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Sinǎı’s condition for real valued Lévy processes

Vı́ctor RIVERO ∗

24th May 2005

Abstract

We prove that the upward ladder height subordinator H associated to a real valued
Lévy process ξ has Laplace exponent ϕ that varies regularly at ∞ (resp. at 0) if and
only if the underlying Lévy process ξ satisfies Sinǎı’s condition at 0 (resp. at ∞). Sinǎı’s
condition for real valued Lévy processes is the continuous time analogue of Sinǎı’s condi-
tion for random walks. We provide several criteria in terms of the characteristics of ξ to
determine whether or not it satisfies Sinǎı’s condition. Some of these criteria are deduced
from tail estimates of the Lévy measure of H, here obtained, and which are analogous to
the estimates of the tail distribution of the ladder height random variable of a random
walk which are due to Veraverbeke and Grübel.

Key words: Lévy processes, Fluctuation theory, Regular Variation, long tailed Lévy measures.

MSC: 60 G 30 (60 G 51).

1 Introduction and main result

Let ξ = {ξt, t ≥ 0} be a real valued Lévy process, S = (St, t ≥ 0) its current supremum
and L = (Lt, t ≥ 0) the local time at 0 of the strong Markov process ξ reflected at its current
supremum, that is to say (St−ξt, t ≥ 0). In this work we will obtain some asymptotic properties
of the ascending ladder height subordinator H associated to ξ (that is, the current supremum
of ξ evaluated at the inverse of the local time at 0, i.e. L−1, H ≡ (SL−1

t

, t ≥ 0)). According to

Fristedt [9] the ascending ladder process (L−1, H) is a bivariate subordinator, that is, a Lévy
process in R

2 with increasing paths (coordinatewise) whose bivariate Laplace exponent κ,

e−κ(λ1,λ2) ≡ E(e−λ1L−1
1 −λ2H1), λ1, λ2 ≥ 0,

with the assumption e−∞ = 0, is given by

κ(λ1, λ2) = k exp

{∫ ∞

0

dt

t

∫

[0,∞[

(e−t − e−λ1t−λ2x)P(ξt ∈ dx)

}
, λ1, λ2 ≥ 0,
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with k a constant that depends on the normalization of the local time. (See Doney [6], for a
survey, and Bertoin [2] VI, for a detailed exposition of the fluctuation theory of Lévy processes
and Vigon [22] for a description of the Lévy measure of H .)

The fact that the ladder process (L−1, H) is a bivariate subordinator is central in the fluctu-
ation theory of Lévy processes because it enables to obtain several properties of the underlying
Lévy process using results for subordinators, which are objects simpler to manipulate. Among
the various properties that can be obtained using this fact, there is a well known arc-sine law
in the time scale for Lévy processes, see Theorem VI.3.14 in Bertoin’s book [2] for a precise
statement. That result tell us that Spitzer’s condition is a condition about the underlying Lévy
process ξ which ensures that the Laplace exponent κ(·, 0) of the ladder time subordinator L−1

is regularly varying and which in turn permits to obtain an arc-sine law in the time scale for
Lévy processes. Now, if we want to establish an analogous result in the space scale we have to
answer the question: What is the analogue of Spitzer’s condition for the upward ladder height
process H? or put another way: What do we need to assume about ξ to ensure that the Laplace
exponent

ϕ(λ) ≡ κ(0, λ) = k exp

{∫ ∞

0

dt

t

∫

[0,∞[

(e−t − e−λx)P(ξt ∈ dx)

}
, λ ≥ 0,

of H varies regularly?

To motivate the answer that we will provide to these questions we will make a slight digression
to recall the analogue of this problem for random walks. Let X1, X2, . . . be a sequence of
independent and identically distributed random variables and Z its associated random walk
Z0 = 0, Zn =

∑n
k=1 Xk, n > 0. The analogue of the upward ladder process for Z is given by

(N, ZN) where N is the first ladder epoch of the random walk Z, N = min{k : Zk > 0}, and
ZN , is the position of Z at the instant N. We denote by Mn = sup{Zk, 0 ≤ k ≤ n}, n ≥ 0 the
current supremum of the random walk and by T (x) the first instant at which the random walk
passes above the level x, T (x) = inf{n > 0 : Zn ≥ x}.

Greennwood, Omey and Teugels [13] proved that the condition,

∞∑

n=1

1

n
P(z < Zn ≤ λz) −−−→

z→∞
β log(λ), ∀λ > 1,

for some β ∈ [0, 1], which they called Sinǎı’s condition making reference to a work of Sinǎı’s [19],
plays the same rôle, in the obtaining of limit results for the ladder height, as does Spitzer’s
condition for the ladder time. More precisely, when the random walk does not drift to −∞, we
have the following equivalences.

Theorem 1 (Dynkin [8], Rogozin [17], Greenwood et al. [13]). Assume
∑

n
1
n
P(Zn >

0) = ∞. For β ∈ [0, 1], the following are equivalent

(i) lim
z→∞

∑

n

1

n
P(z < Zn ≤ λz) = β log(λ), ∀λ > 1;

(ii)
∫ x

0
P(ZN > u)du ∼ x1−βl(x) as x → ∞, with l slowly varying;
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(iii) The random variables γx =
MT (x)−1

x converge in distribution as x → ∞; the limit law is
the generalized arc-sine law of parameter β, that is to say that it has a density

qβ(y) =
sin(βπ)

π
y−β(1 − y)β−1, y ∈]0, 1[,

if β ∈]0, 1[; and is degenerate with unit mass at 1 or 0, according as β = 1 or β = 0.

The equivalence between (i) and (ii) is due to Greenwood et al. [13] (see also [4] Theorem
8.9.17), that between (ii) and (iii) is due to Dynkin [8] in the case β ∈]0, 1[ and to Rogozin [17]
in the other cases.

Thus, the previous theorem tells us that Sinǎı’s condition enables to obtain a spatial arc-sine
law for random walks and, given that the fluctuation theory for Levy processes mirrors that
of random walks, it is natural to hope that the answer to the questions posed above is the
continuous time version of Sinǎı’s condition.

We will say that a Lévy process ξ satisfies Sinǎı’s condition at ∞ (resp. at 0) if

(Sinǎı) There exists a 0 ≤ β ≤ 1 such that
∫ ∞

0

dt

t
P(z < ξt ≤ λz) −→ β log(λ) as z → +∞ (resp. z → 0+), ∀λ > 1.

The term β will be called Sinǎı’s index of ξ. Observe that if Sinǎı’s condition hold we have that
∫ ∞

0

dt

t
P(λz < ξt ≤ z) −→ −β log(λ) as z → +∞ (resp. z → 0+), ∀λ ∈]0, 1[.

Example 1. A Lévy process, ξ, which satisfies Sinǎı’s condition is the strictly stable process
with index 0 < α ≤ 2. Indeed, for every z > 0 and λ > 1 we have by the scaling property of ξ
that

∫ ∞

0

dt

t
P (z < ξt ≤ λz) =

∫ ∞

0

dt

t
P
(
z < t1/αξ1 ≤ λz

)

= E

(
1{ξ1>0}

∫ ∞

0

dt

t
1{(z/ξ1)α<t≤(zλ/ξ1)α}

)

= E
(
1{ξ1>0} log(λα)

)
= αP(ξ1 > 0) log(λ).

Thus any stable process ξ does satisfies Sinǎı’s condition at infinity and at 0 with index αρ,
where ρ is the positivity parameter of ξ, ρ = P(ξ1 ≥ 0).

