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On geometrical grounds, the cosmological constant problem turns out to be
an artifact due to the unfounded link of this fundamental constant to vacuum
energy density of quantum fluctuations.
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1. Introduction

The cosmological constant problem (CCP) is an enigma of modern cos-

mology among the particles physics and cosmology communities. The most

comprehensive contribution to this problem can be found in.29 It is a matter

of fact that its origin is intimately related to the status of the cosmological

constant Λ. It was first assumed as a free parameter in the field equations

with the aim of accounting for a static Universe and then rejected because

a cosmological expansion was observed subsequently. Such an issue to the

cosmological problem has provided us with (authority and/or simplicity)

arguments in favor of Λ = 0 until acceleration of the cosmological expan-

sion could not be avoided for the interpretation of recent cosmological data.

However, the related estimate does not agree by hundred orders of magni-

tude with its expected value as obtained from quantum field theories5,20,40

by interpreting Λ/8πG as vacuum energy density of quantum fluctuations.

The aim of the present contribution is to understand this problem on geo-

metrical grounds.
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2. Status of the cosmological constant

The reason why the status of the cosmological constant Λ has long been

discussed6,11,30,38 has an historical origin, which still contributes to a so-

ciological debate at the present time. The key point is that either Λ is an

universal constant ,35 as it is clearly established in General Relativity (GR),

as similarly as Newton constant of gravitation G, or it is associated to a

particles/fields contribution to gravitation.

2.1. Historical status of Λ

For solving the cosmological problem, Einstein’s goal was to obtain the

gravitational field of a static universe, as it was supposed to be at that

epoch. Similarly to the necessary modification of Poisson’s equation for

describing a uniform static distribution of dust in Newtonian gravitya, Λ

was assumed in the gravitational field equations accordingly to GR. With

Mach’s principle in mind (origin of inertia), a consistent cosmological solu-

tion describing a spatially closed universe9 was derived, named as Einstein’s

model. A decade later, Friedmann’s model14 was used by G. Lemâıtre18 for

pointing out the cosmological expansion from Hubble’s law,16 when Ein-

stein’s model was shown to be unstable8b. This summarises very briefly

the state of the art as recorded in contemporary textbooks.43 Henceforth,

Friedmann’s model with Λ = 0 was preferred because of Einstein’s def-

inite renouncement from the point of view of “logical economy”,10 what

became the Standard world model .48 His confessionc to G. Gamov15 stands

probably for the historical reason why Λ was wrongly understood as a free

parameter in GR theory of gravitation by the majority of observational cos-

mologists until recently. Although, Λ 6= 0 has been unsuccessfully envisaged

in the 60’s for explaining observations.17,22,23,28,33 Nowadays, it is gener-

ally believed that Λ ∼ 2h2 10−56 cm−2 (where h = H◦/100 km s−1 Mpc−1)

is required for interpreting the CMB temperature fluctuations1,19,32,34 and

for accounting of Hubble diagram of SN.24–26,31 Such a necessity was evi-

dentd two decades earlier from statistical investigations based on quasars

aSuch an approach has been used by Neumann (1896) in Newtonian theory, see R.C.
Tolman.43
bi.e. in addition of suffering from a fine tuning problem on the values of Λ and the
specific density of energy of gravitational sources, any irregularity in their distribution
causes either a collapse or an expansion.
cloc. cit. : “the biggest blunder of my life”.
dIt was ignored because not representative of the general consensus at that epoch, what
is typical of the present days scholastic attitude.
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and galaxiess.2,2,3,12,13,41,44

2.2. Geometrical status of Λ

On geometrical grounds, Principle of General Relativity applied to gravity

provides us with a unique interpretation of Λ. The gravitational field and

its sources are characterized respectively by the metric tensor gµν on the

space-time manifold V4 and by a vanishing divergence stress-energy tensor

Tµν . The gravitational field equations must be invariant with respect to the

action of diffeomorphism group of V4,
35,36 and therefore they read

Tµν = −A0F
(0)
µν + A1F

(1)
µν + A2F

(2)
µν + . . . (1)

where F
(n)
µν stands for a covariant tensor of degree 2n, defined by means of

metric tensor gµν and its derivatives, and An for a coupling constant , its

value is estimated from observations. The n = 0, 1 order terms are uniquely

defined

F (0)
µν = gµν , F (1)

µν = Sµν = Rµν − 1

2
Rgµν (2)

where Rµν is the Ricci tensor and R the scalar curvature, whereas Fn≥2
µν

must be derived from additional principles.

