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Abstract 

A simple vapour deposition technique was used to prepare WO3 one-dimensional 

nanostructures. WO3 is sublimated at a relatively low temperature (550°C) in air at 

atmospheric pressure. The sublimated species are condensed on mica substrate at 500°C. 

Single crystalline are grow in epitaxy on the mica surface with a growth axis along [010] 

directions and (001) plane parallel to the substrate. A growth process is proposed in which the 

formation of a one-dimensional tetragonal tungsten bronze as precursor is the determinant 

factor. 
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Introduction  

Tungsten oxide has been widely studied and used in applications such as catalysis [1] 

electrochromic devices [2, 3, 4] or gas sensors [5, 6, 7]. Tungsten oxide WO3 is a n type 

semiconductor with interesting  properties as sensing material and recently it has been shown 

that nanostructured thin films have superior sensitivity compared to those of bulk material [8, 

9]: Various methods including chemical vapour deposition [10], electrochemical deposition 

[11], laser vaporisation [12, 13] have been used to prepare tungsten oxide  thin films. In 

conventional WO3 thin films with nanoscale size grains, the electrical conduction is mainly 

controlled by the free carrier transport across the grain boundaries. So the synthesis of   

monocristalline tungsten oxide as nanowires or nanorods is of great interest. In the past years 

few papers have been devoted to the growth of such one dimensional nanostructure. Y.Z. Zhu Corresponding author: M. Gillet , UNIVERSITE D’AIX-MARSEILLE – L2MP-UMR CNRS 6137 
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[14] produced micrometer scale tree-like structure by heating a tungsten foil, partly covered 

by SiO2 in Ar atmosphere at 1600°C. Theses nanostructures were composed by monoclinic 

W18O49 nanoneedles and by WO3 nanoparticles. Nanorods of several oxides including WO3 

have been prepared by templating on acid-treated carbon nanotubes [15]. By heating WS2 in 

oxygen, fibers of W18O49 were produced with a pine-tree like structure [16]. Mixtures of WO2 

and WO3 with nanorods structure were obtained by koltyptin et al [17] via amorphous 

tungsten oxide nanoparticles. Y.B. Li et al [18] have synthesized WO3 nanobelts and 

nanorods via physical vapour deposition process where the nanostructures were deposited on 

silicium wafers maintained at 600°C. Recently Z. Liu et al [19 ] reported on the preparation of 

tungsten oxide nanowires through a vapour-solid growth process by heating a tungsten wire 

partially wrapped with boron oxide at 1200°C and Y. Shingaya et al. [20] prepared by 

oxidation at high temperature well oriented WOx nanorods on a (001) W surface. 

In this paper we report on the formation of tungsten oxide by a simple method using a vapour-

solid growth process. Tungsten oxide is sublimated from a predeposited WO3 layer and 

condensed on a mica substrate. A growth process is proposed where the formation of a 

tetragonal tungsten bronze acts as a precursor for the epitaxial growth of the nanorods. 

 

Experimental procedure 

Figure 1 shows the experimental set up that we have used to produce tungsten oxide 

nanorods. The tungsten oxide vapour source is a tungsten oxide thin layer predeposited on a 

SiO2 substrate heated at a temperature T1 by an electrical heater. The WO3 vapour condenses 

on a substrate located above the vapour source at a distance d of the source by means of a 

wedge made in silicon. The temperature T1 and the distance d determine the substrate 

temperature T2. The experiments were conducted in a chamber where the humidity was 
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controlled. In the our experiments T1 was fixed to 550°C, and the resulting value of the 

substrate temperature T2 was 450° ± 10°C. 

We have used (0001) mica, (0001) Al2O3 and SiO2 surfaces as substrates. Depositions were 

performed at atmospheric pressure in air with a degree of humidity comprise between 30 and 

40%. After cooling at room temperature the substrate surface above the source had a faint 

yellow colour. The deposits were examined on their substrates by Atomic Force Microscopy 

(AFM). The structure of nanorods was investigated by High Resolution Transmission 

Electron Microscopy (HRTEM) and Transmission Electron Diffraction (TED). For electron 

microscopy observations a carbon replica was deposited on the sample surfaces and stripped 

off in water. The transfer replica contained a number of nanorods well suitable for TEM and 

TED investigations. 

 

Results 

The AFM observations showed that tungsten oxide nanorods grown on a mica 

substrate. On Al2O3 and SiO2 substrates, only three-dimensional aggregates were observed. 

