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A Step in Supercritical WKB Analysis

and some Applications

Christophe CHEVERRY 1, Olivier GUÈS 2

Abstract. We study the existence and the asymptotic behavior of large ampli-

tude high-frequency oscillating waves subjected to the 2D Burger equation. This

program is achieved by developing tools related to supercritical WKB analysis.

By selecting solutions which are divergence free, we show that incompressible or

compressible 2D Euler equations are not locally closed for the weak L2 topology.

1 Introduction.

This article is devoted to the study of the two dimensional incompressible
Euler equation

(1.1) ∂tu + (u · ∇x)u + ∇xp = 0 , divx u = 0

as well as to the study of the two dimensional Burger equation

(1.2) ∂tu + (u · ∇x)u + f = 0 .

The time, space and state variables are respectively

t ∈ R , x = t(x1, x2) ∈ R
d , u = t(u1,u2) ∈ R

d , d = 2 .

The equations (1.1) and (1.2) are completed with some initial data having
locally finite kinetic energy

(1.3) u(0, x) = h(x) = t
(

h1(x), h2(x)
)

∈ L2
loc(R

2; R2) .
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The analysis of the Cauchy problems (1.1)-(1.3) and (1.2)-(1.3) depends
strongly on the regularity assumptions imposed on the function h. For
instance, consider (1.1)-(1.3). When

h ∈ Es :=
{

v ∈ L2
loc(R

2; R2) ; curl v := ∂1v
2−∂2v

1 ∈ (L1∩L∞)(R2; R)
}

the solution u of (1.1)-(1.3) is global in time and is unique [1]-[3]-[21]. Now,
since the equation (1.1) can be put in the conservative form

∂tu + divx (u⊗u) + ∇xp = 0 , divx u = 0 , u⊗u := (uj ui)1≤i,j≤2 ,

one is tempted to work in a more general functional framework. This means
to enter the field of weak solutions to (1.1). In the case of vortex-sheet initial
data with vorticity of distinguished sign

h ∈ Ew :=
{

v ∈ L2
loc(R

2; R2) ; 0 ≤ curl v ∈ M(R2; R)
}

,

existence results hold whereas the question of uniqueness is still open. The
first proof is due to J.-M. Delort [9]. Then, further informations have been
obtained. For background and expository accounts on this subject, the
reader may consult [1], [20] and the related references.

The usual way to derive existence results of weak solutions to (1.1) is based
on two steps. First, construct approximate-solution sequences {uε}ε∈]0,1] of
(1.1), either by smoothing the initial data h or by adding to (1.1) a small
viscosity (to get Navier-Stokes equations). Secondly, exhibit a property
of concentration-cancellation which means that the family {uε}ε does not
converge strongly in L2

loc yet all the extracted L2
loc weak limits satisfy (1.1).

This approach is well presented and clearly explained in the recent book of L.
Bertozzi and A. Majda [1]. Read especially the surveys given in chapters 10,
11 and 12. Up to the present, when d = 2, the weak limits of approximate
solutions to (1.1) have always been observed to be solutions to (1.1). Thus,
one can ask if the property of concentration-cancellation does generalize to
the space L2 of energy estimates. This question is explicitely raised in [1]-p.
479. It makes sense also in the less restrictive framework L2

loc.

However, such a program comes again a deep objection because :

Theorem 1.1. There is a bounded open domain Ω ⊂ R × R
2 and a family

of functions {uε}ε such that

i) uε ∈ C1(Ω) , sup
{

‖ uε ‖L2(Ω) ; ε ∈ ]0, 1]
}

< ∞ ,

ii) uε is a solution to (1.1) on Ω,

iii) uε converges weakly (as ε goes to zero) to u0 ∈ C1(Ω).

But u0 is not a solution to (1.1).
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When the space dimension is three (d = 3), the corresponding result can
easily be proved, see [10]-p. 674 or [1]-p. 478. It suffices to look at simple
waves which undergo rapid variations with respect to a linear phase k · x
where k ∈ R

3. Note θ ∈ T := R/Z a fast variable. Build the oscillation

(1.4) uε(t, x) = H(t, x, k · x/ε) , H(t, x, θ) ∈ C∞(R × R
3 × T; R3) .

The profile H can be adjusted so that uε is a solution of (1.1) and (1.2) with
respectively p constant and f ≡ 0. But the associated weak limit u0 is not
a solution to (1.1). Observe that

u0(t, x) = H̄(t, x) :=
∫ 1
0 H(t, x, θ) dθ = H(t, x, θ) − H∗(t, x, θ) .

When d = 2, such a basic procedure does not apply. Of course, there are
solutions to (1.1) of the form (1.4) with x ∈ R

2 and k ∈ R
2. However, all

known examples of such solutions produce weak limits which satisfy (1.1).
Thus, to push further the investigations, it is necessary to take into ac-
count more general structures including nonlinear phases and perturbations
of simple waves. On this way, new difficulties appear.

In fact, the study of solution sequences {uε}ε∈ ]0,1] to (1.1) can reveal very
complex phenomena. The asymptotic behavior of uε when ε goes to zero
can involve both concentrations and oscillations. Certainly, this is a current
challenge to understand what happens in the limiting process. Our aim here
is precisely to bring informations of this type. This is achieved by following
an original strategy which is presented below.

• Section 2 is devoted to the Cauchy problem (1.2)-(1.3) which recently
raised new interests [2]-[13]-[19]. The initial data h is defined on some open
set ω ⊂ R

2. It is smooth and bounded h ∈ C1
b (ω; R2). The source term f is

globally defined on R × R
2 and is also smooth f ∈ C1(R × R

2; R2). Lemma
2.1 provides with a domain of determinacy Ωh,f whose size is controled by
explicit constraints imposed on h and f , say (h, f) ∈ Bτ

g (ω).

Three special cases fι ≡ ∇xpι with ι ∈ {−1, 0, 1} for the choice of f are then
distinguished. When f ≡ fι, the conditions mentioned above concern only h
and are noted in abbreviated form h ∈ Bτ

ι (ω). In fact, they reduce to some
control on the quantities h, divx h and detDxh. This is Lemma 2.2.

Moreover, to each ι corresponds a nonlinear functional set Vτ
ι (ω) ⊂ Bτ

ι (ω)
which is defined through a Monge-Ampère equation and which is kept invari-
ant (Lemma 2.3) under both flows issued from (1.1) and (1.2). Therefore,
when restricted to Vτ

ι (ω), all the discussion concerning (1.1) can be trans-
fered at the level of (1.2). This argument will be used repeatedly.

3



The condition h ∈ Bτ
ι (ω) does not mean a uniform control on all derivatives

of h. In particular, the function h can carry oscillations. The sequel to
section 2 is devoted to such oscillations, in a monophase context.

- In subsection 2.2, we identify (Lemma 2.4) the necessary and sufficient
conditions which must be imposed on the phase φ and the profile H to have

(1.5) hε(x) := H
(

x, φ(x)/ε
)

+ O(ε) ∈ Bτ
ι (ω) , ∀ ε ∈ ]0, 1] .

- In subsection 2.3, we extract (Lemma 2.6) supplementary constraints (on
φ and H) which allow to get the more restrictive condition

(1.6) hε(x) := H
(

x, φ(x)/ε
)

+ O(ε) ∈ Vτ
ι (ω) , ∀ ε ∈ ]0, 1] .

Couples (H,φ) coming from (1.5) and (1.6) are called compatible with res-
pectively (1.2) and (1.1). The corresponding families {hε}ε are said well
prepared for respectively the Burger equation and the Euler equation.

• The chapter 3 tackles the evolution problem through the study of simple
waves. It considers expressions having the form

(1.7) ũε(t, x) = H
(

t, x,Φ(t, x)/ε
)

, ε ∈ ]0, 1]

where H and Φ do not depend on ε.

- In the subsection 3.1, we seek solutions to (1.2) which are as in (1.7). The
functions H and Φ must be subjected to the overdetermined system

(1.8)







∂tH + (H · ∇x)H + f = 0 ,
∂tΦ + (H̄ · ∇x)Φ = 0 ,
∇xΦ(t, x) ·H∗(t, x, θ) = 0 .

Nothing guarantees that the third condition in (1.8) is propagated by the
two first equations. In fact, for general (well polarized) initial data

(1.9) H(0, x, θ) = H(x, θ) , Φ(0, x) = φ(x) , ∇xφ(x) ·H∗(x, θ) = 0

the Cauchy problem (1.8)-(1.9) has no solution. But it becomes well posed
(Lemma 3.1) when (H,φ) is compatible with (1.2) and when f is subjected
to conditions which will be explicited. The incoming profile H can be put
(Lemma 3.2) in the form

H(t, x, θ) = H̃
(

Φ(t, x), r(t, x, θ)
)

, H̃ ∈ C1(R2; R2)

where H̃ is fixed whereas r is the underlying scalar profile.
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- In subsection 3.2, we consider solutions to (1.1) having the form (1.7).
This time, the functions H and Φ must be subjected to

(1.10)

{

∂tH + (H · ∇x)H + ∇xp = 0 , divx H = 0 ,
∂tΦ + (H̄ · ∇x)Φ = 0 , ∇xΦ ·H∗ = 0 .

Again this is an overdetermined system. When p ≡ pι with ι ∈ {−1, 0, 1}, a
complete analysis (Lemma 3.3) is available. The phase Φ must be constant
on parallel hyperplanes which means that

Φ(t, x) = a t+ b x1 + x2 , (a, b) ∈ R
2 .

At this stage, weak limits of solutions to (1.1) of the form (1.7) are still
solutions to (1.1). However, this picture does not resist under the influence
of small perturbations.

• Precisely, the chapter 4 is faced with the problem of stability. Seek solu-
tions to (1.1) or to (1.2) having the form

(1.11) uε(t, x) = Uε
(

t, x,Φ(t, x)/ε
)

= H
(

t, x,Φ(t, x)/ε
)

+ O(ε) .

The equation (1.2) written in the variables (t, x, θ) becomes

(1.12) ∂tU
ε + (Uε · ∇x)Uε + ε−1 (∂tΦ + Uε · ∇xΦ) ∂θU

ε + f = 0 .

Observe that the profile H is a special solution to (1.12). The linearized
equation of (1.12) along H is

(1.13) ∂tU̇
ε + (H · ∇x)U̇

ε + (U̇ε · ∇x)H + ε−1 (U̇ε · ∇xΦ) ∂θH = 0 .

The factor ε−1 expresses the presence of a singularity. It prevents from
deriving energy estimates which involve the state variable U̇ε and which are
uniform in ε ∈ ]0, 1].

Large amplitude oscillations on the velocity field, like uε, are known to be
strongly unstable. This observation has been noticed for over a century.
It was already mentioned in works of Kelvin and Rayleigh. Since, it has
motivated many studies till for instance the recent contributions of S. Fried-
lander, W. Strauss and M. Vishik (see [11] and the related references).

The amplification phenomena under question appear also in the field of
nonlinear geometric optics [7]-[12]. There, they are often called up to explain
why classical methods do not allow to construct non trivial perturbations
uε of ũε, with uε defined on some open domain of determinacy Ω ⊂ R×R

2

which does not shrink to the empty set as ε goes to zero.
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Now, supposing that (1.5) involves a couple (H,φ) which is compatible
with (1.2), the analysis of chapter 2 guarantees a priori that the oscillating
Cauchy problem (1.2)-(1.5) is well posed on such fixed domain Ω. On the
other hand, it says nothing concerning the asymptotic behavior when ε goes
to zero of the corresponding solution family {uε}ε.

At this stage, the discussion falls under the scope of supercritical WKB
analysis. This approach has been initiated by G. Lebeau [17]. Some small
advancements have also been achieved in [4]-[5]-[6].

The articles [5]-[6] are specifically devoted to the propagation of oscillations
which are solutions to (1.1). However, the situations studied in [5]-[6] differ
from those under consideration here.

On the one hand, in [5]-[6], the data φ and H are selected arbitrarily leading
generically to a cascade of phases. On the contrary, we adjust here the
phase φ and the profile H so that such phenomena are avoided. This is a
consequence of the relations (2.19) and (2.20) imposed on φ and H.

On the other hand, in [5]-[6], the WKB analysis is just formal or justified in
the presence of a small anisotropic viscosity. On the contrary, our aim here
is to face the problem of stability in the hyperbolic context.

To do that, the difficulty is the following. The descriptions of Sections 2 and
3 rely on φ and H, and then on Φ and H leading to ũε. But the structure
of ũε is too rigid to be compatible with the influence of a perturbation, say
ε t(Vε2,Vε3), of size O(ε). Supplementary flexibility is required on H.

- This is obtained in subsection 4.1 by introducing a new state variable, say
Vε1. The scalar function Vε1 modifies the principal term of the oscillation
since it acts by translation on the fast variable θ of H. On the other hand,
it interferes with t(Vε2,Vε3) in a nonlinear way.

The implementation of Vε1 can be put in concrete form by way of a blow up
procedure. This manipulation corresponds to a dependent change of state
variables which substitutes for Uε the function

Vε(t, x, θ) = t(Vε1,Vε2,Vε3)(t, x, θ) ∈ C1(Ω×T; R3) , Ω ⊂ R×R
2 .

More precisely, Proposition 4.1 says that the singular equation (1.12) can
be replaced with some well posed hyperbolic quasilinear system (4.5) which
givess rise to Vε. The construction of Vε on a domain Ω × T independent
of ε is made possible because (4.5) involves no more coefficients which are
singular with respect to ε ∈ ]0, 1]. Observe by the way that θ plays at the
level of (4.5) the part of a slow variable.
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- Now, it remains to perform the analysis at the level of (4.5) and then to
interpret the results in terms of the original variables. This is the frame of
subsection 4.2 which is devoted to applications.

Seek solutions Vε to (4.5) having the form

(1.14) Vε(t, x, θ) =
∑∞

j=0 ε
j Vj

(

t, x, θ, ~Ψ(t, x, θ)/ε
)

where ~Ψ contains m phases

~Ψ = (Ψ1, · · · ,Ψm) ∈ C∞(Ω × T; Rm) , m ∈ N
∗

and where the profiles Vj are smooth

Vj(t, x, θ, θ̃) ∈ C∞(Ω × T × T
m; R3) , ∀ j ∈ N .

The analysis depends strongly on the structure hypothesis imposed on the
profiles Vj . The elementary case is when all the Vj do not depend on θ̃.
Then, to identify V0, it suffices to retain the principal term in the Tay-
lor expansions with respect to ε of the coefficients which appear in (4.5).
This yields a transport equation (4.6) on V0 = t(V1

0,V
2
0,V

3
0). The related

oscillation uε can be recovered through the formula

(1.15) uε(t, x) = U0

(

t, x,Φ(t, x)/ε
)

+ O(ε)

where U0 is given by

(1.16) U0(t, x, θ) = H
(

t, x, θ + V1
0(t, x, θ)

)

.

