1 - intuitive derivation of Lemma 3.3. The restriction on Φ
contained in Lemma 3.3 can be guessed by looking at the construction un-
derlying Lemma 2.7. To find simple waves, small amplitude terms (of size
εj with j ≥ 1) must be suppressed. Now, to get

uε(0, x) = h̆ε(x) = t
(

h̆ε1(x), h̆ε2(x)
)

= H
(

x, φ(x)/ε
)

it is convenient to take

rφε ≡ 0 , φj ≡ 0 , Kj ≡ 0 , ∀ j ∈ {0, · · · , J + 1} .
Then, consider h̆ε2. We must have

∂θȞ
2
0 (x, z, θ) = ∂θH̃

2
0 (z, θ) = f0(z) ∂θK

∗(z, θ) + f ′(z) K∗(z, θ) = 0 .

This is possible only if f ′ ≡ 0 on the set ω̆ = osupK∗ 6= ∅. It follows that
g ≡ −a for some a ∈ R and, therefore, that Φ(t, x) = ψ(a t + b x1 + x2) for
some function ψ ∈ C∞(R; R). ⋄

Remark 3.2.2 - weak convergence. The weak limit of the family {ǔε}ε is

ǔ(t, x) = (k̄ ψ′)(a t+ b x1 + x2)
t(−1, b) − t(0, a) .

Adjust the profile k so that

k̄(z)2 6≡
∫ 1
0 k(z, θ)2 dθ .

Then, the weak limit of the product {ǔε1 ǔε2}ε differs from the product
of the weak limits, that is ǔ1 ǔ2. A similar remark is made in [2] (see p.
495, example 12.9). Observe however that ǔ(t, x) is still a solution to (1.1).
Therefore, this argument does not bring any contradiction with the property
of concentration-cancellation. ⋄

40



4 The problem of stability.

Let (H0, φ0) be a couple which is compatible with (1.2) (see Lemma 2.5).
Then, Lemma 3.1 furnishes a simple wave

ũε(t, x) = H0
(

t, x,Φ0(t, x)/ε
)

, ε ∈ ]0, 1]

which is a large amplitude wave ũε issued from the initial data

ũε(0, x) = h̃ε(x) := H0
(

x, φ0(x)/ε
)

, ε ∈ ]0, 1] .

Now, consider the perturbed initial data hε(x) = Hε
(

x, φ0(x)/ε
)

where the
profile Hε is a small perturbation of H0 having size O(ε), that is

(4.1) Hε(x, θ) := H0(x, θ) + εW ε(x, θ) = H0(x, θ) + O(ε) .

Here, the profile W ε(x, θ) is chosen of class C∞ with respect to the variables
(ε, t, x, θ) ∈ [0, 1] × ω × T. By virtue of subsection 2.2, the family {hε}ε is
still well prepared on ω for (1.2) so that the oscillating Cauchy problem

(4.2) ∂tu
ε + (uε · ∇x)uε + f = 0 , uε(0, x) = hε(x) , ε ∈ ]0, 1]

is well posed on Ωτ for some τ > 0. In other words, as explained in the
introduction, the existence of a solution uε to (4.2) on a domain Ωτ which
does not shrink to the empty set (as ε goes to zero) is guaranteed a priori.

On the other hand, the analysis of chapters 2 and 3 gives no information
about the asymptotic behavior on Ωτ of {uε}ε. In order to see where the
difficulty is, let us consider the linearized equation along ũε, that is

∂tu̇ + (ũε · ∇x)u̇ + (u̇ · ∇x)H0 + ε−1 (u̇ · ∇xΦ0) ∂θH
0 = 0 .

Multiplying on the left by tu̇ and integrating over R
2 yields the rough control

d
dt ‖ u̇(t, ·) ‖2

L2(R2) ≤ C ε−1 ‖ u̇(t, ·) ‖2
L2(R2) .

This inequality does not provide with energy estimates which are uniform
in ε ∈ ]0, 1]. It allows the presence of instabilities. Nothing guarantees that
uε remains closed to ũε, and actually what follows shows that this is not

the case. More precisely, the difference uε − ũε is of size O(ε) when t = 0
but it can become of size O(1) for t ∈ ]0, 1].

The possibility of such a mechanism of amplification is already hidden in
the discussion of chapters 2 and 3. Indeed, there is a contrast between
the weak conditions on (H,φ) in Lemma 2.7 and the strong restrictions
given in Lemma 3.3. The first conditions (imposed on the main term of the
oscillation) are weaker because small perturbations of size O(ε) are allowed.
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The preceding remark seems alleviating but it announces in fact the follow-
ing more general principle :

When dealing with the propagation of a large amplitude wave which oscillates
at the frequency O(1/ε), the shape of the main contribution which is of size
O(1) is generically coupled with what happens at the level of smaller terms,
for instance of size O(ε).

The aim of this chapter 4 is to clarify this assertion. The links between large
and small terms is cleared up in the next subsections.

4.1 Small perturbations with variations of the phase.

As explained in the introduction, a possible strategy is to look for a solution
of the form (1.22). In the formula (1.22), both Hε and Φε are regarded as
unknowns which can depend on ε. The introduction of Φε corresponds to a
blow up procedure. More precisely, we seek

Hε(t, x, θ̃) ∈ C1(Ω×T; R2) , Hε(t, x, θ̃) = H0(t, x, θ̃)+εWε(t, x, θ̃) ,

Φε(t, x, θ) ∈ C1(Ω × T; R) , Φε(t, x, θ) = Φ0(t, x) + εΨε(t, x, θ) ,

where H0(t, x, θ̃) and Φ0(t, x) are given functions obtained through (1.12).
We use the notation θ̃ (instead of θ) to insist on the fact that the rapid
variable θ̃ must be replaced by Φε

(

t, x,Φ0(t, x)/ε
)

/ε
(

instead of Φ0(t, x)/ε
)

.
Therefore, we seek a solution uε having the form

(4.3) uε(t, x) = Hε
(

t, x,Φ0(t, x)/ε+ Ψε
(

t, x,Φ0(t, x)/ε
))

, ε ∈ ]0, 1] .

Observe that, at the level of Φε, the term Ψε plays the part of a small per-
turbation of size O(ε). But, at the level of uε, it induces a large modification
of size O(1). At time t = 0, we get

uε(0, x) = Hε
(

x, φ0(x)/ε
)

= H0
(

0, x, φ0(x)/ε+ Ψε
(

0, x, φ0(x)/ε
))

+ ε Wε
(

0, x, φ0(x)/ε+ Ψε
(

0, x, φ0(x)/ε
))

.

This is coherent with (4.1) if we impose

(4.4) Wε(0, x, θ̃) = W ε(x, θ̃) , Ψε(0, x, θ) = 0 , ε ∈ ]0, 1] .

Plug uε given by (4.3) in the equation (1.2). Use (1.12) to make simplifica-
tions. It remains

[

∂tW
ε(t, x, θ̃) +

(

(Hε(t, x, θ̃) · ∇x

)

Wε(t, x, θ̃)

+
(

Wε(t, x, θ̃) · ∇x

)

H0(t, x, θ̃)
]

| θ̃=Φε(t,x,Φ0(t,x)/ε)/ε
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+ ε−1
[

∂tΨ
ε(t, x, θ) +

(

Hε
(

t, x, θ + Ψε(t, x, θ)
)

· ∇x

)

Ψε(t, x, θ)

+
(

Wε
(

t, x, θ + Ψε(t, x, θ)
)

· ∇x

)

Φ0(t, x) ∂θΨ
ε(t, x, θ)

+
(

Wε
(

t, x, θ + Ψε(t, x, θ)
)

· ∇x

)

Φ0(t, x)
]

| θ=Φ0(t,x)/ε

× ∂θ̃H
ε
(

t, x,Φε(t, x,Φ0(t, x)/ε)/ε
)

= 0 .

In the above expression, we take care to precise which variables θ or θ̃
are used. Since there are now two unknowns Wε and Ψε, it is natural to
incorporate a new constraint. We choose to add the equation which says that
the singular term (with ε−1 in factor) vanishes (in fact classical arguments
in geometric optics could be used to show that this equation is necessary).
Hence, we will look for

(

Wε(t, x, θ̃),Ψε(t, x, θ)
)

as a solution of the following
nonlinear system

(4.5)















∂tW
ε +

(

(H0 + εWε) · ∇x

)

Wε + (Wε · ∇x)H0 = 0 ,
∂tΨ

ε +
(

(Hε(t, x, θ + Ψε) · ∇x

)

Ψε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0 ∂θΨ
ε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0 = 0 ,

where the first equation involves the variables (t, x, θ̃) whereas the second
equation is in the variables (t, x, θ). The system (4.5) is completed with the
initial data (4.4). It has a triangular structure. The first part writes

(4.6)

{

∂tW
ε +

(

(H0 + εWε) · ∇x

)

Wε + (Wε · ∇x)H0 = 0 ,

Wε(0, x, θ̃) = W ε(x, θ̃) .

