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Abstract

A classical theorem of Stone and von Neumann says that the Schrödinger
representation is, up to unitary equivalences, the only irreducible represen-
tation of the Heisenberg group on the Hilbert space of square-integrable
functions on configuration space. Using the Wigner-Moyal transform we
construct an irreducible representation of the Heisenberg group on a cer-
tain Hilbert space of square-integrable functions defined on phase space.
This allows us to extend the usual Weyl calculus into a phase-space calculus
and leads us to a quantum mechanics in phase space, equivalent to standard
quantum mechanics. We also briefly discuss the extension of metaplectic op-
erators to phase space and the probabilistic interpretation of the solutions
of the phase space Schrödinger equation.
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I. Introduction and Motivations

One of the pillars of non-relativistic quantum mechanics is Schrödinger’s
equation

i~
∂ψ

∂t
= − ~2

2m
∇2
~rψ + V (~r, t)ψ (1)

where the right-hand side is obtained from the Hamiltonian function

H =
1

2m
~p2 + V (~r, t)

by replacing the momentum vector ~p by the operator −i~∇~r and letting
the position vector ~r stand as it is. But how did Schrödinger arrive at this
equation? He arrived at it using what the novelist Arthur Koestler called a
“sleepwalker” argument, elaborating on Hamilton’s optical–mechanical anal-
ogy, and taking several mathematically illegitimate steps (see Jammer15

or Moore18 for a thorough discussion of Schrödinger’s argument). In fact
Schrödinger’s equation can be rigorously justified for quadratic or linear
potentials if one uses the theory of the metaplectic group (see our discus-
sion in9 , Chapters 6 and 7), but it cannot be mathematically justified for
arbitrary Hamiltonian functions; it can only be made plausible by using for-
mal analogies: this is what is done in all texts on quantum mechanics, and
Dirac’s treatise,4 p. 108–111) is of course not an exception. The gist of
Schrödinger’s argument, recast in modern terms, is the following: a “matter
wave” consists –as all waves do– of an amplitude and a phase. Consider now
a particle with initial position vector ~r(0) = (x(0), y(0), z(0)). That particle
moves under the influence of some potential and its position vector becomes
~r(t) = (x(t), y(t), z(t)) at time t. The change of phase of the matter wave
associated with the particle is then postulated to be the integral

∆Φ =

∫

Γ
~p · d~r −Hdt (2)

calculated along the arc of trajectory Γ joining the initial point (x(0), y(0), z(0); 0)
to the final point (x(t), y(t), z(t), t) in space-time; ~p = (px, py, pz) is the mo-
mentum vector and H = H(~r, ~p, t) the Hamiltonian function. The choice (2)
for ∆Φ is dictated by the fact that it represents the variation in action when
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the particle moves from its initial position to its final position. Now, in most
cases of interest the initial and final position vectors uniquely determine the
initial and final momentum vectors if t is sufficiently small, so that ∆Φ can
be identified with Hamilton’s principal function W (~r0, ~r, t) (see7,9), and the
latter is a solution of Hamilton–Jacobi’s equation

∂W

∂t
+H(~r,∇~rW, t) = 0. (3)

Schrödinger knew that the properties of the “action form”

A = ~p · d~r −Hdt (4)

led to this equation, and this was all he needed to describe the time-evolution
of the phase. We now make an essential remark: the property that ∆Φ can
be identified with Hamilton’s principal function is intimately related to the
fact that the action form A is a relative integral invariant. This means that
if γ and γ′ are two closed curves in the (~r, ~p, t) space encircling the same
tube of Hamiltonian trajectories, then we have

∮

γ
~p · d~r −Hdt =

∮

γ′
~p · d~r −Hdt

(this is a consequence of Stoke’s theorem and generalizes to an arbitrary
number of dimensions; see for instance1,9). We now make the following
crucial observation, upon which much of this paper relies: the action form
A is not the only relative integral invariant associated to the Hamiltonian
H. In fact, for any real scalar λ the differential form

Aλ = λ~p · d~r + (λ− 1)~r · d~p−Hdt

also satisfies the equality ∮

γ
Aλ =

∮

γ′
Aλ

and is hence also a relative integral invariant. This is immediately checked
by noting that since γ is a closed curve we have

∮

γ
~p · d~r + ~r · d~p =

∮

γ
d(~p · ~r) = 0

and hence
∮

γ
λ~p · d~r + (λ− 1)~r · d~p =

∮

γ
λ~p · d~r + (1− λ)λ~p · d~r =

∮

γ
~p · d~r.
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A particularly neat choice is λ = 1/2; it leads to the “symmetrized action”

A1/2 =
1

2
(~p · d~r − ~r · d~p)−Hdt (5)

where the position and momentum variables now play identical roles, up to
the sign.

Let us investigate the quantum-mechanical consequences of this choice.
We consider the very simple situation where the Hamiltonian function is
linear in the position and momentum variables; more specifically we assume
that

H0 = ~p · ~r0 − ~p0 · ~r.
The solutions of the associated equations of motion

d

dt
~r(t) = ~r0 and

d

dt
~p(t) = ~p0

are the functions

~r(t) = ~r(0) + ~r0t and ~p(t) = ~p(0) + ~p0t

hence the motion is just translation in phase space in the direction of the
vector (~r0, ~p0). An immediate calculation shows that the standard change
in phase (2), expressed in terms of the final position ~r = ~r(t), is

∆Φ = Φ(~r; t) = t~p0 · ~r −
t2

2
~p0 · ~r0; (6)

this function of course trivially satisfies the Hamilton–Jacobi equation for
H0. Assuming that the initial wavefunction is ψ0 = ψ0(~r), a straightforward
calculation shows that the function

ψ(~r, t) = exp

[
i

~
Φ(~r; t)

]
ψ0(~r − t~r0) (7)

is a solution of the standard Schrödinger equation

i~
∂ψ

∂t
= (−i~~r0 · ∇~r − ~p0 · ~r)ψ = H0(~r,−i~∇r)ψ.

Suppose now that instead of using definition (2) for the change in phase we
use instead the modified action associated with A1/2. Then

∆Φ1/2 =

∫

Γ

1
2 (~p · d~r − ~r · d~p)−Hdt; (8)
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integrating and replacing ~r(0) with ~r − ~r0t and ~p(0) with ~p− ~p0t this leads
to the expression

Φ1/2(~r, ~p; t) =
t

2
(~p · ~r0 − ~p0 · ~r)

which, in addition to time, depends on both ~r and ~p; it is thus defined on
phase space, and not on configuration space as was the case for (6). The
function Φ1/2(~r, ~p; t) does not verify the ordinary Hamilton–Jacobi equation
(3); it however verifies its symmetrized variant

∂Φ1/2

∂t
+H0

(
1
2~r +∇~pΦ1/2,

1
2~p−∇~rΦ1/2

)
= 0 (9)

as is verified by a straightforward calculation. This property opens the gates
to quantum mechanics in phase space: assume again that we have an initial
wavefunction ψ0 = ψ0(~r) and set

Ψ(~r, ~p, t) = exp

[
i

~
Φ1/2(~r; t)

]
ψ0(~r − t~r0). (10)

Using (9) one finds that

i~
∂Ψ

∂t
= Ĥ0

(
1
2~r + i~∇~p, 1

2~p− i~∇~r
)
Ψ; (11)

there is in fact no reason to assume that the initial wavefunction depends
only on ~r; choosing Ψ0 = Ψ0(~r, ~p) the same argument shows that the
function

Ψ(~r, ~p, t) = exp

[
i

~
Φ1/2(~r; t)

]
Ψ0(~r − t~r0, ~p− t~p0) (12)

is a solution of (11) with initial condition Ψ0. Observe that the operator

Ĥ0 in the “phase-space Schrödinger equation” (11) is obtained from the
Hamiltonian function H0 using the phase space quantization rules

x −→ X̂ = 1
2x+ i~

∂

∂px
, px −→ P̂x = 1

2px − i~
∂

∂x

y −→ Ŷ = 1
2x+ i~

∂

∂py
, py −→ P̂y = 1

2py − i~
∂

∂y

z −→ Ẑ = 1
2z + i~

∂

∂pz
, pz −→ P̂z = 1

2pz − i~
∂

∂z
.