We recall that a measurable function f : [0,∞[→ [0,∞[ varies regularly at infinity (resp. at
0) with index α ∈ R, f ∈ RV∞α (resp. ∈ RV 0

α ), if for any λ > 0,

lim
f(λx)

f(x)
= λα at ∞ (resp. at 0).

We have all the elements to state our main result, which provides an answer to the questions
above.
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Theorem 2. For β ∈ [0, 1], the following are equivalent

(i) The Lévy process ξ satisfies Sinǎı’s condition at ∞ (resp. at 0) with index β.

(ii) The Laplace exponent of the ladder height subordinator H varies regularly at 0 (resp. at
∞) with index β.

The proof of this result is an easy consequence of a fluctuation identity due to Bertoin and
Doney [3] and Theorem 4 below.

Proof. By the fluctuation identity of Bertoin and Doney we have that for any z > 0, λ > 1,

∫ ∞

0

dt

t
P(z < ξt ≤ λz) =

∫ ∞

0

dt

t
P(z < Ht ≤ λz).

As a consequence, Sinǎı’s condition is satisfied by the Lévy process ξ if and only if it is satisfied
by the ascending ladder height subordinator H. The result then follows from Theorem 4, which
establishes that the Laplace exponent φ of any given subordinator, say σ, varies regularly if
and only if σ satisfies Sinǎı’s condition.

Assuming that the Lévy process ξ satisfies Sinǎı’s condition and applying known results for
subordinators, when its Laplace exponent is regularly varying, we can deduce the behavior at
0 or ∞ of ξ from that of H. (See Bertoin [2] Ch. III for an account on the short and long time
behavior of subordinators.) The following spatial arc-sine law for Lévy processes is an example
of the results that can be obtained.

Corollary 1. For r > 0, denote the first exit time of ξ out of ] − ∞, r] by Tr = inf{t > 0 :
ξt > r}, the undershot and overshot of the supremum of ξ by U(r) = r − STr− and O(r) =
STr

− r = ξTr
− r. For any β ∈ [0, 1], the conditions (i) and (ii) in Theorem 2 are equivalent to

the following conditions:

(iii) The random variables r−1(U(r), O(r)) converge in distribution as r → ∞ (respectively,
as r → 0).

(iv) The random variables r−1O(r) converge in distribution as r → ∞ (respectively, as r → 0).

(v) The random variables r−1STr− converge in distribution as r → ∞ (respectively, as r → 0).

(vi) lim r−1 E (STr−) = β ∈ [0, 1] as r → ∞ (respectively, as r → 0).

In this case, the limit distribution in (iii) is determined as follows: if β = 0 (resp. β = 1), it
is the Dirac mass at (1,∞) (resp. at (0, 0)). For β ∈]0, 1[, it is the distribution with density

pβ(u, w) =
β sin βπ

π
(1 − u)β−1(u + w)−1−β, 0 < u < 1, w > 0.

In particular, the limit law in (v) is the generalized arc-sine law of parameter β.
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Proof. We recall that for every r > 0, the random variables (U(r), O(r)) are almost surely equal
to the undershot and overshoot, (UH(r), OH(r)), of the ladder height subordinator H. Thus the
result is a straightforward consequence of the Dynkin-Lamperti arc-sine law for subordinators,
Theorem III.3.6 in [2], using the elementary relations: for every r > 0

P(UH(r) > y) = P(OH(r − y) > y), r > y > 0,

P(OH(r) > x, UH(r) > y) = P(OH(r − y) > x + y), r > y > 0, x > 0.

We would like to remark that in the case where Sinǎı’s condition hold for ξ with index
β = 1 at ∞ (resp. at 0) we have that r−1ξTr

converges in law to 1 as r → ∞ (resp. to 0).
The almost sure convergence of this random variable was studied by Doney and Maller [7].
Precisely, Theorem 8 of Doney and Maller [7] provide necessary and sufficient conditions, on
the characteristics of ξ, according to which r−1ξTr

converges a.s. to 1 as r → ∞. Moreover,
Theorem 4 in [7] establish that the latter r.v. converge a.s. to 1 as r → 0 if and only if ξ creeps
upward.

To summarize, in Theorem 2 we provided a necessary and sufficient condition in terms of the
marginal laws of ξ which completely answers the questions posed at the beginning of this work.
However, the possible drawback of this result is that in most of the cases we only know the
characteristics of the Lévy process ξ, that is, its linear and Gaussian terms and Lévy measure,
and so it would be suitable to have a condition in terms of the characteristics of the process.
That is the purpose of the second part of this work.

One case at which Sinǎı’s condition can be verified using the characteristics of the process is
the case at which the underlying Lévy process belongs to the domain of attraction at infinity
(respectively, at 0) of a strictly stable law of index 0 < α ≤ 2, and which does not require
a centering function. That is, whenever there exists a deterministic function b :]0,∞[→]0,∞[
such that

ξt

b(t)

D
−→ X(1), as t → ∞ (respectively, as t → 0), (1)

with X(1) a strictly stable random variable of parameter 0 < α ≤ 2. It is well known that if such
a function b exists, it is regularly varying at infinity (respectively, at 0) with index β = 1/α.
Plainly, the convergence in (1) can be determined in terms of the characteristic exponent Ψ of
ξ, i.e. E(eiλξt) = exp{tΨ(λ)}, λ ∈ R, since the latter convergence in distribution is equivalent
to the validity of the limit

lim tΨ

(
λ

b(t)

)
= Ψα(λ), as t → ∞, (respectively, as t → 0 ) for λ ∈ R, (2)

where Ψα is the characteristic exponent of a strictly stable law and is given by

Ψα(λ) =






−c|λ|α (1 − iδsgn(λ) tan(πα/2)) 0 < α < 1 or 1 < α < 2;

−c|λ|α (1 − iδsgn(λ) tan(πα/2) ln(|λ|)) , α = 1;

−q2λ2/2, α = 2;

for λ ∈ R, where c > 0 and the term δ ∈ [−1, 1] is the so called skewness parameter. We have
the following theorem whose proof will be given in Section 3.
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Theorem 3. Let 0 < α ≤ 2 and δ ∈ [−1, 1]. Assume that there exits a function b :]0,∞[→]0,∞[
such that the limit in equation (2) holds as t goes to infinity (resp. as t → 0). Then the Lévy
process ξ satisfies Sinai’s condition at ∞ (respectively, at 0) with index αρ, where ρ is given by
ρ = 1/2 + (πα)−1 arctan(δ tan (απ/2)).

With the aim of providing some other criteria in terms of the characteristics of the underlying
Lévy process ξ to determine whether or not it satisfies Sinǎı’s condition, in Section 4 we will
provide, under some assumptions, some estimates of the Lévy measure of H. Those estimates are
more general than needed and are the Lévy processes version of the results of Veraverbeke [20]
and Grübel [14] for random walks. Furthermore, they are in the same vein as those results
obtained recently by Klüppelberg, Kyprianou and Maller [16], Propositions 5.3 and 5.4.

Using those estimates we will provide some criteria to determine whether or not the Lévy
measure of H is regularly varying. For our ends this will be sufficient because by an Abelian-
Tauberian theorem we know that this determines the regular variation of the Laplace exponent
of H.

The rest of this note is organized as follows. In Section 2, we state and prove an equivalent
form of the Dynkin & Lamperti’s theorem for subordinators (see e.g. [2] Theorem III.6) which
is interesting in itself. In Section 3, we prove Theorem 3. Finally, in Section 4 we provide some
estimates of the Lévy measure of H and we use those estimates to provide some criterions in
terms of the characteristics of the underlying Lévy process ξ to determine whether or not it
satisfies Sinǎı’s condition. Section 4 is self contained and can be read separately from the rest
of the paper.

