
HAL Id: hal-00004959
https://hal.science/hal-00004959

Preprint submitted on 24 May 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concentration for independent random variables with
heavy tails

Franck Barthe, Patrick Cattiaux, Cyril Roberto

To cite this version:
Franck Barthe, Patrick Cattiaux, Cyril Roberto. Concentration for independent random variables
with heavy tails. 2005. �hal-00004959�

https://hal.science/hal-00004959
https://hal.archives-ouvertes.fr


cc
sd

-0
00

04
95

9,
 v

er
si

on
 1

 -
 2

4 
M

ay
 2

00
5

Concentration for independent random variables

with heavy tails

F. Barthe, P. Cattiaux and C. Roberto

May 24, 2005

Abstract

If a random variable is not exponentially integrable, it is known that

no concentration inequality holds for an infinite sequence of independent

copies. Under mild conditions, we establish concentration inequalities for

finite sequences of n independent copies, with good dependence in n.

1 Introduction

This paper continues the study of the concentration of measure phenomenon for
product probability measures. A detailed account of this topic and its applica-
tions is given in [11]. Let us recall an important method for this problem: if µ
(say on R

d) satisfies a spectral gap (or Poincaré) inequality

Varµ(f) ≤ C

∫

|∇f |2dµ, for all locally Lipschitz f : R
d → R,

then Lipschitz functions are exponentially concentrated [8, 7]. More precisely
every 1-Lipschitz function F in the Euclidean distance, with median mF , satis-
fies µ(|F −mF | > t) ≤ 6 exp(−t/(2

√
C)) for t > 0. Since the Poincaré inequality

has the so-called tensorisation property, the same property holds for µn for all
n ≥ 1. Similarly, the logarithmic Sobolev inequality (see e.g. [10]) yields dimen-
sion free Gaussian concentration, whereas recent inequalities devised by Lata la
and Oleszkiewicz [9] provide intermediate rates, see also [4, 15, 3]. Note that
these results only concern distributions with exponential or faster decay. This
was explained by Talagrand [14]. Together with his famous result for products
of exponential laws he observed the following: if µ is a probability measure on R

such that there exist h > 0 and ε1/2 > 0 such that for all n ≥ 1 and all A ⊂ R
n

with µn(A) ≥ 1
2 , one has

µn(A + [−h, h]n) ≥ 1

2
+ ε1/2

then µ has exponential tails, that is there exist positive constants C1, C2 such
that µ([x, +∞)) ≤ C1e

−C2x, x ∈ R. A similar property for all p ∈ (0, 1) instead
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of just p = 1/2 implies that µ is the image of the symmetric exponential law by
a map with finite modulus of continuity, as Bobkov and Houdré proved [5].

Thus when the tails of µ do not decay exponentially fast, there is no hope
for dimension free concentration. This paper provides positive results in this
case by investigating the size of enlargement hn necessary to ensure a rise of
the measure in dimension n. We study the more natural and also more difficult
notion of Euclidean enlargement, and estimate hn such that µn(A) ≥ 1/2 implies
µn(A + hnBn

2 ) ≥ 1
2 + ε, where Bn

2 is the Euclidean unit ball. By the above
results we know that hn has to tend to infinity as the dimension n increases.
This question can be reformulated in terms of functions: we are looking for hn

such that for all n and all 1-Lipschitz functions F : R
n → R with median mF ,

one has µn(F − mF > hn) ≤ 1
2 − ε.

We work in the setting of a Riemannian manifold (M, g) with a Borel prob-
ability measure which is absolutely continuous with respect to the volume mea-
sure. Our approach is based on the weak spectral gap inequality introduced by
Röckner and Wang [12]. In this remarkable paper, these authors provide sev-
eral necessary conditions for a measure to satisfy such a property, consequences
for the corresponding semi-group and isoperimetric inequalities (see also [1, 16]
for other developments). Our results complete and sharpen some of theirs. In
Section 2 we give a characterization of measures on the real line with a weak
spectral gap inequality. Section 3 shows that this functional inequality has a
defective tensorisation property. We deduce isoperimetric and concentration in-
equalities for products in Sections 4 and 5. We illustrate our results with the
examples of the power laws α(1 + |t|)−1−αdt/2 for α > 0 and the exponential
type laws exp(−|t|p)dt/(2Γ(1 + 1/p)) for p ∈ (0, 1). The latter should be of
importance in the study of p-convex sets, as their analogues for p ≥ 1 were in
convex geometry (see e.g. [13]). We discuss our concentration consequences of
the weak Poincaré inequality, in comparison with the ones of the recent article
[16]. Our results are stronger, but the argument of Wang and Zhang can be
improved in order to recover ours, and actually a slightly better though less
explicit bound. The final section illustrates our method on a wide family of
measures extending the laws cp exp(−|t|p)dt, p ∈ (0, 1).