It is a standard initial value problem for a symmetric quasi-linear hyperbolic
system, depending smoothly on ε ∈ [0, 1]. It is locally well posed, uniformly
in ε ∈ [0, 1], hence Wε(t, x, θ̃) is well defined by (4.6). The second part of
(4.5) is

(4.7)















∂tΨ
ε +

(

Hε(t, x, θ + Ψε) · ∇x

)

Ψε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0(t, x) ∂θΨ
ε

+
(

Wε(t, x, θ + Ψε) · ∇x

)

Φ0(t, x) = 0 ,
Ψε (0, x, θ) = 0 .

Since Wε has been previously determined, this is a scalar quasi-linear equa-
tion depending smoothly on ε ∈ [0, 1]. It yields Ψε(t, x, θ). When ε = 0, the
system (4.5) reduces to

(4.8)















∂tW
0 +(H0 · ∇x)W0 + (W0 · ∇x)H0 = 0 ,

∂tΨ
0 +

(

H0(t, x, θ + Ψ0) · ∇x

)

Ψ0

+
(

W0(t, x, θ + Ψ0) · ∇x

)

Φ0 ∂θΨ
0

+
(

W0(t, x, θ + Ψ0) · ∇x

)

Φ0 = 0 .
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It is completed with the initial conditions

(4.9) W0(0, x, θ̃) = W 0(x, θ̃) , Ψ0(0, x, θ) = 0 .

The system (4.8) has a unique local smooth solution. In order to state the
next result, fix τ0 ∈ ]0, τ [ and a solution (W0,Ψ0) of (4.8)-(4.9) which is C∞

on the domain Ωτ × T.

Theorem 4.1. Assume that (H0,Φ0) is a smooth simple wave satisfying
(1.12) on the domain Ωτ×T as constructed in Lemma 3.1, and let (H0, φ0) =
(H0|t=0,Φ

0|t=0) the corresponding compatible initial value. For any family
{W ε}ε where W ε(x, θ) is a smooth function with respect to (ε, x, θ) ∈ [0, 1]×
ω×T, there exists ε0 ∈ ]0, 1] such that for all ε ∈ ]0, ε0] the Cauchy problem
(1.2) with initial data

uε(0, x) = H0
(

x, φ0(x)/ε
)

+ ε W ε
(

x, φ0(x)/ε
)

has a unique smooth solution uε(t, x) ∈ C1(Ωτ0). Furthermore, we have the
following asymptotic expansion

uε(t, x) = H0
(

t, x,Φ0(t, x)/ε+ Ψ0
(

t, x,Φ0(t, x)/ε
))

+ O(ε)

which is verified as ε goes to 0 in the sense of the space L∞(Ωτ0).

Proof of Theorem 4.1.

1. Solve the first equation (4.6) to get Wε. Note that the only nonlinear
term in this equation, which is (Wε · ∇x)Wε, is multiplied by ε. Therefore,
by taking ε small enough, the life span of the solution can be taken as close
as we want to the life span of H0. Hence, for ε small enough Wε is well
defined and smooth on Ωτ0 × T. Moreover, Wε depends smoothly on ε.

2. Now, look at (4.7). This is a scalar quasi-linear equation. By smooth
dependence on the parameter ε, the life span of Ψε is (again) at least equal
to τ0 for ε > 0 small enough. Hence Ψε is also a well defined smooth profile
on Ωτ0 × T, smooth in ε.

3. Again, since the function (Wε,Ψε) depends smoothly on ε, the first term
in the Taylor expansion with respect to ε is (W0,Ψ0) and the asymptotic
estimate follows. ✷

Remark 4.1.1 - comparison with the usual methods. At the level of the sys-
tem (4.5), several similarities with the usual methods of geometrical optics
are apparent: the first equation is a transport equation on the “profile” Wε

which propagates the amplitude of the wave, while the second equation is
instead an eiconal equation on the “phase” Ψε, which brings informations
related to the geometry of the propagation.
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However, there is an inversion in the procedure since the profile Wε is
determined before the phase Ψε. Moreover, the term Ψε could as well be
considered as a contribution to the amplitude of the wave (instead of to the
phase), just by introducing

(4.10) Uε(t, x, θ) := Hε
(

t, x, θ + Ψε(t, x, θ)
)

.

This leads to the alternative representation (1.18) of the solution uε. Thus,
the status of both Wε(t, x, θ̃) and Ψε(t, x, θ) is not perfectly clear. In the
next subsection, to the sake of completeness, we work with the second point
of view. In other words, the phase Φ0 is kept fixed. It does not support
variations as above. ⋄

4.2 Large amplitude modifications with fixed phase.

Again, we fix H, Φ and f as in Lemma 3.1. We reset the rigidity of Φ which
means to work only with (t, x, θ), by using the representation (1.18) where

Uε(t, x, θ) ∈ C1
b (Ωτ × T; R2) , ∀ ε ∈ ]0, 1] .

The equation (1.2) becomes (1.19). It is completed with

(4.11) Uε(0, x, θ) = Hε(x, θ) = H(x, θ) + ε W ε(x, θ) .

Since Hε is smooth with respect to ε ∈ [0, 1], it can be expanded according
to the Taylor formula

Hε(x, θ) ∼ H(x, θ) + ε
∑+∞

j=0 ε
j Hj(x, θ) .

Of course, in view of paragraph 4.1, we know a priori that the Cauchy
problem (1.19)-(4.11) can be solved on the domain Ωτ × T. By the way,
note that this is not a consequence of the analysis of chapter 2 which is not
adapted to handle (1.19)-(4.11). Also, this is not a consequence of classical
methods. Indeed, these methods rely on energy estimates related to the
linearized equation along H(t, x, θ), that is (1.20). Now, as before, this
equation (1.20) leads to

d
dt ‖ U̇(t) ‖2

L2(R2×T) ≤ C ε−1 ‖ U̇(t) ‖2
L2(R2×T) .

This differential equation is not sufficient to obtain some control which is
uniform with respect to the parameter ε ∈ ]0, 1]. In fact, the structure of
Hε(t, x, θ) is too rigid to absorb a perturbation of size O(ε). This is the
reason why we introduced more flexibility in the paragraph 4.1 by allowing
variations in the phase. Our aim here is to present another version of this
manipulation.

45



The influence of Ψε is marked by a translation on the fast variable. This
corresponds to the operation

TV1 : C1(Ωτ × T) −→ C1(Ωτ × T)
H(t, x, θ) 7−→ H

(

t, x, θ + V1
) , V1 ∈ R .

The action TV1 alters the profile H without changing the energy 〈H · H〉
of the oscillation. From this point of view, the application TV1 plays the
part of a gauge transformation. Now, the idea is to incorporate V1 as a new
state variable.

Proposition 4.1. Select data f and Hε as in (2.1) and (4.1). There is
τ > 0 such that, for all ε ∈ ]0, 1], the Cauchy problem (1.19)-(4.11) has a
solution Uε on a fixed domain Ωτ × T (which does not shrink to the empty
set as ε goes to zero).

Moreover, there are smooth functions

Xε ≡ X(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ωτ × T × R
3; R3

)

,

M ε ≡ M(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ωτ × T × R
3;M3(R)

)

,

Γε ≡ Γ(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ωτ × T × R
3; R2

)

,

such that the solution Uε of (1.19) can be represented as

(4.12) Uε(t, x, θ) = Γ
(

ε, t, x, θ;Vε(t, x, θ)
)

, Vε = t(Vε1,Vε2,Vε3)

where Vε is subjected to the non singular Burgers type equation

(4.13) ∂tV
ε +

(

X(ε, t, x, θ;Vε) · ∇x,θ

)

Vε = M(ε, t, x, θ;Vε)Vε .

We have Vε = V0 + O(ε) with V0 = t(V1
0, 0,V

3
0). The scalar components

V1
0 and V3

0 are determined by solving the non linear system

(4.14)

{

∂tV
1
0 + (X̃0 · ∇x,θ)V

1
0 = − |∇xΦ|2 V3

0 ,

∂tV
3
0 + (X̃0 · ∇x,θ)V

3
0 = 0 ,

associated with the initial data

V1
0(0, x, θ) = 0 , V3

0(0, x, θ) = |∇xφ(x)|−2 ∇xφ(x) ·H0(x, θ)

and involving

X̃0 · ∇x,θ = X̃0(t, x, θ;V1
0,V

3
0) · ∇x,θ

:= H(t, x, θ + V1
0) · ∇x + |∇xΦ|2 V3

0 ∂θ .
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Remark 4.2.1. - identification of the main term in the oscillation. The
application Γ can be made explicit. Noting V = t(V1,V2,V3), it is

Γ(ε, t, x, θ;V) := H(t, x, θ+ V1) + V2 ∇xΦ(t, x)⊥ + ε V3 ∇xΦ(t, x) .