Of special interest is the study of such uε issued from data hε which are
well prepared for (1.1) because these uε are solutions to (1.1). On the
one hand, the examination of the associated Φ, H and V1

0 indicates that
caustics phenomena can occur for incompressible Euler equations. On the
other hand, the influence of V1

0 induces the objection previously mentioned
(Theorem 1.1) to the concentration-cancellation property.

Finally, choose to work with a V0 which is only a function of (t, x, θ) whereas
the other contributions Vj with j ≥ 1 depend on θ̃. Suppose moreover that

the trace of ~Ψ at time t = 0 does not see θ. In other words

~Ψ(0, x, θ) = ~ψ(x) , ~ψ(x) =
(

ψ1(x), · · · , ψm(x)
)

∈ C∞(ω; Rm) .

Under these assumptions, the discussion of (4.5)-(1.14) rests on the theory of
multidimensional weakly nonlinear geometric optics [14]-[15]. Now, coming
back to uε, we find

uε(0, x) = H
(

x, φ(x)/ε
)

+ ε H0

(

x, φ(x)/ε, ~ψ(x)/ε
)

+ O(ε2) .
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This means that, interpreted at the level of (1.2) or (1.1), the matter is to
describe the interaction of some large amplitude high frequency monophase
wave with small amplitude oscillations which can involve phases ψj transver-
sal to φ. It turns out that the data can be adjusted (Proposition 4.2) so
that the asymptotic behavior of {uε}ε on Ω is governed by

uε(t, x) = H
(

t, x,Φ(t, x)/ε
)

+ ε H0

(

t, x, ~ψ
(

t, x,Φ(t, x)/ε
)

/ε
)

+ O(ε2) .

This contains a rigorous justification that kinetic energy of solutions to (1.1)
can be transfered from “low” wave numbers modes (namely of size ε−1) to
“high” wave numbers modes (of size ε−2). Such a transfert could also affect
the principal term of the oscillation.

The basic mechanism thus revealed could be repeated. It can be conceived
as a starting point in order to study the propagation of more complicated
oscillations. It is a convenient way to tackle phenomena (possibly infinite)
of cascade of energy from large-scale motions to small-scale motions. Obvi-
ously, the modern tools of nonlinear geometric optics offer means of exploring
some turbulent features in fluid mechanics.
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2 Well prepared initial data.

This Section is devoted to general considerations concerning the dynamics
of a two dimensional vector field u = t(u1,u2) ∈ R

2 described by the Burger
equation (1.2).

Let ω be a bounded open domain of R
2. If necessary, make a translation

in x to be sure that t(0, 0) ∈ ω. Note Ck
b with k ∈ N ∪ {+∞} the space

of functions with bounded continuous derivatives up to the order k. Select
data h and f such that

(2.1) u(0, x) = h(x) ∈ C1
b (ω) , f(t, x) ∈ C1(R × R

2) .

2.1 Preliminaries.

We start by looking at the life span of solutions to (1.2)-(2.1).

2.1.1 About the life span of solutions to Burger equations.

Look at the ordinary differential equation

(2.2) d2

dt2
Ξ(t, a, b) + f

(

t,Ξ(t, a, b)
)

= 0

completed with

Ξ(0, a, b) = a ∈ R
2 , d

dt Ξ(0, a, b) = b ∈ R
2 .

Suppose that the source term f has at most a linear growth with respect to
the space variable, uniformly in the time variable

(2.3) ∃C ∈ R+ ; |f(t, x)| ≤ C (1 + |x|) , ∀ (t, x) ∈ R × R
2 .

Then, the application Ξ is globally defined and is smooth Ξ ∈ C1(R × R
4).

Introduce the graphs

Gh :=
{ (

x, h(x)
)

; x ∈ ω
}

⊂ R
2 × R

2 ,

DGh :=
{ (

x, h(x),Dxh(x)
)

; x ∈ ω
}

⊂ R
2 × R

2 × M2(R) ,

where Md(R) is the space of d × d matrices with real coefficients. Note Ḡh

and D̄Gh the closures of respectively Gh and DGh. By hypothesis, these
are compact sets. The speed of propagation up to time T of a solution u to
(1.2) coming from h and f is bounded by

ch,f (T ) := ‖ h ‖L∞(ω) +T sup
{

|f
(

t,Ξ(t, a, b)
)

| ; (t, a, b) ∈ [0, T ]×Ḡh

}

.
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This allows to define the domain of determinacy

Ωh,f (T ) :=
{

(t, x) ∈ [0, T [×R
2 ; B(x, t c(T )[⊂ ω

}

where B(x, r[ with r ∈ R+ is the ball

B(x, r[ :=
{

x̃ = t(x̃1, x̃2) ∈ R
2 ; |x̃−x|2 = (x̃1−x1)

2+(x̃2−x2)
2 < r2

}

.

Let (t, a, b,M) ∈ R × R
2 × R

2 × M2(R). Introduce the 2 × 2 matrix

Γ(t, a, b,M) := DaΞ(t, a, b) + DbΞ(t, a, b) M .

Compute

Rg(a, b,M) := sup
{

T ∈ R+ ; det Γ(t, a, b,M) > 0 , ∀ t ∈ [0, T [
}

.

Lemma 2.1. The Cauchy problem (1.2)-(2.1) has a C1 solution u which is
defined on the domain

Ωh,f := ∪{T ; 0<T<Th,f} Ωh,f(T ) , Th,f := inf
{

Rg(z) ; z ∈ D̄Gh

}

.

Remark 2.1.1 - introduction of Bτ
g (ω). Since Γ is a continuous function

satisfying Γ(0, ·) ≡ Id, we have Th,f ∈ R+ ∪ {+∞} so that Ωh,f 6≡ ∅. Let
τ ∈ ]0, 1]. Consider

Bτ
g (ω) :=

{

(h, f) ∈ C1
b × C1 ; |h(x)| ≤ τ−1 , |f(t, x)| ≤ τ−1 (1 + |x|) ,

Rg

(

x, h(x),Dxh(x)
)

∈ [τ,+∞] , ∀ (t, x) ∈ R × ω
}

.

It is sure that

c(τ) := sup
{

ch,f (T ) ; h ∈ Bτ
g (ω)

}

< ∞ .

Applying Lemma 2.1, the solution u of (1.2)-(2.1) issued from h ∈ Bτ
g (ω) is

defined on

Ω(τ) :=
{

(t, x) ∈ [0, τ [×R
2 ; B(x, c(τ) t[⊂ ω

}

. ⋄

Remark 2.1.2 - a more general situation. Let g : R
2 −→ R

2 be a C1

diffeomorphism. Look at the Burgers type equation

∂tu +
(

g(u) · ∇x

)

u = 0 .

In fact, this situation is equivalent to (1.2) with f ≡ 0. Indeed, it suffices to
take g(u) as the new unknown. ⋄

Proof of Lemma 2.1. Since unicity is clear in the context of C1 functions,
it remains to show that a solution u of (1.2)-(2.1) exists on Ωh,f (T ) when
0 < T < Th,f . Classical results yield a time T̃ ∈ R+ such that a solution u

of (1.2)-(2.1) exists on Ωh,f (t̃) for all t̃ < T̃ . Take T̃ as large as possible.
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If T̃ ≥ T , there is nothing to do. Thus, suppose that T̃ < T . The continua-
tion principle (exposed in Majda [18] paragraph 2.2) says that

(2.4) sup
{

‖ Dx̃u(t̃, x̃) ‖ ; (t̃, x̃) ∈ Ωh,f (T̃ )
}

= +∞ .

To simplify the notations, define Ξ̆(t, x) := Ξ
(

t, x, h(x)
)

and

Γ̆(t, x) := Γ
(

t, x, h(x),Dxh(x)
)

, R̆(x) := Rg

(

x, h(x),Dxh(x)
)

.

Since u must be constant along characteristics, for each (t̃, x̃) ∈ Ωh,f(T̃ ),
there is x ∈ ω such that

(2.5) u(t̃, x̃) = h(x) −
∫ t̃
0 f

(

t, Ξ̆(t, x)
)

dt , x̃ = Ξ̆(t̃, x) .

It follows that

(2.6) Dx̃u(t̃, x̃) Γ̆(t̃, x) = Dxh(x) −
∫ t̃
0 Dxf

(

t, Ξ̆(t, x)
)

Γ̆(t, x) dt .

On the one hand

t̃ < T̃ < T < Th,f ≤ R̆(x) , ∀x ∈ ω .

On the other hand

det Γ̆(t, x) > 0 , ∀ (t, x) ∈ [0, R̆(x)[×ω .
In particular

det Γ̆(t, x) > 0 , ∀ (t, x) ∈ [0, T̃ [×ω .
Suppose that there is a sequence {(tn, xn)}n ∈ ([0, T̃ [×ω)N which satisfies

limn−→∞ Γ̆(tn, xn) = 0 .

Extract a subsequence (given by ℓ : N −→ N) such that

limn−→∞

(

tℓ(n), xℓ(n), h(xℓ(n)),Dxh(xℓ(n))
)

= (t̄, z̄) ∈ [0, T̃ ] × D̄Gh .

The continuity of Γ guarantees that det Γ(t̄, z̄) = 0. This implies that

Rg(z̄) ≤ t̄ ≤ T̃ < Th,f ≤ Rg(z̄)

which clearly is not possible. It means that

(2.7) inf
{

det Γ̆(t, x) ; (t, x) ∈ [0, T̃ [×ω
}

= c > 0 .

Note Co (M) the co-matrix of M . Remember that

Γ̆(t̃, x)−1 =
(

det Γ̆(t̃, x)
)−1

Co
(

Γ̆(t̃, x)
)

.

Use this and the relation (2.6) to get

sup
{

‖ Dx̃u(t̃, x̃) ‖ ; (t̃, x̃) ∈ Ωh,f(T̃ )
}

< ∞
which is a contradiction with (2.4). Therefore T̃ ≥ T . 2
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2.1.2 Three special cases.

This paragraph deals with

(2.8) ∂tu + (u · ∇x)u + fι = 0 , fι(t, x) := ι x , ι ∈ {−1, 0, 1} .

First, consider the case ι = 0. When ι = 0, simplifications occur in the
preceding discussion. Introduce the domain of determinacy

Ωh :=
{

(t, x) ∈ [0,+∞[×R
2 ; B(x, t ‖ h ‖L∞(ω) [⊂ ω

}

.

Define the application

Ih : ω −→ R
2

x 7−→ Ih(x) = t
(

I1
h(x), I2

h(x)
)

:= t
(

divx h(x) , detDxh(x)
)

.

The image of ω by Ih is

Ih(ω) :=
{

Ih(x) ; x ∈ ω
}

.

Note Īh(ω) the closure of Ih(ω). This is a compact set. Compute

R(a, b) := sup
{

T ∈ R+ ; 1+a t+b t2 > 0 , ∀ t ∈ [0, T [
}

∈ R+∪{+∞} .
The result 2.2 below is true even if ω is not bounded.

Lemma 2.2. Take ι = 0. The Cauchy problem (2.8)-(2.1) has a C1 solution
u which is defined on the truncated cone

Ωh(Th) :=
{

(t, x) ∈ Ωh ; t < Th

}

, Th := inf
{

R(y) ; y ∈ Īh(ω)
}

.

Remark 2.1.3 - introduction of Bτ
ι (ω). The condition (2.3) is obviously

satisfied by the functions fι. Instead of Bτ
g (ω), we can consider

Bτ
ι (ω) :=

{

h ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 ,

R
(

Ih(x)
)

∈ [τ,+∞] , ∀x ∈ ω
}

. ⋄
Proof of Lemma 2.2. When ω is bounded, just apply the procedure of
Lemma 2.1 to find

c(T ) = ‖ h ‖L∞(ω) , Ξ(t, a, b) = a+t b , Γ(t, a, b,M) = Id+tM .

It follows that

Ωh,f0(T ) ⊂ Ωh,f0(T̃ ) , ∀T ∈ ]0, T̃ [ ,

detDxΞ̆(t, x) = det
(

Id + tDxh(x)
)

= 1 + I1
h(x) t + I2

h(x) t2 .

Now, it is easy to see that Th,f0 ≡ Th and Ωh,f0 ≡ Ωh.
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When ω is not bounded, it suffices to remark that the time T r
h associated

with the restriction of h to the open domain ω ∩B(0, r[ is such that

Th ≤ T r
h , ∀ r ∈ R+ , lim r −→+∞ T r

h = Th .

Since the speed of propagation is bounded by ‖ h ‖L∞(ω), the expected result
can be obtained by passing to the limit (r −→ +∞). 2

Remark 2.1.4 - comparison with other results. Observe that

R−1(+∞) =
{

(a, b) ∈ R
2 ; a ≥ 0 , b ≥ 0

}

∪
{

(a, b) ∈ R
2 ; a < 0 , b ≥ a2

4

}

.

Suppose that ω = R
2. Then, the solution of (2.8)-(2.1) with ι = 0 is global

in time if and only if

(2.9) R
(

Ih(x)
)

= +∞ , ∀x ∈ R
2 .

Simple computations indicate that this criterion is equivalent with the con-
dition imposed in Theorem 2.2 of [19]. On the other hand, when (2.9) is
violated, our analysis of the local in time existence is more refined than what
can be extracted from [19]. ⋄

Remark 2.1.5 - the other cases. When ι = −1 or ι = 1, the solutions of (2.2)
are respectively

Ξ−1(t, a, b) = a ch t + b sh t , Ξ1(t, a, b) = a cos t + b sin t .

It follows that

Γ−1(t, a, b,M) = ch t (Id+th t M) , Γ1(t, a, b,M) = cos t (Id+tg t M) .

Thus, the stopping times Th,fι which are associated with the functions fι are

Th,f−1
=

{

arcthTh if Th < 1 ,
+∞ if Th ≥ 1 ,

Th,f1
= arctgTh . ⋄

The reason why the functions fι are distinguished is the following. When h
is conveniently adjusted, the Cauchy problem (2.8)-(2.1) furnishes a solution
of (1.1)-(2.1). This fact is proved in the next subsection.

2.1.3 Invariant sets given by Monge-Ampère equations.

Observe that

fι(t, x) = ∇xpι(x) , pι(x) := ι 1
2 |x|2 + C .
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Therefore, the solutions of (2.8)-(2.1) which are incompressible

(2.10) divx u(t, x) = 0 , ∀ (t, x) ∈ Ωh,fι

can be interpreted as solutions of incompressible Euler equations. When
ι = 0, they satisfy (1.1) with p constant. Thus, they are also solutions of
compressible Euler equations. In fact, they are subjected to the pressureless
gas dynamics system.

Suppose to simplify the discussion that ω is simply connected in R
2. Then,

look at the nonlinear functional set

Vτ
ι (ω) :=

{

h = t(−∂2̺, ∂1̺) ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 ,

̺ ∈ C2(ω; R) , det D2
xx ̺ ≡ ι

}

.

