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A K0-AVOIDING DIMENSION GROUP WITH

AN ORDER-UNIT OF INDEX TWO

FRIEDRICH WEHRUNG

Abstract. We prove that there exists a dimension group G whose positive
cone is not isomorphic to the dimension monoid Dim L of any lattice L. The
dimension group G has an order-unit, and can be taken of any cardinality
greater than or equal to ℵ2. As to determining the positive cones of dimension
groups in the range of the Dim functor, the ℵ2 bound is optimal. This solves
negatively the problem, raised by the author in 1998, whether any conical
refinement monoid is isomorphic to the dimension monoid of some lattice.
Since G has an order-unit of index 2, this also solves negatively a problem
raised in 1994 by K.R. Goodearl about representability, with respect to K0,
of dimension groups with order-unit of index 2 by unit-regular rings.

Introduction

The nonstable K-theory of a ring R studies the category of finitely generated
projective right R-modules. The lattice-theoretical analogue of nonstable K-theory
is encoded by the dimension monoid functor. The dimension monoid of a lattice L
(see [16]) is the commutative monoid defined by generators ∆(x, y), for x ≤ y in L,
and relations

(D0) ∆(x, x) = 0, for all x ∈ L.
(D1) ∆(x, z) = ∆(x, y) + ∆(y, z), for all x ≤ y ≤ z in L.
(D2) ∆(x ∧ y, x) = ∆(y, x ∨ y), for all x, y ∈ L.

The dimension monoid DimL is a precursor of the semilattice Conc L of compact
congruences of L, in the sense that Conc L is isomorphic to the maximal semilattice
quotient of DimL, see [16, Corollary 2.3]. Furthermore, although it is still an open
problem whether DimL is a refinement monoid (see Section 1 for a definition) for
every lattice L (see [16, Problem 3]), the answer is known for a few large classes of
lattices, namely, the class of all modular lattices ([16, Theorem 5.4]) and the class
of all lattices without infinite bounded chains (see Theorem 6.18 and Corollary 7.8
in [16]).

The question of a converse, namely whether every refinement monoid is isomor-
phic to the dimension monoid of some lattice, was raised by the author in [16,
Problem 4]. This question is an analogue, for the Dim functor, of the Congruence
Lattice Problem that asks whether every distributive (∨, 0)-semilattice is isomor-
phic to Conc L, for some lattice L (see [14] for a survey). Partial positive answers
were known. For example, it follows from [6, Theorem 1.5] and results in [16]
(see the proof of Corollary 6.3) that for every dimension group G of cardinality at
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2 F. WEHRUNG

most ℵ1, the positive cone G+ is isomorphic to DimL for some sectionally com-
plemented, modular lattice L. For the cardinality ℵ2 and above, the problem was
still open. Different, though related, positive results about the dimension theory of
complete modular lattices but also of self-injective modules or AW*-algebras, are
established in [7]. In particular, the dimension monoids of complete, complemented,
modular, upper continuous lattices are completely characterized.

Main theorem. There exists a dimension group G with order-unit of index 2 such

that for any lattice L, the positive cone G+ of G is not the image of DimL under

any V-homomorphism. Furthermore, G may be taken of any cardinality greater

than or equal to ℵ2.

(We refer to Section 1 for precise definitions.) In particular, G+ is not isomorphic
to DimL, for any lattice L. This solves [16, Problem 4]. Also, G is not isomorphic

to K0(R), for any unit-regular ring R (see Corollary 6.3), which solves negatively
the problem raised by K.R. Goodearl on the last page of [4]. A stronger and more
precise statement of the main theorem is presented in Theorem 6.2.

The proof of our result is based on the proofs of earlier counterexamples, the
first of this sort, due to the author in [15], being a dimension group with order-unit
of cardinality ℵ2 that is not isomorphic to K0(R), for any von Neumann regular
ring R. Later counterexamples to related questions in lattice theory appeared in
[17, 12, 13]. A common point of their proofs is that they all use the Kuratowski Free