It follows that

(4.15) Uε(t, x, θ) = H
(

t, x, θ + V1
0(t, x, θ)

)

+ O(ε) .

By construction, at time t = 0, the contribution V1
0 does not occur. Suppose

that ∇xφ · H0 6≡ 0. Then V3
0(0, ·) 6≡ 0 and V1

0 becomes non trivial when
t > 0, due to the coupling in system (4.14). We see here that an information
of size O(ε) at time t = 0 (namely ε V3

0(0, ·) ∇xφ) can influence the shape
H(t, x, θ + V1

0) of the large amplitude wave when t > 0. ⋄
Remark 4.2.2 - other formulation of (4.14). Suppose that f ≡ 0. Introduce
the vector valued function U = t(U1,U2,U3) defined according to

t(U1,U2) := H(t, x, θ + V1
0) , U

3 :=
(

1 + f(Φ)2
)

V3
0 .

The informations contained in (1.12) and (3.6) allow to extract from (4.14)
the constraint

(4.16) ∂tU + U
1 ∂1U + U

2 ∂2U + (∂2Φ)2 U
3 ∂θU = 0

completed with

(4.17) U(0, x, θ) = t
(

H1(x, θ) , H2(x, θ) , ∂2φ(x)−2 ∇xφ ·H0(x, θ)
)

.

The equation (4.16) is a three dimensional Burgers type equation. Suppose
that ∂2Φ is a function of Φ, say ∂2Φ = h(Φ). This means that f ′ ≡ g′ ≡ 0
or that, for all t ∈ [0, τ [, the function Φ(t, ·) is constant on parallel lines (as
in subsection 3.2). In this special case, the equation (4.16) can be further
reduced. Just replace the component U

3 by h(Φ)2 U
3 to recover exactly a

three dimensional Burger equation on U. ⋄
Proof of Proposition 4.1. First, recall that

∇xΦ(t, x) = t(∂1Φ, ∂2Φ)(t, x) , ∇xΦ(t, x)⊥ = t(−∂2Φ, ∂1Φ)(t, x) .

For each (ε, t, x, θ) ∈ ]0, 1] × Ωτ × T, the application

R
3 ∋ V 7−→ Γ(ε, t, x, θ;V) ∈ R

2

is surjective (but not injective). In particular, the initial data Hε can be
achieved as the image of some function V ε. In other words

Hε(x, θ) = Γ
(

ε, 0, x, θ;V ε(x, θ)
)

, V ε = t(V ε1, V ε2, V ε3) .
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There are several possible choices for V ε. Take V ε1 ≡ 0 and seek

(V ε2, V ε3) =
∑J

j=0 ε
j (V 2

j , V
3
j ) + εJ+1 (rε2, rε3) , (rε2, rε3) = O(1) .

The contribution due to V 2
0 can be absorbed insideH. Thus, impose V 2

0 ≡ 0.
Then, it suffices to set

V 2
j := |∇xΦ|−2 ∇xΦ⊥ ·Hj−1 , ∀ j ∈ {1, · · · , J} ,
V 3

j := |∇xΦ|−2 ∇xΦ ·Hj , ∀ j ∈ {0, · · · , J − 1} ,
and then to adjust (rε2, rε3) conveniently. Observe that V ε ∈ C1(ω×T; R3)
and that by construction the family {V ε}ε is subjected to the uniform control

(4.18) sup
{

‖ V ε ‖L∞(ω×T) + ‖ DxV
ε ‖L∞(ω×T) ; ε ∈ ]0, 1]

}

< ∞ .

At time t = 0, impose

(4.19) Vε(0, x, θ) = V ε(x, θ) , ∀ ε ∈ ]0, 1] .

Seek a solution to (1.19) which can be expressed like in (4.12). This ma-
nipulation corresponds to a dependent change of state variable, the vector
valued function Vε(t, x, θ) being the new unknown. Introduce the vector
field Xε which is such that

Xε · ∇x,θ = X(ε, t, x, θ;V) · ∇x,θ = Xε
x · ∇x + Xε

θ ∂θ

= H(t, x, θ + V1) · ∇x + V2 ∇xΦ(t, x)⊥ · ∇x

+ ε V3 ∇xΦ(t, x) · ∇x + |∇xΦ(t, x)|2 V3 ∂θ .

For ε = 0, it remains

X0 · ∇x,θ ≡ X(0, t, x, θ;V) · ∇x,θ

= H(t, x, θ + V1) · ∇x + V2 ∇xΦ(t, x)⊥ · ∇x + |∇xΦ(t, x)|2 V3 ∂θ .

Use (1.12) to interpret (1.19) according to
(

∂t + X(ε, t, x, θ;Vε) · ∇x,θ

)

Γ
(

ε, t, x, θ;Vε(t, x, θ)
)

+ f = 0 .

Remember that f does not depend on θ. This fact and again (1.12) allow to
reduce the preceding equation to

ε0 { (∂t +Xε · ∇x,θ)V
ε1 + |∇xΦ|2 Vε3

}

∂θH

+ ε0 { (∂t +Xε · ∇x,θ)V
ε2) ∇xΦ⊥ + X

ε2 Vε2
}

+ ε1 { (∂t +Xε · ∇x,θ)V
ε3) ∇xΦ + X

ε3 Vε3
}

= 0 .

Here the notation X
ε2 is for the vector

X
ε2 := ∂t∇xΦ⊥ + (Xε

x · ∇x)∇xΦ⊥ +
(

(∇xΦ⊥ · ∇x)H
)

(t, x, θ + Vε1) .
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On the other hand, the notation X
ε3 is for the vector

X
ε3 := ∂t∇xΦ + (Xε

x · ∇x)∇xΦ +
(

(∇xΦ · ∇x)H
)

(t, x, θ + Vε1) .

There are three unknowns Vε1, Vε2 and Vε3 for two equations so that the
preceding constraint on Vε is under-determined. To remedy to this, just
impose the supplementary condition

Xε Vε1 + |∇xΦ|2 Vε3 = 0 .

Then, it remains (4.13) with

M ε = M(ε, t, x, θ;Vε) =
(

Mij(ε, t, x, θ;V
ε)

)

1≤i,j≤3

:= − 1

|∇xΦ|2





0 0 |∇xΦ|4
0 X

ε2 · ∇xΦ⊥ ε X
ε3 · ∇xΦ⊥

0 ε−1
X

ε2 · ∇xΦ X
ε3 · ∇xΦ



 .

We have to show that this matrix M ε does not involve coefficients which are
singular with respect to ε. In particular, we must pay attention in M32(ε, ·).
Recall that

H = H̄ + s∗ ∇xΦ(t, x)⊥ = H̄ + s∗ ∂2Φ
t
(

−1, f(Φ)
)

.

Remark that

∂t∇xΦ + (H̄ · ∇x)∇xΦ + (∇xΦ · ∇x) H̄ = (∂1H̄
2 − ∂2H̄

1) ∇xΦ⊥ ,

∂t∇xΦ⊥ + (H̄ · ∇x)∇xΦ⊥ + (∇xΦ⊥ · ∇x) H̄ = S ∇xΦ ,

where S is the symmetric matrix

S =

(

2 ∂2H̄
1 ∂2H̄

2 − ∂1H̄
1

∂2H̄
2 − ∂1H̄

1 − 2 ∂1H̄
2

)

.

The relation (3.7) gives rise to

t
(

f(Φ), 1
)

· (∇xΦ⊥ · ∇x)H̄ = (∇xΦ⊥ · ∇x)
[

t
(

f(Φ), 1
)

· H̄
]

= (∇xΦ⊥ · ∇x) g(Φ) = 0 .

It follows that

t∇xΦ S ∇xΦ = 2
[

(∂1Φ)2 ∂2H̄
1 + ∂1Φ ∂2Φ (∂2H̄

2−∂1H̄
1)− (∂2Φ)2 ∂1H̄

2
]

= 2 ∇xΦ · (∇xΦ⊥ · ∇x)H̄ = 0 .

Observe that

(∇xΦ⊥ · ∇x)∇xΦ⊥ = − f ′(Φ) (∂2Φ)2 ∇xΦ⊥ .
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The preceding informations can be collected in order to simplify the expres-
sions given for X

ε2 and X
ε3. We find

X
ε2 = ε Vε3 (∇xΦ · ∇x)∇xΦ⊥

+
{

− f ′(Φ) (∂2Φ)2
[

2 s∗(t, x, θ + Vε1) + Vε2
]

+(∇xΦ⊥ · ∇x)s∗ + |∇xΦ|−2 t∇xΦ⊥ S ∇xΦ
}

∇xΦ⊥ ,

X
ε3 = ε Vε3 (∇xΦ · ∇x)∇xΦ + (∂1H̄

2 − ∂2H̄
1) ∇xΦ⊥

+ s∗(t, x, θ + Vε1)
[

(∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)∇xΦ⊥
]

+Vε2 (∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)s∗ ∇xΦ⊥ .