Experiments in air with various degrees of humidity have shown that WO3 nanorods can be 

obtained in air with humidity in a range of 10-40%. Figure 2a is a typical AFM image 

obtained of a mica substrate after 45 minutes deposition time. It shows nanorods grown along 

the substrate with well defined directions. One or two nanorods orientations are 

predominantly observed. The tungsten nanorods size depends on the deposition time but for a 

given deposition time the size is not uniform. However the length seems to be independent of 

the deposition time while the width and the thickness increase with as illustrated by the figure 

2b corresponding to a deposition time of 60 min. In our experiments the deposition time 

varied between 10 and 90 mn. The nanorod dimensions vary in ranges 1-15µm, 10-200nm 

and 1-50nm for the length, width and thickness, respectively. The observed nanostructures 
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often exhibit multiple rods with twinned parts. Figure 3a shows as example such a double rod 

with one part grown in twin position. As the deposition time increases multitwining occurs as 

shown on figure 3b. 

As mentioned in the experimental procedure, for electron microscopy investigations, 

the nanorods are extracted from their substrate by a transfer replica and observed without the 

mica substrates. The Energy Dispersive Xray Spectroscopy (EDX) shows that the nanorods 

contain potassium atoms (figure 4). Whatever their thickness the observed nanorods have 

approximatively the same amount of potassium as deduced from their EDX spectrum. We 

suppose that the nanorods grown on mica are initially composed of tungsten bronze (KxWO3) 

Figure 5 and 7 illustrate two types of ED patterns from nanorods with two different 

thicknesses. The nanorod of figure 5 is a typical ED pattern of a thin nanorod e ≅3nm with a 

rectangular basic cell  the interatomic distances as deduced from the ED are d1=0.627nm 

d2=0.382nm. This pattern can be interpreted as due to an hexagonal tungsten bronze (HTB) 

with lattice dimensions a=b=6.25 Ǻ and c= 3.83 Ǻ. From the ED we deduced that the HTB 

crystals grown on the mica surface with a (100) plane parallel to the substrate. This HTB 

structure is illustrated by the HRTEM image of figure 6 corresponding to the ED of the figure 

5. The enlarged part inserted in the figure 6 shows the rectangular unit mesh and indicates the 

atomic distance in a (100) plane parallel to the surface of the nanorod, the second kind of ED 

patterns observed on the nanorods is represented on the figure 7 which exhibits two kinds of 

diffraction spots: Spots with strong intensities correspond to lattice distances d200=0.367 nm Ǻ 

and d020= 0.378 nm which are very close of the theoretical distance in bulk WO3 (dth 
200= 

3.653 and dth020=3.77) and spots with low intensities located at half the distance between the 

bright spots. We interpret this electron diffraction pattern by the coincidence of two phases: a 

WO3 phase with a monoclinic structure (a= 7.29 Ǻ, b= 7.53Ǻ, c= 7.68Ǻ, β=90.91°) and a 

second phase with doubled parameters a and b. We deduce that the nanorod has a WO3 
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monoclinic structure with [001] axis perpendicular to the substrate and a growth direction 

parallel to the [010] WO3 direction. The figure 8 shows a HRTEM image corresponding to the 

ED of the figure 7. It exhibits a nearly square unit mesh characteristic of a (001) plane of the 

WO3 monoclinic structure. The dimensions of the unit mesh as measured on the HRTEM are 

indicated on the enlarged parts inserted in the figure 8. According to these results we consider 

that in the first stage of growth, hexagonal tungsten bronze nanostructures epitaxially grow on 

the mica substrate and further growth lead to WO3 nanorods with a monoclinic structure. 

     

Growth mechanism  

The tungsten oxide nanorods grow from deposition of vapour containing WO3 

generated at relatively low temperature, in air with a humidity degree which varies in a 20-

40% range. Nanorods growth only takes place on mica substrate and in well defined 

orientations on the substrate. We propose a growth process based on these experimental 

results. It is known that many whiskers and nanowires are grown by a vapour-liquid-solid 

mechanism [21] in general perpendicular to the substrate and have a droplet on their tip [22].  

In our experiments we did not observe droplet on the end of tungsten oxide nanorods, this 

indicates that the growth proceeds by a vapour-solid (VS) growth mechanism. 