Set Theorem, in the form of Lemma 1.6. Also, they all express that certain dis-
tributive semilattices cannot be expressed as Conc L, for lattices L with permutable

congruences.
By contrast, the proof of our main theorem does not require any assumption

about permutable congruences on the lattice L. Also, unlike the construct of [15],
our dimension group counterexample is not a rational vector space. This is also the
case for the dimension groups considered in [4], in which the order-unit has finite

index. However, in [4] are proven positive results, not from the viewpoint of the
dimension theory of lattices but from the closely related (see Lemma 1.4) viewpoint
of the nonstable K-theory of von Neumann regular rings. For example [4, Theo-
rem 4.3], whenever G is an abelian lattice-ordered group with order-unit of finite
index, there exists a biregular locally matricial algebra R such that G ∼= K0(R);
hence G+ ∼= DimL, where L is the lattice of all principal right ideals of R, see
the proof of Corollary 6.3 (as R is unit-regular, it is sufficient to use R instead
of M2(R)).

1. Basic concepts

Every commutative monoid will be endowed with its algebraic quasi-ordering,
defined by

x ≤ y ⇐⇒ (∃z)(x+ z = y).

We say that M is conical, if x ≤ 0 implies that x = 0, for all x ∈ M . For
commutative monoids M and N , a monoid homomorphism µ : M → N is a V-ho-

momorphism, if whenever c ∈M and a, b ∈ N such that µ(c) = a+ b, there are a,
b ∈ M such that c = a + b, µ(a) = a, and µ(b) = b. An o-ideal of a commutative
monoid M is a nonempty subset I of M such that x + y ∈ I iff x, y ∈ I, for all x,
y ∈M . For an o-ideal I of a commutative monoid M , the least monoid congruence
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≡I that identifies all elements of I to zero is defined by

x ≡I y ⇐⇒ (∃u, v ∈ I)(x + u = y + v), for all x, y ∈M.

We denote by M/I the quotient monoid M/≡I , and we denote by [x]I the ≡I -class
of any x ∈M . The proof of the following lemma is straightforward.

Lemma 1.1. Let M and N be commutative monoids with N conical and let

µ : M → N be a monoid homomorphism. Then the subset I = {x ∈M | µ(x) = 0}
is an o-ideal of M , and there exists a unique monoid homomorphism µ : M/I → N
such that µ([x]I) = µ(x) for all x ∈ M . Furthermore, if µ is a V-homomorphism,

then so is µ.

A commutative monoid M is a refinement monoid, if a0 + a1 = b0 + b1 in M
implies the existence of ci,j ∈ M , for i, j < 2, such that ai = ci,0 + ci,1 and
bi = c0,i+c1,i, for all i < 2. A (∨, 0)-semilattice S is distributive, if it is a refinement
monoid. Equivalently, the ideal lattice of S is distributive, see [8, Section II.5].

We use the notation, terminology, and results of [2] for partially ordered abelian
groups. For partially ordered abelian groups G and H , a group homomorphism
f : G → H is a positive homomorphism, if f [G+] ⊆ H+. For a partially ordered
abelian group G and a positive integer n, we say that an element e ∈ G+ has index

at most n, if (n+ 1)x ≤ e implies that x = 0, for all x ∈ G+. We say that e ∈ G+

is an order-unit of G, if for all x ∈ G, there exists a natural number n such that
x ≤ ne.

We say that a partially ordered abelian group G is

— an interpolation group, if for all x, x′, y, y′ ∈ G, if x, x′ ≤ y, y′, then there
exists z ∈ G such that x, x′ ≤ z ≤ y, y′;

— unperforated, if mx ≥ 0 implies that x ≥ 0, for every x ∈ G and every
positive integer m;

— directed, if G = G+ + (−G+);
— a dimension group, if G is a directed, unperforated interpolation group.

Particular cases of dimension groups are the simplicial groups, that is, the par-
tially ordered abelian groups isomorphic to finite powers of the additive group Z of
all integers, ordered componentwise. A theorem of Effros, Handelman, and Shen
states that dimension groups are exactly the direct limits of simplicial groups, but
we shall not need this result in the present paper.

A pointed partially ordered abelian group is a pair (G, eG), where G is a partially
ordered abelian group and eG ∈ G+. We shall call eG the distinguished element

of (G, eG). For pointed partially ordered abelian groups (G, eG) and (H, eH), a
positive homomorphism f : G → H is normalized, if f(eG) = eH . We shall write
pointed partially ordered abelian groups either in the form (G, eG) in case the
distinguished element eG needs to be specified, or simply G otherwise.