2 A result for subordinators

Let σ = (σt, t ≥ 0) be a subordinator, possibly killed, with life time ζ, and denote by φ its
Laplace exponent,

φ(λ) ≡ − log E(e−λσ1 , 1 < ζ), λ ≥ 0.

It is well known that the Laplace exponent φ can be represented as

φ(λ) = κ + λd +

∫

]0,∞[

(1 − e−λy)ν(dy), λ ≥ 0,

where κ, d ≥ 0 are the killing rate and drift coefficient of σ, respectively, and ν is the Lévy
measure of σ, that is, a measure on ]0,∞[ such that

∫
]0,∞[

min{1, y}ν(dy) < ∞.

The aim of this section is prove the following equivalent form of the Dynkin & Lamperti’s
theorem for subordinators, see e.g. [2] Theorem III.6.

Theorem 4. For β ∈ [0, 1], the following are equivalent:

(i) The subordinator σ satisfies Sinǎı’s condition at 0+ (resp. at +∞) with index β.

(ii) The Laplace exponent φ is regularly varying at +∞ (resp. at 0+) with index β.
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An account on necessary and sufficient conditions according to which a subordinator has a
Laplace exponent such that φ ∈ RV∞β or φ ∈ RV 0

β can be found in [2] page 82.

The proof of this result relies on the following elementary remark.

Remark 1. Write

φ(θ) = (1 + φ(θ))
φ(θ)

1 + φ(θ)
, θ ≥ 0.

The first (resp. second) factor in the right hand term of the previous equality can be used to
determine the behavior at infinity (resp. at 0) of φ. More precisely, φ ∈ RV ∞β , (resp. ∈ RV 0

β )
if and only

1 + φ(·) ∈ RV ∞β , (resp.
φ(·)

1 + φ(·)
∈ RV 0

β ).

The proof of Theorem 4 will be given using the previous remark and via three lemmas whose
proof will be given at the end of this section. The first of them will enable us to relate the
factors of the latter remark with a transformation of the type Mellin’s convolution.

Lemma 1. We have that

(i) 1 + φ(θ) = exp{Ĝ1(θ)}, for θ > 0; where the function Ĝ1 is the Mellin convolution of the
non-decreasing function

G1(y) =

∫ ∞

0

dt

t
e−t P(σt > 1/y), y > 0,

and the kernel k(x) = xe−x, x > 0; that is,

Ĝ1(θ) = kM ∗ G1(θ) :=

∫ ∞

0

dx

x
k(θ/x)G1(x), θ > 0.

(ii)
φ(θ)

1 + φ(θ)
= exp

{
−Ĝ2(θ)

}
, for θ > 0; where Ĝ2 is the Laplace transform of the measure

G2(dx) =

∫ ∞

0

dt

t
(1 − e−t)P(σt ∈ dx), x > 0;

which is in fact the harmonic renewal measure associated to the law F (dx) = P(σΘ ∈ dx)
with Θ an independent random variable with exponential law of parameter 1.

A consequence of Lemma 1 is that 1 + φ ∈ RV∞β if and only if

lim
θ→∞

Ĝ1(λθ) − Ĝ1(θ) = β log λ, ∀λ > 0. (3)

Moreover, φ(·)/(1 + φ(·)) ∈ RV 0
β if and only if

lim
θ→0

Ĝ2(λθ) − Ĝ2(θ) = −β log λ, ∀λ > 0. (4)

The second of these Lemmas enable us to relate Sinai’s condition with the behavior at infinity
of the differences of the function G1, and those of the function G2(x) ≡ G2[0, x], x > 0.
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Lemma 2. Let β ∈ [0, 1].

(i) Sinǎı’s condition holds at 0 with index β if and only if

lim
z→∞

G1(λz) − G1(z) = β log(λ), ∀λ > 1.

(ii) Let G2(z) := G2[0, z], z > 0. Sinǎı’s condition holds at infinity with index β if and only if

lim
z→∞

G2(λz) − G2(z) = β log(λ), ∀λ > 1.

The last ingredient to achieve the proof of Theorem 4 is an Abelian–Tauberian’s type result
relying the behavior of the differences of G1 (resp. G2) with those of the functions Ĝ1 (resp.

Ĝ2).

Lemma 3. (i) The following are equivalent

lim
y→∞

G1(λy) − G1(y) = β log(λ), ∀λ > 0. (5)

lim
θ→∞

Ĝ1(λθ) − Ĝ1(θ) = β log(λ), ∀λ > 0. (6)

Both imply that
G1(θ) − Ĝ1(θ) −−−→

θ→∞
βγ.

(ii) The following are equivalent

lim
y→∞

G2(λy) − G2(y) = β log(λ), ∀λ > 0. (7)

lim
θ→0

Ĝ2(λθ) − Ĝ2(θ) = −β log(λ), ∀λ > 0. (8)

Both imply that
G2(θ) − Ĝ2(1/θ) −−−→

θ→∞
βγ.

Where γ is Euler’s constant γ =
∫∞
0

e−v log(v)dv.

Tacking for granted Lemmas 1,2 & 3 the proof of Theorem 4 is straightforward.

A consequence of Lemma 3 is that quantities related to Sinǎı’s condition can be used to
determine whether or not σ has a finite expectation or a strictly positive drift. That is the
content of the following corollary.

Corollary 2. (i) Assume that Sinǎı’s condition holds at infinity with index β = 1 and that
the lifetime of σ is infinite. Then σ has a finite mean if and only if

R ≡ lim
θ→∞

log(θ) − G2(θ) < ∞.

In this case E(σ1) = eγ+R.
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(ii) Assume that Sinǎı’s condition holds at 0 with index β = 1. Then σ has a strictly positive
drift d if and only if

R̃ ≡ lim
θ→∞

G1(θ) − log(θ) < ∞.

In this case d = eγ+R̃.

Remark 2. For β ∈]0, 1[, it is well known that φ ∈ RV∞β if and only if the sequence of
subordinators σz defined by (σz

t = zσt/φ(z), t ≥ 0) converge as z → ∞ in the sense of finite
dimensional distributions and in Skorohod’s topology to a stable subordinator σ̃ of parameter
β. This is equivalent to say that for any t > 0

P(1 < zσt/φ(z) ≤ λ) −−−→
z→∞

P(1 < σ̃t ≤ λ), λ > 1, (9)

and
P(λ < zσt/φ(z) ≤ 1) −−−→

z→∞
P(λ < σ̃t ≤ 1), 0 < λ < 1. (10)

On the other hand, Theorem 4 ensures that the latter condition on φ holds if and only if Sinǎı’s
condition holds at 0, which can be written as follows: for any λ > 1

∫ ∞

0

ds

s
P(1 < z−1σs/φ(z−1) ≤ λ) =

∫ ∞

0

dt

t
P(z < σt ≤ λz)

−−→
z→0

β ln(λ)

=

∫ ∞

0

ds

s
P(1 < σ̃s ≤ λ),

(11)

where the first equality is justified by a change of variables s = tφ(z−1) and the last one follows
from the scaling property of the stable subordinator σ̃; and for any 0 < λ < 1

∫ ∞

0

ds

s
P(λ < z−1σs/φ(z−1) ≤ 1) −−→

z→0

∫ ∞

0

ds

s
P(λ < σ̃s ≤ 1), (12)

Putting the pieces together we get that the result in Theorem 4 can be viewed as an equiv-
alence between the convergence of the uni-dimensional laws of σz in (9) & (10) and the con-
vergence of the integrated ones in (11) & (12). An analogous fact can be deduced for the
convergence of σz as z goes to 0 whenever Sinǎı’s condition holds at infinity.