According to the usual terminology, this definition involves a Monge-Ampère
equation which is called hyperbolic, degenerate or elliptic when respectively
ι = −1, ι = 0 or ι = 1. Obviously, the subset Vτ

ι (ω) is not empty.

Lemma 2.3. The C1 solution u of the Cauchy problem (2.8)-(2.1) is sub-
jected to (2.10) if an only if h ∈ Vτ

ι (ω) for some τ ∈ ]0, 1].

Remark 2.1.6 - another interpretation of Vτ
ι (ω). Introduce

Ṽτ
ι (ω) :=

{

h ∈ C1
b (ω; R2) ; |h(x)| ≤ τ−1 , Ih(x) = t(0, ι) , ∀x ∈ ω

}

.

Let h = t(−∂2̺, ∂1̺) ∈ Vτ
ι (ω). Obviously

I1
h(x) = 0 , I2

h(x) = detD2
xx̺(x) = ι , R

(

Ih(x)
)

≥ 1 , ∀x ∈ ω .
It follows that

Vτ
ι (ω) ⊂ Ṽτ

ι (ω) ⊂ B̃τ
ι (ω) , ∀ τ ∈ ]0, 1] .

Now, if h ∈ Ṽτ
ι (ω), the restriction I1

h ≡ 0 means that h coincide with
t(−∂2̺, ∂1̺) for some scalar function ̺ ∈ C2(ω; R). Then, the condition
I2
h ≡ ι is equivalent to detD2

xx ̺ ≡ ι. Therefore Ṽτ
ι (ω) ≡ Vτ

ι (ω).

If h ∈ Vτ
0 (R2), the solution u of (1.2)-(2.1) or (1.1)-(2.1) is global in time.

Moreover, the set Vτ
0 (R2) is invariant under the flow

h ∈ Vτ
0 (R2) =⇒ u(t, ·) ∈ Vτ

0 (R2) , ∀ t ∈ R+ . ⋄

Proof of Lemma 2.3. When ι = 0, the result 2.3 can be deduced from
Theorem 2.6 in [8]. The proof given below is different and more direct. It
is also more general since it allows to incorporate the cases ι = ±1.
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◦ Suppose that u is a solution of (2.8)-(2.1) which is subjected to (2.10). On
the one hand, the relation (2.10) means that the two (complex) eigenvalues
of the matrix Dxu(t, x) are opposite, say ±λ(t, x). On the other hand, the
equation (2.8) implies that

(∂t + u · ∇x)Dxu + (Dxu)2 + ι Id = 0 , ∀ (t, x) ∈ Ωh,fι .

Take the trace to get

Tr (Dxu)2 + 2 ι = 2 (λ2 + ι) = 0 , ∀ (t, x) ∈ Ωh,fι .

Look at what happens when t = 0. Since ω is supposed to be simply
connected in R

2, there is ̺ ∈ C2(ω; R) such that

u(0, x) = h(x) = t∇x̺
⊥(x) := t

(

−∂2̺(x), ∂1̺(x)
)

, ∀x ∈ ω

and the preceding condition reduces to

−λ(0, x)2 = detDxu(0, x) = detDxh(x) = detD2
xx̺(x) = ι .

Take τ small enough to be sure that h ∈ Vτ
ι (ω).

◦ Conversely, suppose that h ∈ Vτ
ι (ω). Apply Lemma 2.1 to find a solution

u of (2.8)-(2.1) on Ωh,fι . Note λ1 and λ2 the two eigenvalues of Dxu. Deduce
from (2.8) that

(∂t + u · ∇x) (Dxu)2 + 2 (Dxu)3 + 2 ι Dxu = 0 , ∀ (t, x) ∈ Ωh,fι .

Observe that

Tr (Dxu)3 = λ 3
1 + λ 3

2 = (λ1 + λ2) (λ 2
1 − λ1 λ2 + λ 2

2 ) .

It follows that
{

(∂t + u · ∇x) divx u +
[

Tr (Dxu)2 + 2 ι
]

= 0 ,
(∂t + u · ∇x)

[

Tr (Dxu)2 + 2 ι
]

+ 2 (λ 2
1 − λ1 λ2 + λ 2

2 + ι) divx u = 0 .

By hypothesis, at time t = 0, we start with

divx h(x) = 0 , TrDxh(x)
2 + 2 ι = 2 (− detD2

xx̺(x) + ι) = 0 .

Combining these informations with Gronwall’s Lemma gives rise to

divx u(t, x) = 0 , TrDxu(t, x)2 + 2 ι = 0 , ∀ (t, x) ∈ Ωh,fι .

In particular, the divergence free condition (2.10) is verified. 2

Remark 2.1.7 - about the choice of ι. In the preceding proof, the value
of ι can be fixed arbitrarily in R. What is important is only that ι does
not depend on (t, x). Nevertheless, when ι 6= 0, the change of time-space
variables (t, x) / |ι|−1/2 (t, x) reduces to the situation ι ∈ {−1, 1}. ⋄
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2.1.4 Large amplitude monophase oscillations.

According to the preceding construction, solutions u of (2.8)-(2.1) issued
from h ∈ Bτ

ι (ω) are defined on Ω(τ). When ι = 0, we can take

Ω(τ) :=
{

(t, x) ∈ [0, τ [×R
2 ;B(x, t τ−1[⊂ ω

}

.

Now, the constraint h ∈ Bτ
ι (ω) does not imply a bound on all derivatives

contained in Dxh. In particular, with τ fixed, it is possible to find families
{hε}ε∈ ]0,1] which satisfy

(2.11) hε ∈ Bτ
ι (ω) , ∀ ε ∈ ]0, 1]

but for which

(2.12) lim
ε−→ 0

‖ Dxh
ε ‖L∞(ω) = +∞ .

The aim of this paper is precisely to consider such families {hε}ε, having a
specific behaviour when ε goes to zero. Some material is needed to describe
the oscillating structure of hε. Fix J ∈ N. Introduce :

2.a) a phase φ ∈ C∞(ω; R) with ∇xφ ∈ C∞
b (ω; R). Assume that φ is not

stationnary. More precisely, impose

(2.13) ∃ c ∈ R+ , ∂2φ(x) ≥ c , ∀x ∈ ω ,

2.b) a profile H ≡ H−1 = t(H1,H2) ∈ C∞
b (ω × T; R2) which is non trivial

(2.14) ∃ (x, θ) ∈ ω × T ; ∂θH(x, θ) 6= 0 ,

2.c) other profiles

Hj = t(H1
j ,H

2
j ) ∈ C∞

b (ω × T; R2) , j ∈ {0, · · · , J − 1} ,
2.d) a function rhε ∈ C∞

b (ω; R2) which is controlled by

(2.15) sup
{

‖ rhε ‖L∞(ω) + εJ−1 ‖ Dx rh
ε ‖L∞(ω) ; ε ∈ ]0, 1]

}

< ∞ .

With all these ingredients, build the asymptotic expansion

(2.16) hε(x) =
∑J−1

j=−1 ε
j+1 Hj

(

x, φ(x)/ε
)

+ εJ+1 rhε(x) .

Observe that hε is a large amplitude oscillating wave

hε(x) = H
(

x, φ(x)/ε
)

+ O(ε) , ∂θH 6≡ 0 .

In the next subsection, we identify necessary and sufficient constraints to
impose on φ and the Hj in order to have (2.11) for some fixed τ ∈ ]0, 1].
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2.2 Well prepared families for the Burger equation.

The hypothesis 2.a), · · · , 2.d) guarantee (2.12) and the fact that

∃ τ ∈ R+ ; sup
{

|hε(x)| ; (ε, x) ∈ ]0, 1] × ω
}

≤ τ−1 < ∞ .

Now, to obtain a family {hε}ε ∈ Bτ
ι (ω)]0,1] with corresponding solutions

{uε}ε defined on a domain Ω(τ) (which does not shrink to the empty set as
ε goes to 0), it suffices to check the condition on Ihε which is stated below.

Definition 2.1. We say that the family {hε}ε, where hε is defined as in
(2.16) and is made of ingredients satisfying 2.a), · · · , 2.d), is well prepared
on ω for the Burger equation (1.2) if

(2.17) ∃ τ ∈ R+ ; R
(

Ihε(x)
)

∈ [τ,+∞] , ∀ (x, ε) ∈ ω× ]0, 1] .

Any function u ∈ L1(ω × T) can be decomposed according to

u(x, θ) = 〈u〉(x) + u∗(x, θ) = ū(x) + u∗(x, θ)

where 〈u〉 ≡ ū is the mean value

〈u〉(x) = ū(x) :=
∫

T
u(x, θ) dθ .

Introduce the oscillating support of u which is

osup u :=
{

x ∈ ω ; u∗(x, ·) 6≡ 0
}

.

Define also

(∂−1
θ u∗)(x, θ) :=

∫ θ
0 u∗(x, θ̃) dθ̃ −

∫ 1
0

(∫ θ
0 u∗(x, θ̃) dθ̃

)

dθ .

In view of (2.13), for each x1 ∈ R, the application

ω(x1) :=
{

x2 ; (x1, x2) ∈ ω
}

−→ R

x2 7−→ φ(x1, x2)

is strictly increasing. The image set

I(x1) :=
{

φ(x1, x2) ; x2 ∈ ω(x1)
}

is open. Introduce the other open set

I := ∪x1∈R I(x1) ⊂ R .

Seek a family {hε}ε which is well prepared on ω for (1.2). Easy computations
indicate that the analysis can be reduced to the case ω = osupH. Thus,
from now on, we can suppose that ω = osupH∗. We suppose moreover that
the curve {x ∈ ω ; φ(x) = z} is connected for all z ∈ I. These are technical
assumptions which simplify the following statements.
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Lemma 2.4. Under the assumptions mentioned above, the family {hε}ε is
subjected to the condition (2.17) if and only if the three following conditions
are satisfied :

i) the profile H∗ is polarized according to

(2.18) ∇xφ(x) ·H∗(x, θ) = 0 , ∀ (x, θ) ∈ ω × T .

ii) there exists f in C∞
b (I; R) such that

(2.19) ∂1φ(x) = f
(

φ(x)
)

∂2φ(x) , ∀x ∈ ω .

iii) there exists g in C∞
b (I; R) such that

(2.20) f
(

φ(x)
)

H̄1(x) + H̄2(x) = g
(

φ(x)
)

, ∀x ∈ ω .

Couples (H,φ) which satisfy (2.18), (2.19) and (2.20) for some f and g are
called compatible with (1.2).

Proof of Lemma 2.4. Note that

R(a, b) :=







+∞ if a < 0 and b > 1
4 a

2 ,
+∞ if a ≥ 0 and b ≥ 0 ,
− 1

a if a < 0 and b = 0 .

For all other values of (a, b), one has

R(a, b) = − a
2 b − (a2−4 b)

1

2

2 b .

It follows that

R−1([τ,+∞]) :=
{

(a, b) ∈ R
2 ; a ≤ − 2 τ−1 , b > 1

4 a
2
}

∪
{

(a, b) ∈ R
2 ; a ≥ − 2 τ−1 , b ≥ − τ−2 (τ a+ 1)

}

.

◦ Suppose that {hε}ε is subjected to (2.17). Observe that

Ihε(x) = ε−1 I−1

(

x, ε−1 φ(x)
)

+ O(1) , I−1(x, θ) = t(I1
−1, I

2
−1)(x, θ)

with I1
−1 = ∇xφ · ∂θH

∗ and

I2
−1 = ∂1φ (∂θH

1 ∂2H
2−∂θH

2 ∂2H
1) + ∂2φ (∂θH

2 ∂1H
1−∂θH

1 ∂1H
2) .

Select any (x, θ) ∈ ω × T such that φ(x) 6= 0. Introduce

εk := φ(x) (θ + ι k)−1 , ι := sgn φ(x) , k ∈ N \ {0, 1} .
By construction

(2.21) Ihεk (x) = ε−1
k I−1(x, θ) + O(1) .
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This indicates that the sequence
{

Ihεk (x)
}

k
is asymptotic when k goes to

∞ with the half line

D :=
{

λ I−1(x, θ) ; λ ∈ R+

}

.

In view of the geometry of the set R−1([τ,+∞]), this is compatible with
(2.17) only if I1

−1(x, θ) ≥ 0. Because of (2.13) and the continuity of the
function I1

−1, it leads to

I1
−1(x, θ) ≥ 0 , ∀ (x, θ) ∈ ω × T .

The foregoing shows that I1
−1 is a positive function. On the other hand,

it is obviously a periodic function with mean zero. Therefore, it must be
zero which is exactly the polarization condition (2.18). There is some scalar
function s ≡ s∗ ∈ C∞(ω × T) which is such that

(2.22) H(x, θ) = H̄(x) + s∗(x, θ) ∇xφ(x)⊥ , ∇xφ
⊥ :=

(

−∂2φ
∂1φ

)

.

The information (2.22) allows to simplify the expression of

I2
−1 =

[

∂1φ ∂2φ (∂1H̄
1 − ∂2H̄

2) − (∂1φ)2 ∂2H̄
1 + (∂2φ)2 ∂1H̄

2
]

∂θs
∗

+
[

− 2 ∂1φ ∂2φ ∂
2
12φ + (∂1φ)2 ∂2

22φ + (∂2φ)2 ∂2
11φ

]

s∗ ∂θs
∗ .

Since now I1
−1(x, θ) = 0, the sequence

{

Ihεk (x)
}

k
is asymptotic when k goes

to ∞ with

D± :=
{

(0, b) ; ±b > 0
}

if ± I2
−1(x, θ) > 0 .

In view of the geometry of the set R−1([τ,+∞]), this is compatible with
(2.17) on condition that I2

−1(x, θ) ≥ 0. Because of (2.13) and the continuity
of the function I2

−1, it leads to

I2
−1(x, θ) ≥ 0 , ∀ (x, θ) ∈ ω × T .

Again I2
−1 is a positive function. It is periodic and the formula given above

indicates that it is with mean zero. Therefore, it must be zero. Since by
hypothesis ω = osup s∗, the condition I2

−1 ≡ 0 amounts to the same thing
as imposing for all x ∈ ω the two relations

∂1φ ∂2φ (∂1H̄
1 − ∂2H̄

2) − (∂1φ)2 ∂2H̄
1 + (∂2φ)2 ∂1H̄

2 = 0 ,(2.23)

2 ∂1φ ∂2φ ∂
2
12φ − (∂1φ)2 ∂2

22φ − (∂2φ)2 ∂2
11φ = 0 .(2.24)

In view of (2.13), the identity (2.24) is equivalent to

(2.25) (−∂2φ ∂1 + ∂1φ ∂2) (∂1φ/∂2φ) = 0 , ∀x ∈ ω .
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This differential equation impies that the quotient ∂1φ/∂2φ is locally con-
stant on each level curve of φ. In fact, it is constant on the whole curve
because by hypothesis the curve is connected. Since moreover the appli-
cation x2 7−→ φ(x1, x2) is a local C∞ diffeomorphism, the property (2.19)
must be achieved for some f ∈ C∞

b (I; R).