For any lattice L, the symbol ∆(−,−) is extended to any pair of elements of L,
by defining ∆(x, y) = ∆(x ∧ y, x ∨ y), for all x, y ∈ L. The map ∆ thus extended
satisfies all the basic properties defining distances, see [16, Proposition 1.9].

Lemma 1.2. The following statements hold, for all x, y, z ∈ L:

(i) ∆(x, y) = 0 iff x = y;
(ii) ∆(x, y) = ∆(y, x);
(iii) ∆(x, z) ≤ ∆(x, y) + ∆(y, z).
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Of course, in (iii) above, the commutative monoid DimL is endowed with its
algebraic quasi-ordering.

The following result is an immediate consequence of [16, Lemma 4.11], applied
to the partial semigroup of closed intervals of L endowed with projectivity as in
[16, Section 5]. It concentrates most of the nontrivial information that we will need
about the dimension monoid.

Lemma 1.3. Let L be a modular lattice, let u ≤ v in L, and let a, b ∈ DimL. If

a + b = ∆(u, v), then there are a positive integer n and a decomposition u = w0 ≤
w1 ≤ · · · ≤ w2n = v such that

a =
∑

(∆(w2i, w2i+1) | i < n) and b =
∑

(∆(w2i+1, w2i+2) | i < n) .

For a unital ring R, we denote by FP(R) the category of all finitely generated
projective right R-modules, and by V (R) the monoid of all isomorphism classes
of members of FP(R), see [5]. The monoid V (R) encodes the so-called nonstable

K-theory of R. If [X ] denotes the isomorphism class of a member X of FP(R), then
the addition of V (R) is defined by [X ] + [Y ] = [X ⊕ Y ], for all X , Y ∈ FP(R).
The monoid V (R) is, of course, always conical. In case R is von Neumann regular
(that is, for all x ∈ R there exists y ∈ R such that xyx = x), V (R) is a refinement
monoid, see [3, Theorem 2.8].

It is well-known that for a von Neumann regular ring R, the matrix ring M2(R)
is von Neumann regular [3, Theorem 1.7]. Denote by L(R) the (complemented,
modular) lattice of principal right ideals of R. The nonstable K-theory of von Neu-
mann regular rings and the dimension theory of lattices are related by the following
result, which is an immediate consequence of [16, Proposition 10.31].

Lemma 1.4. Let R be a von Neumann regular ring, and put L = L(M2(R)). Then

V (R) ∼= DimL.

An example due to G. M. Bergman, see [3, Example 4.26], shows that L(M2(R))
cannot be replaced by L(R) in the statement of Lemma 1.4.

For a set X and a natural number n, we denote by [X ]n (resp. [X ]≤n) the set
of all subsets Y of X such that |Y | = n (resp., |Y | ≤ n). Furthermore, we denote
by [X ]<ω the set of all finite subsets of X . The set-theoretical core of the proof of
the main theorem consists of the following two results.

Lemma 1.5. Let X be a set of cardinality at least ℵ2 and let Φ: X → [X ]<ω. Then

there exists a subset Y of X of cardinality ℵ2 such that η /∈ Φ(ξ), for all distinct ξ,
η ∈ Y .

Proof. This is a particular case of a result proved by D. Lázár [10]. See also [1,
Corollary 44.2]. �

Lemma 1.6. Let X be a set of cardinality at least ℵ2, let Ψ: [X ]2 → [X ]<ω.

Then there are distinct α, β, γ ∈ X such that α /∈ Ψ({β, γ}), β /∈ Ψ({α, γ}), and

γ /∈ Ψ({α, β}).

Proof. This is a particular case of a result proved by C. Kuratowski [9]. See also
[1, Theorem 46.1]. �

We denote by Z
(X) the additive group of all maps f : X → Z such that the

support of f , namely {x ∈ X | f(x) 6= 0}, is finite. A subset X in a partially
ordered set P is cofinal, if every element of P lies below some element of X . We
identify n with the set {0, 1, . . . , n− 1}, for every natural number n.
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2. The functor I on partially ordered abelian groups

We shall denote by L = (−, 0, e,≤, ⊲⊳) the first-order signature consisting of
one binary operation − (interpreted as the ‘difference’), one binary relation ≤, two
constants 0 and e, and one 4-ary operation ⊲⊳. Let D denote the class of models of
the following axiom system (Σ), written in L:

(Σ) :







































(POAG) All axioms of partially ordered abelian groups in (−, 0,≤).