It implies that

ε−1
X

ε2 · ∇xΦ = Vε3 (∂2Φ)2 |∇xΦ|2 f ′(Φ) .

Therefore

M ε = (M ε
ij)1≤i,j≤3 = M0 + ε M1 + ε2 M2 , Mk = (Mk

ij)1≤i,j≤3

where the coefficients Mk
ij are smooth functions on Ωτ × T × R

3. It means
thatM is a smooth function of (t, x, θ,V) and also of ε ∈ [0, 1]. In particular,
it satisfies uniform estimates with respect to ε ∈ ]0, 1].

Consequently, the quasilinear symmetric system (4.13) is a nonlinear trans-
port equation involving coefficients and a source term which all are non
singular with respect to ε ∈ [0, 1]. Therefore, it can be solved in the context
of C1 regularity by the usual method of characteristics, in a way similar to
what has been done in paragraph 2.1.1.

Taking into account (4.18), there is a domain of determinacy Ω(τ)×T such
that, for all ε ∈ ]0, 1], the Cauchy problem (4.13)-(4.19) has a solution Vε

on Ωτ × T (where τ does not depend on ε). By way of formula (4.12), we
recover a solution Uε to (1.19)-(4.11) on Ωτ × T.

At time t = 0, the expression V ε is given by the Taylor expansion

V ε =
∑J

j=0 ε
j Vj + εJ+1 rε , ∀ ε ∈ ]0, 1]

where

Vj(x, θ) = t(V 1
j , V

2
j , V

3
j )(x, θ) ∈ C1(ω × T; R3) , 0 ≤ j ≤ J .

Now, seek profiles

Vj(t, x, θ) = t(V1
j ,V

2
j ,V

3
j )(t, x, θ) ∈ C1

(

Ωτ × T; R3
)

, 0 ≤ j ≤ J

adjusted so that the expression

(4.20) Vε
a(t, x, θ) =

∑J
j=0 ε

j Vj(t, x, θ) , ε ∈ ]0, 1]
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is an approximate solution of (4.13) in the following sense

sup
{

ε−J ‖ Vε − Vε
a ‖C0(Ωτ×T) ; ε ∈ ]0, 1]

}

< ∞ .

The vector valued functions Vj are determined as follows. Substitute the
sum (4.20) into (4.13) to get a formal expansion. The term with εj in factor
can be put in the form

(Mj) ∂tVj + (X0 · ∇x,θ)Vj + Fj(t, x, θ;V0, · · · ,Vj) = 0

where X0 = X(0, t, x, θ;V0). Complete (Mj) with the initial data

(4.21) Vj(0, x, θ) = Vj(x, θ) .

In particular, to identify the main contribution V0 in Vε, it suffices to solve

∂tV0 + (X0 · ∇x,θ)V0 = M0 V0 , V0(0, x, θ) = t(0, 0, V 3
0 ) .

Since M0
23 ≡ 0, the condition V2

0(0, ·) ≡ 0 is propagated which means that

V0(t, x, θ) = t
(

V1
0(t, x, θ), 0,V

3
0(t, x, θ)

)

, ∀ (t, x, θ) ∈ Ωτ × T .

and which implies that X0 ≡ X̃0. It remains to compute

M0
33

(

t, x, θ; t(V1, 0,V3)
)

= s∗(t, x, θ + Vε1)

× ∇xΦ ·
[

(∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)∇xΦ⊥
]

.
On the one hand

∇xΦ · (∇xΦ⊥ · ∇x)∇xΦ = − (∂2Φ)2 |∇xΦ|2 f ′(Φ) .

On the other hand

∇xΦ · (∇xΦ · ∇x)∇xΦ⊥ = ∂2Φ ∇xΦ · t
(

0, f ′(Φ) |∇xΦ|2
)

.

Therefore

M0
33

(

t, x, θ; t(V1, 0,V3)
)

= 0

and the validity of (4.14) is established. Once V0 has been identified, the
systems (Mj) with 0 < j are made of linear transport equations. Therefore,
the Cauchy problems (Mj)-(4.21) with 0 < j can be solved inductively on
the whole domain of determinacy Ω(τ) × T where V0 is defined. ✷

Remark 4.2.3 - the incidence of the procedure on θ. At the level of (4.12),
the status of θ is changed. There, it plays the part of a slow variable. ⋄
Remark 4.2.4 - come back to the original state variables. The expression

uε(t, x) = Uε
(

t, x,Φ(t, x)/ε
)

, ε ∈ ]0, 1]

where Uε is given by Proposition 4.1 is a solution to (4.2). ⋄
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Remark 4.2.5 - how the initial data Vε(0, ·) have been yet adjusted. In order
to deal with small O(ε) perturbations of ũε(0, ·), subsection 4.1 selects the
choices Vε1(0, ·) ≡ 0 and Vε2(0, ·) = O(ε). In the present paragraph 4.2, we
impose Vε1(0, ·) ≡ 0 and Vε2(0, ·) = O(1). This is more general. ⋄

Remark 4.2.6 - how the initial data Vε(0, ·) can be further adjusted. In
Proposition 4.1, there is some overlap of unknowns between Vε1 and Vε2.
For instance, at time t = 0, we can fix Vε(0, ·) so that

∂θ

[

H
(

x, θ + Vε1(0, x, θ)
)

+ Vε2(0, x, θ) ∇xφ(x)⊥
]

≡ 0 .

This means that we start with large amplitude well polarized oscillating
modifications of the basic solution H⊥

(

φ(x)
)

. ⋄

Remark 4.2.7 - which profiles must be translated by TV1. In Proposition 4.1,
the action TV1 is applied only on the main profile H. It is not reported on
the other terms Hj of the asymptotic expansion associated with Hε. This
is certainly the source of some technical complications in the computations
reported above. ⋄

The manipulations of subsections 4.1 and 4.2 are interesting because they
indicate how the various ingredients are coupled. Put together, they contain
the optimal and more flexible version of the technicalities proposed here.
Now, to get a rapid and simple reply to some specific question, it is necessary
to implement the preceding tools with precautions.

4.3 The two points of view conciliated.

In view of subsections 4.1 and 4.2, there are different manners to handle the
problem of stability. Either we can introduce Ψε or not. If not, we still have
a reply by appealing to the Proposition 4.1 which includes a more general
situation. But even at the level of this Proposition 4.1, it remains some
flexibility (see remarks 4.2.5, 4.2.6 and 4.2.7).

In some sense, we can say that the more suitable version of the stability
discussion is the one which compounds the preceding arguments in order to
get the more elegant and direct proof. This is what we propose here. Seek
a solution of (1.2) having the form

(4.22)
uε(t, x) = Hε

(

t, x,Φε
c(t, x)/ε

)

, Hε(t, x, θ̃) ∈ C∞(ω × T; R2) ,
Φε

c(t, x) = Φε
(

t, x,Φ(t, x)/ε
)

, Φε(t, x, θ) ∈ C∞(ω × T; R) ,

where both Hε and Φε are regarded as unknowns.
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Despite this apparent complexity, simple equations can be imposed on Hε

and Φε in order to recover a solution uε of (1.2). It suffices to take

(4.23) ∂tH
ε + (Hε · ∇x)Hε + f = 0 , Hε(0, ·) = Hε ,

(4.24) ∂tΦ
ε
c +

(

Hε(t, x,Φε
c/ε) · ∇x

)

Φε
c = 0 , Φε

c(0, ·) = φ .

Like in subsection 4.1, the equation (4.23) is decoupled from (4.24). It can
be handled apart. It involves the variables t, x and θ̃. But θ̃ can be regarded
as a parameter. Select its solution Hε(t, x, θ̃) and look at (4.24). At first
sight, the solution Φε

c of (4.24) can develop shocks within time O(ε) or even
before. However, such a rapid formation of singularities does not occur. The
reason is that Hε can be decomposed in the following way

(4.25)
Hε(t, x, θ̃) = H⊥(Φ) + W

ε1(t, x, θ̃) t
(

−1, f(Φ)
)

+ ε W
ε2(t, x, θ̃) t

(

f(Φ), 1
)

.

Now, seek a solution Φε
c of (4.24) with the form

(4.26) Φε
c(t, x) = Φ(t, x) + ε Ψε

(

t, x,Φ(t, x)/ε
)

.