Since φ is now subjected to the restriction (2.19), the relation (2.23) can be
simplified according to

(2.26) (−∂2φ ∂1 + ∂1φ ∂2)
(

H̄2 + f(φ) H̄1
)

= 0 .

The same argument as above gives (2.20).

◦ Conversely, choose any couple (H̄, φ) satisfying (2.19) and (2.20). Select
any profile s∗. Define H as in (2.22). It implies that I−1 ≡ 0 so that

∃C > 0 ; |I1
hε(x)| ≤ C , |I2

hε(x)| ≤ C , ∀ (ε, x) ∈ ]0, 1] × ω .

In particular, we find (2.17) for some τ ∈ ]0, 1]. 2

Remark 2.2.1 - existence of compatible couples. Take any f ∈ C∞
b (R; R)

with f ′ ≤ 0 and any g ∈ C∞
b (R; R). Select any function φ0 with

φ0 ∈ C∞(R) , φ′0 ∈ C∞
b (R) , φ′0(x2) ≥ 2 c > 0 , ∀x2 ∈ R .

Solve the conservation law (2.19) where x1 is interpreted as a time variable
and the Cauchy data is φ(0, x2) = φ0(x2). It furnishes a solution of (2.19)
which is defined on a domain of the form

ω̆ = {x = t(x1, x2) ∈ R
2 ; |x1| < η } , η > 0 .

If necessary, restrict η to be sure that (2.13) is verified. Take any s∗ and
any H̄1. Extract H̄2 through (2.20). Then, piece together these ingredients
to obtain a compatible couple (H,φ) which is defined on ω̆.

When f ′ is not constant, the construction of a compatible couple (H,φ)
which is globally defined on R

2 is not possible. This is due to (2.19). When
f ′′ ≡ 0, the characteristics are straight lines which cross. ⋄

Introduce the family of lines

E(z) :=
{

λ t
(

−1, f(z)
)

; λ ∈ R
}

⊂ R
2 , z ∈ I .

The proof of Lemma 2.4 is based on a decomposition of the profile H in its
oscillating part H∗ and its mean value H̄. Another point of view consists
in looking at the vector valued function H in the basis (t∇xφ,∇φ⊥). This
changes the presentation of H.
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Lemma 2.5. Let φ ∈ C∞
b (ω;I) satisfying (2.19). The profile H is subjected

to (2.18) and (2.20) for some function g ∈ C∞
b (I; R) if and only if there is

a scalar function r ∈ C∞
b (ω×T; R) (called the underlying scalar profile) and

there are two smooth vector fields

H⊳ ∈ C∞
b (I; R2) , H⊲ ∈ C∞

b (I × R; R2)

which are polarized according to

(2.27) H⊳(z) ⊂ E(z)⊥ , H⊲(z, y) ⊂ E(z) , ∀ (z, y) ∈ I × R

and which are such that

(2.28) H(x, θ) = H⊳

(

φ(x)
)

+ H⊲

(

φ(x), r(x, θ)
)

, ∀ (x, θ) ∈ ω × T .

Proof of Lemma 2.5. Decompose H according to H = Hc
⊳ +Hc

⊲ with

Hc
⊳(x, θ) = |∇xφ(x)|−2

(

∇xφ(x) ·H(x, θ)
)

∇xφ(x) ,

Hc
⊲(x, θ) = |∇xφ(x)|−2

(

∇xφ(x)⊥ ·H(x, θ)
)

∇xφ(x)⊥ .

◦ Suppose (2.18) and (2.20). Then

Hc
⊳(x, θ) = H⊳

(

φ(x)
)

, H⊳(z) :=
[

1 + f(z)2
]−1

g(z) t
(

f(z), 1
)

,

Hc
⊲(x, θ) = H⊲

(

φ(x), r(x, θ)
)

, H⊲(z, y) := y t
(

−1, f(z)
)

.

This can be achieved with the choice

r(x, θ) =
[

1 + f(φ)2
]−1 t

(

−1, f(φ)
)

·H(x, θ) .

With these definitions, we recover (2.27) and (2.28).

◦ Conversely, suppose (2.27) and (2.28). Then

∇xφ(x) ·H∗(x, θ) = ∇xφ(x) ·
[

H⊲

(

φ(x), r(x, θ)
)]∗

= 0

and we obtain (2.20) with g(z) = t
(

f(z), 1
)

·H⊳(z). 2

2.3 Well prepared families for the Euler equation.

Our aim in this subsection is to identify the constraints to impose on φ and
H in order to have

(2.29) hε ∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .

We work with f0 ≡ 0. The other cases ι = 1 and especially ι = −1 are
interesting but they will not be considered here.
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Definition 2.2. We say that the family {hε}ε, where hε is defined as in
(2.16) and is made of ingredients satisfying 2.a), · · · , 2.d), is well prepared
on ω for the incompressible Euler equation (1.1) if

I1
hε(x) = divx h

ε(x) = 0 , ∀ (x, ε) ∈ ω×]0, 1] ,(2.30)

I2
hε(x) = det

(

Dxh
ε(x)

)

= 0 , ∀ (x, ε) ∈ ω×]0, 1] .(2.31)

In other words, a well prepared family {hε}ε for (1.1) is well prepared for
(1.2) and is made of functions hε which are contained in Vτ

0 (ω).

Suppose that {hε}ε is well prepared on ω for (1.1). According to Lemma 2.4,
we have (2.16) with a phase φ and a principal profile H adjusted according
to (2.18), (2.19) and (2.20). It is interesting to identify the other constraints
satisfied by such φ and H. In fact, these supplementary conditions concern
only the choice of g and of the function s∗ defined in (2.22).

Lemma 2.6. Select any functions φ ∈ C∞
b (ω; R) and f ∈ C∞

b (I; R) satis-
fying (2.19). Select any functions K ∈ C∞

b (I × T; R) and f0 ∈ C∞
b (I; R).

There exist some open set ω̆ ⊂ ω and a family {h̆ε}ε which is given by an
asymptotic expansion like (2.16) with J ≥ 0, which is well prepared on ω̆ for
(1.1) and which is associated with the phase φ and the profile

(2.32) H(x, θ) = K
(

φ(x), θ + φ0(x, θ)
)

(

1
− f ◦ φ(x)

)

+

(

0
g ◦ φ(x)

)

where

(2.33) g(z) := K(0, 0) f(0) +

∫ z

0
K̄(y) f ′(y) dy , z ∈ I

and where φ0 is subjected to the scalar conservation law

(2.34)
∂1φ0 − f(φ) ∂2φ0 +

(

−f ′(φ) φ0 + f0(φ)
)

∂2φ ∂θφ0

+
(

−f ′(φ) φ0 + f0(φ)
)

∂2φ = 0 .

Proof of Lemma 2.6. The restriction (2.31) means that we can find

h̃ε = t(h̃ε1, h̃ε2) ∈ C∞
b (I; R2) , ϕε ∈ C∞(ω;I) , ε ∈ ]0, 1]

such that

(2.35) h̆ε(x) = t
(

h̆ε1(x), h̆ε2(x)
)

= h̃ε
(

ϕε(x)
)

, ∀ (x, ε) ∈ ω×]0, 1] .

Choose any sequence

Kj ∈ C∞(I × T; R) , j ∈ {0, · · · , J − 1} .
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Define

h̃ε1(z) = Kε
(

z, z
ε

)

:= K
(

z, z
ε

)

+ε
∑J−1

j=0 εj Kj

(

z, z
ε

)

, (z, ε) ∈ I× ]0, 1] ,

h̃ε2(z) =
∫ z
0

(

−f(y) + ε f ε(y)
)

(h̃ε1)′(y) dy , (z, ε) ∈ I×]0, 1] ,

where

f ε(z) =
∑J−1

j=0 εj fj(z) , fj ∈ C∞
b (R; R) , j ∈ {0, · · · , J − 1} .

Two integrations by parts lead to

h̃ε2(z) =
(

−f(z) + ε f ε(z)
)

h̃ε1(z) −
(

−f(0) + ε f ε(0)
)

h̃ε1(0)

−
∫ z
0

(

−f ′(y) + ε (f ε)′(y)
)

K̄ε(y) dy

− ε
(

−f ′(z) + ε (f ε)′(z)
)

(∂−1
θ Kε∗)

(

z, z
ε

)

+ ε
(

−f ′(0) + ε (f ε)′(0)
)

(∂−1
θ Kε∗)(0, 0)

+ ε
∫ z
0

(

−f ′′(y) + ε (f ε)′′(y)
)

(∂−1
θ Kε∗)

(

y, y
ε

)

dy

+ ε
∫ z
0

(

−f ′(y) + ε (f ε)′(y)
)

(∂y∂
−1
θ Kε∗)

(

y, y
ε

)

dy .

The procedure can be repeated since for instance

(∂−1
θ Kε∗)

(

y, y
ε

)

= ε ∂y

[

(∂−1
θ ∂−1

θ Kε∗)
(

y, y
ε

) ]

− ε (∂y ∂
−1
θ ∂−1

θ Kε∗)
(

y, y
ε

)

.

It furnishes

h̃ε2(z) = H̃2
(

z, z
ε

)

+ ε
∑J−1

j=0 εj H̃2
j

(

z, z
ε

)

+ O(εJ+1)

with in particular

(2.36) H̃2(z, θ) := − f(z) K(z, θ) + f(0) K(0, 0) +
∫ z
0 K̄(y) f ′(y) dy ,

(2.37) H̃2
0 (z, θ) := −f(z) K0(z, θ) + f0(z) K(z, θ) + f(0) K0(0, 0)

− f0(0) K(0, 0) +
∫ z
0 f ′(y) K̄0(y) dy −

∫ z
0 f ′0(y) K̄(y) dy

+ f ′(z) (∂−1
θ K∗)(z, θ) − f ′(0) (∂−1

θ K∗)(0, 0) .

The expression h̃ε is adjusted so that (2.30) becomes the consequence of

(2.38) ∂1ϕ
ε +

(

−f(ϕε) + ε f ε(ϕε)
)

∂2ϕ
ε = 0 .

Seek solutions ϕε of (2.38) in the form

(2.39) ϕε(x) = φ(x) + ε φε
(

x, φ(x)/ε
)

, φε ∈ C∞
b (ω̆ × T; R)

where φ(x) is subjected to (2.19) and φε(x, θ) can be expanded according to

φε(x, θ) =
∑J+1

j=0 εj φj(x, θ) + εJ+2 rφε(x, θ) .
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The expression φε must satisfy

(2.40) ∂1φ
ε + a(ε, t, x, φε) ∂2φ

ε + b(ε, t, x, φε) ∂θφ
ε + b(ε, t, x, φε) = 0

with

a(ε, t, x, z) := − f(φ+ ε z) + ε f ε(φ+ ε z) ,

b(ε, t, x, z) :=
[

− z
∫ 1
0 f ′(φ+ ε s z) ds + f ε(φ+ ε z)

]

∂2φ .

Look at (2.40) as an evolution equation in the variable x1. Remark that
J := ω(0) ⊂ R is an open interval containing 0. Choose functions

φ0j ∈ C∞
b (J ×T; R) , rφε

0 ∈ C∞
b (J ×T; R) , j ∈ {0, · · · , J +1}

where the family {rφε
0}ε is such that

sup
{

‖ rφε
0 ‖L∞(J×T) + εJ−2 ‖ Dx2,θ rφ

ε
0 ‖L∞(J×T) ; ε ∈ ]0, 1]

}

< ∞ .

Complete (2.40) with the initial data

(2.41) φε(0, x2, θ) = φε
0(x2, θ) , φε

0 =
∑J+1

j=0 εj φ0j + εJ+2 rφε
0 .

Under these conditions, it is possible to find some open set ω̆ ⊂ ω ⊂ R
2

with ω̆(0) = J and, for all ε ∈ ]0, 1], a solution φε of (2.40)-(2.41) on ω̆. The
main term φ0 is subjected to (2.34) and the remainder rφε is controlled by

sup
{

‖ rφε ‖L∞(ω̆×T) + εJ−2 ‖ Dx,θ rφ
ε ‖L∞(ω̆×T) ; ε ∈ ]0, 1]

}

< ∞ .

By way of formula (2.39), this furnishes a solution ϕε of (2.38). Plug ϕε in
h̃ε as in (2.35) to get with K−1 ≡ K and H̃2

−1 ≡ H̃2

h̆ε1(x) =
∑J−1

j=−1 ε
j+1 Kj

(

φ(x) + ε φε(x), φ(x)/ε + φε(x)
)

,

h̆ε2(x) =
∑J−1

j=−1 ε
j+1 H̃2

j

(

φ(x) + ε φε(x), φ(x)/ε + φε(x)
)

+ O
(

εJ+1
)

.

Use a Taylor formula to recover (2.16) with ingredients satisfying 2.a), · · · ,
2.d). The relation (2.36) leads to (2.32) with g as indicated. Obviously, the
family {h̆ε}ε is well prepared on ω̆ for (1.1). 2

We can also deduce from the preceding construction the following more
refined informations.

Lemma 2.7. Select any functions K0 ∈ C∞
b (I × T; R) and f1 ∈ C∞

b (I; R).
In the framework of Lemma 2.6 applied with J ≥ 1, the second profile H0

can be put in the form

H0(x, θ) = Ȟ0

(

x, φ(x), θ + φ0(x, θ)
)

, Ȟ0 ∈ C∞
b (ω̆ × R × T; R2) .
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Above, the function Ȟ0 = t(Ȟ1
0 , Ȟ

2
0 ) can be adjusted so that

Ȟ1
0 (x, z, θ) = φ0(x, θ) (∂zK)(z, θ) + φ1(x, θ) (∂θK)(z, θ) + K0(z, θ) ,

Ȟ2
0 (x, z, θ) = φ0(x, θ) (∂zH̃

2)(z, θ) + φ1(x, θ) (∂θH̃
2)(z, θ) + H̃2

0 (z, θ) ,

with H̃2 and H̃2
0 defined according to (2.36) and (2.37), and with φ1 subjected

to the scalar conservation law

(2.42)
∂1φ1 − f(φ) ∂2φ1 + ∂2φ

(

− f ′(φ) φ0 + f0(φ)
)

∂θφ1

− ∂2φ (1 + ∂θφ0) f
′(φ) φ1 + ∂2φ0

(

− f ′(φ) φ0 + f0(φ)
)

+ ∂2φ (1 + ∂θφ0)
(

− 1
2 f

′′(φ) φ 2
0 + f ′0(φ) φ0 + f1(φ)

)

= 0 .

Remark 2.3.2 - more general constructions. The preceding description of
families which are well prepared for (1.1) is not exhaustive. For instance,
for all j ∈ {0, · · · , J − 1}, the function fj(z) can be replaced by fj

(

z, z
ε

)

which yields more complicated formulae. ⋄

3 Simple waves.

A simple wave is a solution of (1.1) or (1.2) having the form (1.7) where the
profile H and the phase Φ do not depend on ε. The functions H and Φ are
chosen smooth on some domain of determinacy Ω ⊂ R × R

2, say

H ∈ C∞
b (Ω × T; R2) , Φ ∈ C∞(Ω; R) .