Let µ be an absolutely continuous probability measure on a Riemannian
manifold M . The modulus of gradient of a locally Lipschitz function f : M → R

can be defined as a whole by

|∇f |(x) = lim sup
y→x

|f(x) − f(y)|
d(x, y)

where d is the geodesic distance. Following Röckner and Wang, we say µ satisfies
a weak Poincaré inequality if there exists a function β : (0, +∞) → R

+ such that
every locally Lipschitz function f : M → R satisfies for all s > 0 the inequality

Varµ(f) ≤ β(s)

∫

|∇f |2dµ + sOsc(f)2.
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Here Osc(f) = sup f − inf f is the total oscillation of the function f . The
above mentioned authors used instead the quantity ‖f −

∫

f dµ‖∞. When this
L∞ essential supremum norm is with respect to the volume measure, the two
quantities are the same up to a factor 2. We shall assume as we may, that β
is non-increasing. Since Varµ(f) ≤ Osc(f)2/4, the inequality is trivial when
s ≥ 1/4. In other words, one may set β(s) = 0 for s ≥ 1/4. The real content of
the inequality is when s is close to 0. If lims→0 β(s) = b, b > 0 then the measure
satisfies a classical Poincaré or spectral gap inequality. Otherwise the speed of
convergence to +∞ is of great interest.

2 A measure-capacity criterion

This section provides an equivalent form of the weak Poincaré inequality, in
terms of a comparison between capacity of sets and their measure. This point
of view was put forward in [3] in order to give a natural unified presentation of
the many functional inequalities appearing in the field. In dimension 1 this leads
to a very effective necessary and sufficient condition for a measure to satisfy such
an inequality, with a precise estimate of the function β. This completes the work
by Röckner and Wang where several necessary conditions were provided.

In the following, 1S denotes the characteristic function of a set S, and f|S
is the restriction of the function f to the set S. Given measurable sets A ⊂ Ω,
the capacity Capµ(A, Ω), is defined as

Capµ(A, Ω) = inf

{
∫

|∇f |2dµ; f|A ≥ 1, f|Ωc = 0

}

= inf

{
∫

|∇f |2dµ; 1A ≤ f ≤ 1Ω

}

,

where the infimum is over locally Lipschitz functions. The latter equality follows
from an easy truncation argument, reducing to functions with values in [0, 1].
Finally we defined in [4] the capacity of A with respect to µ when µ(A) < 1/2
as

Capµ(A) := inf{Cap(A, Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}.

Theorem 1. Assume that for every f : M → R and every s ∈ (0, 1/4) one has

Varµ(f) ≤ β(s)

∫

|∇f |2dµ + sOsc(f)2.

Then for every measurable A ⊂ M with µ(A) < 1/2, one has

Capµ(A) ≥ µ(A)

4β(µ(A)/4)
·

Proof. We start with assuming the weak Poincaré inequality. Let A ⊂ Ω, where
µ(Ω) ≤ 1/2. Let f be a locally Lipschitz function satisfying 1A ≤ f ≤ 1Ω. By
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Cauchy-Schwarz inequality,

(
∫

f dµ

)2

=

(
∫

f1Ω dµ

)2

≤ µ(Ω)

∫

f2dµ.

Therefore Varµ(f) ≥ µ(Ωc)
∫

f2dµ ≥
∫

f2dµ/2. Since the oscillation of f is at
most 1, the weak Poincaré inequality yields for s ∈ (0, 1/4)

1

2
µ(A) ≤ 1

2

∫

f2dµ ≤ β(s)

∫

|∇f |2dµ + s.

This is valid for arbitrary f with 1A ≤ f ≤ 1Ω. Hence we get

1

2
µ(A) ≤ β(s) Capµ(A, Ω) + s.

Taking the infimum over sets Ω with measure at most 1/2 and containing A, we
obtain for any s ∈ (0, 1/4)

1

β(s)

(

µ(A)

2
− s

)

+

≤ Capµ(A).

Note that as a function of µ(A) the above lower bound vanishes before 2s and
then increases with slope 1/(2β(s)). Taking supremum over s yields general
lower bounds of the capacity by convex functions of the measure, vanishing at
0. More precisely we arrived at Capµ(A) ≥ β̃(µ(A)), where for a ∈ (0, 1/2),

β̃(a) = sup
s∈(0,1/4)

( a
2 − s

β(s)

)

+

= sup
s∈(0,a/2)

a
2 − s

β(s)
·

Note that
a

4β(a/4)
≤ β̃(a) ≤ a

2β(a/2)
,

where the lower bound corresponds to the choice s = a/4 and the upper bound
relies on the non-increasing property of β. When this function satisfies a dou-
bling condition (β(2x) ≥ cβ(x)) then the above bounds are the same up to a
multiplicative constant.

Theorem 2. Assume that γ is a non-increasing positive function on (0, 1/2).
If every measurable A ⊂ M with µ(A) ≤ 1/2 verifies

Capµ(A) ≥ µ(A)

γ(µ(A))
,

then for every locally Lipschitz function f and every s ∈ (0, 1/4) one has

Varµ(f) ≤ 12γ(s)

∫

|∇f |2dµ + sOsc(f)2.
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Proof. Fix s ≤ 1/4. Let m be a median of f under µ. Denote Ω+ = {f > m}
and Ω− = {f < m}. Then

Varµ(f) ≤
∫

(f − m)2dµ =

∫

Ω+

(f − m)2dµ +

∫

Ω−

(f − m)2dµ.

We work separately on each of the latter two integrals. Consider g = (f − m)+
as a function defined on Ω+. Let c = inf{t ≥ 0; µ(g2 > t) ≤ s}. If c = 0 then
µ(g > 0) ≤ s and

∫

Ω+
g2dµ ≤ s max g2 and we are done for this half of space.