The operators X̂, P̂x, etc. obey the usual canonical commutation relations:

[X̂, P̂x] = −i~ , [Ŷ , P̂y] = −i~ , [Ẑ, P̂z] = −i~
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and this suggests that these quantization rules could be consistent with the
existence of an irreducible representation of the Heisenberg group in phase
space. This will be proven in Section III, where we will explicitly construct
this representation.

The equation (11) corresponds, as we have seen to the choice λ = 1/2
for the integral invariant Aλ; any other choice is per se equally good. For
instance λ = 1 corresponds to the standard Schrödinger equation; if we took
λ = 0 we would obtain the phase-space Schrödinger equation

i~
∂Ψ

∂t
= H0(~r + i~∇~p,−i~∇r)Ψ. (13)

considered by Torres-Vega and Frederick.26,27 More generally, to an arbi-
trary value of λ corresponds the equation

i~
∂Ψ

∂t
= H0(~r + i~∇~p,−i~∇~r)Ψ

Phase-space Schrödinger equations are current objects of interest; they
are usually arrived at using arguments involving in some way or another
coherent-state representations (or variants thereof). We stress that these
equations actually are no more than a reflection of the integral invariance
property of a class of differential forms related to –but different from– the
action form of classical mechanics.

The aesthetic appeal of the Schrödinger equation in phase space in the
form (11) is indisputable, because it reinstates in quantum mechanics the
symmetry of classical mechanics in its Hamiltonian formulation

d~r

dt
= ∇~pH ,

d~p

dt
= −∇~rH; (14)

in both (1) and (14) the variables x and p are placed, up to a change of sign,
on the same footing.

The aim of this paper is to rigorously motivate Schrödinger’s equation
in phase in an arbitrary number of degrees of freedom using the Stone–von
Neumann theorem on the irreducibility of the Schrödinger representation.
The passage from the standard quantum mechanics governed by the usual
Schrödinger’s equation is performed using a “wave-packet transform” defined
in terms of the Wigner(–Moyal) transform (we have therefore called it the
“Wigner wave-packet transform”). In this sense our approach is much more
general than other approaches found in the literature because it does not
depend on the choice of any ad hoc “coherent state representation”.

We have structured this paper as follows:
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• In Section 2 we define and study a family of “wave-packet transforms”
parametrized by S(RN

x ), the Schwartz space of rapidly decreasing func-
tions on configuration space. Each of these transforms maps isometri-
cally L2(RN

x ) onto a closed subspace of L2(R2N
x,p), the space of square

integrable functions on phase space. The main appeal of these trans-
forms, which are defined in terms of the Wigner–Moyal function is that
they will allow us to establish a one-to-one correspondence between the
solutions of the usual Schrödinger’s equation and the “admissible” so-
lutions of the phase-space Schrödinger equation, that is those functions
which are in the range of a Wigner wave-packet transform. We show
in particular that the only phase space Gaussians belonging to the
range of our wave-packet transforms are those which are the Wigner
transforms of pure (Gaussian) quantum states.

• In Section 3 we construct a representation of Heisenberg group on
L2(R2N

x,p) which is irreducible on the ranges of the wave-packet trans-
forms. This allows us to associate to each observable, viewed as a
pseudo-differential symbol, an operator acting on phase space func-
tions. These “phase-space Weyl operators” precisely correspond to
the quantization rules

x −→ x

2
+ i~

∂

∂p
, p −→ p

2
− i~ ∂

∂x
.

• In Section 4 we show the symplectic covariance of the phase-space
Weyl calculus, this is archived by constructing a copy of the usual
metaplectic group Mp(N) whose elements act, not on L2(RN

x ), but
on L2(R2N

x,p). This is made possible by identifying the Weyl symbol
of the usual metaplectic operators, following previous work of ours
based on an idea of Mehlig and Wilkinson. Interestingly enough, in
this space representation of Mp(N) the Conley–Zehnder index, famil-
iar from Hamiltonian periodic orbit theory plays the role of “Maslov
index”.

• In Section 5 we show, using the previous constructions, that to each
solution Ψ of the usual Schrödinger equation corresponds, via each
wave-packet transform, a function Ψ defined on phase space and sat-
isfying the phase-space Schrödinger equation written formally as

i~
∂Ψ

∂t
= H

(
x

2
+ i~

∂

∂p
,
p

2
− i~ ∂

∂x

)
Ψ.
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We show that, conversely, that two solutions of this equation lying in
the intersection of the ranges of two different wave-packet transforms
correspond to quantum states which are either orthogonal or identical.
We take the opportunity to give exact phase-space solutions for the
isotropic harmonic oscillators.

• In Section 6 we focus on the physical relevance of the solutions to
the phase-space Schrödinger equation. In particular, we show that
one cannot expect arbitrary functions in L2(R2N

x,p) to correspond to a
bona fide quantum state, this fact is actually related to a symplectic
form of the uncertainty principle we have studied in previous work of
ours. We end this section by studying the probabilistic interpretation
of the quantum-mechanically admissible solutions of the phase-space
Schrödinger equation, it appears that we can choose the wave-packet
transform as an appropriate Gaussian then, in the limit ~ → 0, the
square of the modulus of the admissible solutions become joint proba-
bility densities. We finally discuss the case of mixed Gaussian states.

This paper is reasonably self-contained; we have given rather detailed
proofs since there are many technicalities which are not always immediately
obvious. Some of the results of this paper have been announced in the
Letter12 in the form of a declaration of intent.

Notations

We will work with systems having N degrees of freedom; we denote
the position vector of such a system by x = (x1, ..., xN ) and its momentum
vector by p = (p1, ..., pN ). We will also use the collective notation z = (x, p)
for the generic phase space variable. Configuration space is denoted by RN

x

and phase space by R2N
z . The generalized gradients in x and p are written

∂

∂x
=

(
∂

∂x1
, ...,

∂

∂xN

)
,
∂

∂p
=

(
∂

∂p1
, ...,

∂

∂pN

)
.

For reasons of notational economy we will write Mu2 instead of Mu ·u when
M is a matrix and u a vector.

We denote by z ∧ z′ the symplectic product of z = (x, p), z′ = (x′, p′):

z ∧ z′ = p · x′ − p′ · x
where the dot · is the usual (Euclidean) scalar product. In matrix notation:

z ∧ z′ = (z′)TJz , J =

[
0 I
−I 0

]
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where J is the standard symplectic matrix (0 and I are the N × N zero
and identity matrices). We denote by Sp(N) the symplectic group of the
(x, p) phase space: it consists of all real 2N × 2N matrices S such that
Sz ∧ Sz′ = z ∧ z′; equivalently

STJS = SJST = J .

We denote by (·, ·) the L2-norm of functions on configuration RN
x and

by ((·, ·)) that of functions on phase space R2N
z . The corresponding norms

are denoted by || · || and ||| · |||.
S(Rm) is the Schwartz space of rapidly decreasing functions on Rm and

we denote by F the unitary Fourier transform defined on L2(RN
x ) by

Fψ(p) =
(

1
2π~

)N/2
∫
e−

i
~
p·xψ(x)dNx. (15)

II. The Wigner Wave-Packet Transform

Let φ be a rapidly decreasing function normalized to unity:

φ ∈ S(RN
x ) , ||φ||2L2(RN

x ) = 1. (16)

We associate to φ the integral operator Uφ : L2(RN
x ) −→ L2(R2N

z ) defined
by

Uφψ(z) =
(

1
2π~

)N/2
e

i
2~
p·x

∫
e−

i
~
p·x′ψ(x′)φ(x− x′)dNx′ (17)

and call Uφ the “Wigner wave-packet transform” associated with φ. This
terminology is justified by the fact that the operator Uφ is easily expressed
in terms of the Wigner–Moyal transform6,16

W (ψ, φ)(x, p) =
(

1
2π~

)N
∫

RN

e−
i
~
p·yψ(x+ 1

2y)φ(x− 1
2y)d

Ny (18)

of the pair (ψ, φ): performing the change of variables x′ = 1
2(x + y) in the

right-hand side of (17) we get at once

Uφψ(z) =

(
1

2π~

)N/2

2−N
∫
e−

i
2~
p·yψ(1

2 (x+ y))φ(1
2 (x− y))dNy

that is, by definition of W (ψ, φ),

Uφψ(z) =
(
π~

2

)N/2
W (ψ, φ)(1

2z). (19)
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A standard –but by no means mandatory– choice is to take for φ the real
Gaussian

φ~(x) =

(
1

π~

)N/4

exp

(
− 1

2~
|x|2

)
; (20)

the corresponding operator Uφ is then (up to an exponential factor) the
“coherent state representation” familiar to quantum physicists.