Recall (3.6) and the relations

∂tΦ + (H̄ · ∇x)Φ = ∂tΦ +
(

H⊥(Φ) · ∇x)Φ = ∂tΦ + g(Φ) ∂2Φ = 0 .

Plug (4.26) in (4.24). It remains the following non singular equation

(4.27)
∂tΨ

ε +
(

Hε(t, x, θ + Ψε) · ∇x

)

Ψε

+
(

f(Φ)2 + 1
)

∂2Φ W
ε2(t, x, θ + Ψε) (∂θΨ

ε + 1) = 0

which is associated with the initial data Ψε(0, ·) ≡ 0. Now, we have to check
that (4.25) is compatible with (4.23). Consider W

ε := t(Wε1,Wε2) as a new
unknown. Then use the property (Lemma 3.1)

∃k ∈ C1
(

Ωτ ; R
)

; f(t, x) = −k(t, x) t
(

−1, f(Φ)
)

and the relation (1.15) to extract the system

(4.28)

{

∂tW
ε1 + (Hε · ∇x)Wε1 = k + ε W

ε2 Lε1(t, x,Wε) ,
∂tW

ε2 + (Hε · ∇x)Wε2 = W
ε2 Lε2(t, x,Wε) ,

built with

Lε1(t, x,Wε) = f ′(Φ) ∂2Φ
[ g

1+f2 (Φ) − f(Φ) W
ε1 + ε W

ε2
]

,

Lε2(t, x,Wε) = ∂2Φ
[ g f f ′

1+f2 (Φ)− g′(Φ)− f ′(Φ) W
ε1 − ε f(Φ) f ′(Φ) W

ε2
]

.
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Observe that the functions Lε1 and Lε2 are both smooth with respect to
(ε, t, x,W) ∈ [0, 1] × Ωτ × R

2. Complete (4.28) with the initial data

(4.29)
W

ε1(0, x, θ̃) = r(x, θ̃) + ε
(

1 + f(φ)2)−1 t
(

−1, f(φ)
)

·W ε ,

W
ε2(0, x, θ̃) =

(

1 + f(φ)2)−1 t
(

f(φ), 1
)

·W ε .

Since (4.28) contains no singularity, the Cauchy problem (4.28)-(4.29) is well
posed on a domain Ωτ × T which does not depend on ε ∈ ]0, 1]. Moreover,
the second equation in (4.28) preserves the size of W

ε2. For instance, if
W

ε2(0, ·) ≡ 0, we still have W
ε2 ≡ 0.

By the Taylor formula, Ψε and W
ε can be expanded according to

Ψε ∼ ∑∞
j=0 ε

j Ψj , W
ε ∼ ∑∞

j=0 ε
j

Wj , Wj = t(W1
j ,W

2
j ) .

The expression W0 is obtained by looking at

(4.30)















∂tW
1
0 +

(

H⊥(Φ) · ∇x)W1
0

+ W
1
0

(

−∂1 + f(Φ) ∂2

)

W
1
0 = k ,

∂tW
2
0 +

(

H⊥(Φ) · ∇x)W2
0

+ W
1
0

(

−∂1 + f(Φ) ∂2

)

W
2
0 = W

2
0 L

02(t, x,W0) ,

completed with

W
1
0(x, θ̃) = r(x, θ̃) , W

2
0(x, θ̃) =

(

1+f(φ)2)−1 t
(

f(φ), 1
)

·W 0(x, θ̃) .

In particular, we recover W
1
0 ≡ r which means implicitly that the oscillating

part H∗ of the simple wave ũε has been incorporated here as an unknown
(instead of being fixed as before). On the other hand, the function Ψ0 is
obtained through the condition Ψ0(0, ·) ≡ 0 and the equation

(4.31)
∂tΨ0 +

(

H(t, x, θ + Ψ0) · ∇x

)

Ψ0

+
(

f(Φ)2 + 1
)

∂2Φ W
2
0(t, x, θ + Ψ0) ( ∂θΨ0 + 1) = 0 .

We recover that Uε(t, x, θ) = U0(t, x, θ) +O(ε) with

U0(t, x, θ) = H⊥(Φ) + r
(

t, x, θ + Ψ0(t, x, θ)
)

t
(

−1, f(Φ)
)

= H
(

t, x, θ + Ψ0(t, x, θ)
)

.

Remark 4.3.1 - instability of the profile. Suppose that W 0 · ∇xφ 6≡ 0.
Then, in view of (4.31), we have Ψ0 6≡ 0 so that U0 6≡ H. We see here
that a perturbation of Uε(0, ·) of size O(ε) at time t = 0 can induce at a
time t > 0 a modification of Uε(t, ·) of size O(1). The nonlinear mapping
(H,H0, · · · ,HJ) 7−→ U0(t, ·) does depend on H0. This explains why the
main profile U0(t, ·) cannot be deduced only from U0(0, ·) ≡ H.
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By extension, to set a Cauchy problem in order to determine the Young
measure associated with the family {uε}ε makes no sense. Again, this can
be understood as a nonlinear instability result of the solution H of the
original profile equation (1.19). ⋄

Remark 4.3.2 - in short. The manipulations (4.22) and (4.25) are the com-
binations of two things. First, in (4.22), the introduction of a new state
variable Ψε (this is not strictly required but this simplifies the analysis).
Secondly, in (4.25), a change of state variables which is singular in ε ∈ ]0, 1].

A similar argument has been already used in [9] to deal with large amplitude
high frequency waves polarized on the entropy. It can be implemented here
at the level of the speed Vε because the basic solution H⊥(Φ) and the phase
Φ have both a very special structure. ⋄

5 Applications.

This final Section is devoted to consequences of the preceding analysis.

5.1 Various caustics phenomena for Euler equations

Lemmas 2.7 and 2.8 explain how to adjust the data Hε (or V ε or W ε)
and φ in order to have (1.33). Lemma 2.4 says that the corresponding
solution ŭε(t, x) to (1.2) where f ≡ 0 is also a solution to (1.1) with p

constant. Then, Proposition 4.1 exhibits for the subsequent family {Ŭε}ε

the asymptotic behaviour (4.15).

Note however that Lemmas 2.7 and 2.8 require conditions on H and H0.
These conditions can influence H and V1

0. In other words, the formula
(4.15), when applied in the context (1.1), involves special expressions H and
V0. The discussion starts by examining and commenting the constraints
thus retrieved on H and V1

0.

In contrast with the situation of Lemma 3.3, Lemma 2.7 demands no par-
ticular restriction on the phase φ, except (2.20). Moreover, the function Φ
is obtained through (3.1) where g is given by (2.34). As noted in remark
3.1.4, the phase Φ can develop shocks.

This formation of shocks corresponds to caustics phenomena of the first
type for (1.1). This can surprise since Euler equations are often regarded as
being “linearly degenerate”. But, it is so. Note however that the analysis
of stability in Section 4 stops before the formation of these caustics.
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The profile H must be subjected to (2.33). The corresponding expression
H can be deduced from (3.2) or (3.10). We find

(5.1) H ≡ H̆ := K(Φ, θ + Φ0)
t(1,−f ◦ Φ) + t(0, g ◦ Φ)

where the scalar function Φ0(t, x, θ) is determined by

(5.2)

{

∂tΦ0 + K(Φ, θ + Φ0) (∂1 − f ◦ Φ ∂2) Φ0 + g ◦ Φ ∂2Φ0 = 0 ,
Φ0(0, ·) = φ0 .

The expression Φ0 which appears here plays an ambiguous part. Of course,
it is linked with the underlying scalar profile r and it influences H∗ (since
it can depend on θ in a non trivial way). But also, it acts on K as a phase
shift. To insist on this second aspect, Φ0 is called the second phase.

Now, consider the following specific situation. Take

ω = R
2 , f ≡ g ≡ 0 , φ(x) = Φ(t, x) = x2 .

Work in the framework of Lemma 2.7. Impose φ0|x1=0 ≡ 0 but f0 6≡ 0 so
that φ0(x) = −x1 f0(x2). Select a profile K satisfying K(0, 0) = 0 and
K̄ ≡ 0 (which is compatible with the choice g ≡ 0) but K∗ 6≡ 0. It remains

H(x, θ) = K∗
(

x2, θ − x1 f0(x2)
)

t(1, 0) , 0 6≡ f0 ∈ C∞
b (R; R) .

Under these conditions, the Cauchy problem (5.2) reduces to

∂tΦ0 + K∗(x2, θ + Φ0) ∂1Φ0 = 0 , Φ0(0, ·) = −x1 f0(x2) .

The variables x2 and θ can be regarded as parameters. Since by construction

∃ (x1, x2, θ) ∈ R
2 × T ; − f0(x2) ∂θK

∗
(

x2, θ − x1 f0(x2)
)

< 0

shocks do appear at the level of Φ0. In other words

∃ T̃ ∈ R+ ; limt−→ T̃− ‖ ∂1Φ0(t, ·) ‖L∞(R2×T) = +∞ .