Otherwise µ(g2 > c) ≤ s and µ(g2 ≥ c) ≥ s. By our structural hypothesis of a
Riemannian manifold with an absolutely continuous measure we can find a set
Ω0 with {g2 > c} ⊂ Ω0 ⊂ {g2 ≥ c} and µ(Ω0) = s. Let ρ > 1. For k < 0 and
integer, define Ωk = {g2 ≥ cρk}. Then

∫

Ω+

g2dµ =

∫

Ω0

g2dµ +
∑

k<0

∫

Ωk\Ωk+1

g2dµ

≤ s sup(f − m)2+ +
∑

k<0

cρk+1
(

µ(Ωk) − µ(Ωk+1)
)

The second term is dealt with by Abel summation:
∑

k<0

ρk+1
(

µ(Ωk) − µ(Ωk+1)
)

= (ρ − 1)
∑

k<0

ρk
(

µ(Ωk) − µ(Ω0)
)

Hence,
∫

Ω+

g2dµ ≤ s sup(f − m)2+ +
∑

k<0

c(ρ − 1)ρk(µ(Ωk) − s).

In order to use our hypothesis, note that it implies that for every A with measure
at most 1/2, one has Capµ(A) ≥ (µ(A) − s)/γ(s). Indeed this is obvious if
s ≥ µ(A), whereas if s ≤ µ(A), Capµ(A) ≥ µ(A)/γ(µ(A)) ≥ (µ(A)− s)/γ(s) by
the monotonicity of γ. Thus choosing

gk = min

(

1,

(

g −
√

cρk−1

√

cρk −
√

cρk−1

)

+

)

,

we have

µ(Ωk) − s ≤ γ(s)Capµ(Ωk) ≤ γ(s)

∫

|∇gk|2dµ

≤ γ(s)

∫

Ωk−1\Ωk

|∇g|2
cρk−1(

√
ρ − 1)2

dµ.

Summing upon k < 0 we obtain
∫

Ω+

g2dµ ≤ s sup(f − m)2+ + γ(s)
ρ(ρ − 1)

(
√

ρ − 1)2

∑

k<0

∫

Ωk−1\Ωk

|∇g|2dµ

≤ γ(s)ρ

√
ρ + 1

√
ρ − 1

∫

Ω+

|∇f |2dµ + s sup(f − m)2+.
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Summing up with a similar estimate for Ω− and optimizing on ρ gives a slightly
better estimate than the claimed one.

Theorem 3. Let µ be a probability measure on R. Assume that it is absolutely

continuous with respect to Lebesgue measure and denote by ρµ its density. Let

m be a median of µ. Let β : (0, 1/2) → R
+ be non-increasing. Let C be the

optimal constant such that for all f : R → R and s ∈ (0, 1/4),

Varµ(f) ≤ Cβ(s)

∫

|∇f |2dµ + sOsc(f)2.

Then 1
4 max(b−, b+) ≤ C ≤ 12 max(B−, B+), where

b+ = sup
x>m

µ([x, +∞))
1

β(µ([x, +∞))/4)

∫ x

m

1

ρµ

b− = sup
x<m

µ((−∞, x])
1

β(µ((−∞, x])/4)

∫ m

x

1

ρµ

B+ = sup
x>m

µ([x, +∞))
1

β(µ([x, +∞)))

∫ x

m

1

ρµ

B− = sup
x<m

µ((−∞, x])
1

β(µ((−∞, x]))

∫ m

x

1

ρµ
·

Proof. We start with the lower bound on C. We have seen that the weak
spectral gap inequality ensures that for all Ω with µ(A) ≤ 1/2 and A ⊂ Ω,
one has Capµ(A, Ω) ≥ µ(A)/(4Cβ(µ(A)/4)). Let x > m and apply this in-
equality with A = [x, +∞) and Ω = (m, +∞). It is easy to check that
Capµ([x, +∞), (m, +∞)) = 1/

∫ x

m 1/ρµ. This yields C ≥ b+/4. A similar argu-
ment on the other side of the median m also gives C ≥ b−/4.

For the upper bound, we follow the argument of the proof of Theorem 2 with
some modification. We start with writing that

Varµ(f) ≤
∫ +∞

m

|f − f(m)|2dµ +

∫ m

−∞

|f − f(m)|2dµ.

We work separately on the right and on the left of m. We explain only for the
right side; the left one is similar. To proceed the argument in the same way we
need to check that any A ⊂ (m, +∞) verifies

Capµ(A, (m, +∞)) ≥ µ(A)

B+ β(µ(A))
.

By hypothesis the above inequality holds when A = [x, +∞). It follows that it is
valid for general A. Indeed, for any A ⊂ (m, +∞) one has Capµ(A, (m, +∞)) =
Capµ([inf A, +∞), (m, +∞)). Since µ(A) ≤ µ([inf A, +∞)) and t 7→ t/β(t) is
non-decreasing the above inequality for half-lines implies it for general sets.
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Corollary 4. Let dµ(x) = e−Φ(x)dx, x ∈ R be a probability measure. Let

ε ∈ (0, 1). Assume that there exists an interval I = (x0, x1) containing a median

m of µ such that |Φ| is bounded on I, and Φ is twice differentiable outside I
with

Φ′(x) 6= 0 and
|Φ′′(x)|
Φ′(x)2

≤ 1 − ε, x 6∈ I.