Experimental results show that the WO3 nanorods are grown  from WO3 species sublimated in 

air containing water vapour, considerably lower than the sublimation temperature  of bulk 

WO3 (1470°C). We cannot exclude that the water vapour plays a role in the sublimation 

process, according to a reaction: 

  WO3 + H2O → WO2 (OH) 2  

On an other hand the nanorods do not grow on Al2O3 or SiO2 substrates but only on mica 

substrates containing potassium ions in addition to the chemical elements present in Al2O3 

and SiO2. One deduces from the observations that in this special case the tungsten oxide 
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growth is driven by the interaction between the species of the mica substrate and the deposit 

to form tungsten bronze KxWO3. Due to the role of the water vapour the following reaction: 

WO2 (OH)2 + x K     → KxWO3 + H2O seems the most probable. 

Similar processes involving WO2( OH)2 species have been proposed in the growth mechanism 

of K0.4WO3 whiskers via an hydrothermal process using WO3 as tungsten source, KOH as 

potassium source and  hydrazine hydrate as reducing agent [23]. 

In the potassium tungsten oxide bronze (KxWO3), the W atoms are octahedrally coordinated 

with oxygen atoms to form WO6 octaedrons. The WO6 octaedrons join each other by shearing 

oxygen corner atoms. Tungsten bronzes can adopt various types of structures depending on 

ionic radius of the incorporated metal atom and on the composition. Hexagonal tungsten 

bronzes (HTB) can be formed with K ions in the composition range 0.13<x<0.33. In the HTB 

the WO6 octaedrons form hexagonal tunnels where the potassium ions can be located. 

So we suppose that an epitaxial HTB grow on the surface of the mica substrate and acts as a 

precursor for the further WO3 nanorod growth. The resulting monoclinic WO3 structure result 

either of the growth of WO3 on the HTB or of the growth of an hexagonal WO3 followed by 

the transition of the hexagonal structure to a monoclinic structure. Hexagonal tungsten oxide 

is metastable phase and transforms irreversibly into the monoclinic structure WO3. This 

transformation has been studied in detail by M. Figlarz et al. [24]. From the AFM 

observations it seems that the WO3 growth proceeds layer by layer increasing the thickness 

and the width of the nanorods. During the growth twinning occurs along the [010] direction of 

the nanorod. The two twinned nanostructures are tilted relative to each other by about 2β-180° 

(monoclinic angle β = 90.91°). During the deposition the twinning can be repeated resulting 

in a multi twinned nanorod as shown on AFM images (figure 3b) or on TEM image (figure 

4b). Such twinning is a relative common feature in WO3 material. It has been observed by 
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LEED on monocristalline WO3 [ 24] and in WO3 grain in epitaxial WO3 thin film by ED [25 ] 

resulting in diffraction spot splitting.   

 

Conclusion 

Tungsten oxide nanorods have been epitaxially grown on mica using a simple vapour solid 

growth process. Experiments on different substrates (Mica, Al2O3, and SiO2) have shown that 

the presence of potassium atoms is determinant for the nanorods growth. We deduce a growth 

process involving the formation of a one dimensional tetragonal tungsten bronze epitaxially 

oriented on the mica. This tetragonal tungsten bronze is a precursor for the WO3 nanorod 

growth. Its formation on the mica substrate determines the nanorod morphology and 

orientations. 
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Captions: 
 
Figure 1: Experimental set-up of the WO3 deposition process. T1= substrate temperature, 

T2=Temperature of the WO3 source, d= distance between the source and the substrate. ·  

Figure 2: (a) AFM image of WO3 nanorods grown on mica. Deposition time: 45 mn. 

      (b) AFM image of WO3 nanorods grown on mica. Deposition time: 60 mn. 

Figure 3: (a) AFM image of twinned nanorods. In inset: thickness profile according to the 

cross section A 

      (b) AFM image of multi-twinned nanorods (Tridimensionnal view). 

Figure 4: EDX spectrum of a WO3 nanorod. The elements corresponding to the various peaks 

are indicated. 

Figure 5: Electron diffraction pattern of a thin nanorod ( e≅ 3nm). 

Figure 6: HRTEM image corresponding to the ED pattern of the figure 5. The unit mesh is 

indicated on the enlarged part (inset). 

Figure 7: Electron diffraction pattern of a WO3 nanorod ( thickness: 5nm).  

Figure 8: HRTEM image corresponding to the ED pattern of the figure 7. The unit mesh is 

indicated on the enlarged part (inset). 
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