The interest of the Wigner wave-packet transform Uφ comes from the fact
that it is an isometry of L2(RN

x ) onto a closed subspace Hφ of L2(R2N
z ) and

that it takes the operators x and −i~∂/∂x into the operators x/2 + i~∂/∂p
and p/2− i~∂/∂x:

Theorem 1 The Wigner wave-packet transform Uφ has the following prop-
erties:

(i) Uφ is an isometry: the Parseval formula

((Uφψ,Uφψ
′)) = (ψ,ψ′) (21)

holds for all ψ,ψ′ ∈ S(RN
x ). In particular U∗

φUφ = I on L2(RN
x ).

(ii) The range Hφ of Uφ is closed in L2(R2N
z ) (and is hence a Hilbert

space) and the operator Pφ = UφU
∗
φ is the orthogonal projection in L2(R2N

z )
onto Hφ.

(iii) We have
(
x
2 + i~ ∂

∂p

)
Uφψ = Uφ(xψ) ,

(p
2 − i~ ∂

∂x

)
Uφψ = Uφ(−i~ ∂

∂xψ). (22)

Proof. (i) Formula (21) is an immediate consequence of the property

((W (ψ, φ),W (ψ′, φ′))) =
(

1
2π~

)N
(ψ,ψ′)(φ, φ′) (23)

of the Wigner–Moyal transform (see e.g. Folland6 p. 56; beware of the fact
that Folland uses normalizations different from ours). In fact, taking φ = φ′

we have

((Uφψ,Uφψ
′)) =

(
π~

2

)N
∫
W (ψ, φ)(1

2z)W (ψ′, φ)(1
2z)d

2N z

= (2π~)N ((W (ψ, φ),W (ψ′, φ)))

= (ψ,ψ′)(φ, φ)

which is formula (21) since φ is normalized. To prove (ii) we note that
P ∗
φ = Pφ and

P 2
φ = Uφ(U

∗
φUφ)U

∗
φ = U∗

φUφ = Pφ

10



hence Pφ is indeed an orthogonal projection. Let us show that its range
is Hφ; the closedness of Hφ will follow since the range of a projection in
a Hilbert space always is closed. Since U∗

φUφ = I on L2(RN
x ) we have

U∗
φUφψ = ψ for every ψ in L2(RN

x ) and hence the range of U∗
φ is L2(RN

x ).
It follows that the range of Uφ is that of UφU

∗
φ = Pφ and we are done.

(iii) The verification of the formulae (22) is purely computational, using
differentiations and partial integrations; it is therefore left to the reader.

The intertwining formulae (22) show that the Wigner wave-packet trans-
form takes the usual quantization rules

xj −→ x , x −→ −i~ ∂

∂x

leading to the standard Schrödinger equation to the phase-space quantiza-
tion rules

x −→ 1

2
x+ i~

∂

∂p
, x −→ 1

2
p− i~ ∂

∂x
;

observe that these rules are independent of the choice of φ and that these
rules are thus a common features of all the transforms Uφ.

One should be aware of the fact that the Hilbert space Hφ is smaller
than L2(R2N

z ). This is intuitively clear since functions in L2(R2N
z ) depend

on twice as many variables as those in L2(RN
x ) of which Hφ is an isometric

copy. Let us discuss this in some detail.

Theorem 2 (i) The range of the Wigner wave-packet transform Uφ~
asso-

ciated to the Gaussian (20) consists of the functions Ψ ∈ L2(R2N
z ) for which

the conditions
(

∂

∂xj
− i ∂

∂pj

)[
exp

(
1

2~
|z|2

)
Ψ(z)

]
= 0 for 1 ≤ j ≤ N (24)

hold.

(ii) For every φ the range of the Wigner wave-packet transform Uφ is
isometric to Hφ~

.

Proof. (i) We have Uφ~
= e−

i
2~
p·xVφ~

where the operator Vφ~
is defined by

Vφψ(z) =
(

1
2π~

)N/2
∫
e−

i
~
p·x′φ(x− x′)ψ(x′)dNx′

It is shown in21 that the range of Vφ~
consists of all Ψ ∈ L2(R2N

z ) such that
(

∂

∂xj
− i ∂

∂pj

)[
exp

(
1

2~
|p|2

)
Ψ(z)

]
= 0 for 1 ≤ j ≤ N .

11



That the range of Uφ~
is characterized by (24) follows by an immediate

calculation that is left to the reader. (ii) If Uφ1
and Uφ2

are two Wigner
wave-packet transforms corresponding to the choices φ1, φ2 then Uφ2

U∗
φ1

is
an isometry of Hφ1

onto Hφ2
.

This leads us to address the following more precise question: given Ψ ∈
L2(R2N

z ), can we find φ and ψ in L2(RN
x ) such that Ψ = Uφψ? We are

going to see that the answer is no. Intuitively speaking the reason is the
following: if Ψ is too “concentrated” in phase space, it cannot correspond via
the inverse transform U−1

φ = U∗
φ to a solution of the standard Schrödinger

equation, because the uncertainty principle would be violated. Let us make
this precise when the function Ψ is a Gaussian. We first make the following
obvious remark: in view of condition (24) every Gaussian

Ψ0(z) = λ exp

(
1

2~
|z|2

)
, λ ∈ C

is in the range of Uφ~
. It turns out that not only does this particular

Gaussian belong to the range of every Wigner wave-packet transform Uφ,
but so does also the compose Ψ0 ◦ S for every S ∈ Sp(N):

Theorem 3 Let G be a real positive-definite 2N×2N matrix: G = GT > 0.
Let ΨG ∈ L2(R2N

z ) be the Gaussian:

ΨG(z) = exp

(
− 1

2~
Gz2

)
. (25)

(i) There exist ψ, φ ∈ S(RN
x ) such that Uφψ = ΨG if and only if G ∈

Sp(N), in which case we have

φ = αφ~ , ψ = α2N/2 (π~)N/4 φ~

where φ~ is the Gaussian (20) and α an arbitrary complex constant with
modulus one.

(ii) Equivalently, |ΨG|2 must be the Wigner transform Wψ of a Gaussian
state

ψ(x) = c (detX)1/4 (π~)3N/4 exp

[
− 1

2~
(X + iY )x2

]
(26)

with |c| = 1, X and Y real and symmetric, and X > 0.

Proof. In view of the relation (19) between Uφ and the Wigner-Moyal
transform (19) is equivalent to

W (ψ, φ)(z) =

(
2

π~

)N/2

exp

(
−2

~
Gz2

)
.
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In view of Williamson’s28 symplectic diagonalization theorem there exists
S ∈ Sp(N) such that G = STDS where D is the diagonal matrix

D =

[
Λ 0
0 Λ

]
, Λ = diag[λ1, ..., λN ]

the numbers ±iλ1, ..., λN , λj > 0, being the eigenvalues of JG−1; it follows
that

W (ψ, φ)(S−1z) =

(
2

π~

)N/2

exp

(
−2

~
Dz2

)
.

In view of the metaplectic covariance property of the Wigner–Moyal trans-
form (see (47) in Section IV) there exists a unitary operator Ŝ : S(RN

x ) −→
S(RN

x ) such that
W (ψ, φ)(S−1z) = W (Ŝψ, Ŝφ)(z)

hence it is no restriction to assume S = I and

W (ψ, φ)(z) =

(
2

π~

)N/2

exp

(
−2

~
Dz2

)
.

By definition (18) of the Wigner-Moyal transform this is the same thing as

(
1

2π~

)N/2
∫
e−

i
~
p·yψ(x+ 1

2y)φ(x− 1
2y)d

Ny = 2N exp

(
−2

~
Dz2

)

that is, in view of the Fourier inversion formula,

ψ(x+ 1
2y)φ(x− 1

2y) = 2N
(

1
2π~

)N/2
∫
e−

i
~
p·ye−

2

~
Dz2dNp

=
(

2
π~

)N/2
e−

1

~
Λx2

∫
e

i
~
p·ye−

1

~
Λp2dNp.