Let β be a decreasing function on (0, 1/2). Assume that there exists c > 0 such

that for all x 6∈ I one has

β

(

e−Φ(x)

ε|Φ′(x)|

)

≥ c

Φ′(x)2
.

Then µ satisfies a weak Poincaré inequality with function Cβ for some constant

C > 0.

Proof. We evaluate the quantity B+ in the above theorem. The study of B− is
similar. For x ≥ x1, we have

(

eΦ

Φ′

)′

(x) = eΦ(x)

(

1 − Φ′′(x)

Φ′(x)2

)

≥ εeΦ(x).

Therefore by integration

∫ x

m

eΦ ≤
∫ x1

m

eΦ +

∫ x

x1

eΦ ≤ (x1 − m)eM +
1

ε

(

eΦ(x)

Φ′(x)
− eΦ(x1)

Φ′(x1)

)

,

where M = sup{|Φ(x)|; x ∈ I}. Similar calculations give

(2 − ε)e−Φ(x) ≥
(

−e−Φ

Φ′

)′

(x) ≥ εe−Φ(x).

Note that lim+∞ e−Φ/Φ′ = 0. Indeed this quantity is positive, since Φ′ cannot
change sign, and decreasing by the above bound. The limit has to be zero
otherwise e−Φ(x) would behave as c/x and would not be integrable. We obtain
by integration for x ≥ x1,

µ([x, +∞)) ≤ e−Φ(x)

εΦ′(x)
≤ 2 − ε

ε
µ([x, +∞)).

Combining these bounds on
∫ x

m eΦ and µ([x, +∞)) it is not hard to show that
B+ is finite.

Example 1. For α > 0, the measure dmα(t) = α(1 + |t|)−1−αdt/2, t ∈ R sat-
isfies the weak spectral gap inequality with β(s) = cαs−2/α. This was proved
differently in [12], our next result improve on theirs.

Example 2. For p ∈ (0, 1), the measure dνp(t) = e−|t|p/(2Γ(1 + 1/p)), t ∈ R

satisfies the inequality with β(s) = dp log(2/s)
2
p−2.
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Remark 3. In the above examples, the functions β are best possible up to a
multiplicative constant (we could write an analogue of the previous corollary,
providing a necessary condition for a weak Poincaré inequality to hold with β,
with a similar proof). Since these functions β satisfy the doubling condition,
our theorem describes all real measures enjoying the same functional inequality.

3 Tensorisation

It is classical that the Poincaré inequality enjoys the tensorisation property.
When β has infinite limit at 0, the weak spectral gap inequality does not
tensorise. We shall give geometric evidence for this in the section related to
isoperimetry. However if µ satisfies the inequality with a function β, then µn

satisfies a weak spectral gap inequality with a worse function.

Theorem 5. Assume that for every f : M → R and every s ∈ (0, 1/4) one has

Varµ(f) ≤ β(s)

∫

|∇f |2dµ + sOsc(f)2.

Let n ≥ 1. Then for every f : Mn → R and every s ∈ (0, 1/4) one has

Varµn(f) ≤ β
( s

n

)

∫

|∇f |2dµn + sOsc(f)2.

Proof. By the sub-additivity property of the variance,

Varµn (f) ≤
n
∑

i=1

∫

Varµ

(

yi 7→ f(x1, . . . , xi−1, yi, xi+1, . . . , xn)
)

∏

j 6=i

dµ(xj).

For each i the inner variance is at most

β(s)

∫

|∇if |2(x1, . . . , yi, . . . , xn)dµ(yi) + sOsc
(

yi 7→ f(x1, . . . , yi, . . . , xn)
)2

.

The latter oscillation is less than or equal to Osc(f). Summing up we arrive at

Varµn(f) ≤ β(s)

∫

|∇f |2dµn + nsOsc(f)2,

for all s ∈ (0, 1/4).

4 Isoperimetric inequalities

For h > 0 we denote the h-enlargement of a set A ⊂ M in the geodesic distance
by Ah. The boundary measure in the sense of µ is by definition

µs(∂A) = lim inf
h→0

µ(Ah \ A)

h
.
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The isoperimetric function encodes the minimal boundary measure of sets of
prescribed measures:

Iµ(a) = inf{µs(∂A); µ(A) = a}, a ∈ [0, 1].

It was shown by Röckner and Wang that in the diffusion case, a weak spec-
tral gap inequality for µ implies an isoperimetric inequality. We state here a
consequence of their results.

Theorem 6 ([12]). Let µ be a probability measure on (M, g), with density

e−V with respect to the volume measure. Assume that V is C2 and such that

Ricci+∇∇V ≥ Rg for some R ≤ 0. If µ satisfies a weak spectral gap inequality

with function β, with β(1/8) ≥ ε > 0, then for every measurable A ⊂ M ,

µs(∂A) ≥ c(ε, R)
p

β(p/2)
,

where p = µ(A)(1 − µ(A)) ≥ min(µ(A), µ(Ac))/2.

Remark 4. Comparing with a result of Röckner and Wang, showing that an
isoperimetric inequality implies a weak spectral gap inequality, one notices that√

β is expected in the denominator (in the method, this loss comes from the
necessity to estimate the underlying semi-group for large time instead of small
time).