Schwarzschild solution of Eq. (1) enables us to identify An=0,1 with New-

ton approximation, what provides us with modified Poisson equation35

divg̃ = −4πGρ + Λ (3)

where ~g stands for the gravitational acceleration field due to sources defined

by a specific density ρ, and the following identification of constants

G =
1

8πA1
, Λ =

A0

A1
(4)

which shows their common status of universal constant .

3. Modeling gravitational structures

The space-time geometry is constrained by the presence of gravitational

sources by means of tensor Tµν in Eq. (1), each right hand terms contributes

for describing the geometry within its effective scale. A dimensional analysis

of field equations provides us with an estimation of their corresponding

magnitudes, what is useful for modelling gravitational structures. Moreover,

Newtonian approximation of gravitational field at large scale provides us

with a simple way for interpreting Λ effect.
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3.1. Dimensional analysis

According to GR, the speed of the light c = 1 (i.e. time can be mea-

sured in unit of lengthe 1s = 2.999 792 458 1010 cm) and then G = 7.4243×
10−29 cmg−1. Let us choose units of mass and of lengthf , herein denoted

respectively by M and L. The correct dimensional analysis of GR sets

the covariant metric tensor to have the dimension [gµν ] = L2, and thus

[gµν ] = L−2, [Rµν ] = 1 and [R] = L−2. Since the specific mass density and

the pressure belong to T µ
ν , one has [Tµν ] = ML−1. Hence, according to

Eq. (1), the dimensions of An are the following

[A0] = ML−3, [A1] = ML−1, . . . [An] = ML2n−3 (5)

which shows their relative contributions for describing the gravitational field

with respect to scale. Namely, the larger their degree n the smaller their

effective scaleg. Equivalently, the estimation of A0 demands observational

data located at scale larger than the one for A1, etc. . . . This is the reason

why the Λ effect is not discernible at small scale but requires cosmological

distances.

3.2. Newtonian gravity up to cosmological scales

The observations show that gravitational structures within scales of order

of solar system can be described by limiting the expansion solely to Ein-

stein tensor Sµν , when cosmology requires also the first term. The transition

scale between A0 and A1 is of order of 1/
√

Λ ∼ 7h−1 Gyr. Although GR is

preferred for investigating the dynamics of cosmic structures, Newton ap-

proximation given in Eq. (3) provides us with an easier schema for realizing

the Λ effect. Hence, the acceleration field due to gravity around a point

mass m reads

~g =

(

−G
m

r3
+

Λ

3

)

~r (6)

Since Λ > 0, the gravity force is attractive at distance r < r◦ and repulsive

at r > r◦ with a critical distance

r◦ = 3

√

3mG/Λ (7)

where the gravity vanishes.

eThis is the reason why any statement on the variation of c is meaningless in GR.
fOnly two fundamental units can be chosen, the third one is derived.
gIn other words, the contribution of A0 dominates at scale larger than the one of A1,
etc. . .
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4. The cosmological constant problem

Let us assume :

(1) quantum fluctuations are sources of the gravitational field by means of

the following stress-energy tensorh

T vac
µν = ρvac gµν , ρvac = ~kmax (8)

in the field equationsEq.(1), where kmax stands for the ultraviolet mo-

mentum cutoff up to which the quantum field theory is valid,5 one has

ρEW
vac ∼ 2 10−4, ρQCD

vac ∼ 1.6 1015, ρPl
vac ∼ 2 1089 (9)

in units of g cm−3. The reason why such an estimation is not unique

comes from the perturbative aspect of the theory for describing the

quantum world, what can be understood as a weakness of this approach.