Setting Q = 2Λ in the classical formula

(
1

2π~

)N/2
∫
e−

i
~
p·ye−

1

2~
Qp2dNp = (detQ)−1/2e−

1

2~
Q−1y2

giving the Fourier transform of a non-degenerate Gaussian we thus have

ψ(x+ 1
2y)φ(x− 1

2y) = 2N/2(det Λ)−1/2 exp

[
−1

~

(
Λx2 +

1

4
Λy2

)]
.

Setting u = x+ 1
2y and v = x− 1

2y this is

ψ(u)φ(v) = 2N/2(det Λ)−1/2 exp

[
− 1

4~

(
(Λ + Λ−1)(u2 + v2) + 2(Λ− Λ−1)u · v

)]
,

13



which is only possible if there are no terms u · v, that is if (and only if)
Λ = Λ−1; since Λ is positive-definite this requires Λ = I and hence also
∆ = I. It follows that

ψ(u)φ(v) = 2N/2 exp

[
− 1

2~
(u2 + v2)

]

so that

ψ(x)φ(0) = ψ(0)φ(x) = 2N/2 exp

(
− 1

2~
x2

)
.

It follows that both ψ and φ are Gaussians of the type

ψ(x) = ψ(0) exp

(
− 1

2~
x2

)
, φ(x) = φ(0) exp

(
− 1

2~
x2

)
;

since φ is normalized this requires that φ = αφ~ with |α| = 1 and hence

φ(0) = α

(
1

π~

)N/4

.

Since we have ψ(0)φ(0) = 2N/2 we must have

ψ(0) = α2N/2 (π~)N/4

which concludes the proof of part (i) of the theorem. To prove (ii) recall16

that the Wigner transform of the Gaussian (26) is given by the formula

Wψ(z) = exp

(
−1

~
Gz2

)

where

G =

[
X + Y X−1Y Y X−1

X−1Y X−1

]
.

It is immediate to verify that G ∈ Sp(N) and that G is symmetric positive
definite. One proves11 that, conversely, every such G can be put in the form
above, and which ends the proof of (ii) since the datum of Wψ determines
ψ up to a complex factor with modulus one.

III. Phase-Space Weyl Calculus

Let HN be the (2N+1)-dimensional Heisenberg group; it is (see e.g.6,22)
the set of all vectors

(z, t) = (x1, ..., xN ; p1, ..., pN ; t)

14



equipped with the multiplicative law

(z, t)(z′, t′) = (z + z′, t+ t′ + 1
2z ∧ z′).

The Schrödinger representation of HN is, by definition, the mapping T̂Sch

which to every (z0, t0) in HN associates the unitary operator T̂Sch(z0, t0) on
L2(RN

x ) defined by

T̂Sch(z0, t0)ψ(x) = exp

[
i

~
(−t0 + p0 · x−

1

2
p0 · x0)

]
ψ(x− x0). (27)

A classical theorem due to Stone and von Neumann (see for instance6,22

for a proof) says that the Schrödinger representation is irreducible (that is,
no closed subspace of L2(RN

x ) other than {0} and L2(RN
x ) are invariant by

T̂Sch), and that every irreducible unitary representation of HN is unitarily
equivalent to T̂Sch: if T̂ is another irreducible representation of HN on some
Hilbert space H then there exists a unitary operator U from L2(RN

x ) to H
which is bijective, and such that the following intertwining formula holds:

[U ◦ T̂Sch](z, t) = [T̂ ◦ U ](z, t) for all (z, t) in HN .

Conversely, if U is a unitary operator for which this formula holds, then T̂
must be irreducible. We emphasize –heavily!– that in the statement above it
is nowhere assumed that H must be L2(RN

x ); it can a priori be any Hilbert
space, and in particular it can (and will be!) any of the spaces Hφ defined in
Theorem 1. We will come back to this point in a while, but let us first recall
how one passes from the Heisenberg group to the Weyl pseudo-differential
calculus. In Weyl calculus one associates to a “symbol” A = A(x, p) an
operator Â on S(RN

x ) by the formula

Âψ(x) =
(

1
2π~

)N
∫∫

e
i
~
p·(x−y)A(1

2 (x+ y), p)ψ(y)dN ydNp. (28)

This formula makes perfectly sense if for instance A ∈ S(R2N
z ), and one eas-

ily verifies that the “Weyl correspondence” A
Weyl←→ Â leads to the standard

quantization rules

x
Weyl←→ X̂ = x , p

Weyl←→ P̂ = −i~ ∂

∂x
. (29)

For more general symbols the double integral must be interpreted in some
particular way. For instance, if A belongs to the standard symbol class

15



Smρ,δ(R
2N
z ) with 0 ≤ δ < ρ ≤ 1 that is, if for every compact K ⊂ RN

x and all

multi-indices α, β ∈ NN there exists CK,α,β such that

|∂αp ∂βxA(x, p)| ≤ CK,α,β(1 + |p|)m−ρ|α|+δ|β|

then (28) should be viewed as an “oscillatory integral”. There are however
other possible ways to interpret this formula; we refer to5,6,29 a discussions of
these. In particular it is shown in29 that if A ∈ L2(RN

x ) then Â is a Hilbert–
Schmidt operator, and that conversely every Hilbert–Schmidt operator is a
Weyl operator with symbol in L2(RN

x ).

There is another very useful way of writing Weyl operators, and this will
lead us to Weyl calculus in phase space. Setting t0 = 0 in formula (27) one
obtains the so-called Heisenberg–Weyl operators T̂Sch(z0):

T̂Sch(z0)ψ(x) = exp

[
i

~
(p0 · x−

1

2
p0 · x0)

]
ψ(x− x0). (30)

It is easy to show, using Fourier analysis, that we can write the operator
(28) in the form

Âψ(x) =
(

1
2π~

)N
∫

(FσA)(z0)T̂Sch(z0)ψ(x)d2N z0 (31)

provided that FσA, the “symplectic Fourier transform” of A, exists. The
latter is defined in analogy with the ordinary Fourier transform on R2N

z by

FσA(z) =
(

1
2π~

)N
∫
e−

i
~
z∧z′A(z′)d2Nz′. (32)

The conditions of existence of FσA are actually the same as for the usual
Fourier transform on L2(R2N

z ) to which it reduces replacing z by −Jz. No-
tice that Fσ is an involution: F2

σ = I.

Remark 4 It is convenient to write formula (31) more economically as

Â =
(

1
2π~

)N
∫

(FσA)(z)T̂Sch(z)d
2N z (33)

where the right-hand-side is interpreted as a “Bochner integral”, i.e. an
integral with value in a Banach space.

We now observe that when a Weyl operator is written in the form (31)
or (33) it literally begs to be extended to phase space! In fact, we can make

16



the Heisenberg–Weyl operators act on functions Ψ in L2(R2N
z ) by replacing

definition (30) by its obvious extension

T̂Sch(z0)Ψ(z) = exp

[
i

~
(p0 · x−

1

2
p0 · x0)

]
Ψ(z − z0)

and thereafter define the action of Â on Ψ ∈ S(R2N
z ) by the formula

ÂΨ(z) =
(

1
2π~

)N
∫

(FσA)(z0)T̂Sch(z0)Ψ(z)d2N z0.

This choice –which is perfectly honest– would lead, using the method we
will explain in Section V to the Torres–Vega equation26,27

i~
∂Ψ

∂t
= Ĥ

(
x+ i~

∂

∂p
,−i~ ∂

∂x

)
Ψ

already mentioned in the Introduction (equation (13)). Since we prefer a
more symmetric phase-space Schrödinger equation in which x and p are on
equal footing, we will replace T̂Sch(z0) with the operator T̂ph(z0) given by

T̂ph(z0)Ψ(z) = exp

(
− i

2~
z ∧ z0

)
Ψ(z − z0) (34)

(the subscript “ph” standing for phase space) and then define the phase-
space Weyl operator associated to A by the formula

ÂphΨ(z) =
(

1
2π~

)N
∫

(FσA)(z0)T̂ph(z0)Ψ(z)d2N z0. (35)

This operator Âph acts continuously on S(R2N
z ) provided thatA is a bona fide

symbol and can hence be extended to L2(R2N
z ) by continuity. In accordance

with the convention in Remark 4 we will often write for short

Âph =
(

1
2π~

)N
∫

(FσA)(z)T̂ph(z)d2Nz (36)

where the right-hand side is again viewed as a Bochner integral.