By virtue of Lemma 2.7, the couple (H,φ) which is selected above is asso-
ciated with the main term of oscillations {h̆ε}ε which are well prepared on
R

2 for (1.1). More precisely

h̆ε(x) = H
(

x, φ(x)/ε
)

+ ε rhε(x) ∈ Vτ
0 (R2) , rhε 6≡ 0 , ∀ ε ∈ ]0, 1] .

Note ŭε(t, x) the solution issued from h̆ε by solving (1.2) with f ≡ 0. Apply-
ing Lemma 2.4 (see also remark 2.1.6), the function ŭε is a global (in both
time and space variables) C1 solution to (1.1).

Applying Lemma 3.1, the couple (H,φ) gives rise also to a simple wave ũε

which is a local solution to (1.2) with f ≡ 0, defined on the domain [0, T̃ [×R
2,
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with breakdown when t < T̃ goes to T̃ . We have seen in Section 4 that the
asymptotic behaviour of the family {ŭε}ε is modeled by the one of {ũε}ε

(modulo some translation in the fast variable θ). There is no contradiction
between the two preceding assertions :

- On the one hand, looking at Φ0 as a second phase, the presence of shocks
can be interpreted as caustics phenomena of the second type for Euler equa-
tions. It does not preclude the solution ŭε to remain smooth. In fact, only
from this point of view, the situation can be compared to what is observed
in the framework of semilinear equations [18].

- On the other hand, the simple wave ũε is a solution of (1.2) but it is not
a solution of (1.1). Indeed, the profile H(x, θ) does not depend only on x2,
as is required in Lemma 3.3. Thus, nothing guarantees that ũε remains a
smooth function.

5.2 On the concentration-cancellation property.

We start this paragraph by briefly recalling what is foreseen by homogeniza-
tion techniques. Seek a solution of (1.1) with

uε(t, x) = H
(

t, x,Φ(t, x)/ε
)

+ ε H0

(

t, x,Φ(t, x)/ε
)

+ O(ε2) ,
pε(t, x) = p(t, x) + ε P0

(

t, x,Φ(t, x)/ε
)

+ O(ε2) .

Formal computations using the relation

divx H + ∇xΦ · ∂θH0 = 0

give rise to

(5.3)







∂tH +(H · ∇x)H + ∇xp + (H̄0 · ∇xΦ) ∂θH
− (divx ∂

−1
θ H∗) ∂θH + ∂θP0 ∇xΦ = 0 , divx H̄ = 0 ,

∂tΦ +(H̄ · ∇x)Φ = 0 , ∇xΦ · H∗ = 0 .

Obviously, the weak limit of {uε}ε is H̄(t, x). Extract from (5.3) that

∂tH̄ + (H̄ · ∇x)H̄ + 〈divx (H∗ ⊗H∗)〉 + ∇xp = 0 , divx H̄ = 0 .

The system (5.3) can be completed with initial datas

(5.4) K(x, θ) := H(0, x, θ) , φ(x) := Φ(0, x)

which of course must satisfy the compatibility conditions

(5.5) divx K̄ = 0 , ∇xφ · K∗ = 0 .
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Now, it is always possible to further adjust K and φ so that

(5.6) curl 〈divx (K∗ ⊗K∗)〉 6≡ 0 .

Then, the expression H̄ cannot be a solution of Euler equations. Therefore,
we can see in the preceding manipulations a way to exhibit counter-examples
to the concentration-cancellation property. However, this strategy clashes
against two major difficulties :

1) Nothing guarantees that it is possible to find a particular solution (H,Φ)
of (5.3)-(5.4) satisfying (5.5)-(5.6). Of course, we can exhibit special solu-
tions of (5.3). For instance, the expressions

Hs(t, x, θ) = t
(

H1∗
s (θ), 0

)

, Φs(t, x) = γ x2 , H̄0 ≡ 0 , P0 ≡ 0

built with H1
s ∈ C∞(T; R) and γ ∈ R are convenient. But these choices

do not give rise to (5.6). On the other hand, it seems illusive to solve the
Cauchy problem (5.3)-(5.4) associated with general initial datas subjected
to (5.5)-(5.6) even if these initial datas are small perturbations of Hs and
Φs. Objections to do that are raised by D. Serre in [23]. The constraint (5.3)
is non linear and the linearized equations along Hs and Φs are unstable in
the sense of Hadamard.

2) Suppose that we dispose of a particular solution (H,Φ) of (5.3)-(5.4)
satisfying (5.5)-(5.6). Note first that the corresponding oscillating wave

uε
a(t, x) = H

(

t, x,Φ(t, x)/ε
)

, pε
a(t, x) = p(t, x)

would not be an exact solution of (1.1), see Lemma 3.3. By the way, observe
that the system (5.3) is a relaxed version of (1.16) since any solution of
(1.16) yields a solution of (5.3) just by taking H̄0 ≡ 0 and P0 ≡ 0. Now,
if H0 ≡ 0 and P0 ≡ 0, we recover that divx H∗ ≡ 0 and that Φ is adjusted
as in (1.13) which implies that curl 〈divx (K∗ ⊗K∗)〉 ≡ 0. Thus, necessarily,
any solution (H,Φ) of (5.3)-(5.4) satisfying (5.5)-(5.6) furnishes only an
approximate solution of (1.1). It remains to prove that it corresponds to an
exact solution of (1.1). This means to absorb the small error terms which
are induced. But such a work of justification is very delicate (and may
not succed) because the underlying regime is supercritical so that strong
instabilities are expected (in the spirit of the articles [8], [12], [14] and [19]).

Below, we do not face directly these two difficulties. On the one hand,
we construct only very special solutions of (5.3). On the other hand, by
restricting the discussion to the set Vτ

0 (ω), we avoid many mechanisms of
amplification (in fact the worst ones !).
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Recall that {h̆ε}ε is a family which is well prepared for Euler equations.
Consider the solution (on Ωτ ) of the Cauchy problem

(5.7)

{

∂tŭ
ε + (ŭε · ∇x)ŭε = 0 , divx ŭε = 0 ,

ŭε(0, x) = h̆ε(x) .

Here h̆ε is given by an asymptotic expansion like (2.17) with H̆ and H̆0

adjusted as in Lemmas 2.7 and 2.8. The analysis of chapter 4 shows that

ŭε(t, x) = Ŭ ε
(

t, x,Φ(t, x)/ε
)

, Ŭ ε(t, x, θ) = (Ŭ+ε Ŭ1)(t, x, θ)+O(ε2) .

The expression Ŭ is identified through

Ŭ(t, x, θ) = H̆
(

t, x, θ + V1
0(t, x, θ)

)

where H̆(t, x, θ) is of the form (5.1) whereas V1
0(t, x, θ) is given by (4.14).

By construction the profile H̆ is a solution of (1.16). Now, we can check
that the expression Ŭ is indeed a solution of (5.3) for some well adjusted
functions H̄0 and P0. Moreover, the weak limit ŭ(t, x) of the family {ŭε}ε

is ŭ(t, x) = 〈Ŭ〉(t, x). Since the divergence free relation is preserved when
passing to the weak limit, the expression ŭ is subjected to

(5.8) ∂tŭ + (ŭ · ∇x)ŭ + f̆ = 0 , divx ŭ = 0

for some function f̆ . It remains to determine f̆ . In general, as already noticed
in Remark 3.2.2, we find f̆ 6≡ 0. In fact, we have even the following more
precise information.

Lemma 5.1. The construction can be adjusted so that curl f̆ 6≡ 0.

Proof of Lemma 5.1. Recall (4.16) which gives access to U = t(U1,U2,U3)
and in particular to Ŭ ≡ t(U1,U2). The function Ŭ is such that

∂tŬ + (Ŭ · ∇x)Ŭ + (∂2Φ)2 U
3 ∂θŬ = 0 .

Extract the mean value to get

f̆ = 〈(Ŭ∗ · ∇x)Ŭ∗〉 + (∂2Φ)2 〈U3 ∂θŬ〉 .
In view of (4.17), at time t = 0, it remains

f̆| t=0 = 〈(H̆∗ · ∇x)H̆∗〉 + 〈(∇xφ ·H0) ∂θH̆〉

where H̆ := H̆| t=0 is defined as in (2.33). In Lemma 2.7, select f0 ≡ 0 and
take φ0 ≡ 0 so that

H̆(x, θ) = K
(

φ(x), θ
)

t
(

1,−f ◦ φ(x)
)

+ t
(

0, g ◦ φ(x)
)

.
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In particular, we have

H̆∗(x, θ) = K∗
(

φ(x), θ
)

t
(

1,−f ◦ φ(x)
)

.