(2) the cosmological term interprets as the contribution of quantum fluc-

tuations

ρΛ =
Λ

8πG
(10)

The difficulty of above hypotheses is that ρvac differs from

ρΛ ∼ h2 10−29 g cm−3 (11)

as obtained from astronomical observations, by 25–118 orders of magni-

tude. Such an enigma is named the cosmological constant problem. Other

estimations of this quantum effect from the viewpoint of standard Casimir

energy calculation scheme49 provide us with discrepancies of ∼ 37 orders

of magnitude.7 A similar problem happens when

Λvac = 8πGρvac (12)

is interpreted as a cosmological constant. Indeed, if the quantum field theory

which provides us with an estimate of ρvac is correct then the distance from

which the gravity becomes repulsive in the sun neighborhood ranges from

rEW
◦ ∼ 2 10−2h−2/3 a.u. down to rPl

◦ ∼ 3 10−11h−2/3 Å depending on the

quantum field theory, see Eq. (7). Obviously, such results are not consistent

with the observations.

hThe usual picture which describes the vacuum as an isotropic and homogenous dis-

tribution of gravitational sources with energy density ρvac and pressure pvac = −ρvac

(although this is not an equation of state) is not clear and not necessary for the discus-
sion.
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Another version of the cosmological constant problem points out a fine

tuning problem. It consists on arguing on the smallness of Λ = Λvac + Λ◦,

interpreted as an effective cosmological constant, where Λ◦ stands for a

bare cosmological constant.

4.1. Understanding the recession of galaxies

The observations show that the dynamics of the cosmological expansion

after decoupling era agrees with Friedmann-Lemâıtre-Gamov solution. It

describes an uniform distribution of pressureless matter and CMB radia-

tion with a black-body spectra, the field equations are given by Eq. (1) with

n ≤ 1. The present values of related densities are ρm = 3h2 10−30 g cm−3

(dark matter included) and ρr ∼ 5h2 10−34 g cm−3. Their comparison to the

expected vacuum energy density ρvac shows that if quantum fluctuations

intervene in the dynamics of the cosmological expansion then their contribu-

tion prevails over the other sources (by 26–119 orders of magnitude today).

Such an hypothesis provides us with a vacuum dominate cosmological ex-

pansion since primordial epochs. Therefore, one might ask whether such

disagreements with observations can be removed by taking into account

higher order n ≥ 2 terms in Eq. (1). With this in mind, let us describe the

dynamics of structures at scales where gravitational repulsion (Λ > 0) is

observed. Since the values of universal constants G and Λ are provided by

observations, it is more convenient to use adapted units of time lg and of

mass mg defined as follows

lg = 1/
√

Λ ∼ h−1 1028 cm, mg = 1/(8πG
√

Λ) ∼ 4h−1 1054 g (13)

herein called gravitational units . They are defined such that the field equa-

tions read in a normalized form

Tµν = −gµν + Sµν + A2F
(2)
µν + . . . (14)

i.e. A0 = A1 = 1, where the stress-energy tensor Tµν accounts for the

distribution of gravitational sources. It is important to note that, with

gravitational units, Planck constant reads

~ ∼ 10−120 (15)

Indeed, such a tiny value as quantum action unit compared to ~ = 1 when

quantum units are used instead, shows clearly that Eq. (14) truncated at

order n ≤ 1 is not adapted for describing quantum physics.45,46 This is

the main reason why it is hopeless to give a quantum status to Λ.41 As
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approximation, because of dimensional analysis described above, the con-

tribution of higher order terms being the more significant as the density

is large, Eq. (14) can be splited up with respect to scale into two equa-

tions systems. The first one corresponds to terms of order n < 2 (the usual

Einstein equation with Λ) and the second one

T vac
µν = A2F

(2)
µν + . . . (16)

stands for the field equations describing the effect of quantum fluctuations

on the gravitational field at an appropriated scale (quantum), interpreted

as correction of the RW metric gµν . The identification of constants An (e.g.,

A2 = ~) and the derivation of tensors F
(n)
µν with n ≥ 2 requires to model

gravitational phenomena at quantum scale, see e.g.39,42 Unfortunately, the

state of the art does not allow yet to provide us with a definite answer for

defining the right hand term of Eq. (16), see e.g.27

5. Conclusion

Seeking for the contribution of quantum fluctuations into the cosmological

constant is a motivation that inherits from the previous attitude consist-

ing on rejecting the cosmological term. On the other hand, to rescale the

field equations for describing the cosmological expansion prevents us to as-

sume the vacuum acting as a cosmological constant. As a consequence, one

understands that such an interpretation turns to be the origin of the cos-

mological constant problem. In other words, such a problem is the price to

pay for identifying Λvac to the cosmological constant. Because the under-

standing of quantum gravity is still an ongoing challenge, the correct field

equations describing the contribution to gravity of quantum fluctuations

are not yet established. However, the dimensional analysis shows that the

related gravitational effects are expected at small (quantum) scales and

do not participate to the general expansion of the universe according to

observations.
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