Observe that the operators T̂ph satisfy the same commutation relation
as the usual Weyl–Heisenberg operators:

T̂ph(z1)T̂ph(z0) = exp

(
− i

~
z0 ∧ z1

)
T̂ph(z0)T̂ph(z1) (37)
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and we have

T̂ph(z0)T̂ph(z1) = exp

(
i

2~
z0 ∧ z1

)
T̂ph(z0 + z1). (38)

These properties suggest that we define the phase-space representation
T̂ph of HN in analogy with (27) by setting for Ψ ∈ L2(R2N

z )

T̂ph(z0, t0)Ψ(z) = e
i
~
t0 T̂ph(tz0)Ψ(z). (39)

Clearly T̂ph(z0, t0) is a unitary operator in L2(R2N
z ); moreover a straightfor-

ward calculation shows that

T̂ph(z0, t0)T̂ph(z1, t1) = T̂ph(z0 + z1, t0 + t1 + 1
2z0 ∧ z1) (40)

hence T̂ph is indeed a representation of the Heisenberg group in L2(R2N
z ).

We claim that the following diagram is commutative for every Wigner wave-
packet transform Uφ:

L2(RN
x )

Uφ−→ L2(R2N
z )

T̂Sch ↓ ↓ T̂ph

L2(RN
x )

Uφ−→ L2(R2N
z ).

More precisely:

Theorem 5 Let Uφ be an arbitrary Wigner wave-packet transform.

(i)We have
T̂ph(z0, t0)Uφ = UφT̂Sch(z0, t0) (41)

hence the representation T̂ph is unitarily equivalent to the Schrödinger repre-
sentation and thus an irreducible representation of HN on each of the Hilbert
spaces Hφ.

(ii) The following intertwining formula holds for every operator Âph:

ÂphUφ = UφÂSch; (42)

Proof. Proof of (i). It suffices to prove formula (41) for t0 = 0, that is

T̂ph(z0)Uφ = UφT̂Sch(z0). (43)
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Let us write the operator Uφ in the form Uφ = e
i

2~
p·xWφ where the operator

Wφ is thus defined by

Wφψ(z) =
(

1
2π~

)N/2
∫
e−

i
~
p·x′φ(x− x′)ψ(x′)dNx′. (44)

We have, by definition of T̂ph(z0)

T̂ph(z0)Uφψ(z) = exp

[
− i

2~
(z ∧ z0 + (p− p0) · (x− x0)

]
Wφψ(z − z0)

= exp

[
i

2~
(−2p · x0 + p0 · x0 + p · x)

]
Wφψ(z − z0)

and, by definition of Wφψ,

Wφψ(z − z0) =
(

1
2π~

)N/2
∫
e−

i
~

(p−p0)·x′φ(x− x′ − x0)ψ(x′)dNx′

=
(

1
2π~

)N/2
e
i
~

(p−p0)·x0

∫
e−

i
~

(p−p0)·x′′φ(x− x′′)ψ(x′′)dNx′′

where we have set x′′ = x′ + x0. The overall exponential in T̂ph(z0)Uφψ(z)
is thus

u1 = exp

[
i

2~
(−p0 · x0 + p · x− 2p · x′′ + 2p0 · x′′)

]
.

Similarly,

Uφ(T̂Sch(z0)ψ)(z) =
(

1
2π~

)N/2
e

i
2~
p·x×

∫
e−

i
~
p·x′′φ(x− x′′)e i

~
(p0·x′′−

1

2
p0·x0)ψ(x′′ − x0)d

Nx′′

yielding the overall exponential

u2 = exp

[
i

~

(
1

2
p · x− p · x′′ + p0 · x′′ −

1

2
p0 · x0

)]
= u1

which proves (43). The irreducibility statement follows from Stone–von
Neumann’s theorem. Let us prove formula (42). In view of formula (43) we
have

ÂphUφψ =
(

1
2π~

)N
∫

(FσA)(z0)T̂ph(z0)(Uφψ)(z)d2N z0

=
(

1
2π~

)N
∫

(FσA)(z0)Uφ(T̂Sch(z0)ψ)(z)d2N z0

=
(

1
2π~

)N
Uφ

(∫
(FσA)(z0)T̂Sch(z0)ψ)(z)d2N z0

)

= Uφ(ÂSchψ)(z)
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(the passage from the second equality to the third is legitimated by the fact
that Uφ is both linear and continuous).

IV. Metaplectic Covariance

Since Sp(N) is the symmetry group for the usual canonical commutation
relations

[X̂j , P̂k] = i~δjk

for X̂j = xj, P̂k = −i~∂/∂xk), the uniqueness of these relations implies that
for each S in Sp(N) there must be some associated unitary operator linking
them to quantization. These operators are the metaplectic operators; let us
recall how they are defined (for details and proofs see for instance6,8,9,16).
Assume that S is a free symplectic matrix, that is S ∈ Sp(N) and

S =

[
A B
C D

]
with detB 6= 0.

To every such S one associates the operators ±ŜW,m defined by the formula

ŜW,mψ(x) =

(
1

2πi~

)N/2 im√
|detB|

∫
e

i
~
W (x,x′)ψ(x′)dNx′; (45)

here W is Hamilton’s characteristic function” familiar from mechanics (see
for instance7,9):

W (x, x′) =
1

2
DB−1x2 −B−1x · x′ + 1

2
B−1Ax′2, (46)

and m is an integer (“Maslov index”) corresponding to a choice of arg detB.
The operators ŜW,m are a sort of generalized Fourier transform, and it is

not difficult to check that they are unitary. In addition the inverse of ŜW,m
is given by

Ŝ−1
W,m = ŜW ∗,m∗ , W ∗(x, x′) = −W (x′, x) , m∗ = N −m

hence the ŜW,m generate a group: this group is the metaplectic groupMp(N)
(see9 for a complete discussion of the properties of Mp(N) and of the asso-
ciated Maslov indices). If we choose for S the standard symplectic matrix

J =

[
0 I
−I 0

]
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the quadratic form (46) reduces to W (x, x′) = −x · x′; choosing arg detB =
arg det I = 0 the corresponding metaplectic operator is

Ĵψ(x) =

(
1

2πi~

)N/2 ∫
e−

i
~
x·x′ψ(x′)dNx′ = i−N/2Fψ(x′)

where F thus is the usual unitary Fourier transform (15).

The Wigner–Moyal transform enjoys the following metaplectic covari-
ance property: for every Ŝ ∈Mp(N) with projection S ∈ Sp(N) we have

W (Ŝψ, Ŝφ) = W (ψ, φ) ◦ S−1. (47)

Since the Wigner wave-packet transform is defined in terms of W (ψ, φ) by
formula (19) it follows that

Uφ(Ŝψ) =
(
π~

2

)N/2
W (Ŝψ, φ)(1

2z)

=
(
π~

2

)N/2
W (Ŝψ, Ŝ(Ŝ−1φ))(1

2z)

=
(
π~

2

)N/2
W (Sψ, Ŝ−1φ))(1

2S
−1(z))

and hence
Uφ(Ŝψ) = (Uφ

Ŝ
ψ) ◦ S−1 , φ

Ŝ
= Ŝ−1φ. (48)

In13 we have shown, following an idea of Mehlig and Wilkinson,17 that
the metaplectic group is generated by operators of the type

Ŝψ(x) =

(
1

2π~

)N/2 iν(S)

√
|det(S − I)|

∫
e

i
2~
MSz

2

0 T̂Sch(z0)ψ(x)d2N z0 (49)

where det(S − I) 6= 0, MS is the symplectic Cayley transform of S:

MS =
1

2
J(S + I)(S − I)−1,

and ν(S) is the Conley–Zehnder index (modulo 4) of a path joining the
identity to I in Sp(N). For instance, if Ŝ = ŜW,m then

ŜW,mψ(x) =

(
1

2π~

)N/2 im−InertWxx

√
|det(S − I)|

∫
e

i
2~
MSz

2

0 T̂Sch(z0)ψ(x)d2N z0 (50)

where InertWxx the number of negative eigenvalues of the Hessian matrix
of W . Formulae (49) and (50) are thus the Weyl representations of the
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metaplectic operators Ŝ and ŜW,m). They allow us to define phase-space

metaplectic operators Ŝph in the following way: if det(S − I) 6= 0 we set

ŜphΨ(z) =

(
1

2π~

)N/2 iν(S)