Corollary 7. Under the hypothesis of the above theorem, the following isoperi-

metric inequality holds for all n ≥ 1. For all A ⊂ Mn, one has

µn
s (∂A) ≥ c(ε, R)

p

β(p/(2n))
,

where p = µn(A)(1 − µn(A)).

Proof. The tensorisation result of the previous section provides a weak spectral
gap inequality for µn with function β(s/n). The latter theorem then applies.
Note that the differential hypothesis on the density of µ remains valid for µn.
We also used β(1/(8n)) ≥ β(1/8) ≥ ε.

In the non-trivial cases when lim0 β = +∞ the above lower bound of Iµn

tends to zero as n increases. This has to be, as the following consideration
of product sets shows. We shall assume that Iµ(t) = Iµ(1 − t) for all t (this
is very natural, since regular sets have the same boundary measure as their
complement). First note that for all n ≥ 1, h > 0 and A ⊂ M one has
(An)h ⊂ (Ah)n, where An ⊂ Mn is the cartesian product of n copies of A.
Combining this with the definition of the boundary measure yields

µn
s (∂(An)) ≤ nµ(A)n−1µs(∂A).
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Taking infimum on A with prescribed measure, we get Iµn (an) ≤ nan−1Iµ(a)
for all a ∈ (0, 1). Thus for any fixed t ∈ (0, 1) one has when n ≥ log(1/t)/ log(2)

Iµn (t) ≤ nt1−
1
n Iµ(t

1
n ) ≤ 2ntIµ(1 − t

1
n )

= 2nt Iµ

(

log(1/t)

n
(1 + εt(n))

)

= 2t log
(1

t

)

Θ

(

log(1/t)

n
(1 + εt(n))

)

(1 + εt(n)),

where limn εt(n) = 0 and Iµ(u) = uΘ(u). If Θ tends to zero at zero then
limn Iµn (t) = 0 with corresponding speed.

For even measures on R with positive density on a segment, Bobkov and
Houdré [6, Corollary 13.10] proved that solutions to the isoperimetric problem
can be found among half-lines, symmetric segments and their complements.
More precisely, if ρµ is the density and Rµ the distribution function of µ, then
denoting Jµ = ρµ ◦ R−1

µ , one has for t ∈ (0, 1)

Iµ(t) = min

(

Jµ(t), 2Jµ

(min(t, 1 − t)

2

)

)

.

This readily applies to our previous examples.

Example 5. For the measures dmα(t) = α(1 + |t|)−1−α/2 one gets Jmα(t) =
α21/α min(t, 1 − t)1+1/α, and thus for t ∈ (0, 1/2),

Imα(t) = αt1+1/α.

The results of this section do not apply to mα for lack of regularity. However
for an even unimodal smoothed perturbation m̃α, up to a numerical constant,
the same isoperimetric and weak spectral gap inequality hold. So there are
constants such that for t ≤ 1/2 and n ≥ log(1/t)/ log 2 one has

c1(α) t

(

t

n

)2/α

≤ Im̃n
α

(t) ≤ c2(α) t
log(1/t)1+1/α

n1/α
.

Example 6. For p ∈ (0, 1), and dµp(t) = exp(−|t|p)/(2Γ(1 + 1/p)) similar esti-
mates can be done. For t ≤ 1/2, Iνp (t) is comparable to t(log(1/t))1−1/p. So
for a suitable smoothed version of this measure, one gets

d1(p) t
(

log
(n

t

))2(1−1/p)

≤ Iν̃n
p

(t) ≤ d2(p) t log(1/t)

(

log
( n

log(1/t)

)

)1−1/p

,

which guarantees a convergence to zero with logarithmic speed in the dimension.

5 Concentration of measure

In this section, we shall derive concentration inequalities, that is lower bounds
on the measure of enlargements of rather large sets, or equivalently deviation
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inequalities for Lipschitz functions. They can be approached via isoperimetric
inequalities, which quantify the measure of infinitesimal enlargements. In our
setting, we have seen in the previous section that the available methods provide
loose isoperimetric bounds. Hence we come back to simpler and more robust
techniques. It is known, since Gromov and Milman [8], that a Poincaré inequal-
ity yields exponential concentration. See e.g. [10] for subsequent developments.
We show how a weak spectral gap inequality can be used to derive deviation
inequalities for Lipschitz functions. Among the various available methods used
for Poincaré inequalities, the one in Aida, Masuda and Shigekawa [2] is the most
adapted.

Theorem 8. Let µ satisfy a weak spectral gap inequality with function β. Let

F : M → R be a L-Lipschitz function with median m. Then for k ≥ 1 and

s ∈ (0, 1/4), one has

µ(F − m > k) ≤ s

1 + L2β(s)
+ µ(F − m > k − 1)

(

1 − 1

2(1 + L2β(s))

)

. (1)

Consequently

µ(F − m > k) ≤ 2s +

√
e

2
exp

( −k

4L
√

β(s)

)

. (2)

Thus µ(|F − m| > k) ≤ 6 Θ(k/L), where

Θ(u) = inf
{

s ∈ (0, 1/4]; exp
( −u

4
√

β(s)

)

≤ s
}

tends to 0 when u tends to infinity.