3.1 The case of Burger equations.

The aim of this subsection 3.1 is to construct all simple waves which are
associated with (1.2). Suppose that a family {ũε}ε∈ ]0,1] is made of C1 solu-
tions on Ω to the Burger equation (1.2) and is given by a formula like (1.7).
Then, the corresponding initial data is

H
(

0, x,Φ(0, x)/ε
)

= H
(

x, φ(x)/ε
)

with

H(x, θ) := H(0, x, θ) , φ(x) := Φ(0, x) .

To avoid inside Ω the crossing of characteristics, necessarily the couple (H,φ)
must be compatible. It means that the expressions H and φ are adjusted
as in Lemma 2.4, with ingredients f , g and s∗ yielding (2.19), (2.20) and
(2.22). Now, there is a natural way to associate with such (H,φ) a simple
wave. Define

s(x, θ) := − H̄1(x) / ∂2φ(x) + s∗(x, θ) .
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Introduce the eiconal equation

(3.1) ∂tΦ + g(Φ) ∂2Φ = 0

and the scalar conservation law

(3.2)
∂ts + g(Φ) ∂2s + s (−∂2Φ ∂1 + ∂1Φ ∂2) s

= ∂2Φ s
(

g′(Φ) + f ′(Φ) ∂2Φ s
)

− |∇xΦ|−2 t∇xΦ⊥ · f .

Complete these equations with the initial data

(3.3) Φ(0, x) = φ(x) , s(0, x, θ) = s(x, θ) .

Lemma 3.1. Select any compatible couple (H,φ). There is a domain of
determinacy Ω of the form

Ω(τ) :=
{

(t, x) ∈ [0, τ [×R
2 ; B(x, τ−1 t[⊂ ω

}

, τ ∈ ]0, 1]

such that the Cauchy problems (3.1)-(3.3) and (3.2)-(3.3) have solutions Φ
and s respectively on Ω(τ) and Ω(τ) × T. With these ingredients, build the
large amplitude wave

(3.4)
ũε(t, x) = H

(

t, x,Φ(t, x)/ε
)

:= s
(

t, x,Φ(t, x)/ε
)

(

−∂2Φ(t, x)
∂1Φ(t, x)

)

+

(

0
g
(

Φ(t, x)
)

)

.

At the time t = 0, one has

ũε(0, x) = h̃ε(x) := H
(

x, φ(x)/ε
)

.

Assume that the source term f is adjusted so that ∇xΦ · f ≡ 0. Then,
the expression ũε is a simple wave which is a solution on Ω(τ) of (1.2).
Moreover, the relations (2.19) and (2.20) are conserved during the evolution.

Proof of Lemma 3.1. Start by checking the initial data. Use (2.19), (2.20)
and (2.22) to obtain

H(0, x, θ) = s(0, x, θ) ∇xφ(x)⊥ + t
(

0 , g ◦ φ(x)
)

= H̄(x) + s∗(x, θ) ∇xφ(x)⊥ = H(x, θ) .

The definition (3.4) clearly implies that

H∗(t, x, θ) · ∇xΦ(t, x) = 0 , ∀ (t, x, θ) ∈ Ω(τ) × T .

Plug (3.4) at the level of (1.2). Say that the expressions with ε−1 and
ε0 in factor are separately equal to zero. Then, collect all the preceding
informations to get the system (1.8) which is overdetermined.
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For general choices of (H,φ), the system (1.8) has no solution. In fact, the
matter is to show that the Cauchy problem (1.8) is (locally in time) well-
posed once the couple (H,φ) is compatible with (1.2). Lemma 3.1 proposes
to solve (1.8) by using the formula

(3.5) H(t, x, θ) = s(t, x, θ)

(

−∂2Φ(t, x)
∂1Φ(t, x)

)

+

(

0
g
(

Φ(t, x)
)

)

.

This formulation (3.5) contains obviously the polarization condition on H∗.
It is adjusted so that the second equation of (1.8) gives rise to (3.1). From
(3.1), it is also possible to extract

[

∂t + g(Φ) ∂2 + ∂2Φ g′(Φ)
] (

∂1Φ − f(Φ) ∂2Φ
)

= 0 .

It follows that the relations (2.19) and (2.20) are propagated during the
evolution. In other words

(3.6) ∂1Φ(t, x) = f
(

Φ(t, x)
)

∂2Φ(t, x) , ∀ (t, x) ∈ Ω(τ) ,

(3.7) H̄2(t, x) + f
(

Φ(t, x)
)

H̄1(t, x) = g
(

Φ(t, x)
)

, ∀ (t, x) ∈ Ω(τ) .

Consider now the first equation in (1.8). Because of (3.2), it reduces to

(3.8)
∂t∇xΦ

⊥ + g(Φ) ∂2∇xΦ
⊥ + ∂2Φ g′(Φ) ∇xΦ⊥

+ s
[

(∇xΦ⊥ · ∇x)∇xΦ⊥ + f ′(Φ) (∂2Φ)2 ∇xΦ
⊥

]

= 0 .

On the one hand, the equation (3.6) guarantees that

(−∂2Φ ∂1 + ∂1Φ ∂2)∇xΦ⊥ = − f ′(Φ) (∂2Φ)2 ∇xΦ
⊥ .

On the other hand, the derivation of (3.1) furnishes

∂t∇xΦ⊥ + g(Φ) ∂2∇xΦ⊥ + ∂2Φ g′(Φ) ∇xΦ⊥ = 0 .

Thus, the identity (3.8) is verified. 2

There is another way to consider H. This point of view consists in appealing
to the framework of Lemma 2.5.

Lemma 3.2. The profile H can be written

H(t, x, θ) = H̃
(

Φ(t, x), r(t, x, θ)
)

, H̃(z, y) = H⊳(z) + H⊲(z, y)

where the phase Φ is given by

(3.9) ∂tΦ +
(

H⊳(Φ) · ∇x

)

Φ = 0 , Φ(0, x) = φ(x)

whereas the function r is obtained by solving the scalar conservation law

(3.10)

{

∂tr +
(

H̃(Φ, r) · ∇x

)

r +
(

1 + f(Φ)2
)−1 t

(

−1, f(Φ)
)

· f = 0 ,
r(0, x, θ) = r(x, θ) .
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Remark 3.1.1 - about r. To solve (1.8), it suffices first to consider the eiconal
equation (3.9) and then to look at the transport equation (3.10). For obvious
reasons, the function r is called the underlying scalar profile. ⋄

Proof of Lemma 3.2. In view of Lemma 2.5, we have

H(0, x, θ) = H(x, θ) = H̃
(

φ(x), r(x, θ)
)

.

The solution of (1.8), once it exists, is unique. Therefore, it suffices to show
that the expressions Φ and H which can be extracted from (3.9) and (3.10)
satisfy the system (1.8). The condition (3.9) implies that

[

∂t + H⊳(Φ) · ∇x + H ′
⊳(Φ) · ∇xΦ

] (

∂1Φ − f(Φ) ∂2Φ
)

= 0 .

One has (3.6) which means that ∇xΦ ⊥ E(Φ). Using (2.27), it gives rise to

H̄ · ∇xΦ = H⊳(Φ) · ∇xΦ , ∇xΦ ·H∗ = ∇xΦ ·H⊲(Φ, r)
∗ = 0 .

Thus, (3.9) is the same as the second equation of (1.8) whereas the third
equation of (1.8) is verified. It remains to compute

∂tH + (H · ∇x)H =
[

∂tr + (H · ∇x)r
]

∂yH⊲(Φ, r) + f

which is equal to zero because of (3.10). 2

Remark 3.1.2 - weak convergence. Look at the special choices

s(t, x, θ) = x1 cos (2Π θ) /
(

1 + t cos (2Π θ)
)

, Φ(t, x) = −x2 ,

which satisfy all the required conditions (with f ≡ 0 and g ≡ 0). The weak
limit ū of the corresponding family {ũε}ε is

ū(t, x) = x1

∫ 1
0

[

cos (2Π θ) /
(

1 + t cos (2Π θ)
)]

dθ t(1, 0) .

Observe that ū is not a solution of (1.2) since
(

∂tū1 + (ū · ∇x)ū1

)

(0, x) = −x1

∫ 1
0

(

cos (2Π θ)
)2

dθ 6≡ 0 .

It means that (1.2) is not closed for the weak topology of L2. Now, this is
a very natural expectation since (1.2) has no conservative form. ⋄

Remark 3.1.3 - special diffeomorphisms. Select again a couple (H,φ) which
is compatible with (1.2). The application

Ξε
t : x 7−→ x + t H

(

x, φ(x)/ε
)

is a local diffeomorphism whose inverse can be explicited. It is

(Ξε
t )

−1 : x 7−→ x − t H
(

t, x,Φ(t, x)/ε
)

where H and Φ are obtained by solving the nonlinear system (1.8). ⋄
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Remark 3.1.4 - caustics of the first type. There is no constraint (except the
regularity) on the choice of g. When the function g is non increasing the
solution Φ of (3.1) develops shocks which correspond to the formation of
caustics for the Burger equation. ⋄

3.2 The case of incompressible equations.

The study of the overdetermined system (1.10) is more delicate than the one
of (1.8). We restrict here our attention to the case p ≡ pι. In this particular
context, the construction of simple waves which are incompressible needs to
restrict the choice of the phase.

Lemma 3.3. Among the solutions to (1.2) given by Lemma 3.1, those who
satisfy also (2.8) are plane waves

(3.11) ǔε(t, x) =
[

k
(

z,
ψ(z)

ε

)

ψ′(z)
]

| z=a t+b x1+x2

(

−1
b

)

−
(

0
a

)

built with k ∈ C∞
b (R × T; R), ψ ∈ C∞(R; R) and (a, b) ∈ R

2.

Proof of Lemma 3.3. Select a general simple wave ũε as in (3.4), involving
ingredients Φ, s and H as in (3.1), (3.2) and (3.5). In fact, the matter is to
solve (1.8) where f ≡ fι and where the condition divx H ≡ 0 is added. This
amounts to the same thing as looking at the scalar conservation law (3.2)
completed with the constraints

(3.12) ∇xΦ
⊥ · ∇xs

∗ = 0 , ∇xΦ⊥ · ∇xs̄ + g′(Φ) ∂2Φ = 0 .

The first condition means that s∗(t, ·) is a function of Φ(t, ·). The second
condition, when imposed at time t = 0, must be preserved during the evo-
lution induced by (3.2). The initial data φ and s must be adjusted to this
end. However, it is delicate to identify at the level of (3.2) the constraints
to impose on φ and s. The difficulties are due to the interplay between the
oscillating part s∗ and the mean value s̄.

Below, we adopt another point of view. Our argument consists in appealing
to the criterion of the paragraph 2.1.3. The expression

h̃ε(x) = ũε(0, x) = H
(

0, x,Φ(0, x)/ε
)

= H
(

x, φ(x)/ε
)

must satisfy

(3.13) divx h̃
ε(x) = 0 , detDxh̃

ε(x) = ι , ∀x ∈ ω .
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The divergence free condition yields

divx h̃
ε(x) = ∇xs

(

x, φ(x)/ε
)

· ∇xφ(x)⊥ + g′
(

φ(x)
)

∂2φ(x) = 0 .

Pass to the weak limit (ε −→ 0) to find

∇xs(x, θ) · ∇xφ(x)⊥ + g′
(

φ(x)
)

∂2φ(x) = 0 , ∀ (x, θ) ∈ ω × T .

Separate the mean value

(3.14) − ∂2φ(x) ∂1s̄(x) + ∂1φ(x) ∂2s̄(x) + g′
(

φ(x)
)

∂2φ(x) = 0

from the oscillating part

(3.15) ∇xs
∗(x, θ) · ∇xφ(x)⊥ = 0 .

As expected, the conditions (3.14) and (3.15) are the same as (3.12). In
particular, there is k∗ ∈ C∞

b (I × T; R) such that

(3.16) s∗(x, θ) = k∗
(

φ(x), θ
)

, k∗ 6≡ 0 , ∀ (x, θ) ∈ ω × T .

For j = 1 or for j = 2, one has

∂j h̃
ε(x) = ∂j

[

∂2φ(x) s
(

x, φ(x)
ε

)]

t
(

−1, f(φ(x))
)

+ ∂jφ(x)
[

∂2φ(x) f ′
(

φ(x)
)

s
(

x, φ(x)
ε

)

+ g′
(

φ(x)
) ]

t(0, 1) .

Mark the coefficients

aε(x) := ∂2φ(x) f ′
(

φ(x)
)

s
(

x, φ(x)
ε

)

+ g′
(

φ(x)
)

= ā(x) + m̄a(x) k
∗
(

φ(x), φ(x)
ε

)

.

bε(x) := ∂1

[

∂2φ(x) s
(

x, φ(x)
ε

)]

− f
(

φ(x)
)

∂2

[

∂2φ(x) s
(

x, φ(x)
ε

)]

= 0 .

= ∂2φ(x) ∂1s̄(x) − ∂1φ(x) ∂2s̄(x) + f ′
(

φ(x)
) (

∂2φ(x)
)2
s
(

x, φ(x)
ε

)

= b̄(x) + m̄b(x) k
∗
(

φ(x), φ(x)
ε

)

.

Now, examine the second condition in (3.13) which is equivalent to

∂2φ(x) aε(x) bε(x) + ι = 0 , ∀ ε ∈ ]0, 1] .

Pass to the weak limit (ε −→ 0) to find

ā(x) b̄(x) + ι/∂2φ(x) +
(

m̄a(x) + m̄b(x)
)

k∗
(

φ(x), θ
)

+ m̄a(x) m̄b(x) k
∗
(

φ(x), θ
)2

= 0 .

Since this must be true for all (x, θ) ∈ ω × T, this is the same as

ā(x) b̄(x) = 0 , m̄a(x) + m̄b(x) = 0 , m̄a(x) m̄b(x) = 0 .
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In particular

m̄a(x) m̄b(x) =
(

∂2φ(x)
)3
f ′

(

φ(x)
)2

= 0 .

Necessarily f is a constant, say f = b ∈ R. In view of (2.19), one has

∃ψ ∈ C∞(R; R) ; ±ψ′ > 0 , φ(x) = ψ(b x1 + x2) .

Now, remember that the construction of Lemma 3.1 requires a condition on
f . This condition concerns here fι and, at time t = 0, it is

∇xΦ(0, x) · fι(0, x) = ι (b x1 + x2) ψ
′(b x1 + x2) = 0 , ∀x ∈ ω .

Since ψ′ 6≡ 0, this is possible only if ι = 0. Therefore, the hyperbolic and
elliptic cases (ι = −1 and ι = 1) are excluded. From now on, take ι = 0.
Use (3.14) to extract

ā(x) b̄(x) = ∂2φ(x) g′
(

φ(x)
)2

= 0 .