√
|det(S − I)|

∫
e

i
2~
MSz

2

0 T̂ph(z0)Ψ(z)d2N z0; (51)

the operators Ŝph are in one-to-one correspondence with the metaplectic

operators Ŝ and thus generate a group which we denote by Mpph(N) (the
“phase space metaplectic group”). In following lemma we give alternative
descriptions of the operators (49) in terms of the operators T̂ph:

Lemma 6 Let Ŝph ∈ Mpph(N) have projection S ∈ Mp(N) such that
det(S − I) 6= 0. We have

Ŝph =
(

1
2π

)N
iν(S)

√
|det(S − I)|

∫
e−

i
2
Sz∧zT̂ph((S − I)z)d2Nz (52)

and

Ŝph =
(

1
2π

)N
iν(S)

√
|det(S − I)|

∫
T̂ph(Sz)T̂ph(−z)d2Nz. (53)

Proof. It is mutatis mutandis the proof of Lemma 1 in13): we have

1
2J(S + I)(S − I)−1 = 1

2J + J(S − I)−1

hence, in view of the antisymmetry of J ,

MSz · z = J(S − I)−1z · z = (S − I)−1z ∧ z

Performing the change of variables z 7−→ (S−I)z we can rewrite the integral
in the right-hand side of (50) as

∫
e

i
2
〈MSz,z〉T̂ (z)d2N z =

√
|det(S − I)|

∫
e

i
2
z∧(S−I)zT̂ph((S − I)z)d2N z

=
√
|det(S − I)|

∫
e−

i
2
Sz∧zT̂ph((S − I)z)d2N z

hence (52). Taking into account formula (38) for the product of two meta-
plectic operators T̂ph(z0) and T̂ph(z1) we get

T̂ ((S − I)z) = e
i
2σSz∧zT̂ph(Sz)T̂ph(−z)

and formula (53) follows.
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This result will allows us to show in a simple way that the well-known
“metaplectic covariance” relation

Â ◦ SSch = Ŝ−1ÂSchŜ (54)

valid for any Ŝ ∈Mp(N) with projection S ∈ Sp(N) extends to the phase-
space Weyl operators Âph provided one replaces Mp(N) with Mpph(N).

Theorem 7 Let S be a symplectic matrix and Ŝph any of the two opera-
tors in Mpph(N) associated with S. The following phase-space metaplectic
covariance formulae hold:

ŜphT̂ph(z0)Ŝ
−1
ph

= T̂ph(Sz) , Â ◦ Sph = Ŝ−1
ph
ÂphŜph. (55)

Proof. To prove the first formula (55) it is sufficient to assume that det(S−
I) 6= 0 and that Ŝphis thus given by formula (51): since such operators
generate Mpph(N). Let us thus prove that

T̂ph(Sz0)Ŝph = ŜphT̂ph(z0) if det(S − I) 6= 0. (56)

Using either formula (53) in Lemma 6 above and setting

CS =
(

1
2π

)N
iν(S)

√
|det(S − I)|

we have

T̂ph(Sz0)Ŝph = CS

∫
T̂ph(Sz0)T̂ph(Sz)T̂ph(−z)d2Nz

ŜphT̂ph(z0) = CS

∫
T̂ph(Sz)T̂ph(−z)T̂ph(z0)d

2Nz.

Setting

A(z0) =

∫
T̂ph(Sz0)T̂ph(Sz)T̂ph(−z)d2Nz

B(z0) =

∫
T̂ph(Sz)T̂ph(−z)T̂ph(z0)d

2Nz

we have, by repeated use of (38),

A(z0) =

∫
e

i
2~

Φ1(z,z0)T̂ph(Sz0 + (S − I)z)d2Nz

B(z0) =

∫
e

i
2~

Φ2(z,z0)T̂ph(z0 + (S − I)z)d2Nz
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where the phases Φ1 and Φ2 are given by

Φ1(z, z0) = z0 ∧ z − S(z + z0) ∧ z
Φ2(z, z0) = −Sz ∧ z + (S − I)z ∧ z0.

Performing the change of variables z′ = z+ z0 in the integral defining A(z0)
we get

A(z0) =

∫
e

i
2~

Φ1(z′−z0,z0)T̂ph(z0 + (S − I)z′)d2N z′

and

Φ1(z
′ − z0, z0) = z0 ∧ (z′ − z0)− Sz′ ∧ (z′ − z0)

= (S − I)z′ ∧ z0 − Sz′ ∧ z′

= Φ2(z
′, z0)

hence (56). The second formula (55) easily follows from the first: noting
that the symplectic Fourier transform (32) satisfies

Fσ[A ◦ S](z) =
(

1
2π~

)N
∫
e−

i
~
z0∧z′A(Sz′)d2N z′

=
(

1
2π~

)N
∫
e−

i
~
Sz0∧z′A(z′)d2Nz′

= FσA(Sz)

we have

Â ◦ Sph =
(

1
2π~

)N
∫
FσA(Sz)T̂ph(z)d2N z

=
(

1
2π~

)N
∫
FσA(z)T̂ph(S−1z)d2N z

=
(

1
2π~

)N
∫
FσA(z)Ŝ−1

ph T̂ph(z)Ŝphd
2Nz

which concludes the proof.

Remark 8 It can be shown, adapting the proof of a classical result of Shale23

(see Wong,29 Chapter 30, for a proof) that the metaplectic covariance for-
mula

Â ◦ Sph = Ŝ−1
ph ÂphŜph

actually characterizes the phase-space Weyl operators Âph. That is, any op-

erator satisfying this relation for all operators Ŝph ∈Mpph(N) is necessarily
of the type

Âph =
(

1
2π~

)N
∫

(FσA)(z)T̂ph(z)d
2N z.
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V. Schrödinger Equation in Phase Space

For example, if H is the Hamiltonian function of the one-dimensional
harmonic oscillator put in normal form

H =
ω

2
(p2 + x2) (57)

we get

Ĥph = −~2ω

2
∇2
z − i

~ω

2
z ∧∇z +

ω

8
|z|2 (58)

where ∇z is the gradient operator in (x, p).

The following consequence of theorem 5 links standard “configuration
space” quantum mechanics to phase-space quantum mechanics via the Wigner
wave-packet transform and the extended Heisenberg group studied in the
previous sections. For clarity we denote by ÂSch the usual Weyl operator
associated by (31) to an observable A.

Corollary 9 Let Uφ, φ ∈ S(RN
x ), be an arbitrary Wigner wave-packet trans-

form.

Theorem 10 (i) If ψ = ψ(x, t) is a solution of the usual Schrödinger’s
equation

i~
∂ψ

∂t
= ĤSchψ

then Ψ = (Uφψ)(z, t) is a solution of the phase-space Schrödinger equation

i~
∂Ψ

∂t
= ĤphΨ. (59)

(ii) Assume that Ψ is a solution of this equation and that Ψ0 = Ψ(·, 0)
belongs to the range Hφ of Uφ. Then Ψ(·, t) ∈ Hφ for every t for which Ψ
is defined.

Proof. Since time-derivatives obviously commute with Uφ we have, using
(42)

i~
∂Ψ

∂t
= Uφ(ĤSchψ) = Ĥph(Uφψ) = ĤphΨ

hence (i). Statement (ii) follows.

The result above leads to the following interesting questions: since the
solutions of the phase-space Schrödinger equation (59) exist independently
of the choice of any isometry Uφ, what is the difference in the physical
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interpretations of the corresponding configuration-space wavefunctions ψ =
U∗
φΨ and ψ′ = U∗

φ′Ψ? The answer is that there is no difference at all provided
that φ and φ′ are not orthogonal:

Theorem 11 Let Ψ be a solution of the phase space Schrödinger equation
(59) with initial condition Ψ0 and define functions ψ1 and ψ2 in L(RN

x ) by

Ψ = Uφ1
ψ1 = Uφ2

ψ2.

We assume that Ψ0 ∈ Hφ1
∩Hφ2

; hence Ψ(·, t) ∈ Hφ1
∩Hφ2

for all t (Theorem
9, (iii)).