Proof. For notational convenience assume that m = 0. Let ε > 0. Let Φ : R →
R

+ be a non-decreasing smooth function with Φ|(−∞,ε] = 0, Φ|[1−ε,+∞) = 1
and ‖Φ′‖∞ ≤ 1 + 3ε. Set Φk(t) = Φ(t − k + 1). We apply the weak Poincaré
inequality to Φk(F ). Since 1(k−1,+∞) ≥ Φk ≥ 1[k,+∞) one has

∫

Φk(F )2dµ ≥ µ(F ≥ k),

(
∫

Φk(F )dµ

)2

≤ µ(F > k − 1)2.

Almost surely one has |∇Φk(F )| ≤ |Φ′
k(F )| · |∇F | ≤ (1+3ε)L1k−1<F<k. There-

fore, letting ε to zero, the inequality

Var(Φk(F )) ≤ β(s)

∫

|∇Φk(F )|2dµ + sOsc(Φk(F ))2,

readily implies

µ(F > k) − µ(F > k − 1)2 ≤ L2β(s)
(

µ(F > k − 1) − µ(F > k)
)

+ s.

11



Rearranging

µ(F > k) ≤ s

1 + L2β(s)
+ µ(F > k − 1)

µ(F > k − 1) + L2β(s)

1 + L2β(s)
.

The first claimed inequality follows from the above and µ(F > k − 1) ≤ µ(F >
0) ≤ 1/2. Iterating this inequality k times gives

µ(F > k) ≤ s

1 + L2β(s)

[

1 +

(

1 − 1

2(1 + L2β(s))

)

+ · · ·+

(

1 − 1

2(1 + L2β(s))

)k−1
]

+

(

1 − 1

2(1 + L2β(s))

)k

µ(F > 0)

≤ s

1 + L2β(s)
· 1

1 − (1 − 1
2(1+L2β(s)) )

+
1

2

(

1 − 1

2(1 + L2β(s))

)k

≤ 2s +
1

2
exp

( −k

2(1 + L2β(s))

)

.

Note that this is also true when k = 0. Let λ > 0 and apply the latter bound to
the λL-Lipschitz function λF with median 0. Denoting by [x] the integer part
of x, we get

µ(F > k) = µ(λF > λk) ≤ µ(λF > [λk])

≤ 2s +
1

2
exp

( −[λk]

2(1 + λ2L2β(s))

)

≤ 2s +
1

2
exp

( −λk

2(1 + λ2L2β(s))
+

1

2(1 + λ2L2β(s))

)

≤ 2s +

√
e

2
exp

( −λk

2(1 + λ2L2β(s))

)

.

Choosing λ = 1/(L
√

β(s)) establishes (2). The rest of the statement easily
follows.

Next we give a few examples.

Example 7. If β has a finite limit at 0 then taking s = 0 in (2) recovers the well
known exponential deviation inequality.

Example 8. Let F : R
n → R be a 1-Lipschitz function with median m. We

consider on R
n the n-fold product of dmα(t) = α(1 + |t|)−1−α/2 dt denoted

mn
α. Since this measure satisfies a weak spectral gap inequality with β(s) =

cα(s/n)−2/α, the deviations of µ(F − m > k) are controlled by

inf
s∈(0,1/4)

2s +

√
e

2
exp

( −ks1/α

4
√

cαn1/α

)

.

Setting t = k/(4
√

cαn1/α), we choose s = (α log(t)/t)α. It is in the interval
(0, 1/4) provided t is larger than a constant t1(α). Under this hypothesis the

12



infimum is bounded from above by

2(α log(t)/t)α + 1/tα.

Therefore there exists constants t0(α) > e and C(α) such that for t ≥ t0(α)

mn
α(|F − m| > tn1/α) ≤ C(α)

(

log(t)

t

)α

. (3)

This is valid provided 4t
√

cαn1/α ∈ N but extends to general values of t, with
slightly worse constants. As we show next, this estimate is correct up to the
log factor. Presumably, this point could be improved by optimizing in s the
recursion formula (1).

Let us prove that (3) is very close to the truth, by adapting Talagrand’s
argument. It consists in analyzing product sets. First note that if A ⊂ R

n has
measure at least a ≥ 1/2 then 0 is a median of the distance function x 7→ d(x, A).
Since the latter is 1-Lipschitz, (3) applies and gives,

mn
α(Atn1/α) ≥ 1 − C(α)

(

log t

t

)α

. (4)

We show that this is close to optimal by choosing a specific product set. Namely
we take A = (−∞, R−1(a1/n)]n, where R = Rmα is the distribution function of
mα and R−1 is its reciprocal function. By definition mn

α(A) = a. For h > 0, its
h-enlargement satisfies

mn
α(Ah) ≤ mn

α(A+[−h, h]n)=mn
α((−∞, R−1(a1/n)+h]n)=R

(

R−1(a1/n)+h
)n

.

The function R is explicitly computed. The latter estimate thus becomes

mn
α(Ah) ≤

(

1 − 1

2
(

h + (2(1 − a1/n))−1/α
)α

)n

≤ exp

(

−n

2
(

h + ( 2
n log( 1

a ) + O( 1
n2 ))−1/α

)α

)

= exp

(

−1

2
(

h
n1/α + (2 log( 1

a ) + O( 1
n ))−1/α

)α

)

.