It means that g is a constant, say g = −a ∈ R. In view of (3.14), one has

∃ k̄ ∈ C∞(R; R) ; s̄(x) = k̄(b x1 + x2) .

Solve (3.1) to get

Φ(t, x) = ψ(a t+ b x1 + x2) .

It remains to look at (3.2) that is

∂ts − a ∂2s + s ψ′ (− ∂1 + b ∂2) s = 0 .

Observe that the choice

s(t, x, θ) = k̄(z) + k∗
(

ψ(z), θ
)

ψ′(z) t(−1, b) , z = a t+ b x1 + x2

is convenient. This is the expected result. 2

Remark 3.2.1 - intuitive derivation of Lemma 3.3. The restriction on Φ
contained in Lemma 3.3 can be guessed by looking at the construction un-
derlying Lemma 2.6. To find simple waves, small amplitude terms (of size
εj with j ≥ 1) must be suppressed. Now, to get

uε(0, x) = h̆ε(x) = t
(

h̆ε1(x), h̆ε2(x)
)

= H
(

x, φ(x)/ε
)

it is convenient to take

rφε ≡ 0 , φj ≡ 0 , Kj ≡ 0 , ∀ j ∈ {0, · · · , J + 1} .
Then, consider h̆ε2. We must have

∂θȞ
2
0 (x, z, θ) = ∂θH̃

2
0 (z, θ) = f0(z) ∂θK

∗(z, θ) + f ′(z) K∗(z, θ) = 0 .
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This is possible only if f ′ ≡ 0 on the set ω̆ = osupK∗ 6= ∅. It follows that
g ≡ −a for some a ∈ R and, therefore, that Φ(t, x) = ψ(a t + b x1 + x2) for
some function ψ ∈ C∞(R; R). ⋄

Remark 3.2.2 - weak convergence. The weak limit of the family {ǔε}ε is

ǔ(t, x) = (k̄ ψ′)(a t+ b x1 + x2)
t(−1, b) − t(0, a) .

Adjust the profile k so that

k̄(z)2 6≡
∫ 1
0 k(z, θ)2 dθ .

Then, the weak limit of the product {ǔε1 ǔε2}ε differs from the product
of the weak limits, that is ǔ1 ǔ2. A similar remark is made in [1] (see p.
495, example 12.9). Observe however that ǔ(t, x) is still a solution to (1.1).
Therefore, this argument does not bring any contradiction with the property
of concentration-cancellation. ⋄

4 The problem of stability.

Let (H,φ) be a compatible couple. Lemma 3.1 describes the evolution of
the large amplitude wave ũε which is issued from

ũε(0, x) = h̃ε(x) := H
(

x, φ(x)/ε
)

.

Now, consider the perturbed initial data hε(x) = Hε
(

x, φ(x)/ε
)

built with
a profile Hε defined according to

(4.1) Hε(x, θ) := H(x, θ) + ε
∑J−1

j=0 ε
j Hj(x, θ) + εJ+1 rhε(x) .

Above, the profiles Hj and the remainder rhε are adjusted as in 2.c) and
2.d) of paragraph 2.1.4. By virtue of subsection 2.2, the family {hε}ε is still
well prepared on ω for (1.2) so that the oscillating Cauchy problem

(4.2) ∂tu
ε + (uε · ∇x)uε + f = 0 , uε(0, x) = hε(x) , ε ∈ ]0, 1]

is well posed on Ω(τ) for some τ > 0. In other words, as explained in the
introduction, the existence of a solution uε to (4.2) on a domain Ω(τ) which
does not shrink to the empty set as ε goes to zero is guaranteed a priori.

On the other hand, the analysis of chapters 2 and 3 says nothing about the
asymptotic behavior on Ω(τ) of the family {uε}ε. To see where the difficulty
is, look at the linearized equation along ũε, that is

∂tu̇ + (ũε · ∇x)u̇ + (u̇ · ∇x)H + ε−1 (u̇ · ∇xΦ) ∂θH = 0 .
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Multiplying by tu̇ and integrating over R
2 yields the rough control

d
dt ‖ u̇(t) ‖L2(R2) ≤ C ε−1 ‖ u̇(t) ‖L2(R2) .

This inequality does not provide with energy estimates which are uniform
in ε ∈ ]0, 1]. It allows the presence of instabilities. Nothing guarantees that
uε remains closed to ũε and, in fact, what follows shows that this is not the
case. More precisely, the difference uε − ũε is of size O(ε) when t = 0 but it
can become of size O(1) for some t ∈ ]0, 1].

The possibility of such a mechanism of amplification is already hidden be-
hind the discussion of chapters 2 and 3. Indeed, there is a contrast between
the weak conditions made on (H,φ) in Lemma 2.6 and the strong restric-
tions imposed in Lemma 3.3. The first conditions (imposed on the main
term of the oscillation) are weaker because small perturbations of size O(ε)
are allowed. This remark seems alleviating but it announces in fact the
following more general principle.

When dealing with the propagation of large amplitude high frequency os-
cillating waves, the shape of the main contribution which is of size O(1)
is generically coupled with what happens at the level of smaller terms, for
instance of size O(ε).

The aim of this chapter 4 is to clarify this assertion. The links between large
and small terms is cleared up in the next subsection.

4.1 A blow up procedure.

From now on, fix H, Φ and f as in Lemma 3.1. Work with both slow and
fast variables (t, x, θ). Use the representation (1.11) with

Uε(t, x, θ) ∈ C1
b

(

Ω(τ) × T; R2
)

, ∀ ε ∈ ]0, 1] .

The equation (1.2) becomes (1.12). It is completed with

(4.3) Uε(0, x, θ) = Hε(x, θ) .

At first sight, nothing guarantees that the Cauchy problem (1.12)-(4.3) is
well posed on Ω(τ) × T. On the one hand, the analysis of chapter 2 brings
no information since it is not adapted to (1.12)-(4.3). On the other hand,
the usual methods do not apply at the level of (1.12).

Indeed, they rely on energy estimates related to the linearized equation along
H(t, x, θ), that is (1.13). Now, as before, this equation (1.13) leads to

d
dt ‖ U̇(t) ‖L2(R2×T) ≤ C ε−1 ‖ U̇(t) ‖L2(R2×T) .
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This differential equation is not sufficient to obtain some control which is
uniform with respect to the parameter ε ∈ ]0, 1]. In fact, the structure of
Hε(x, θ) is too rigid to absorb a perturbation of size O(ε). More flexibility
is needed. Observe that a translation on the fast variable

TV1 : C1
(

Ω(τ) × T
)

−→ C1
(

Ω(τ) × T
)

H(t, x, θ) 7−→ H
(

t, x, θ + V1
) , V1 ∈ R

alters the profile H without changing the energy 〈H2〉 of the oscillation.
From this point of view, the application TV1 plays the part of a gauge
transformation. Now, the idea is to incorporate V1 as a new state variable.
As explained in the introduction, this can be achieved through a dependant
change of variables.

Proposition 4.1. Select data f and Hε as in (2.1) and (4.1). There is
τ > 0 such that, for all ε ∈ ]0, 1], the Cauchy problem (1.12)-(4.3) has a
solution Uε on a fixed domain Ω(τ)×T (which does not shrink to the empty
set as ε goes to zero). Moreover, there are smooth functions

Xε ≡ X(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ω(τ) × T × R3; R3
)

,

M ε ≡ M(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ω(τ) × T × R
3;M3(R)

)

,

Γε ≡ Γ(ε, t, x, θ;V) ∈ C∞
(

[0, 1] × Ω(τ) × T × R
3; R2

)

,

such that the solution Uε of (1.12) can be represented as

(4.4) Uε(t, x, θ) = Γ
(

ε, t, x, θ;Vε(t, x, θ)
)

, Vε = t(Vε1,Vε2,Vε3)

where Vε is subjected to the non singular Burgers type equation

(4.5) ∂tV
ε +

(

X(ε, t, x, θ;Vε) · ∇x,θ

)

Vε = M(ε, t, x, θ;Vε)Vε .

We have Vε = V0 + O(ε) with V0 = t(V1
0, 0,V

3
0). The scalar components

V1
0 and V3

0 are determined by solving the non linear system

(4.6)

{

∂tV
1
0 + (X̃0 · ∇x,θ)V

1
0 = − |∇xΦ|2 V3

0 ,

∂tV
3
0 + (X̃0 · ∇x,θ)V

3
0 = 0 ,

associated with the initial data

V1
0(0, x, θ) = 0 , V3

0(0, x, θ) = |∇xφ(x)|−2 ∇xφ(x) ·H0(x, θ)

and involving

X̃0 · ∇x,θ = X̃0(t, x, θ;V1
0,V

3
0) · ∇x,θ

:= H(t, x, θ + V1
0) · ∇x + |∇xΦ|2 V3

0 ∂θ .
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Remark 4.1.1 - identification of the main term in the oscillation. The ap-
plication Γ can be explicited. Noting V = t(V1,V2,V3), it is

Γ(ε, t, x, θ;V) := H(t, x, θ + V1) + V2 ∇xΦ(t, x)⊥ + ε V3 ∇xΦ(t, x) .

It follows that

(4.7) Uε(t, x, θ) = H
(

t, x, θ + V1
0(t, x, θ)

)

+ O(ε) .

By construction, at time t = 0, the contribution V1
0 does not occur. Suppose

that ∇xφ · H0 6≡ 0. Then V3
0(0, ·) 6≡ 0 and V1

0 becomes non trivial when
t > 0, due to the coupling in system (4.6). We see here that an information
of size O(ε) at time t = 0 (namely ε V3

0(0, ·) ∇xφ) can influence the shape
H(t, x, θ + V1

0) of the large amplitude wave when t > 0. ⋄
Remark 4.1.2 - other formulation of (4.6). Suppose that f ≡ 0. Introduce
the vector valued function W0 = t(W1

0,W
2
0,W

3
0) defined according to

t(W1
0,W

2
0) := H(t, x, θ + V1

0) , W3
0 :=

(

1 + f(Φ)2
)

V3
0 .

The informations contained in (1.8) and (3.6) allow to extract from (4.6)
the constraint

(4.8) ∂tW0 + W1
0 ∂1W0 + W2

0 ∂2W0 + (∂2Φ)2 W3
0 ∂θW0 = 0

completed with

W0(0, x, θ) = t
(

H1(x, θ) , H2(x, θ) , ∂2φ(x)−2 ∇xφ ·H0(x, θ)
)

.

The equation (4.8) is a three dimensional Burgers type equation. Suppose
that ∂2Φ is a function of Φ, say ∂2Φ = h(Φ). This means that f ′ ≡ g′ ≡ 0
or that, for all t ∈ [0, τ [, the function Φ(t, ·) is constant on parallel lines (as
in subsection 3.2). In this special case, the equation (4.8) can be further
reduced. Just replace the component W3

0 by h(Φ)2 W3
0 to recover exactly

a three dimensional Burger equation on W0. ⋄

Proof of Proposition 4.1. First, recall that

∇xΦ(t, x) = t(∂1Φ, ∂2Φ)(t, x) , ∇xΦ(t, x)⊥ = t(−∂2Φ, ∂1Φ)(t, x) .

For each (ε, t, x, θ) ∈ ]0, 1] × Ω(τ) × T, the application

R
3 ∋ V 7−→ Γ(ε, t, x, θ;V) ∈ R

2

is surjective (but not injective). In particular, the initial data Hε can be
achieved as the image of some function V ε. In other words

Hε(x, θ) = Γ
(

ε, 0, x, θ;V ε(x, θ)
)

, V ε = t(V ε1, V ε2, V ε3) .
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There are several possible choices for V ε. Take V ε1 ≡ 0 and seek

(V ε2, V ε3) =
∑J

j=0 ε
j (V 2

j , V
3
j ) + εJ+1 (rε2, rε3) , (rε2, rε3) = O(1) .

The contribution due to V 2
0 can be absorbed insideH. Thus, impose V 2

0 ≡ 0.
Then, it suffices to set

V 2
j := |∇xΦ|−2 ∇xΦ⊥ ·Hj−1 , ∀ j ∈ {1, · · · , J} ,
V 3

j := |∇xΦ|−2 ∇xΦ ·Hj , ∀ j ∈ {0, · · · , J − 1} ,
and then to adjust (rε2, rε3) conveniently. Observe that V ε ∈ C1(ω×T; R3)
and that by construction the family {V ε}ε is subjected to the uniform control

(4.9) sup
{

‖ V ε ‖L∞(ω×T) + ‖ DxV
ε ‖L∞(ω×T) ; ε ∈ ]0, 1]

}

< ∞ .

At time t = 0, impose

(4.10) Vε(0, x, θ) = V ε(x, θ) , ∀ ε ∈ ]0, 1] .

Seek a solution to (1.12) which can be expressed like in (4.4). This manipu-
lation corresponds to a dependent change of state variable, the vector valued
function Vε(t, x, θ) being the new unknown. Introduce the vector field Xε

which is such that

Xε · ∇x,θ = X(ε, t, x, θ;V) · ∇x,θ = Xε
x · ∇x + Xε

θ ∂θ

= H(t, x, θ + V1) · ∇x + V2 ∇xΦ(t, x)⊥ · ∇x

+ ε V3 ∇xΦ(t, x) · ∇x + |∇xΦ(t, x)|2 V3 ∂θ .

For ε = 0, it remains

X0 · ∇x,θ ≡ X(0, t, x, θ;V) · ∇x,θ

= H(t, x, θ + V1) · ∇x + V2 ∇xΦ(t, x)⊥ · ∇x + |∇xΦ(t, x)|2 V3 ∂θ .

Use (1.8) to interpret (1.12) according to
(

∂t + X(ε, t, x, θ;Vε) · ∇x,θ

)

Γ
(

ε, t, x, θ;Vε(t, x, θ)
)

+ f = 0 .

Remember that f does not depend on θ. This fact and again (1.8) allow to
reduce the preceding equation to

ε0 { (∂t +Xε · ∇x,θ)V
ε1 + |∇xΦ|2 Vε3

}

∂θH

+ ε0 { (∂t +Xε · ∇x,θ)V
ε2) ∇xΦ⊥ + X

ε2 Vε2
}

+ ε1 { (∂t +Xε · ∇x,θ)V
ε3) ∇xΦ + X

ε3 Vε3
}

= 0 .

Here the notation X
ε2 is for the vector

X
ε2 := ∂t∇xΦ

⊥ + (Xε
x · ∇x)∇xΦ⊥ +

(

(∇xΦ⊥ · ∇x)H
)

(t, x, θ + Vε1) .
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On the other hand, the notation X
ε3 is for the vector

X
ε3 := ∂t∇xΦ + (Xε

x · ∇x)∇xΦ +
(

(∇xΦ · ∇x)H
)

(t, x, θ + Vε1) .