Corollary 12 (i) If φ1 and φ2 are such that (φ1, φ2) 6= 0 then ψ1 = λψ2

where λ = (φ1, φ2); the functions ψ1, ψ2 hence represent the same quantum
state;

(ii) If (φ1, φ2) = 0 then ψ1 and ψ2 are orthogonal quantum states:
(ψ1, ψ2) = 0.

Proof. (Cf. the beginning of the proof of Theorem 1). In view of formula
(23) we have

((Uφ1
ψ1, Uφ2

ψ2)) = (ψ1, ψ2)(φ1, φ2)

that is
|||Ψ|||2 = λ(ψ1, ψ2) , λ = (φ1, φ2).

The theorem follows.

The operators Âph defined by (35) enjoy the same property which makes
the main appeal of ordinary Weyl operators, namely that they are self-
adjoint if and only if their symbols is real.

Theorem 13 Let Âph and ÂSch be the operators associated to a symbol A.
We assume that the symplectic Fourier transform FσA is defined.

(i) The operator Âph is self-adjoint in L2(R2N
z ) if and only if A = A;

(ii) Every eigenvalue of ÂSch is also an eigenvalue of Âph.

Proof. (i) By definition of Âph and T̂ph we have

ÂphΨ(z) =
(

1
2π~

)N
∫
FσA(z0)e

− i
2~
z∧z0Ψ(z − z0)d2Nz0

=
(

1
2π~

)N
∫
FσA(z − z′)e i

2~
z∧z′Ψ(z′)d2Nz′
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hence the kernel of the operator Âph is

K(z, z′) =
(

1
2π~

)N
e

i
2~
z∧z′FσA(z − z′).

In view of the standard theory of integral operators Âph is self-adjoint if and

only if K(z, z′) = K(z′, z); in view of the antisymmetry of the symplectic
product we have

K(z′, z) =
(

1
2π~

)N
e

i
2~
z∧z′FσA(z′ − z)

hence our claim since by definition (32) of the symplectic Fourier transform

FσA(z′ − z) =
(

1
2π~

)N
∫
e−

i
~
(z−z′)∧z′′A(z′′)d2Nz′′ = FσA(z − z′).

(ii) Assume that ÂSchψ = λψ; choosing φ ∈ S(RN
x ) we have, using the

intertwining formula (42),

Uφ(ÂSchψ) = Âph(Uφψ) = λUφψ

hence λ is an eigenvalue of Âph.

Notice that there is no reason for an arbitrary eigenvalue of Âph to be

an eigenvalue of ÂSch; this is only the case if the corresponding eigenvector
belongs to the range of a Wigner wave-packet transform.

There is an interesting application of the theory of the metaplectic group
outlined in Section IV to Schrödinger’s equation in phase space. Assume
that H is a a quadratic Hamiltonian (for instance the harmonic oscillator
Hamiltonian); the flow determined by the associated Hamilton equations is
linear and consists of symplectic matrices St. Letting time vary, thus obtain
a curve t 7−→ St in the symplectic group Sp(N) passing through the identity
I at time t = 0; following general principles to that curve we can associate (in
a unique way) a curve t 7−→ Ŝt of metaplectic operators. Let now ψ0 = ψ0(x)
be some square integrable function and set ψ(x, t) = Ŝtψ0(x). Then ψ is
just the solution of the standard Schrödinger’s equation

i~
∂ψ

∂t
= Ĥψ , ψ(t = 0) = ψ0 (60)

associated to the quadratic Hamiltonian function H. (Equivalently, Ŝt is
just the propagator for (60).) This observation allows us to solve explicitly
the phase-space Schrödinger equation for any such H. Here is how. Since
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the wave-packet transform U automatically takes the solution ψ of (60) to
a solution of the phase-space Schrödinger equation

i~
∂Ψ

∂t
= ĤphΨ

we have
Ψ(z, t) = (Ŝt)phΨ(z, 0).

Assume now that the symplectic matrix St is free and det(St−I) 6= 0. Then,
by (51),

Ψ(z, t) =

(
1

2π~

)N/2 im(t)−InertWxx(t)

√
|det(St − I)|

∫
e

i
2~
zT
0
MS(t)z0 T̂ph(z0)Ψ(z, 0)d2N z0

(61)
where m(t), Wxx(t), and MS(t) correspond to St. If t is such that St is
not free, or det(St − I) = 0, then it suffices to write the propagator Ŝt as
the product of two operators (50); note however that such values of t are
exceptional, and that the solution (61) can be extended by taking the limit
near such t provided that takes some care in calculating the Maslov indices.

Let us illustrate this when H is the harmonic oscillator Hamiltonian
function (57). The one-parameter group (St) is in this case given by

St =

[
cosωt sinωt
− sinωt cosωt

]

and the Hamilton principal function by

W (x, x′; t) =
1

2 sinωt
((x2 + x′2) cosωt− 2xx′).

A straightforward calculation yields

MS(t) =

[ sinωt
−2 cosωt+2 0

0 sinωt
−2 cosωt+2

]
=

1

2

[
cot(ωt2 ) 0

0 cot(ωt2 )

]

and
det(St − I) = 2(1 − cosωt) = 4 sin2(ωt2 );

moreover
Wxx(t) = − tan(ωt2 ).

Insertion in formula (61) yields the explicit solution

Ψ(z, t) =
iν(t)

2
∣∣2π~ sin(ωt2 )

∣∣1/2

∫
exp

[
i

4~
(x2

0 + p2
0) cot(

ωt

2
)

]
T̂ph(z0)Ψ(z, 0)d2z0
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with

ν(t) =

{
0 if 0 < t < π

ω
−2 if − π

ω < t < 0.

VI. Probabilistic Interpretation of Ψ

Let us shortly discuss the probabilistic interpretation of the solutions Ψ
of the phase-space Schrödinger equation

i~
∂Ψ

∂t
= ĤphΨ;

we will in particular elucidate the role played by φ.

Let ψ be in L2(RN
x ); if ψ is normalized: ||ψ|| = 1 then so is Ψ = Uφψ

in view of the Parseval formula (21): |||Ψ||| = 1. It follows that |Ψ|2 is
a probability density in phase space. It turns out that by an appropriate
choice of φ the marginal probabilities can be chosen arbitrarily close to |ψ|2
and |Fψ|2.

Theorem 14 ??Let ψ ∈ L2(RN
x ) and set Ψ = Uφψ.

(i) We have

∫
|Ψ(x, p)|2dNp = (|φ|2 ∗ |ψ|2)(x) (62)

∫
|Ψ(x, p)|2dNx = (|Fφ|2 ∗ |Fψ|2)(p). (63)

(ii) Let 〈A〉ψ = (ASchψ,ψ) be the mathematical expectation of the symbol
A in the normalized quantum state ψ. We have

〈A〉Ψ = ((AphΨ,Ψ)) , Ψ = Uφψ. (64)

Proof. We have, by definition of Ψ,

|Ψ(z)|2 =

(
1

2π~

)N ∫∫
e−

i
~
p·(x′−x′′)φ(x−x′)φ(x−x′′)ψ(x′)ψ(x′′)dNx′dNx′′.

Since we have, by the Fourier inversion formula,

∫
e−

i
~
p·(x′−x′′)dNp = (2π~)Nδ(x′ − x′′)
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it follows that
∫
|Ψ(z)|2dNp =

∫∫∫
δ(x′ − x′′)|φ(x− x′)|2|ψ(x′)|2dNx′dNx′′

=

∫ [∫
δ(x′ − x′′)dNx′′

]
|φ(x− x′)|2|ψ(x′)|2dNx′

=

∫
|φ(x− x′)|2|ψ(x′)|2dNx′

hence formula (62). To prove (63) we note that in view of the metaplectic
covariance formula (48) for the wavepacket transform we have

U
Ĵφ

(Ĵψ)(x, p) = Uφψ(−p, x)

where Ĵ = i−N/2F is the modified Fourier transform. It follows that

UFφ(Fψ)(x, p) = i−NUφψ(−p, x)

and hence changing (−p, x) into (x, p):

Uφψ(x, p) = iNUFφ(Fψ)(p,−x).

and hence, using (62),

∫
|Ψ(x, p)|2dNx =

∫
|UFφ(Fψ)(p,−x)|2dNx

=

∫
|UFφ(Fψ)(p, x)|2dNx

= (|Fφ|2 ∗ |Fψ|2)(p)

which concludes the proof. To prove (64) it suffices to note that in view of
the intertwining formula (42) and the fact that U∗

φ = U−1
φ we have

((AphΨ,Ψ)) = ((ÂphUφψ,Uφψ))

= (U∗
φÂphUφψ,ψ)

= (ÂSchψ,ψ).