We think of A and h as depending on n. The above bound shows that when n
is large and h << n1/α the measure of Ah is essentially equal to a = mn

α(A).
This confirms that h = tn1/α is the right scale of enlargement. In this scale we
have

mn
α(Atn1/α) ≤ exp

(

−1

2
(

t + (2 log( 1
a ) + O( 1

n ))−1/α
)α

)

≤ 1 − cα

tα
,

when t ≥ t2(α). Comparing this with Inequality (4) proves the tightness of our
bounds.
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Example 9. Finally, we consider the measures νn
p =

(

dpe
−|t|pdt

)⊗n
, for p ∈

(0, 1). We have shown that they satisfy the weak Poincaré inequality with
β(s) = kp log(2n/s)(2/p)−2. Therefore the deviations of Lipschitz functions are
controlled by

inf
s∈(0,1/4)

2s + exp

(

−k(log(2n/s))1−1/p

4
√

kp

)

.

We look for a value of s such that the two terms are of similar size. We are
inspired by the case p = 1/2 where explicit calculations can be done.

If k ≥ (log n)1/p we set s = 2e−kp

. The above infimum is at most (denoting
by cp a quantity depending only on p and that may be different in different
occurrences)

νn
p (F − m > k) ≤ 4e−kp

+ e−kcp(log n+kp)1−1/p

≤ 4e−kp

+ e−kcp(2kp)1−1/p

≤ 5e−cpkp

.

Here we did not check that the chosen s is less than 1/4, since otherwise the
bound is trivial.

If k ≤ (log n)1/p we set s = 2e−k(log n)1−1/p

. We get

νn
p (F − m > k) ≤ 4e−k(log n)1−1/p

+ e−kcp(log n+k(log n)1−1/p)1−1/p

≤ 4e−k(log n)1−1/p

+ e−kcp(2 log n)1−1/p

≤ 5e−cpk(log n)1−1/p

.

As a conclusion we obtained

νn
p (|F − m| > k) ≤ 10 exp

(

−cpk

max(kp, log n)
1
p−1

)

.

In particular, for ε fixed and n large, it is enough to take k ≥ cp(log 10
ε )(log n)

1
p−1

in order to ensure νn
p (|F − m| > k) ≤ ε.

Remark 10. Theorem 2.4 of [16] also derives concentration inequalities from
a weak spectral gap inequality, but they are different from ours. Comparing
their Corollary 2.5 with the above examples shows that our result is sharper.
The main technical reason for this is that the final step of our proof (which
reintroduces homogeneity, as it was destroyed by the cut-off method) is not
performed. Combining their method and the optimization on a scaling factor
λ provides a slightly better estimate than ours. Let c ∈ (0, 1/2), then with the
notation of the theorem

(

1

2
− c

)2
k2

4
≤
[

log

(

1

2µ(F − m > k)

)

+
1

2
− c

]
∫ 1

2

µ(F−m>k)

β(cs)

s
ds.
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In general though, the integral can only be estimated by

β
(

cµ(F − m > k)
)

log

(

1

2µ(F − m > k)

)

.

This recovers our bound. For the measures mα the integral can be computed
and one gets a better decay, by a different power on the log-term. In the case
of νp the explicit computation does not improve on our result.

6 Concave potentials of power type

In this section we apply our methods to products of probability measures on R,
dµΦ(x) = Z−1

Φ e−Φ(|x|)dx, where Φ satisfies the following assumption:

Hypothesis (H). (i) Φ : R
+ → R

+ is an increasing concave function with
Φ(0) = 0 and C2 in a neighborhood of +∞.

(ii) There exists B > 1 such that for x large enough Φ(2x) ≥ BΦ(x).

(iii) There exists C > 0 such that for x large enough |xΦ′′(x)| ≤ CΦ′(x).

Hypothesis (H) naturally generalizes the power potentials Φp(x) = |x|p,
p ∈ (0, 1). In particular it is not hard to check that Φp,β = |x|p log(γ + |x|)α

with p ∈ (0, 1), α > 0 and γ = e2α/(1−p) verifies Hypothesis (H) with B = 2p

and C = 1.

Remark 11. Assertion (ii) of (H) yields lim+∞ Φ = +∞ and by induction for
large x

2Φ(x) ≤ Φ(B′x), (5)

with B′ = 21+log 2/ log B > 1. On the other hand, since Φ is concave and
Φ(0) = 0, (ii) also implies that

(B − 1)Φ(x) ≤ Φ(2x) − Φ(x) ≤
∫ 2x

x

Φ′ ≤ xΦ′(x) ≤
∫ x

0

Φ′ = Φ(x) (6)

where the left inequality is valid for x large enough, and the other ones for x ≥ 0
(when Φ is not differentiable, Φ′(x) stands for the right derivative). Together

with (iii) this result implies that
|Φ′′(x)|
Φ′(x)2

≤ C

xΦ′(x)
≤ C

(B − 1)Φ(x)
. Hence,

lim+∞
|Φ′′|
(Φ′)2 = 0. Also, combining the concavity assumption with (5) and (6)

yields for x large enough

Φ′(x) ≥ Φ′(B′x) ≥ B′′Φ′(x), (7)

where B′′ ∈ (0, 1) depends only on B.