We pass now to the proof of Lemmas 1,2 & 3.

2.1 Proof of Lemmas 1,2 & 3

Proof of (i) in Lemma 1. We have by Frullani’s formula that for every θ > 0

1 + φ(θ) = exp

{∫ ∞

0

dt

t
e−t(1 − e−tφ(θ))

}

= exp

{
θ

∫ ∞

0

dye−θy

∫ ∞

0

dt

t
e−t P(σt > y)

}

= exp{Ĝ1(θ)}.

9



Proof of (ii) in Lemma 1. The equation relating φ and the measure G2 can be obtained using
Frullani’s formula but to prove moreover that this measure is in fact is an harmonic renewal
measure we proceed as follows. Let (ek, k ≥ 1) be a sequence of independent identically dis-
tributed random variables with exponential law of parameter 1 and independents of σ. Put
Θl =

∑l
k=1 ek, l ≥ 1. It was proved by Bertoin and Doney [3] that (σΘl

, l ≥ 1) forms a renewal
process. The harmonic renewal measure associated to (σΘl

, l ≥ 1) is G2(dx). Indeed,

∞∑

l=1

1

l
P(σΘl

∈ dx) =

∞∑

l=1

1

l

∫ ∞

0

dt
tl−1

(l − 1)!
e−t P(σt ∈ dx)

=

∫ ∞

0

dt

t
e−t(et − 1)P(σt ∈ dx) = G2(dx).

Moreover, since the l-convolution of F (dx) = P(σΘ1 ∈ dx) is such that

F ∗l(dx) = P(σΘl
∈ dx)

we have that the Laplace transform F̂ (θ) of F is related to that of G2 by the formula

1 − F̂ (θ) = exp{−Ĝ2(θ)} θ > 0.

Which finish the proof since F̂ (θ) = (1 + φ(θ))−1, for θ > 0.

Proof of (i) in Lemma 2. We can suppose without loss of generality that λ > 1. Given that
∫ ∞

0

dt

t
P(z < σt ≤ λz) =

∫ ∞

0

dt

t
e−t P(z < σt ≤ λz) +

∫ ∞

0

dt

t
(1 − e−t)P(z < σt ≤ λz),

for every z > 0, and

G1(λz) − G1(z) =

∫ ∞

0

dt

t
e−t P(

1

λz
≤ σt <

1

z
), z > 0,

in order to prove (i) in Lemma 2 we only need to check that

lim
z→0

∫ ∞

0

dt

t
(1 − e−t)P(z < σt ≤ λz) = 0, ∀λ > 1.

Indeed, given that for any 0 < z < ∞

∫ 1

0

dt

t
(1 − e−t)P(σt ≤ λz) ≤

∫ 1

0

dt

t
(1 − e−t) < ∞,

we have by the monotone convergence theorem that

∫ 1

0

dt

t
(1 − e−t)P(z < σt ≤ λz) ≤

∫ 1

0

dt

t
(1 − e−t)P(σt ≤ λz) −→ 0, as z → 0, ∀λ > 1.

Furthermore, Theorem IV.7 in [12] enable us to ensure that for any 0 < z < ∞, and 1 < λ,
∫ ∞

1

dt

t
P(σt ≤ λz) < ∞.

10



Thus, proceeding as in the case
∫ 1

0
we obtain that for any λ > 1,

lim
z→0

∫ ∞

1

dt

t
(1 − e−t)P(z < σt ≤ λz) = 0.

Proof of (ii) in Lemma 2. As in the proof of (i) it is enough to prove that

lim
z→∞

∫ ∞

0

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

Indeed, it is straightforward that

lim
z→∞

∫ ∞

1

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

To prove that

lim
z→∞

∫ 1

0

dt

t
e−t P(z < σt ≤ λz) = 0, ∀λ > 1.

we will use the inequality (6) in Lemma 1 of [10] which enable us to ensure that for any u > 0
and z > 0

P(z < σt < ∞) ≤
tφ̃(u)e−κt

1 − e−uz
, with φ̃(u) = du +

∫

]0,∞[

(1 − e−ux)π(dx).

Applying this inequality we get that, for any u, z > 0, and λ > 1,

∫ 1

0

dt

t
e−t P(z < σt ≤ λz) ≤

φ̃(u)

1 − e−uz

∫ 1

0

e−(1+κ)tdt.

Making, first z → ∞ and then u → 0 in the previous inequality, we obtain the estimate

lim
z→∞

∫ 1

0

dt

t
e−nt P(z < σt ≤ λz) ≤ φ̃(0)

∫ 1

0

e−(1+κ)tdt,

valid for any λ > 1. Which in fact ends the proof since φ̃(0) = φ(0) − κ = 0.

Proof of Lemma 3. The equivalence in (ii) of Lemma 3 follows from Theorem 3.9.1 in [4]. The
equivalence in (i) of Lemma 3 is obtained by applying Abelian-Tauberian theorems relying the
behavior of the differences of a non-decreasing function and those of their Mellin transform.
Indeed, to prove that (5) implies (6) we apply an Abelian theorem that appears in [4] Section
4.11.1. To that end we just need to verify that the Mellin transform ǩ of the kernel k is finite
in a set A = {x ∈ C : a ≤ ℜ(x) ≤ b} with a < 0 < b. This is indeed the case since the Mellin
transform of k,

ǩ(x) :=

∫ ∞

0

t−xk(t)
dt

t
=

∫ ∞

0

t−xe−tdt, x ∈ C,

is finite in the strip ℜ(x) < 1. That (6) implies (5) is a direct consequence of a Tauberian
theorem for differences established in [11] Theorem 2.35.

11



Proof of Corollary 2. We will only prove the assertion in (i) of Corollary 2. It is well known
that any subordinator has finite mean if and only if its Laplace exponent is derivable at 0.
Since σ is assumed to have infinite lifetime and the following relations, which are a consequence
of the Lemmas 1,2 & 3,

φ(θ)

θ
∼

φ(θ)

1 + φ(θ)

θ
∼ exp

{
−Ĝ2(θ) − log(θ)

}
∼ exp {γ − G2(1/θ) + log(1/θ)} , as θ → 0,

we have that φ is derivable at 0 if and only if the limit in Corollary 2 (i) holds.

The proof of the assertion in Corollary 2 (ii) uses the fact that σ has a strictly positive drift
if and only if limθ→∞ φ(θ)/θ > 0 and an argument similar to that above.

3 Proof of Theorem 3

Proof of Theorem 3. This proof is a reworking of its analogous for random walks, which was
established by Rogozin [17] Theorem 9. We will prove that under the assumptions of Theorem 3,
for t → ∞ in equation (2), the assertion in Corollary 1 (iv) holds. (The proof of the case t → 0
in equation (2) follows in a similar way and so we omit the proof.) To that end, let (ξr)r>0

be the family of Lévy processes defined by, (ξr(t) = ξrt/b(r), t ≥ 0) for r > 0. The hypothesis
of Theorem 3 is equivalent to the convergence, in the sense of finite dimensional distributions,
of the sequence of Lévy processes ξr to a stable Lévy process X with characteristic exponent
given by the formula (2). By Corollary 3.6 in Jacod–Shiryaev we have that this convergence
holds also in the Skorohod topology and Theorem IV.2.3 in Gihman & Skorohod [12] enable
us to ensure that there is also convergence of the first passage time above the level x and the
overshoot at first passage time above the level x by ξr to the corresponding objects for X. That
is, for any x > 0

τ r
x = inf{t > 0 : ξr(t) > x}, γr

x = ξr(τ r
x) − x,

τx = inf{t > 0 : X(t) > x}, γx = X(τx) − x,

we have that
(τ r

x , γr
x)

D
−−−→
r→∞

(τx, γx).