The result above shows that the marginal probabilities of |Ψ|2 are just
the traditional position and momentum probability densities |ψ|2 and |Fψ|2
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“smoothed out” by convoluting them with |φ|2 and |Fφ|2 respectively. As-
sume for instance that we choose for φ the Gaussian (20):

φ(x) = φℏ(x) =
(

1
π~

)N/4
exp

(
− 1

2~
|x|2

)
.

The Fourier transform of φ is identical to φ

Fφ~(p) =
(

1
π~

)N/4
exp

(
− 1

2~
|p|2

)
= φ~(p)

hence, setting Ψ~ = Uφ~
ψ, and observing that |φℏ|2 → δ when ~→ 0:

∫
|Ψ~(x, p)|2dNp = (|ψ|2 ∗ |φ~|2)(x) ~→0−→ |ψ|2(x)

∫
|Ψ~(x, p)|2dNx = (|Fψ|2 ∗ |φ~|2)(p) ~→0−→ |Fψ|2(p).

Thus, in the limit ~ → 0 the square of the modulus of the phase-space
wavefunction becomes a true joint probability density for the probability
densities |ψ|2 and |Fψ|2.

VII. Discussion and Remarks

We have exposed some theoretical background justifying the phase-space
Schrödinger equation

i~
∂

∂t
Ψ(x, p, t) = H

(
1
2x+ i~ ∂

∂p ,
1
2p− i~ ∂

∂x

)
Ψ(x, p, t).

The aesthetic appeal of this equation is obvious –at least if one likes the
Hamiltonian formulation of mechanics. But is this equation useful? While
the notion of “usefulness” in Science more than often has a relative and
subjective character, one of the main practical appeal of the phase-space
Schrödinger equation is that it governs the quantum evolution of both pure
and mixed states, while the solutions of the usual Schrödinger equation are,
by definition, only pure states. Another of the advantages of the phase-space
approach is, as pointed out in,19 the availability of factorization methods
for the Hamiltonian, for instance SUSY. From a practical point of view it
could be held against Schrödinger equations in 2N -dimensional phase space
that they are uninteresting because they involve solving a partial differential
equation in 2N+1 variables instead of N+1 as for the ordinary Schrödinger
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equation. But this is perhaps a somewhat stingy reservation especially in
times where modern computing techniques allow an efficient processing of
large strings of independent variables.

We also note that there is a simple relation between our phase-space
calculus and the Moyal product20 of two observables. Recall that the twisted
convolution A ⋆σ B of two observables A and B is defined by

A ⋆σ B(z) =

∫
e−

i
2~
z∧z0A(z0)B(z − z0)d2Nz0

and that
Fσ(A ⋆σ B) = (FσA) ⋆σ B = A ⋆σ (FσB). (65)

By definition the Moyal product A⋆MB is the symplectic Fourier transform
of A ⋆σ B:

A⋆MB = Fσ(A ⋆σ B). (66)

Now, by definition (34) of T̂ph(z0) definition (35) of ÂphΨ can be written

ÂphΨ(z) =
(

1
2π~

)N
∫

(FσA)(z0)e
−
i

2~
z∧z0Ψ(z − z0)d2N z0

that is, using successively the definition of ⋆σ and (65)

ÂphΨ = (FσA) ⋆σ Ψ = A⋆MΨ. (67)

Thus, making the operator Âph associated with A act on Ψ amounts to
taking the Moyal product of A with the function Ψ. In terms of the he
Moyal product the phase space Schrödinger equation becomes

i~
∂Ψ

∂t
= H⋆MΨ.

It would perhaps be interesting to investigate further this relationship, and
to study the theory of the Schrödinger equation in phase space in the con-
text of the deformation quantization of Bayen et al .3 Another topic we
haven’t taken up in this paper because of lack of space is the Bohmian ap-
proach to quantum mechanics, where phase space techniques seem to play
an important but not yet fully appreciated role (see the preprint by Hiley14).

We would like to end this section –and paper!– by discussing a little bit
the possible physical interpretation of the phase space Schrödinger equation.
Recall that we showed in Theorem 3 that a phase-space Gaussian

ΨG(z) = exp

(
− 1

2~
Gz2

)
, G = GT > 0
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is in the range of any of the Wigner wave-packet transforms Uφ if and only
if G ∈ Sp(N), and that in this case

Wψ(z) = |ΨG(z)|2 = exp

(
−1

~
Gz2

)

for some (pure) Gaussian state ψ. Let us more generally consider Gaussians

ΨM (z) = exp

(
−1

~
Mz2

)

where M is a positive-definite symmetric real matrix. One proves that ΨM

is the Wigner transform W (ρ̂) of a (usually mixed) quantum state if and
only if M−1 + iJ is positive-definite and Hermitian:

(M−1 + iJ)∗ = M−1 + iJ ≥ 0. (68)

The probabilistic meaning of this condition is the following: defining as usual
the covariance matrix of the state ρ̂ by

Σ =
~

2
M−1

condition (68) can be rewritten as

(Σ + i
~

2
J)∗ = Σ + i

~

2
J ≥ 0 (69)

which is equivalent to the uncertainty principle of quantum mechanics (see24,25

; we have also discussed this in10) . For instance, when N = 1 the matrix

Σ =

[
∆x2 ∆(x, p)

∆(x, p) ∆p2

]

satisfies (69) if and only if

∆x2∆p2 ≥ 1

4
~

2 + ∆(x, p)

which is the form of the Heisenberg inequality that should be used as soon as
correlations are present, and not the naive text-book inequality ∆x∆p ≥ 1

2~!

It turns out that conditions (68)–(69) have a simple topological interpre-
tation: we have shown in previous work of ours10,11 that they are equivalent
to the third condition:
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Condition 15 The phase-space ball B(
√

~) : |z| ≤ ~ can be embedded into
the “Wigner ellipsoid” WM : Mz2 ≤ ~ using symplectic transformations
(linear or not). Equivalently: the symplectic capacity (or “Gromov width”)
of WM is at least π~ = 1

2h, one half of the quantum of action: c(WM ) ≥ 1
2h.

We have discussed in some detail in the aforementioned papers how this
result allows a “coarse graining” of phase space by symplectic quantum
cells, which we dubbed “quantum blobs”. It appears that it is precisely this
coarse-graining that prevents Gaussians ΨM with Wigner ellipsoids smaller
than a “quantum blob” to represent a quantum state. Is this to say that
if the Wigner ellipsoid of ΨM has exactly symplectic capacity 1

2h then ΨM

is a pure state? No, because such states are characterized by the fact that
the associated Wigner ellipsoid is exactly the image of the ball B(

√
~) by a

symplectic transformation since they are described by the inequality Gz2 =
(Sz)2 ≤ ~ in view of Theorem 3, and there are infinitely many ellipsoids with
symplectic capacity 1

2h which are not the image of B(
√

~) by a symplectic
transformation. However, we have proven in10,11 that if the ellipsoid WM :
Mz2 ≤ ~ has symplectic capacity 1

2h then one can associate to WM a unique
pure Gaussian state. The argument goes as follows: if c(WM ) = 1

2h then if
S and S′ in Sp(N) are such that

S(B(
√

~)) ⊂WM , S′(B(
√

~)) ⊂WM

then there exists R ∈ U(N) = Sp(N)∩O(2N) such that S = RS′ (the proof
of this property is not entirely trivial) and hence STS = (S′)TS′. It follows
that the ellipsoid WG : Gz2 ≤ ~, G = STS, is uniquely determined by WM

and that the pure Gaussian state corresponding to

ΨG(z) = exp

(
− 1

2~
Gz2

)

is canonically associated to the mixed state ΨM , which does not in general
belong to the range of any Wigner wave-packet transform Uφ. It would
be interesting to generalize this result to arbitrary functions Ψ ∈ L2(R2N

z )
by defining, in analogy with the Gaussian case, a “Wigner set” WΨ associ-
ated with Ψ. One could then perhaps prove that Ψ represents an arbitrary
(mixed) quantum state provided that WΨ has a symplectic capacity at least
1
2h. But enough is enough! We hope to come back to these possibilities in
the future.
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