Now we prove that µΦ satisfies a weak Poincaré inequality with appropriate
function β.
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Proposition 9. Let dµΦ(x) = Z−1
Φ e−Φ(|x|)dx be a probability measure on R.

Assume that Φ verifies Hypothesis (H). Then there exists a constant cΦ > 0
such that µΦ satisfies a weak Poincaré inequality with function cΦβ where

β(s) =
1

[Φ′ ◦ Φ−1(log 1
s )]2

, s ∈ (0, 1/4).

Proof. We use Corollary 4. From Hypothesis (H) and the above remark there
exists A > 0 such that, for x > A

Φ′(x) 6= 0 and
|Φ′′(x)|
Φ′(x)2

≤ 1

2
.

Thus, we only have to check that β
(

2e−Φ(x)

|Φ′(x)|

)

≥ c
Φ′(x)2 for some constant c > 0

and |x| large enough.

It follows from Remark 11 that for x large log(Φ′(x))
Φ(x) ≤ log(xΦ′(x))

Φ(x) ≤ log(Φ(x))
Φ(x) .

Since lim+∞ Φ = +∞ we can deduce that lim+∞
log Φ′

Φ = 0. Hence, for x large
enough one has

log
1

2
+ log Φ′(x) + Φ(x) ≥ 1

2
Φ(x).

Now Equation (5) implies that

Φ−1(log
1

2
+ log Φ′(x) + Φ(x)) ≥ Φ−1(

1

2
Φ(x)) ≥ x

B′
.

Since Φ′ is non-increasing the above inequality and (7) lead to

β

(

2e−Φ(x)

|Φ′(x)|

)

=
1

(Φ′)2 ◦ Φ−1(log 1
2 + log Φ′(x) + Φ(x))

≥ 1

(Φ′)2(x/B′)
≥
(

B′′

Φ′(x)

)2

for x large enough. This achieves the proof.

Example 12. This result recovers the case Φp = |x|p, p ∈ (0, 1). For Φp,α =
|x|p log(γ+|x|)α with p ∈ (0, 1), α > 0 and γ = e2α/(1−p), one can easily see that
µp,α satisfies a weak Poincaré inequality with function asymptotically (when s
is small) behaving like

βp,α(s) =
1

(log 1
s )2(1−

1
p )(log log 1

s )
2α
p

.

We obtain the following concentration inequalities for µn
Φ:

Proposition 10. Let dµΦ(x) = Z−1
Φ e−Φ(|x|)dx be a probability measure on R

which verifies Hypothesis (H). Then there exist cΦ, c̃Φ, kΦ > 0 such that for any

n ≥ 1, any 1-Lipschitz function F : R
n → R and any integer k ≥ kΦ one has

µn
Φ(|F − m| > k) ≤ 6 exp

(

−cΦkΦ′ ◦ Φ−1(max(Φ(k), 2 log n))
)

≤ 6 max
(

e−c̃ΦΦ(k), e−cΦkΦ′◦Φ−1(2 log n)
)

.
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where m is a median of F .

Proof. As in the previous section, since µn satisfies a weak Poincaré inequal-
ity with function β(s) = cΦ/[Φ′ ◦ Φ−1(log n

s )]2, the deviations of 1-Lipschitz
functions are controlled by

inf
s∈(0,1/4)

2s +

√
e

2
exp

(

− 4√
cΦ

kΦ′ ◦ Φ−1(log
n

s
)

)

.

Next we look for a value of s such that the two terms are of similar size. We
will denote by cΦ a quantity depending only on Φ that may change from line
to line. We work with k large enough in order to be able to use the doubling
condition in the following arguments.

If k ≥ Φ−1(log n) we set s = e−Φ(k). The above infimum is at most

µn
Φ(F − m > k) ≤ 2e−Φ(k) + e−cΦkΦ′◦Φ−1(log n+Φ(k))

≤ 2e−Φ(k) + e−cΦkΦ′(k)

≤ 3e−cΦkΦ′(k) ≤ 3e−c̃ΦΦ(k).

Here, we have used Equation (5) in order to get that

Φ−1(log n + Φ(k)) ≤ Φ−1(2Φ(k)) ≤ B′k,

and thus by (7), Φ′ ◦ Φ−1(log n + Φ(k)) ≥ B′′Φ′(k). The last inequality comes
from (6).

If k < Φ−1(log n) we set s = e−kΦ′◦Φ−1(log n). Recall first that Inequality (6)
asserts that for x ≥ 0 one has xΦ′(x) ≤ Φ(x). Hence Φ−1(x)Φ′ ◦ Φ−1(x) ≤ x
and in turn it follows that

kΦ′ ◦ Φ−1(log n) ≤ Φ−1(log n)Φ′ ◦ Φ−1(log n) ≤ log n.

We get

µn
Φ(F − m > k) ≤ 2e−kΦ′◦Φ−1(log n) + e−cΦkΦ′◦Φ−1(log n+kΦ′◦Φ−1(log n))

≤ 2e−kΦ′◦Φ−1(log n) + e−cΦkΦ′◦Φ−1(2 log n)

≤ 3e−cΦkΦ′◦Φ−1(2 log n).

The result easily follows.

Acknowledgements: We thank the referee for useful suggestions.
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Universités de Marne-la-Vallée et de Paris 12 Val-de-Marne. Boulevard Des-
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