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PERIODIC BILLIARD ORBITS

IN RIGHT TRIANGLES II

SERGE TROUBETZKOY

Abstract. I show a pointwise density result of periodic billiard
orbits in irrational right triangles.

1. Introduction

A billiard ball, i.e. a point mass, moves inside a polygon P ⊂ R
2 with

unit speed along a straight line until it reaches the boundary ∂P , then
instantaneously changes direction according to the mirror law: “the
angle of incidence is equal to the angle of reflection,” and continues
along the new line. If the trajectory hits a corner of the polygon, in
general it does not have a unique continuation and thus by definition
it stops there.

It is an open question if there exists a periodic billiard orbit in every
polygon. None the less for certain classes of polygons one can exhibit
the existence of many periodic orbits. In particular one can ask how
dense are the periodic orbits. Most of the known results are about
rational polygons, i.e. polygons for which the angles between the side
are rational multiples of π. The first result in this direction was that of
H. Masur who showed that the directions of periodic orbits are dense
in a rational polygon [Ma]. This was strengthened by Boshernitzan
et. al. who showed that for a rational polygon periodic orbits are dense
in the phase space [BoGaKrTr]. In this article they also showed a
pointwise density result in the configuration space: in a rational poly-
gon P there exists a dense Gδ set G ⊂ P such that for each point p ∈ G
the orbit of (p, θ) is periodic for a dense subset of directions θ ∈ S

1.
Vorobets strengthen this result to show that the set G is also of full
measure [Vo].

Recently I showed that there is an open set O of right triangles
such that for each irrational P ∈ O the set of periodic billiard orbits
are dense in the phase space [Tr]. The main result of this article is a
twofold strengthening of this result. First of all I extend the result to
all irrational right triangles and secondly I deduce a pointwise density
statement in the configuration space.

Theorem 1. Suppose that P is any irrational right triangle. Then
there exists an at most countable set B ⊂ P such that for every p ∈

1
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P\B the orbit of (p, θ) is periodic for a dense subset of directions θ ∈
S

1.

Billiards in right triangles are well known to be equivalent to the mo-
tion of two elastic point masses on a segment (see for example [MaTa]).
Theorem 1 tells us that except for an at most countable set B of ini-
tial positions 0 ≤ x1 ≤ x2 ≤ 1 if (x1, x2) 6∈ B then the orbit of
(x1, v1), (x2, v2) is periodic for a dense set of velocities (v1, v2).

Somewhat surprisingly Theorem 1 is stronger than the result of Voro-
bets for rational polygons. There is a special class of rational poly-
gons known as Veech polygons which are well studied, see for example
[MaTa] for the definition. Combing known results on Veech polygons
the arguments of this article I can prove

Proposition 2. In P is a Veech polygon the there exists an at most
countable set B ⊂ P such that for every p ∈ P\B the orbit of (p, θ) is
periodic for a dense subset of directions θ ∈ S

1.

Arithmetic or square tiled polygons form a subclass of Veech poly-
gons [Zo]. Let V (P ) be the set of corners of P . By definition there
are no periodic orbits passing through p ∈ V (P ).1 Thus Theorem 1
and Proposition 2 B is nonempty since V (P ) ⊂ B. A simple geometric
argument shows

Proposition 3. If P is arithmetic then for every p ∈ P\V (P ) the
orbit of (p, θ) is periodic for a dense subset of directions θ ∈ S

1.

2. Strategy

On orbit segment which begins and ends at a vertex of the polygon
is called a generalized diagonal In [Tr] I proved the following theorem.
Theorem A. Suppose P is an irrational right triangle. Fix a direc-
tion θ which is perpendicular to one of the legs of the triangle. Suppose
the perpendicular orbit of the the nonregularisable endpoint of the leg
is twice perpendicular, and the second perpendicular hit is at an in-
terior point. Then the the invariant surface Sθ is foliated by periodic
orbits except for an at most countable collection of orbits/generalized
diagonals Oi.

The strategy to prove Theorem 1 is as follows. First remark that
Theorem A holds for the direction perpendicular to the hypotenuse of
P .

Theorem A′. Suppose P is an irrational right triangle. Fix a
direction θ which is perpendicular to the hypotenuse of P . Suppose the

1There is a unique continuation of the billiard orbit through vertices with angle
π/n. Such a vertex is called regularisable. If we consider such orbits as defined by
this continuation then Proposition 3 holds for V (P ) defined as the nonregularisable
vertices.
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Figure 1. g hits perpendicularly at an interior point.

perpendicular orbit of the endpoints of the hypotenuse are twice per-
pendicular, and the second perpendicular hits are at an interior points.
Then the the invariant surface Sθ is foliated by periodic orbits except
for a countable collection of orbits/generalized diagonals Oi.