In particular, for x = 1, we have that τ r
1 = r−1Tb(r) and γr

1 =
(
ξTb(r)

− b(r)
)

/b(r), in the

notation of Corollary 1, and thus that

(
r−1Tb(r),

(
ξTb(r)

− b(r)
)

/b(r)
)

D
−−−→
r→∞

(τ1, γ1).

We will next prove that

(ξTr
− r) /r

D
−−−→
r→∞

γ1,

which implies that the assertion (iv) in Corollary 1 holds. To that end, we introduce the
generalized inverse of b, b←(t) = inf{r > 0 : b(r) > t} for t > 0. Given that b is regularly

12



varying at infinity it is known that b(b←(t)) ∼ t as t → ∞, see e.g. [4] Theorem 1.5.12. Owing
the following relations valid for any ǫ > 0 fixed and small enough,

b(b←(r) − ǫ) ≤ r ≤ b(b←(r)), r > 0,

we have that for any x > 0

P

(
ξTb(b←(r))

b(b←(r))

b(b←(r))

r
≤ x + 1

)
≤ P

(
ξTr

r
≤ x + 1

)

≤ P

(
ξTb(b←(r)−ǫ)

b(b←(r) − ǫ)

b(b←(r) − ǫ)

b(b←(r))

b(b←(r))

r
≤ x + 1

)
.

Making r tend to infinity and using that b(b←(r)− ǫ)/b(b←(r)) → 1 as r → ∞, we get that the
left and right hand sides of the previous inequality tend to P(γ1 + 1 ≤ x + 1) and so that for
any x > 0

P

(
ξTr

− r

r
≤ x

)
−−−→
r→∞

P(γ1 ≤ x).

Furthermore, it is well known that in the case αρ ∈]0, 1[ the law of γ1 is the generalized
arc-sine law with parameter αP(X1 > 0) = αρ, that is

P(γ1 ∈ dx) =
sin(αρπ)

π
x−αρ(1 + x)αρ−1dx, x > 0.

In the case αρ = 0 the random variable γ1 is degenerate at infinity and in the case αρ = 1 it is
degenerate at 0. Thus, in any case the Sinai index of ξ is αρ.

For shake of completeness in the following Lemma we provide necessary and sufficient condi-
tions on the tail behavior of the Lévy measure of ξ in order that the hypotheses of Theorem 3
be satisfied. This result concerns only the case t → ∞ in (i) of Theorem 3 and α ∈]0, 1[. The
triple (a, q2, Π) denotes the characteristics of the Lévy process ξ, that is, its linear and Gaussian
term, a, q and Lévy measure Π and are such that

Ψ(λ) = iaλ −
λ2q2

2
+

∫

R \{0}

(eiλx − 1 − iλx1{|x|<1})Π(dx), λ ∈ R .

By Π
+

and Π
−

we denote the right and left hand tails of the Lévy measure Π respectively, i.e.

Π
+
(x) = Π]x,∞[ and Π

−
(x) = Π] −∞,−x[, for x > 0.

Lemma 4. Let α ∈]0, 1[ and δ ∈ [−1, 1]. The following are equivalent

DA There exits a function b :]0,∞[→]0,∞[ which is regularly varying at infinity with index
β = 1/α and such that the limit in equation (2) holds as t → ∞.

TB The function Π
+
(·) + Π

−
(·) is regularly varying at infinity with index −α and

Π
+
(x)

Π
+
(x) + Π

−
(x)

−→ p,
Π
−
(x)

Π
+
(x) + Π

−
(x)

−→ q, as x → ∞; p + q = 1, p − q = δ.

13



Remark 3. The same result holds true for α ∈]0, 2[ if the Lévy process is assumed to be
symmetric (the proof of Lemma 4 can be easily extended to this case). Furthermore, there
is also an analogue of this result when t → 0 in (i) of Theorem 3 in the cases 1 < α < 2 or
0 < α < 2 and ξ is assumed to be symmetric. Its proof is quite similar to that of Lemma 4, see
e.g. the recent work of De Weert [5].

Proof of Lemma 4. It is plain, that for any t > 0 the function Ψ(t)(λ) := tΨ

(
λ

b(t)

)
is the

characteristic exponent of the infinitely divisible random variable X(t) := ξt/b(t), which by the
hypothesis DA(α) converges to a stable law X(1) whose characteristic exponent is given by
equation (2). The characteristic exponent Ψ(t) can be written as

Ψ(t)(λ) = iλa(t) − λ2(q(t))2/2 +

∫

R \{0}

(
eiλz − 1 − ih(z)

)
Π(t)(dz),

where h(z) = z1{|z|≤1} + z−11{|z|>1} and (a(t), q(t), Π(t)) are given by

a(t) =
ta

b(t)
+

t

b(t)

∫
x1{1<|x|≤b(t)}Π(dx) + tb(t)

∫
x−11{|x|>b(t)}Π(dx),

q(t) = q

(
t

b(t)2

)1/2

, Π(t)(dz) = tΠ(b(t)dz).

According to a well known result on the convergence of infinite divisible laws, see e.g.
Sato [18], the convergence in law of X(t) to X as t → ∞, is equivalent to the convergence
of the triplet (a(t), q(t), Π(t)) to (l, 0, ΠS) as t → ∞, with

ΠS(dx) =
(
c+x−1−α1{x>0} + c−|x|

−1−α1{x<0}

)
dx, c+, c− ∈ R

+,

and

l =
2(c+ − c−)

1 − α2
,

and they are such that for every λ ∈ R

−c|λ|α (1 − iδsgn(λ) tan(πα/2)) =

∫

R \{0}

(eiλx − 1)ΠS(dx)

= il +

∫

R \{0}

(
eiλx − 1 − ih(x)

)
ΠS(dx),

with c > 0 convenably chosen. The term δ in the previous equation is determined by δ =

p − q =
c+ − c−
c+ + c−

.

That the hypotheses on the tail behavior of Π are equivalent to the convergence of Πt to ΠS

is a quite standard fact in the theory of domains of attraction and so we refer to [4] section
8.3.2, for a proof. This implies in particular that for any x > 0,

tΠ
+
(b(t)x) → c+x−α, and tΠ

−
(b(t)x) → c−x

−α, as t → ∞.
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The only technical detail that requires a proof is that a(t) → l as t → ∞. Indeed, under the

conditions (ii) of Theorem 3 and 0 < p < 1 the functions Π
+
(·) and Π

−
(·) are regularly varying

at infinity with index 0 < α < 1, this implies that at/b(t) → 0 as t → ∞. Moreover, it is
justified by making an integration by parts that

∫
x1{1<x≤b(t)}Π(dx) ∼ Π

+
(1) − b(t)Π

+
(b(t)) +

∫ b(t)

1

Π
+
(z)dz

∼ Π
+
(1) − b(t)Π

+
(b(t)) +

b(t)Π
+
(b(t))

1 − α
,

as t → ∞. Multiplying by t/b(t) we get that

t

b(t)

∫
x1{1<x≤b(t)}Π(dx) ∼ −tΠ

+
(b(t)) +

tΠ
+
(b(t))

1 − α
−→ −c+ +

c+

1 − α

as t → ∞. Similarly, it is proved that

t

b(t)

∫
x1{1<−x≤b(t)}Π(dx)−−−→

t→∞
c− −

c−
1 − α

Concerning the term
∫

x−11{|x|>b(t)}Π(dx), an integration by parts and Karamata’s theorem
yield

∫
x−11{x>b(t)}Π(dx) ∼ (b(t))−1Π

+
(b(t)) +

∫ ∞

b(t)

z−2Π
+
(z)dz

∼ (b(t))−1Π
+
(b(t)) +

Π
+
(b(t))

b(t)(1 + α)
,

as t → ∞ and therefore

tb(t)

∫
x−11{x>b(t)}Π(dx) ∼ tΠ

+
(b(t)) +

tΠ
+
(b(t))

1 + α
−→ c+ +

c+

1 + α
.