There are three unknowns Vε1, Vε2 and Vε3 for two equations so that the
preceding constraint on Vε is underdetermined. To remedy to this, just
impose the supplementary condition

Xε Vε1 + |∇xΦ|2 Vε3 = 0 .

Then, it remains (4.5) with

M ε = M(ε, t, x, θ;Vε) =
(

Mij(ε, t, x, θ;V
ε)

)

1≤i,j≤3

:= − 1

|∇xΦ|2





0 0 |∇xΦ|4
0 X

ε2 · ∇xΦ⊥ ε X
ε3 · ∇xΦ⊥

0 ε−1
X

ε2 · ∇xΦ X
ε3 · ∇xΦ



 .

We have to show that this matrix M ε does not involve coefficients which are
singular with respect to ε. In particular, we must pay attention in M32(ε, ·).
Recall that

H = H̄ + s∗ ∇xΦ(t, x)⊥ = H̄ + s∗ ∂2Φ
t
(

−1, f(Φ)
)

.

Remark that

∂t∇xΦ + (H̄ · ∇x)∇xΦ + (∇xΦ · ∇x) H̄ = (∂1H̄
2 − ∂2H̄

1) ∇xΦ
⊥ ,

∂t∇xΦ⊥ + (H̄ · ∇x)∇xΦ⊥ + (∇xΦ⊥ · ∇x) H̄ = S ∇xΦ ,

where S is the symmetric matrix

S =

(

2 ∂2H̄
1 ∂2H̄

2 − ∂1H̄
1

∂2H̄
2 − ∂1H̄

1 − 2 ∂1H̄
2

)

.

The relation (3.7) gives rise to

t
(

f(Φ), 1
)

· (∇xΦ⊥ · ∇x)H̄ = (∇xΦ⊥ · ∇x)
[

t
(

f(Φ), 1
)

· H̄
]

= (∇xΦ⊥ · ∇x) g(Φ) = 0 .

It follows that

t∇xΦ S ∇xΦ = 2
[

(∂1Φ)2 ∂2H̄
1 + ∂1Φ ∂2Φ (∂2H̄

2−∂1H̄
1)− (∂2Φ)2 ∂1H̄

2
]

= 2 ∇xΦ · (∇xΦ⊥ · ∇x)H̄ = 0 .

Observe that

(∇xΦ⊥ · ∇x)∇xΦ⊥ = − f ′(Φ) (∂2Φ)2 ∇xΦ
⊥ .
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The preceding informations can be collected in order to simplify the expres-
sions given for X

ε2 and X
ε3. We find

X
ε2 = ε Vε3 (∇xΦ · ∇x)∇xΦ⊥

+
{

− f ′(Φ) (∂2Φ)2
[

2 s∗(t, x, θ + Vε1) + Vε2
]

+ (∇xΦ⊥ · ∇x)s∗ + |∇xΦ|−2 t∇xΦ⊥ S ∇xΦ
}

∇xΦ⊥ ,

X
ε3 = ε Vε3 (∇xΦ · ∇x)∇xΦ + (∂1H̄

2 − ∂2H̄
1) ∇xΦ⊥

+ s∗(t, x, θ + Vε1)
[

(∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)∇xΦ⊥
]

+Vε2 (∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)s∗ ∇xΦ⊥ .

It implies that

ε−1
X

ε2 · ∇xΦ = Vε3 (∂2Φ)2 |∇xΦ|2 f ′(Φ) .

Therefore

M ε = (M ε
ij)1≤i,j≤3 = M0 + ε M1 + ε2 M2 , Mk = (Mk

ij)1≤i,j≤3

where the coefficients Mk
ij are smooth functions on Ω(τ)×T×R

3. It means
thatM is a smooth function of (t, x, θ,V) and also of ε ∈ [0, 1]. In particular,
it satisfies uniform estimates with respect to ε ∈ ]0, 1].

Consequently, the quasilinear symmetric system (4.5) is a nonlinear trans-
port equation involving coefficients and a source term which all are non
singular with respect to ε ∈ [0, 1]. Therefore, it can be solved in the context
of C1 regularity by the usual method of characteristics, in a way similar to
what has been done in paragraph 2.1.1.

Taking into account (4.9), there is a domain of determinacy Ω(τ) × T such
that, for all ε ∈ ]0, 1], the Cauchy problem (4.5)-(4.10) has a solution Vε

on Ω(τ) × T (where τ does not depend on ε). By way of formula (4.4), we
recover a solution Uε to (1.12)-(4.3) on Ω(τ) × T.

By construction, at time t = 0, the expression V ε is given by the Taylor
expansion

V ε =
∑J

j=0 ε
j Vj + εJ+1 rε , ∀ ε ∈ ]0, 1]

where

Vj(x, θ) = t(V 1
j , V

2
j , V

3
j )(x, θ) ∈ C1(ω × T; R3) , 0 ≤ j ≤ J .

Now, seek profiles

Vj(t, x, θ) = t(V1
j ,V

2
j ,V

3
j )(t, x, θ) ∈ C1

(

Ω(τ) × T; R3
)

, 0 ≤ j ≤ J
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adjusted so that

(4.11) Vε
a(t, x, θ) =

∑J
j=0 ε

j Vj(t, x, θ) , ε ∈ ]0, 1]

is an approximate solution of (4.5) in the following sense

sup
{

ε−J ‖ Vε − Vε
a ‖C0(Ω(τ)×T) ; ε ∈ ]0, 1]

}

< ∞ .

The vector valued functions Vj are determined as follows. Substitute the
sum (4.11) into (4.5) to get a formal expansion. The term with εj in factor
can be put in the form

(Mj) ∂tVj + (X0 · ∇x,θ)Vj + Fj(t, x, θ;V0, · · · ,Vj) = 0

where X0 = X(0, t, x, θ;V0). Complete (Mj) with the initial data

(4.12) Vj(0, x, θ) = Vj(x, θ) .

In particular, to identify the main contribution V0 in Vε, it suffices to solve

∂tV0 + (X0 · ∇x,θ)V0 = M0 V0 , V0(0, x, θ) = t(0, 0, V 3
0 ) .

Since M0
23 ≡ 0, the condition V2

0(0, ·) ≡ 0 is propagated which means that

V0(t, x, θ) = t
(

V1
0(t, x, θ), 0,V

3
0(t, x, θ)

)

, ∀ (t, x, θ) ∈ Ω(τ) × T .

and which implies that X0 ≡ X̃0. It remains to compute

M0
33

(

t, x, θ; t(V1, 0,V3)
)

= s∗(t, x, θ + Vε1)

× ∇xΦ ·
[

(∇xΦ⊥ · ∇x)∇xΦ + (∇xΦ · ∇x)∇xΦ⊥
]

.

On the one hand

∇xΦ · (∇xΦ⊥ · ∇x)∇xΦ = − (∂2Φ)2 |∇xΦ|2 f ′(Φ) .

On the other hand

∇xΦ · (∇xΦ · ∇x)∇xΦ⊥ = ∂2Φ ∇xΦ · t
(

0, f ′(Φ) |∇xΦ|2
)

.

Therefore

M0
33

(

t, x, θ; t(V1, 0,V3)
)

= 0

and the validity of (4.6) is established. Once V0 has been identified, the
systems (Mj) with 0 < j are made of linear transport equations. Therefore,
the Cauchy problems (Mj)-(4.12) with 0 < j can be solved inductively on
the whole domain of determinacy Ω(τ) × T where V0 is defined. 2

Remark 4.1.3 - the incidence of the procedure on θ. At the level of (4.4),
the status of θ is changed. There, it plays the part of a slow variable. ⋄
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Remark 4.1.4 - come back to the original state variables. The expression

uε(t, x) = Uε
(

t, x,Φ(t, x)/ε
)

, ε ∈ ]0, 1]

where Uε is given by Proposition 4.1 is a solution to (4.2). ⋄

4.2 Applications.

Subsection 4.1 emphasizes the system (4.5). The equation (4.5) being non
singular with respect to ε, it falls under the scope of classical theories in
nonlinear geometric optics. Applying usual tools, we can construct solutions
Vε to (4.5) having the form (1.14).

The most elementary case is when all the Vj do not depend on θ̃. Then,
the expressions Vj(t, x, θ) can be identified just by looking at the Taylor
expansions with respect to ε of the coefficients which appear in (4.5). This
is exactly what has been done to produce and to justify (4.7).

The paragraphs 4.2.1 and 4.2.2 below are devoted to this simple situation,
when uε is determined through (1.15) and (1.16). The difficulty there is
not the asymptotic analysis. It is due to the fact that we deal with (1.1).
Therefore, all the data φ, H and H0 are not authorized which means that
special profiles U0 are involved.

4.2.1 Various caustics phenomena for Euler equations

Lemmas 2.6 and 2.7 explain how to adjust the data Hε and φ and therefore
V ε and φ in order to have

ŭε(0, x) = Hε
(

x, φ(x)/ε
)

∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .

Lemma 2.3 says that the corresponding solution ŭε(t, x) to (1.2) where f ≡ 0
is also a solution to (1.1) with p constant. Then, Proposition 4.1 exhibits
for the subsequent family {Ŭε}ε the asymptotic behaviour (4.7).

Note however that Lemmas 2.6 and 2.7 require conditions on H and H0.
These conditions can influence H and V1

0. In other words, the formula
(4.7), when applied in the context (1.1), involves special expressions H and
V0. The discussion starts by examining and commenting the constraints
thus retrieved on H and V1

0.

In contrast with the situation of Lemma 3.3, the Lemma 2.6 demands no
particular restriction on the phase φ, except (2.19). Moreover, the function
Φ is obtained through (3.1) where g is given by (2.33). As in remark 3.1.4,
the phase Φ can develop shocks.
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This formation of shocks corresponds to caustics phenomena of the first
type for (1.1). This can surprise since Euler equations are often regarded as
being linearly degenerate. But, it is so. Note however that the analysis of
subsection 4.1 stops before the formation of these caustics.

The profileH must be subjected to (2.32). The expression H can be deduced
from (3.2) or (3.10). We find

(4.13) H ≡ H̆ := K(Φ, θ + Φ0)
t(1,−f ◦ Φ) + t(0, g ◦ Φ)

where the scalar function Φ0(t, x, θ) is determined by

(4.14)

{

∂tΦ0 + K(Φ, θ + Φ0) (∂1 − f ◦ Φ ∂2)Φ0 + g ◦ Φ ∂2Φ0 = 0 ,
Φ0(0, ·) = φ0 .

The expression Φ0 which appears here plays an ambiguous part. Of course,
it is linked with the underlying scalar profile r and it influences H∗ (since
it can depend on θ in a non trivial way). But also, it acts on K as a phase
shift. To insist on this second aspect, Φ0 is called the second phase.

Now, consider the following specific situation. Take

ω = R
2 , f ≡ g ≡ 0 , φ(x) = Φ(t, x) = x2 .

Work in the framework of Lemma 2.6. Impose φ0|x1=0 ≡ 0 but f0 6≡ 0 so

that φ0(x) = −x1 f0(x2). Select a profile K satisfying K(0, 0) = 0, K̄ ≡ 0
but K∗ 6≡ 0. It remains

H(x, θ) = K∗
(

x2, θ − x1 f0(x2)
)

t(1, 0) , 0 6≡ f0 ∈ C∞
b (R; R) .

Under these conditions, the Cauchy problem (4.14) reduces to

∂tΦ0 + K∗(x2, θ + Φ0) ∂1Φ0 = 0 , Φ0(0, ·) = −x1 f0(x2) .

The variables x2 and θ can be regarded as parameters. Since by construction

∃ (x1, x2, θ) ∈ R
2 × T , − f0(x2) ∂θK

∗
(

x2, θ − x1 f0(x2)
)

< 0

shocks do appear at the level of Φ0. In other words

∃ T̃ ∈ R+ ; limt−→ T̃− ‖ ∂1Φ0(t, ·) ‖L∞(R2×T) = +∞ .

By virtue of Lemma 2.6, the couple (H,φ) which is selected above is asso-
ciated with the main term of oscillations {h̆ε}ε which are well prepared on
R

2 for (1.1). More precisely

h̆ε(x) = H
(

x, φ(x)/ε
)

+ ε rhε(x) ∈ Vτ
0 (R2) , rhε 6≡ 0 , ∀ ε ∈ ]0, 1] .
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Note ŭε(t, x) the solution issued from h̆ε by solving (1.2) with f ≡ 0. Apply-
ing Lemma 2.3 (see also remark 2.1.6), the function ŭε is a global (in both
time and space variables) C1 solution to (1.1).

Applying Lemma 3.1, the couple (H,φ) gives rise also to a simple wave ũε

which is a local solution to (1.2) with f ≡ 0, defined on the domain [0, T̃ [×R
2,

with breakdown when t < T̃ goes to T̃ . We have seen in subsection 4.1 that
the asymptotic behaviour of the family {ŭε}ε is modeled by the one of {ũε}ε

(modulo some translation in the fast variable θ).

There is no contradiction between the two preceding assertions.

On the one hand, looking at Φ0 as a second phase, the presence of shocks can
be interpreted as caustics phenomena of the second type for Euler equations.
It does not preclude the solution ŭε to remain smooth. In fact, only from
this point of view, the situation can be compared to what is observed in the
framework of semilinear equations [16].

On the other hand, the simple wave ũε is a solution of (1.2) but it is not
a solution of (1.1). Indeed, the profile H(x, θ) does not depend only on x2,
as is required in Lemma 3.3. Thus, nothing guarantees that ũε remains a
smooth function.

4.2.2 On the concentration-cancellation property.

The preceding analysis produces special families {ŭε}ε made of C1 solutions
on Ω(τ) of incompressible equations

∂tŭ
ε + (ŭε · ∇x)ŭε = 0 , divx ŭε = 0 , ε ∈ ]0, 1] .

It allows also to identify the corresponding weak limits ŭ which are

ŭ(t, x) = 〈Ŭ〉(t, x) , Ŭ(t, x, θ) = H̆
(

t, x, θ + V1
0t, x, θ)

)

where H̆ is of the form (4.13) whereas V1
0 is given by (4.5). Since the

divergence free relation is obviously preserved when passing to the weak
limit, the expression ŭ is subjected to

(4.15) ∂tŭ + (ŭ · ∇x)ŭ + f̆ = 0 , divx ŭ = 0 .

It remains to determine the function f̆ . In general, as already noticed in
Remark 3.2.2, we find f̆ 6≡ 0. In fact, we have even the following more
precise information.

Lemma 4.1. The construction can be adjusted so that curl f̆ 6≡ 0.
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Proof of Lemma 4.1. Recall (4.8) which contains

∂tŬ + (Ŭ · ∇x)Ŭ + (∂2Φ)2 W3
0 ∂θŬ = 0 .

Extract the mean value to get

f̆ = 〈(Ŭ∗ · ∇x)Ŭ∗〉 + (∂2Φ)2 〈W3
0 ∂θŬ〉 .