The proof of Theorem A′ is identical to the proof of Theorem A.
Next I verify that

Lemma 4. The assumption of Theorem A or Theorem A′ hold for any
irrational right triangle P .

Finally I prove that the foliation of the invariant surface by periodic
orbits implies the density statement of Theorem 1.

Lemma 5. Suppose P is an irrational polygon. Suppose that there
exists a direction θ ∈ S

1 such that the invariant surface Sθ is foliated
by periodic orbits except for a countable collection of orbits/generalized
diagonals Oi. Then there exists an at most countable set B ⊂ P such
that for every p ∈ P\B the orbit of (p, θ) is periodic for a dense subset
of directions θ ∈ S

1.

3. Proofs

The proofs follow the notation of [Tr].
Proof of Lemma 4. Consider the right triangle and its related rhom-
bus so that the longer leg is horizontal. Suppose that the angle α be-
tween the hypotenuse and this leg satisfies 2nα < π

2
and (2n+1)α > π

2

for some n ≥ 1. Then the vertical orbit g starting at the left endpoint
of this leg hits the leg again perpendicularly at an interior point (the
case n = 1, α ∈ (π

6
, π

4
) is illustrated in figure 1a). Thus triangles for

which α ∈ ∪n≥1(
π

4n+2
, π

4n
) satisfy the assumption of Theorem A.

Next consider the orbits perpendicular to the hypotenuse. If the
angle α satisfies 2nα > π

2
and (2n − 1)α < π

2
for some n ≥ 2 then
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the perpendicular orbits starting at the endpoints of the hypotenuse
hit the hypotenuse perpendicularly again at an interior point (the case
n = 2 is illustrated in Figure 1b). Thus right triangles for which
α ∈ ∪n≥2(

π
4n

, π
4n−2

) satisfy the assumption of Theorem A′. �

Proof of Lemma 5. The surface Sθ is obtained by the usual unfolding
procedure [MaTa]. Thus we think of it as being tiled by copies of P
which can be enumerated Pi. Fix i and consider Pi ∩ {Oj}. This set
is an at most countable collection of parallel line segments Ui,j . Let
Ui = ∪jUi,j. Consider the projection π : Sθ → P . This is a count-
able to one map. Enumerate the points in π−1(p), p1, p2, . . . . For each
p ∈ P the directions of the pk are dense in S

1. By Lemma 4 each of
these directions is the direction of a periodic orbit through p, unless
pk is in some Ui,j. If the periodic directions through p are not dense
then there exists infinitely many Ui such that p ∈ π(Ui). Suppose there
exists i, i′ such that p ∈ π(Ui)∩π(Ui′). Since the line segments in π(Ui)
and π(Ui′) are transverse this intersection is at most countable. One
completes the proof by taking a union over i, i′. �

Proof of Theorem 1. The theorem follows immediately by combin-
ing Lemmas 4 and 5. �

Proof of Proposition 2. In Veech polygons there are a dense set of
periodic directions, and each periodic direction is completely foliated
by periodic orbits except for a finite number of generalized diagonals.
Apply the argument of Lemma 5 to finish the proof. �

Proof of Proposition 3. Consider the square. Fix a rational direc-
tion. Every point in this direction is periodic except for generalized
diagonals. Suppose that the square unfolds to a torus. Consider the
tiling of the plane by squares representing the torus. The intersection
points of two generalized diagonals have rational coordinates. Thus we
conclude that any point in the square for which at least one coordinate
is irrational lies in at most one generalized diagonal and thus satisfies
the conclusions of the proposition.

Consider a rational point (p1/q, p2/q) with gcd(p1, p2, q) = 1. Tile
the plane by (1/q, 1/q) squares. Consider the orbits of slope a/b with
gcd(a, b) = 1 starting at the point (p1, p2). Such a orbit either corre-
spond to a periodic generalized diagonal or a periodic billiard orbit. It
is a generalized diagonal if and only if there exists an i ∈ Z such that
q|(p1 + ia) and q|(p2 + ib) (see Figure 2). Note that pi ∈ {0, 1, . . . , q}
and not being in the set V (P ) is equivalent to at least one of the pi

differing from 0 or q. If p1 6∈ {0, q} and q|a then q never divides p1 + ia
and thus applying the above condition yields that the orbit is periodic.
Thus the periodic directions through the given point include the set
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Figure 2. Solid lines are periodic directions while
dashed lines are generalized diagonals starting at the
point (1/3, 1/3).

{qa′/b : qa′ ∧ b = 1}. Similarly applying the condition in the case
p2 6∈ {0, q} and q|b yields that the periodic directions include the set
{a/qb′ : a ∧ qb′ = 1}. Both of these sets of directions are dense in S

1.
Now if P is arithmetic then the unfolded surface is a torus cover.

The periodic orbits constructed above for the square lift to periodic
orbits in P . �
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