Analogously, we prove

tb(t)

∫
x−11{x<−b(t)}Π(dx)−−−→

n→∞
−c− −

c−
1 + α

.

Finally, adding up these four terms it follows that

lim
t→∞

a(t) =
c+ − c−
1 − α

+
c+ − c−
1 + α

= l.

The proof that a(t) → l in the case p = 1, respectively p = 0, is quite similar but uses that

Π
−

= o(Π
+
), respectively Π

+
= o(Π

−
).
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4 Some criteria based on the characteristics of ξ

The result obtained in Theorem 2 gives a complete solution to the question posed at the
introduction of this note. Nevertheless, this answer is not completely satisfactory since the
criterion provided by this theorem is not given in terms of the characteristics of ξ. However,
to get a result based on the characteristics of ξ one should be able to control the behavior
of the dual ladder height subordinator Ĥ, that is, the ladder height subordinator of the dual
Lévy process ξ̂ = −ξ. This is due to the fact, showed by Vigon [22], that the Lévy measure of
the ladder height subordinator H is determined by the Lévy measure of ξ and the potential
measure of Ĥ. (See the Lemma 5 below for a precise statement.) With this in mind we will
make some assumptions on the dual ladder height process, that can be verified directly from
the characteristics of ξ, and provide some nasc for the regular variation, at infinity or 0, of the
Laplace exponent of the ladder height subordinator H . To that end we will start by obtaining
some tail estimates of the right tail of the Lévy measure of H which will provide us the necessary
tools to determine whether or not the underlying Lévy process ξ satisfies Sinǎı’s condition. To
tackle this task we will first introduce some notation and recall some known facts.

We will denote by (k0, d, po) (resp. (k̂0, d̂, ne)) the characteristics of the subordinator H

(resp. Ĥ) that is, its killing term, drift and Lévy measure, respectively. Let V̂ be the potential

measure of Ĥ, that is V̂ (dx) = E(
∫∞
0

1{Ĥt∈dx}dt). Furthermore, throughout this section we will

denote by (a, q, Π) the characteristics of the Lévy process ξ. Finally, by the symbols po, ne, Π
+
,

we denote the right tail of the Lévy measures of H, Ĥ and ξ respectively, that is

po(x) = po]x,∞[, ne(x) = ne]x,∞[, Π
+
(x) = Π]x,∞[, x > 0,

and by Π+ the restriction of Π to ]0,∞[, Π+ = Π|]0,∞[.

We recall that the Laplace exponent, ϕ, of H varies regularly at 0 with index α ∈]0, 1[
if and only if the function po is regularly varying at infinity with index −α. Analogously, ϕ
varies regularly at infinity with index α ∈]0, 1[ if and only if the drift coefficient d is zero and
the function po is regularly varying at 0 with index −α. Owing this relations we will restrict
ourselves to study the behavior of the function po.

As we mentioned before, Vigon [22] established some identities “equations amicales” relying
the Lévy measures po, ne and Π; these are quoted below for ease of reference.

Lemma 5 (Vigon [22], Equations amicales). We have the following relations

(EAI) po(x) =

∫ ∞

0

V̂ (dy)Π(x + y), x > 0.

(EA) Π
+
(x) =

∫

]x,∞[

po(dy)ne(y−x)+ d̂p(x)+ k̂0po(x), for any x > 0; where p(x) is the density

of the measure po, which exists if d̂ > 0.

We will assume throughout that the underlying Lévy process is not spectrally negative, that
is Π]0,∞[> 0, since in that case the ladder height process H is simply a drift, Ht = dt, t ≥ 0.
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We will say that a measure M on [0,∞[ belongs to the class L0 of long tailed measures if its
tail M (x) = M ]x,∞[, is such that 0 < M (x) < ∞ for each x > 0 and

lim
x→∞

M (x + t)

M (x)
= 1, for each t ∈ R .

It is well known that this family includes the subexponential measures and the cases at which
M is regularly varying.

In the first results of this section we relate the behavior of Π
+

with that of po at infinity.
These results are close in spirit to those obtained by Klüppelberg, Kyprianou and Maller [16].
In that work the authors assume that the Lévy process ξ drifts to −∞, i.e. limt→∞ ξt = −∞,
P–a.s. and obtain several asymptotic estimates of the function po in terms of the Lévy measure
Π. In our setting we permit any behavior of ξ at the price of making some assumptions on the
dual ladder height subordinator. The following results are the continuous time analogue of the
result of Veraverbeke [20] and Grübel [14] for random walks.

Theorem 5. (a) Assume that the dual ladder height subordinator has a finite mean µ =

E(Ĥ1) < ∞. The following are equivalent

(a-1) The measure Π+
I on [0,∞[ with tail Π

+

I (x) =
∫∞

x
Π

+
(z)dz, x ≥ 0, belongs to L0.

(a-2) po ∈ L0.

(a-3) po(x) ∼
1

µ
Π

+

I (x), as x → ∞.

(b) Assume that the dual ladder height subordinator Ĥ has killing term k̂0 > 0. The following
are equivalent

(b-1) Π+ = Π|]0,∞[ ∈ L0.

(b-2) po ∈ L0,

d̂p(x)

po(x)
−→ 0 and

∫ 1

0

(
po(x) − po(x + y)

po(x)

)
ne(dy) −→ 0, as x → ∞. (13)

(b-3) po(x) ∼
1

k̂0

Π
+
(x), as x → ∞.

As a corollary of the previous Theorem we have the following criterions to determine whether
or not the tail of the Lévy measure of H is regularly varying.

Corollary 3. (a) Under the assumptions of (a) in Theorem 5 and for any α ∈]0, 1] we have

that Π
+
∈ RV ∞−1−α if and only if po ∈ RV ∞−α. Both imply that

po(x) ∼
1

αµ
xΠ

+
(x), x → ∞.
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(b) Under the assumptions of (b) in Theorem 5 and for any α ∈]0, 1[ we have that Π
+
∈ RV ∞−α

if and only if po ∈ RV∞−α and

∫ 1

0

(
po(x) − po(x + y)

po(x)

)
ne(dy) −→ 0, as x → ∞.

Proof. The proof of (a) in Corollary 3 follows from the fact that under these hypotheses

xΠ
+
(x)

∫∞
x

Π
+
(z)dz

−→ α, as x → ∞,

which is a consequence of Theorem 1.5.11 in [4]. The proof of (b) is straightforward.

The behavior at 0 of po was studied by Vigon in [21] Theorems 6.3.1 and 6.3.2. He obtained
several estimations that we will use here to provide an analogue of Theorem 5 for the behavior
at 0 of po. (Those estimates are more general than needed, see the proof of Proposition 1.)

Proposition 1. (a) Assume that Ĥ has a drift d̂ > 0. For any α ∈]0, 1] we have that po ∈

RV 0
−α if and only if Π

+
∈ RV 0

−α−1.