With (2.20), it follows immediately that

(H̆∗ ·∇x)H̆∗ = −K∗(φ, θ) ∂2φ
−1 (∇φ⊥ ·∇x)

[

K∗(φ, θ) t(1,−f ◦φ)
]

≡ 0 .

In Lemma 2.8, select f1 ≡ 0 and take φ1 ≡ 0. We have to deal with

H0 = H̄0(φ) + K0(φ, θ)
t(1,−f ◦ φ) + f ′ ◦ φ (∂−1

θ K∗)(φ, θ) t(0, 1) .

Now, compute

f̆| t=0 = f ′ ◦ φ 〈K∗(φ, θ)2〉 ∇φ⊥

which leads to

curl f̆(0, x) = ∆(l ◦ φ)(x) , l(z) :=
∫ z
0 f ′(y) 〈K∗(y, θ)2〉 dy .

In general, this quantity is non trivial. For instance, choose

f(z) = − z , φ(x) = x2/(1 + x1) , K(z, θ) =
√

2 cos (π θ) .

In this special case, we find

curl f̆(0, x) = − 2 x2/(1 + x1)
3 6≡ 0 . ✷

Proof of Theorem 1.1. The family {ŭε}ε satisfies the conditions i) and ii) of
Theorem 1.1. It converges weakly (as ε goes to zero) to u0 ≡ ŭ ∈ C1

(

Ωτ
)

.

The function ŭ is subjected to (5.8) which involves the source term f̆ . If f̆ can
be expressed as the gradient of some scalar function p, one has curl f̆ ≡ 0.
But, in view of Lemma 5.1, this condition is not always verified. Therefore,
it can happen that u0 is not a solution to (1.1). ✷

Remark 5.2.1 - beyond Theorem 1.1. An improvement would be to replace
in Theorem 1.1 the bounded domain Ω by R

2 and the Sobolev space L2
loc

by Lp with any p ∈ [1,+∞]. This would express that the operator solution
associated with (1.1) is not closed for the weak Lp topology, replying to the
question raised by L. Bertozzi and A. Majda [2]-p. 479.

Our approach does not give yet access to such a general result. Indeed, our
key argument relies on the use of the nonlinear functional set Vτ

0 (ω). At this
level, two difficulties arise. On the one hand, the families {h̆ε}ε which are
well prepared on R

2 for (1.1) satisfy (2.36) which is not compatible with a
global condition such as h̆ε ∈ Lp(R2) except if p = +∞. On the other hand,
the hypothesis f ′ 6≡ 0 is crucial in the proof of Lemma 5.1. However, when
f ′ 6≡ 0 or when (fε)′ 6≡ 0, there is no way to define on R

2 a C1 solution ϕε

to (2.41) (because of the formation of shocks).
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Of course, one is tempted to localize the analysis. But, this forces into
being faced with the problem of stability in the setting of (1.1), with some
nonlinear pressure p. Now, this is a much more delicate matter than what
we did in Section 4. This is still an open question. ⋄
Remark 5.2.2 - interpretation related to the strong topology of Lp. Many
mechanisms of amplifications concerning (1.1) and involving the Lp−norm
have recently been exhibited [8], [12], [14], [19], see also Proposition 5.1 in [6].
The preceding method provides an alternative way to obtain such results.
However, in so far as this subject has much been studied, this aspect will
not be underlined here. ⋄

5.3 Small transversal perturbations

From now on, consider (1.2) with f ≡ 0 or (1.1) with p constant.

Fix two integers J and m with J ≥ 2 and m ≥ 1. Choose any couple (H,φ)
which is compatible with (1.2). Note H and Φ the expressions obtained
through (3.1) and (3.2). Select a smooth phase ζ0 ∈ C∞(ω; R) satisfying

(5.9) ∇xζ0 ∈ C∞
b (ω; R2) , ∇xφ

⊥ · ∇xζ0 6≡ 0 .

Take profiles Ĥj such that

Ĥj(x, θ, z) ∈ C∞
b (ω × T × T; R2) , ∀ j ∈ {0, · · · , J − 1} .

We assume that the profile Ĥ0 is a non trivial well polarized function of z.
More precisely, we impose

(5.10) ∇xφ
⊥ · ∂zĤ0 6≡ 0 , ∇xφ · ∂zĤ0 ≡ 0 .

Clearly, there is no difficulty to construct such profiles Ĥ0. Now, consider a
multidimensional oscillatory initial data of the form

(5.11)
ĥε(x) := H

(

x, φ(x)/ε
)

+
∑J−1

j=0 εj+1 Ĥj

(

x, φ(x)/ε, ζ0(x)/ε
)

+ εJ+1 r̂hε(x)

with a remainder r̂hε ∈ C∞
b (ω) satisfying

(5.12) sup
{

‖ r̂hε ‖L∞(ω) + εJ−1 ‖ Dx r̂h
ε ‖L∞(ω) ; ε ∈ ]0, 1]

}

< ∞ .

Easy computations using (5.10) indicate that

divx ĥ
ε(x) = O(1) , det

(

Dxĥ
ε(x)

)

= O(1) .
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We consider now the equation (1.2) together with the initial condition

(5.13) ûε(0, x) = ĥε(x) .

According to Lemma 2.3, the oscillating Cauchy problem (1.2)-(5.13) yields
a family {ûε}ε of C1 solutions ûε to (1.2). The functions ûε are defined
on some open domain of determinacy Ωτ ⊂ R × R

2 which does not depend
on the parameter ε ∈ ]0, 1]. The structure of ûε encodes the interaction of
the large amplitude wave H

(

t, x,Φ(t, x)/ε
)

with small amplitude oscillations
which can involve the phase ζ0 transversal to φ. Here is what happens.

Proposition 5.1. Assume (5.9), (5.10) and (5.10). The solution ûε to
the Cauchy problem (1.2)-(5.13) inherits on Ωτ the following asymptotic
behavior (which is valid in L∞)

(5.14)
ûε(t, x) = H

(

t, x,Φ(t, x)/ε
)

+ ε Ĥ0

(

t, x,Φ(t, x)/ε, ζ
(

t, x,Φ(t, x)/ε
)

/ε
)

+ O(ε2)

where the profiles

Ĥ0(t, x, θ, z) ∈ C∞
b (Ωτ × T

2; R2) , ζ(t, x, θ) ∈ C∞
b (Ωτ × T; R)

contain non trivial oscillations in the sense that ∂zĤ0 6≡ 0 and ∂θζ 6≡ 0.
Moreover, the family of initial data {ĥε}ε can be adjusted so that

ĥε ∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .

It follows that the transformation of (5.11) into (5.14) actually occurs for
the incompressible Euler equations.

Proof of Proposition 5.1. Define the following functions of (x, θ, z)

V̂ 2
j+1 := |∇xφ|−2 ∇xφ

⊥ · Ĥj , ∀ j ∈ {0, · · · , J − 1} ,
V̂ 3

j := |∇xφ|−2 ∇xφ · Ĥj , ∀ j ∈ {0, · · · , J − 1} .

Consider also

rε2(x) := |∇xφ|−2 ∇xφ
⊥ · r̂hε , rε3(x) := |∇xφ|−2 ∇xφ · r̂hε .

Introduce

V̂ ε2(x, θ) :=
∑J−1

j=0 εj+1 V̂ 2
j+1

(

x, θ, ζ0(x)/ε
)

+ εJ+1 r̂ε2(x) ,

V̂ ε3(x, θ) :=
∑J−1

j=0 εj V̂ 3
j

(

x, θ, ζ0(x)/ε
)

+ εJ r̂ε3(x) .

At time t = 0, impose

(5.15) V̂ε(0, x, θ) = V̂ ε(x, θ) := t
(

0 , V̂ ε2(x, θ) , V̂ ε3(x, θ)
)

.
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Observe that

ûε(0, x) = ĥε(x) = Û ε
(

x, φ(x)/ε
)

, Û ε(x, θ) := Γ
(

ε, 0, x, θ; V̂ ε(x, θ)
)

.

The definition of V̂ ε2 and the condition (5.10) imply that

(5.16) V̂ ε(x, θ) = V̂0(x, θ) +
∑J−1

j=1 εj V̂j

(

x, θ, ζ0(x)/ε
)

+ εJ rε(x)

where by convention V̂0(x, θ) := t
(

0, 0, V̂ 3
0 (x, θ)

)

and

V̂j(x, θ, z) := t
(

0, V̂ 2
j (x, θ, z), V̂ 3

j (x, θ, z)
)

, ∀ j ∈ {1, · · · , J − 1} .