At time t = 0, it remains

f̆| t=0 = 〈(H̆∗ · ∇x)H̆
∗〉 + 〈(∇xφ ·H0) ∂θH̆〉

where H̆ := H̆| t=0 is defined as in (2.32). In Lemma 2.6, select f0 ≡ 0 and
take φ0 ≡ 0 so that

H̆(x, θ) = K
(

φ(x), θ
)

t
(

1,−f ◦ φ(x)
)

+ t
(

0, g ◦ φ(x)
)

.

In particular, we have

H̆∗(x, θ) = K∗
(

φ(x), θ
)

t
(

1,−f ◦ φ(x)
)

.

With (2.19), it follows immediately that

(H̆∗ ·∇x)H̆
∗ = −K∗(φ, θ) ∂2φ

−1 (∇φ⊥ ·∇x)
[

K∗(φ, θ) t(1,−f ◦φ)
]

≡ 0 .

In Lemma 2.7, select f1 ≡ 0 and take φ1 ≡ 0. We have to deal with

H0 = H̄0(φ) + K0(φ, θ)
t(1,−f ◦ φ) + f ′ ◦ φ (∂−1

θ K∗)(φ, θ) t(0, 1) .

Now, compute

f̆| t=0 = f ′ ◦ φ 〈K∗(φ, θ)2〉 ∇φ⊥

which leads to

curl f̆(0, x) = ∆(l ◦ φ)(x) , l(z) :=
∫ z
0 f ′(y) K∗(y, θ)2〉 dy .

In general, this quantity is non trivial. For instance, choose

f(z) = z , φ(x) = x2/(1 + x1) , K(z, θ) =
√

2 cos (π θ) .

In this special case, we find

curl f̆(0, x) = 2 x2/(1 + x1)
3 6≡ 0 . 2

Proof of Theorem 1.1. The family {ŭε}ε satisfies the conditions i) and ii) of
Theorem 1.1. It converges weakly (as ε goes to zero) to u0 ≡ ŭ ∈ C1

(

Ω(τ)
)

.

The function ŭ is subjected to (4.15) which involves the source term f̆ .
If f̆ can be expressed as the gradient of some scalar function p, one has
curl f̆ ≡ 0. But, in view of Lemma 4.1, this condition is not always verified.
Therefore, it can happen that u0 is not a solution to (1.1). 2

43



Remark 4.2.1 - beyond Theorem 1.1. An improvement would be to replace
in Theorem 1.1 the bounded domain Ω by R

2 and the Sobolev space L2 by
Lp with any p ∈ [1,+∞]. This would express that the operator solution
associated with (1.1) is not closed for the weak Lp topology, replying to the
question raised by L. Bertozzi and A. Majda [1]-p. 479.

Our approach does not give yet access to such a result. Indeed, our key
argument relies on the use of the nonlinear functional set Vτ

0 (ω). At this
level, two difficulties arise. On the one hand, the families {h̆ε}ε which are
well prepared on R

2 for (1.1) satisfy (2.35) which is not compatible with
Lp(R2) except if p = +∞. On the other hand, the hypothesis f ′ 6≡ 0 is
crucial in the proof of Lemma 4.1. However, when f ′ 6≡ 0 or when (f ε)′ 6≡ 0,
there is no way to define on R

2 a C1 solution ϕε to (2.39).

Of course, one is tempted to localize the analysis. But, this forces into being
faced with the problem of stability in the setting of (1.1). Now, this is a
more delicate matter than what we did in subsection 4.1. ⋄

Remark 4.2.2 - interpretation related to the strong topology of Lp. Many
mechanisms of amplifications concerning (1.1) and involving the Lp−norm
have recently been exhibited [7], [11], [12], [17], see also Proposition 5.1 in [5].
The preceding method provides an alternative way to obtain such results.
However, in so far as this subject has much been studied, this aspect will
not be underlined here. ⋄

4.2.3 Interaction with small amplitude transversal oscillations.

From now on, consider (1.2) with f ≡ 0 or (1.1) with p constant. Fix two
integers J and m with J ≥ 2 and m ≥ 1. Choose any couple (H,φ) which
is compatible with (1.2). Note H and Φ the expressions obtained through
(3.1) and (3.2). Select m smooth phases

ψj ∈ C∞(ω; R) , ∇xψj ∈ C∞
b (ω; R2) , ∀ j ∈ {1, · · · ,m} .

Note ~ψ := (ψ1, · · · , ψm). Suppose that

(4.16) ∃  ∈ {1, · · · ,m} ; ∇xφ
⊥ · ∇xψ 6≡ 0 .

Take profiles Ĥj such that

Ĥj(x, θ, θ̃) ∈ C∞
b (ω × T × T

m; R2) , ∀ j ∈ {0, · · · , J − 1} .
Assume that Ĥ0 is a non trivial function of θ̃. More precisely, impose

(4.17) ∇xφ
⊥ · ∂θ̃

Ĥ0 6≡ 0 .
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On the contrary, prescribe

(4.18) ∇xφ · ∂θ̃j
Ĥ0 ≡ 0 , ∀ j ∈ {1, · · · ,m} .

With these ingredients, build the multidimensional oscillatory wave

(4.19)
ĥε(x) := H

(

x, φ(x)/ε
)

+
∑J−1

j=0 εj+1 Ĥj

(

x, φ(x)/ε, ~ψ(x)/ε
)

+ εJ+1 r̂hε(x) .

Require that the remainder r̂hε is controlled by

(4.20) sup
{

‖ r̂hε ‖L∞(ω) + εJ−1 ‖ Dx r̂h
ε ‖L∞(ω) ; ε ∈ ]0, 1]

}

< ∞ .

Easy computations using (4.18) indicate that

divx ĥ
ε(x) = O(1) , det

(

Dxĥ
ε(x)

)

= O(1) .

Complete (1.2) with the initial data

(4.21) ûε(0, x) = ĥε(x) .

According to Lemma 2.2, the oscillating Cauchy problem (1.2)-(4.21) yields
a family {ûε}ε made of C1 solutions ûε to (1.2). The functions ûε are defined
on some open domain of determinacy Ω ⊂ R × R

2 which does not depend
on ε. The structure of ûε encodes the interaction of the large amplitude
wave H

(

t, x,Φ(t, x)/ε
)

with small amplitude oscillations which can involve
phases ψj transversal to φ. Here is what happens.

Proposition 4.2. Assume (4.16), (4.17) and (4.18). The solution ûε to
the Cauchy problem (1.2)-(4.21) inherits on Ω the asymptotic behavior

(4.22)
ûε(t, x) = H

(

t, x,Φ(t, x)/ε
)

+ ε Ĥ0

(

t, x,Φ(t, x)/ε, ~Ψ
(

t, x,Φ(t, x)/ε
)

/ε
)

+ O(ε2)

where ∇θ̃Ĥ0 6≡ 0 and ∂θ
~Ψ 6≡ 0. Moreover, the family of initial data {ĥε}ε

can be adjusted so that

ĥε ∈ Vτ
0 (ω) , ∀ ε ∈ ]0, 1] .

It follows that the transformation of (4.19) into (4.22) actually occurs at the
level of incompressible Euler equations.

Proof of Proposition 4.2. Define the following functions of (x, θ, θ̃)

V̂ 2
j+1 := |∇xφ|−2 ∇xφ

⊥ · Ĥj , ∀ j ∈ {0, · · · , J − 1} ,
V̂ 3

j := |∇xφ|−2 ∇xφ · Ĥj , ∀ j ∈ {0, · · · , J − 1} .
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Consider also

rε2(x) := |∇xφ|−2 ∇xφ
⊥ · r̂hε , rε3(x) := |∇xφ|−2 ∇xφ · r̂hε .

Introduce

V̂ ε2(x, θ) :=
∑J−1

j=0 εj+1 V̂ 2
j+1

(

x, θ, ~ψ(x)/ε
)

+ εJ+1 r̂ε2(x) ,

V̂ ε3(x, θ) :=
∑J−1

j=0 εj V̂ 3
j

(

x, θ, ~ψ(x)/ε
)

+ εJ r̂ε3(x) .

At time t = 0, impose

(4.23) V̂ε(0, x, θ) = V̂ ε(x, θ) := t
(

0 , V̂ ε2(x, θ) , V̂ ε3(x, θ)
)

.

Observe that

ûε(0, x) = ĥε(x) = Û ε
(

x, φ(x)/ε
)

, Û ε(x, θ) := Γ
(

ε, 0, x, θ; V̂ ε(x, θ)
)

.

The definition of V̂ ε2 and the condition (4.18) imply that

(4.24) V̂ ε(x, θ) = V̂0(x, θ) +
∑J−1

j=1 εj V̂j

(

x, θ, ~ψ(x)/ε
)

+ εJ rε(x)

where by convention V̂0 := t(0, 0, V̂ 3
0 ) and

V̂j(x, θ, θ̃) := t
(

0, V̂ 2
j (x, θ, θ̃), V̂ 3

j (x, θ, θ̃)
)

, ∀ j ∈ {0, · · · , J − 1} .

Associate with the system (4.6) the initial data t(0, V̂ 3
0 ). This furnishes a

solution t(V̂1
0, V̂

3
0) to (4.6). Now, for all j ∈ {1, · · · ,m}, solve on Ω× T the

eiconal equation

(4.25)

{

∂tΨj +
(

H(t, x, θ + V̂1
0) · ∇x

)

Ψj + |∇xΦ|2 V̂3
0 ∂θΨj = 0 ,

Ψj(0, x, θ) = ψj(x) .

The description of the propagation of solutions V̂ε to (4.5) issued from
oscillating initial data V̂ ε as in (4.24) is the matter of what is called mul-
tidimensional weakly nonlinear geometric optics [14]-[15]. Assumptions are
needed to use the related results.

On the one hand, the real vector space spanned by the function Ψ0(t, x) = t
and the other functions Ψj(t, x) must be coherent. On the other hand,
some small divisor property must be satisfied. It turns out that all theses
prerequisties can be verified in the present context.

In fact, the corresponding hypothesis are checked in [8] where a very similar
situation is examined). Therefore, Theorem 6.4 of [14] can be applied. The
solution V̂ε is such that

V̂ε(t, x, θ) = V̂0(t, x, θ) + ε V̂1

(

t, x, θ, ~Ψ(t, x, θ)/ε
)

+ O(ε2)
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where

V̂1(0, x, θ, θ̃) = V̂1(x, θ, θ̃) , ~Ψ = (Ψ1, · · · ,Ψm) .

Recall that

ûε(t, x) = Ûε
(

t, x,Φ(t, x)/ε
)

, Ûε(t, x, θ) := Γ
(

ε, t, x, θ; V̂ε(t, x, θ)
)

.

In particular

Ûε(t, x, θ) = H(t, x, θ) + ε Ĥ0

(

t, x, θ, ~Ψ(t, x, θ)/ε
)

+ O(ε2)

with

Ĥ0(t, x, θ, θ̃) := V̂2
1(t, x, θ, θ̃) ∇xΦ(t, x)⊥ + V̂3

0(t, x, θ) ∇xΦ(t, x) .

In view of (4.17), we have ∂θ̃
V2

1(0, ·) 6≡ 0. Exploit (4.16) to obtain

∂t (∂θΨj)(0, ·) = − (∂2φ)−1 ∂θs
∗ ∇xφ

⊥ · ∇xψj 6≡ 0 .

It follows that ∇θ̃Ĥ0 6≡ 0 and ∂θ
~Ψ 6≡ 0 as expected. The first part of

Proposition 4.2 is shown.

Examples of families {h̆ε}ε which are well prepared on ω for incompressible
Euler equations are given in Lemma 2.6. Follow the same procedure as in
the proof of Lemma 2.6 except at the level of (2.39). There, seek solutions
ϕε to (2.38) having the form

ϕε(x) = φ(x) + ε φε
(

x, φ(x)/ε, ~ψ(x)/ε
)

where φε can be expanded according to

φε(x, θ, θ̃) =
∑J+1

j=0 εj φj(x, θ, θ̃) + εJ+2 rφε(x, θ, θ̃) .

Impose ∇θ̃φ0 ≡ 0 and ∂θ̃
φ1 6≡ 0 so that (Lemma 2.7)

∂θ̃
H0(x, θ, θ̃) = − ∂2φ

−1 ∂θ̃
φ1(x, θ, θ̃) ∂θK ∇xφ

⊥

Obviously, the two restrictions (4.17) and (4.18) are verified. This observa-
tion completes the proof. 2

Remark 4.2.3 - transfer of energy. Examine how the square F(ûε)2 of the
Fourier transform of ûε is distributed. At time t = 0, it is divided amongst
the two characteristic wave numbers k ≃ 1 and k ≃ ε−1. In view of (4.22),
this situation does not persist. At a time t > 0, the concentration is around
the three wave numbers k ≃ 1, k ≃ ε−1 and k ≃ ε−2. This spontaneous
apparition of a new frequency expresses turbulent features. ⋄
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Remark 4.2.4 - improvement of Proposition 4.2. In fact, the preceding analy-
sis allows to take into account, already at time t = 0, oscillating phases
ψj

(

x, φ(x)/ε
)

. The presentation has been here intentionally simplified. It is
to underline the creation phenomena of a new frequency (by interaction of
waves having the same frequencies). ⋄

Remark 4.2.5 - this is just a first step. Of course, the situation studied here
is particular since the data H and φ have been adjusted in a very special
way. The propagation of a general large amplitude wave solution to (1.1)
can reveal many other complex phenomena. For sure, the picture must be
completed with the cascade of phases observed in [5], and no only. ⋄

Remark 4.2.6 - about the choice of φ0. The equation (2.38) can be solved
on a domain which does not depend on ε even if ∇θ̃φ0 6≡ 0. This indicates
that the method developed here can be pushed forward to incorporate the
interaction of large amplitude multiphase oscillations. We are satisfied here
to touch on this delicate subject through the present remark. ⋄
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28, no. 1, 51–113 (1995).

[16] Joly, J.-L. ; Métivier, G. ; Rauch, J. Nonlinear oscillations beyond
caustics, Comm. Pure Appl. Math., 49, no. 5, 443–527 (1996).

[17] Lebeau, G. Non linear optic and supercritical wave equation, Bull. Soc.
Roy. Sci. Liège 70 (2001), no. 4-6, 267–306 (2002).

[18] Majda, Andrew J. Compressible fluid flow and systems of conservation
laws in several space variables, Applied Mathematical Sciences, vol 53,
Springer-Verlag, New York (1984).

[19] Poupaud, F. Global smooth solutions of some quasi-linear hyperbolic
systems with large data. Ann. Fac. Sci. Toulouse Math. (6) 8, no. 4,
649–659 (1999).

49



[20] Schochet, S. The weak vorticity formulation of the 2-D Euler equations
and concentration-cancellation, Comm. Partial Differential Equations 20,
1077-1104 (1995).

[21] Yudovich, V.I. Non-stationary flow of an incompressible liquid, Zh. Vy-
chisl. Mat. Fiz. 3, 1032-1066 (1963).

50