(b) Assume that Ĥ has a drift d̂ = 0 and that the total mass of the measure ne is finite,
equivalently, limx→0+ ne(x) < ∞. Then for any α ∈]0, 1] we have that po ∈ RV 0

−α if

and only if Π
+
∈ RV 0

−α. Moreover, the same assertion holds if furthermore α = 0 and
limx→0+ po(x) = ∞.

Before passing to the proof of Theorem 5 and Proposition 1 we will make some remarks.

Remark 4. The assumptions in Theorem 5 can be verified using only the characteristics of
the underlying Lévy process ξ. According to Doney and Maller [7], necessary and sufficient

conditions on ξ to be such that E(Ĥ1) < ∞, are either 0 < E(−ξ1) ≤ E |ξ1| < ∞ or 0 =
E(−ξ1) < E |ξ1| < ∞ and

∫

[1,∞[

(
xΠ
−
(x)

1 +
∫ x

0
dy
∫∞

y
Π

+
(z)dz

)
dx < ∞ with Π

−
(x) = Π] −∞,−x[, x > 0.

Observe that under such assumptions the Lévy process ξ does not drift to ∞, i.e. lim inft→∞ ξt =
−∞, P–a.s. The case where the Lévy process ξ drift to ∞, limt→∞ ξt = ∞, P–a.s. or equiva-
lently k̂0 > 0 is considered in (b). It was proved by Doney and Maller that ξ drift to ∞ if and
only if

∫

]−∞,−1[

(
|y|

Π
+
(1) +

∫ |y|
1

Π
+
(z)dz

)
Π(dy) < ∞ =

∫ ∞

1

Π
+
(x)dx or 0 < E(ξ1) ≤ E |ξ1| < ∞.

The assumptions in Proposition 1 can be verified using the recent results of Vigon [22] and
[21] Chapter 10.
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Remark 5. The results in Theorem 5 concern only the case at which the underlying Lévy
process does not has exponential moments and so it extends to Lévy processes the Theorem 1-
(B,C) of Veraverbeke [20]. The case at which the Lévy process has exponential moments
has been considered by Klüppelberg et al. [16] Proposition 5.3 under the assumption that the
underlying Lévy process has positive jumps and drifts to −∞, but actually the latter hypothesis
is not used in their proof, and so their result is still true in this more general setting, which
extends Theorem 1-A in [20].

Remark 6. The estimate of po obtained in Theorem 5-a holds whenever the function Π
+

I

belongs to the class L0, but it is known that this can occurs even if Π+ /∈ L0, see e.g. Klüppel-
berg [15]. A question arises: Is it possible to sharpen the estimate of po provided in Theorem 5-
(a) when moreover Π+ ∈ L0? The following result answers this question in affirmatively.

Proposition 2. Assume that µ = E(Ĥ1) < ∞. The following are equivalent

(i) Π+ ∈ L0.

(ii) For any g : R
+ → R

+ directly Riemman integrable,

lim
x→∞

1

Π
+
(x)

∫ ∞

x

po(dy)g(y − x) =
1

µ

∫ ∞

0

g(z)dz.

To our knowledge the discrete time analogue of this result, that we state below, is unknown,
although it can be easily deduced from the arguments in Asmussen et al. [1] Lemma 3. We use
the notation in the introduction of this work.

Proposition 3. Assume that m = E(ZN̂) < ∞, where N̂ = inf{n > 0 : Zn ≤ 0} and that the
law of X1 is non-lattice. The following are equivalent

(i) The law of X1 belongs to the class L0.

(ii) For any g : R
+ → R

+ directly Riemman integrable,

lim
x→∞

1

F (x)

∫ ∞

x

g(y − x)P(ZN ∈ dy) =
1

m

∫ ∞

0

g(z)dz,

where F (x) = P(X1 > x), x > 0.

The proof of this result is quite similar to that of Proposition 2 and so we will omit it.

4.1 Proofs of Theorem 5 and Propositions 1 and 2

Proof of (a) in Theorem 5. To prove that (a-1) is equivalent to (a-2) we will prove that either
of this conditions implies that

po(x) =

∫ ∞

0

Π
+
(x + y)V̂ (dy) ∼

1

µ

∫ ∞

x

Π
+
(z)dz, as x → ∞, (14)
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with µ := E(Ĥ1), from where the result follows. (Observe that the assumption that Ĥ has a

finite mean implies that
∫∞

Π
+
(z)dz < ∞.)

Assume that (a-1) holds. Indeed, by the renewal theorem for subordinators we have that for
any h > 0,

lim
t→∞

V̂ ]t, t + h] =
h

µ
.

Thus, for any h > 0 given and any ǫ > 0 there exists a t0(h, ǫ) > 0 such that

(1 − ǫ)
h

µ
< V̂ ]t, t + h] < (1 + ǫ)

h

µ
, ∀t > t0,

and as a consequence, if N0 is an integer such that N0h > t0, we have the following inequalities

∫ ∞

0

Π
+
(x + y)V̂ (dy) ≤ Π

+
(x)V̂ [0, N0h] +

∞∑

k=N0

Π
+
(kh + x)V̂ ]kh, kh + h]

≤ Π
+
(x)V̂ [0, N0h] + (1 + ǫ)

∞∑

k=N0

Π
+
(kh + x)

h

µ

≤ Π
+
(x)V̂ [0, N0h] +

(1 + ǫ)

µ

∫ ∞

(N0−1)h

Π
+
(x + z)dz

≤ Π
+
(x)V̂ [0, N0h] +

(1 + ǫ)

µ

∫ ∞

x

Π
+
(z)dz.

It follows from the previous inequalities and the fact that

Π
+
(x)/

∫ ∞

x

Π
+
(z)dz −→ 0, as x → ∞,

since Π
+

I ∈ L0 and Π
+

is decreasing, that

lim sup
x→∞

∫∞
0

Π
+
(x + y)V̂ (dy)

1
µ

∫∞
x

Π
+
(z)dz

≤ 1.

Analogously, we prove that
∫ ∞

0

Π
+
(x + y)V̂ (dy) ≥

(1 − ǫ)

µ

∫ ∞

x

Π
+
(z)dz −

(1 − ǫ)

µ
Π

+
(x)(N0 + 1)h, x > 0.

Therefore,

lim inf
x→∞

∫∞
0

Π
+
(x + y)V̂ (dy)

1
µ

∫∞
x

Π
+
(z)dz

≥ 1.

Which ends the proof of the claim (14).

We assume now that (a-2) holds and we will prove that the estimate in (14) holds. On the
one hand, we know that for every z > 0

Π
+
(z) =

∫ ∞

z

po(dy)ne(y − z) + d̂p(z),
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since k̂0 = 0, because under our assumptions the Lévy process does not drift to ∞. Integrating
this relation between x and ∞ and using Fubini’s theorem we obtain that for any x > 0

∫ ∞

x

dzΠ
+
(z) =

∫ ∞

x

po(dy)

∫ y−x

0

dzne(z) + d̂po(x)

≤ po(x)

(∫ ∞

0

dzne(z) + d̂

)

= po(x)µ < ∞.

Thus,

lim sup
x→∞

1
µ

∫∞
x

dzΠ
+
(z)

po(x)
≤ 1.

On the other hand, to prove that

lim inf
x→∞

1
µ

∫∞
x

dzΠ
+
(z)

po(x)
≥ 1,

we will use an argument based on some facts of renewal theory. To that end we recall that
it was proved by Bertoin and Doney [3] that the potential measure of a subordinator Ĥ is

the delayed renewal measure associated to the law F (x) = P(Ĥϑ ≤ x) with ϑ an exponential

random variable independent of Ĥ, that is

V̂ (dy) =
∞∑

n=1

F ∗n(dy).