Associate with the system (4.14) the initial data t(0, V̂ 3
0 ). This furnishes a

solution t(V̂1
0, V̂

3
0) of (4.14). Now solve on Ωτ × T the eiconal equation

(5.17)

{

∂tζ +
(

H(t, x, θ + V̂1
0) · ∇x

)

ζ + |∇xΦ|2 V̂3
0 ∂θζ = 0 ,

ζ(0, x, θ) = ζ0(x) .

The description of the propagation of solutions V̂ε of (4.13) issued from
oscillating initial data V̂ ε as in (5.16) is the matter of what is called mul-
tidimensional weakly nonlinear geometric optics [16]-[17]. Therefore, the
stability Theorem of [13] can be applied. The solution V̂ε is such that

V̂ε(t, x, θ) = V̂0(t, x, θ) + ε V̂1

(

t, x, θ, ζ(t, x, θ)/ε
)

+ O(ε2)

where

V̂0(t, x, θ) = t(V̂1
0, 0, V̂

3
0)(t, x, θ) , V̂1(0, x, θ, z) = t(0, V̂ 2

1 , V̂
3
1 )(x, θ, z) .

Recall that

ûε(t, x) = Ûε
(

t, x,Φ(t, x)/ε
)

, Ûε(t, x, θ) := Γ
(

ε, t, x, θ; V̂ε(t, x, θ)
)

.

In particular

Ûε(t, x, θ) = H
(

t, x, θ+ V̂1
0(t, x, θ)

)

+ ε Ĥ0

(

t, x, θ, ζ(t, x, θ)/ε
)

+ O(ε2)

Ĥ0(t, x, θ, z) := ∂θH
(

t, x, θ + V̂1
0(t, x, θ)

)

V̂1
1(t, x, θ, z)

+ V̂2
1(t, x, θ, z) ∇xΦ(t, x)⊥ + V̂3

0(t, x, θ) ∇xΦ(t, x) .

At time t = 0, we find

Ĥ0(0, x, θ, z) = V̂ 2
1 (x, θ, z) ∇xφ(x)⊥ + V̂ 3

0 (x, θ) ∇xφ(x) .

Because of (5.10), we are sure that ∂zV̂
2
1 6≡ 0. Therefore, by continuity, for

t small enough, we still have ∂zĤ0 6≡ 0. Now, exploit again (5.9) to obtain

∂t (∂θζ)(0, ·) = − ∂θs
∗ (∇xφ

⊥ · ∇x)ζ0 6≡ 0 .
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It follows that ∂θζ 6≡ 0. The first part of Proposition 5.1 is shown.

Examples of families {h̆ε}ε which are well prepared on ω for incompressible
Euler equations are given in Lemma 2.7. Follow the same procedure as in
the proof of Lemma 2.7 except at the level of (2.40). There, seek solutions
ϕε to (2.39) having the form

ϕε(x) = φ(x) + ε φε
(

x, φ(x)/ε, ζ0(x)/ε
)

where φε can be expanded according to

φε(x, θ, z) =
∑J+1

j=0 εj φj(x, θ, z) + εJ+2 rφε(x, θ, z) .

Impose ∂zφ0 ≡ 0 and ∂zφ1 6≡ 0 so that (Lemma 2.8)

∂zĤ0(x, θ, z) = − ∂2φ
−1 ∂zφ1(x, θ, z) ∂θK ∇xφ

⊥

Obviously, the restrictions mentioned in (5.10) are verified. This observation
completes the proof. ✷

Remark 5.3.1 - improvement of Proposition 5.1. The preceding analysis
allows to take into account, already at time t = 0, an oscillating phase
ζ0

(

x, φ(x)/ε
)

. The presentation has been here intentionally simplified. It is
to underline the creation of a new frequency (by interaction of waves having
the same frequencies). As explained in the introduction, this phenomenon
has no link with resonances. ⋄
Remark 5.3.2 - transfer of energy. Examine how the square F(ûε)2 of the
Fourier transform ûε of uε is distributed. At time t = 0, it is divided amongst
the two characteristic wave numbers k ≃ 1 and k ≃ ε−1. In view of (5.14),
this situation does not persist. At a time t > 0, the concentration is around
the three wave numbers k ≃ 1, k ≃ ε−1 and k ≃ ε−2. This spontaneous
apparition of a new frequency can be interpreted as a basic mechanism of
turbulent phenomena. ⋄
Remark 5.3.3 - other frequencies. The phase ζ can as well oscillate with a
frequency given by η(ε) where η : ]0, 1] −→]0, 1] is a decreasing function of
ε which tends to 0 as ε goes to 0, such as η(ε) = εj with j ∈ N∗. Then,
the frequencies of the interacting waves are multiplied. Thus, the resulting
wave oscillates with the frequency

(

ε η(ε)
)−1

. ⋄
Remark 5.3.4 - other interpretation of what happens. Suppose that the
phases φ and ζ0 are linear. For instance, select

φ(x) = x2 , ζ0(x) = x1 .
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Consider (1.2) with f ≡ 0. Assume also that all the profiles and the re-
mainder which appear in (5.11) are periodic with period

√
ε and 1/

√
ε re-

spectively with respect to the slow variables x1 and x2. Make the following
transformations

x2 | √ε x̃2 , x1 | x̃1/
√
ε , u1 | ũ1/

√
ε , u2 | √ε ũ2 .

Observe that (1.2) is conserved

(5.18) ∂tũ
ε + (ũε · ∇x)ũε = 0

whereas the initial data are transformed according to

ũε(0, x) =
√
ε H̃0(x̃, x̃2/

√
ε) + ε3/2 H̃1(x̃, x̃2/

√
ε, x̃1/ε

3/2) + O(ε5/2) .

Introduce the fast variable ỹ2 := x̃2/
√
ε and the new unknown ṽε := ũε/

√
ε

so that we have to deal with an expression like

ṽε(0, x, ỹ2) = H̃0(x̃, ỹ2) + ε3/2 H̃1(x̃, ỹ2, x̃1/ε
3/2) + O(ε5/2)

and with the equation

(5.19) ∂tṽ
ε +

√
ε (ṽε · ∇x̃)ṽε + ṽε ∂ỹ2

ṽε = 0 .

In this interpretation, H̃0(x̃, ỹ2) appears as a basic state which is modified by
a O(ε3/2) perturbation oscillating with a O(ε−3/2) frequency. This is exactly
the framework of weakly nonlinear geometric optics. And this is the reason
why we said in the introduction that, all things considered, the matter of
this paper is technically equivalent to deal with a problem of superposition
of weakly nonlinear geometric optics.

This point of view explains very well why a new frequency appears
(

this is
simply the slow variable ỹ2 in the eiconal equation related to (5.19)

)

. But,
of course, this approach must be adopted with many precautions since, in
the procedure, the domains of definition of the functions are changed ! ⋄

Remark 5.3.5 - interaction of large amplitude transversal oscillating waves.
The problem to find solutions of (2.39) having the form (2.40) can be solved
(on a domain which does not depend on ε ∈ ]0, 1]) by seeking some profile
φ̃ε(x, θ, z) ∈ C∞(ω × T

2; R) smooth in ε ∈ [0, 1] and such that

φε
(

x, φ(x)/ε
)

= φ̃ε
(

x, φ(x)/ε, ζ(x)/ε
)

, ∂zφ̃
0(x, θ, z) 6≡ 0 .

This corresponds to the construction of initial data h̆ε which have the form

h̆ε(x) = H̆ε
(

x, φ(x)/ε, ζ(x)/ε
)

, H̆ε ∈ C∞([0, 1] × ω × T
2; R2)
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and which are well prepared for (1.1). This clearly indicates that the method
developed here can be pushed forward to incorporate the interaction of some
very special large amplitude multi-phase oscillations. To this end, a possible
approach could be to repeat the present analysis at the level of (4.13) which
again is a Burger type equation. The new difficulties is the presence of
variable coefficients and of more space variables. We are satisfied here to
touch on this delicate subject through the present allusion. ⋄

Remark 5.3.6 - other formal solutions. The data φ andH have been adjusted
in a very special way. It would be interesting to extend the formal WKB
calculus in order to incorporate more general phases φ and profiles H. This
can reveal many other complex phenomena. For sure, the picture must be
completed with the cascade of phases observed in [6], and no only. ⋄

Remark 5.3.7 - prospects. The stability analysis of this paper relies on a
last resource. Indeed, concerning (1.1), it is restricted to the set Vτ

0 (ω).
The question to know what happens when the O(ε) perturbations push the
initial oscillating data out of Vτ

0 (ω), which means to deal with the pressure
term, is at the moment open. ⋄
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28, no. 1, 51–113 (1995).

[18] Joly, J.-L. ; Métivier, G. ; Rauch, J. Nonlinear oscillations beyond
caustics, Comm. Pure Appl. Math., 49, no. 5, 443–527 (1996).

67



[19] Lebeau, G. Non linear optic and supercritical wave equation, Bull. Soc.
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