We have by hypothesis that
∫∞
0

(1−F (x))dx = E(Ĥ1) = µ < ∞ and thus the measure G̃F (dy)
on ]0,∞[, with density GF (z) := (1 − F (z))/µ, z > 0 is a probability measure. By standard
facts of renewal theory we know that the following equality between measures holds

dy

µ
= G̃F (dy) + G̃F ∗ V̂ (dy), y > 0,

where ∗ denotes the standard convolution between measures. Using this identity and the
equation (EAI) we have that for any x > 0,

1

µ

∫ ∞

0

dyΠ
+
(x + y) =

∫ ∞

0

dyGF (y)Π
+
(x + y) +

∫ ∞

0

dzGF (z)

∫ ∞

0

V̂ (dr)Π
+
(x + z + r)

=

∫ ∞

0

dyGF (y)Π
+
(x + y) +

∫ ∞

0

dzGF (z)po(x + z),

and by Fatou’s lemma we get that

lim inf
x→∞

1
µ

∫∞
0

dyΠ
+
(x + y)

po(x)
≥

∫ ∞

0

dzGF (z) lim inf
x→∞

po(x + z)

po(x)
= 1.
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So we have proved that (a-1) and (a-2) are equivalent and imply (a-3). To finish the proof,
we will prove that (a-3) implies (a-2). To that end it suffices with proving that

lim
x→∞

po(x) − po(x + y)

po(x)
= 0, for any y > 0.

Indeed, using the equation (EA) we have that for any y > 0,

µ −

∫∞
0

dzΠ
+
(z + x)

po(x)
=

∫∞
0

dzne(z)po(x) + d̂po(x) −
∫∞

x
po(dy)

∫ y−x

0
dzne(z) − d̂po(x)

po(x)

=

∫ ∞

0

dzne(z)
po(x) − po(x + z)

po(x)

≥

∫ ∞

y

dzne(z)
po(x) − po(x + y)

po(x)
≥ 0.

and the assertion follows making x → ∞ in the latter equation since by assumption its left
hand term tends to 0 as x → ∞.

Proof of (b) in Theorem 5. The assumption that k̂0 > 0, implies that the renewal measure

V̂ (dy) is a finite measure and V̂ [0,∞[= 1/k̂0. Thus if Π
+
(x) ∈ L0 we have by the equation

(EA) and the dominated convergence theorem that

lim
x→∞

po(x)

Π
+
(x)

= lim
x→∞

∫ ∞

0

V̂ (dy)
Π

+
(x + y)

Π
+
(x)

=

∫ ∞

0

V̂ (dy) lim
x→∞

Π
+
(x + y)

Π
+
(x)

=
1

k̂0

.

Now, that (13) holds is a straightforward consequence of the following identity, for any x > 0

Π
+
(x) =

∫ ∞

0

ne(dy) (po(x) − po(x + y)) + k̂0po(x) + d̂p(x)

= po(x)

∫ 1

0

ne(dy)

(
po(x) − po(x + y)

po(x)

)
+

∫ ∞

1

ne(dy) (po(x) − po(x + y))

+ k̂0po(x) + d̂p(x),

(15)

which is obtained using the equation (EAI) and Fubini’s theorem. We have so proved that
(b-1) implies (b-2) and (b-3). Next, to prove that (b-2) implies (b-1) and (b-3) we assume that
po ∈ L0 and (13) holds. Under this assumptions we claim that

Π
+
(x) ∼ k̂0po(x) + d̂p(x) as x → ∞.

Indeed, this can be deduced from equation (15), using that
∫ 0

−∞
ne(dy) min{|y|, 1} < ∞, that

limx→∞ po(x + y)/po(x) = 1 for any y > 0, and the dominated convergence theorem. Further-

more, we have by hypothesis that d̂p(x)/po(x) → 0 as x → ∞, which implies that

Π
+
(x) ∼ k̂0po(x) as x → ∞.
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To finish we next prove that (b-3) implies (b-2). Indeed, using the equation (EAI) and the
hypothesis (b-3) we get that

Π
+
(x)

po(x)
− k̂0 =

∫∞
x

po(dz)ne(z − x) + d̂p(x)

po(x)

=

∫ ∞

0

ne(dz)
(po(x) − po(x + z))

po(x)
+

d̂p(x)

po(x)
−→ 0 as x → ∞.

We deduce therefrom that (13) holds and that po ∈ L0 since for any y > 0,

∫ ∞

0

ne(dz)

(
po(x) − po(x + z)

po(x)

)
≥ ne(y)

(
po(x) − po(x + y)

po(x)

)
≥ 0.

Proof of (a) in Proposition 1. According to Theorem 6.3.2 in [21] under these assumptions the

measure po has infinite total mass if and only if limx→0+

∫ 1

x
Π

+
(z)dz = ∞ and in this case

po(x) ∼
1

d̂

∫ 1

x

Π
+
(z)dz, as x → 0 + .

Thus the assertion in (a) Proposition 1 is a consequence of this fact and the monotone density
theorem for regularly varying functions.

Proof of (b) in Proposition 1. According to Theorem 6.3.1 in [21] under these assumptions, if
we suppose limx→0+ po(x) = ∞, then

po(x) ∼
1

ne]0,∞[+k̂0

Π
+
(x), as x → 0 + .

The result follows.

4.2 Proof of Proposition 2

Sketch of proof of Proposition 2. The proof of the assertion (i) implies (ii) is a reworking of
the proof of Lemma 3 in Asmussen et al. [1], this can be done in our setting since the only
hypothesis needed in that proof is that the dual ladder height has a finite mean.

To show that (i) implies (ii) in Proposition 2 we first prove that under the assumption

E(Ĥ1) = µ < ∞, the condition Π
+
∈ L0, implies that for any z > 0,

(BRT)

po]x, x + z[∼
z

µ
Π

+
(x), x → ∞.
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The latter estimate and the fact that Π+ ∈ L0 implies that for any a ≥ 0,

po]x + a, x + a + z[∼
z

µ
Π

+
(x), x → ∞. (16)

To prove that (BRT) holds, we may simply repeat the argument in the proof of Lemma 3 in
Asmussen et al. [1] using instead of the equation (12) therein, the equation

po]x, x + z[=

∫ ∞

x

Π(dy)V̂ ]y − x − z, y − x[, z > 0,

which is an elementary consequence of equation (EAI) and Fubini’s theorem.

The result in (ii) in Proposition 2 follows from (BRT) in the same way that the Key renewal
theorem is obtained from Blackwell’s renewal theorem using the estimate in (16) and the bounds

po]x, x + z[

Π
+
(x)

≤ V̂ (z), x > 0, z > 0,

which are a simple consequence of the former equation and the fact that V̂ is a renewal measure
and so that for any 0 < z < y, V̂ (y) − V̂ (y − z) ≤ V̂ (z).

To show that (ii) implies (i) we have to verify that for any a > 0

lim
x→∞

Π
+
(x + a)

Π
+
(x)

= 1.

This is indeed true since using (ii) in Proposition 2 it is straightforward that for any z > 0
the assertion in (BRT) holds and a further application of (ii) in Proposition 2 to the function
ga(·) = 1{]a,a+1[}(·), a > 0, gives that for any a > 0,

lim
x→∞

po]x + a, x + a + 1[

Π(x)
=

1

µ
,

and therefore, for any a > 0,

lim
x→∞

Π
+
(x + a)

Π
+
(x)

= lim
x→∞

Π
+
(x + a)

po]x + a, x + a + 1[

po]x + a, x + a + 1[

Π
+
(x)

= 1.
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