(POINT) 0 ≤ e.

(UNPERF) Unperforation.

(INDEX) (∀x)(0 ≤ 3x ≤ e =⇒ x = 0).

(INTERP) (∀x, x′, y, y′)
(

x, x′ ≤ y, y′ =⇒ x, x′ ≤ ⊲⊳(x, x′, y, y′) ≤ y, y′
)

.

(SYMM) (∀x, x′, y, y′)
(

⊲⊳(x, x′, y, y′) = ⊲⊳(x′, x, y, y′) = ⊲⊳(x, x′, y′, y)
)

.

As all axioms of (Σ) are universal Horn sentences, it follows from basic results of
the algebraic theory of quasivarieties (see [11, Section V.11]) that every model G
for a subsignature L

′ of L has a unique (up to isomorphism) L
′-homomorphism

jG : G→ I(G) which is universal among L
′-homomorphisms from G to some mem-

ber of D. This means that I(G) is a member of D, and for every L
′-homomorphism

f : G → H with H a member of D, there exists a unique L-homomorphism
h : I(G) → H such that f = h ◦ jG.

Applying the universality to the L-substructure of I(G) generated by the image
of jG yields immediately, in the particular case of pointed partially ordered abelian
groups, the following lemma.

Lemma 2.1. For any pointed partially ordered abelian group G, the structure I(G)
is the closure, under the operations (x, y) 7→ x−y and (x, x′, y, y′) 7→ ⊲⊳(x, x′, y, y′),
of the image of jG.

The operation ⊲⊳ on I(G) is a particular instance of the following notion.

Definition 2.2. An interpolator on a partially ordered abelian group G is a map
ı : G4 → G that satisfies the axioms (INTERP) and (SYMM) of the axiom sys-
tem (Σ). That is,

(∀x, x′, y, y′ ∈ G)
(

x, x′ ≤ y, y′ =⇒ x, x′ ≤ ı(x, x′, y, y′) ≤ y, y′
)

.

(∀x, x′, y, y′ ∈ G)
(

ı(x, x′, y, y′) = ı(x′, x, y, y′) = ı(x, x′, y′, y)
)

.

It is obvious that a partially ordered abelian group has an interpolator iff it is
an interpolation group. We shall naturally view each member of D as an ordered
pair (G, ı), where G is an unperforated partially ordered abelian group and ı is an
interpolator on G.

For pointed partially ordered abelian groups, the meaning of I takes the following
form: I(G) is a member of D, the map jG is a positive homomorphism from G
to I(G), and for every (H, ı) ∈ D and every normalized positive homomorphism
f : G → H , there exists a unique L-homomorphism h : (I(G), ⊲⊳) → (H, ı) such
that f = h ◦ jG. We shall denote this h by f[ı], see the left hand side diagram of
Figure 1. In case both G and H are partially ordered abelian groups and f : G→ H
is a normalized positive homomorphism, the map I(f) = (jH ◦ f)[⊲⊳] is the unique

L-homomorphism h : I(G) → I(H) such that h◦jG = jH ◦f , see the middle diagram
of Figure 1.

Standard categorical arguments give the following two lemmas.
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Figure 1. Illustrating f[ı], I(f), and Lemma 2.4.

Lemma 2.3. The correspondences G 7→ I(G), f 7→ I(f) define a functor from

the category of pointed partially ordered abelian groups with normalized positive

homomorphisms to the category D with L-homomorphisms. This functor preserves

direct limits.

Lemma 2.4. Let E, F , G be pointed partially ordered abelian groups, let ϕ : E → F
and f : F → G be normalized positive homomorphisms, and let ı be an interpolator

on G. Then (f ◦ ϕ)[ı] = f[ı] ◦ I(ϕ) (see the right hand side diagram of Figure 1).

The following lemma expresses that f[ı] is not ‘too far’ from f .

Lemma 2.5. Let G andH be pointed partially ordered abelian groups, let f : G→ H
be a normalized positive homomorphism, and let ı be an interpolator on H. Then

the image of f[ı] is the least ı-closed subgroup of H containing the image of f .

Proof. Denote by H ′ the least ı-closed subgroup of H containing im f . The subset
G′ = {x ∈ I(G) | f[ı](x) ∈ H ′} is a subgroup of I(G), closed under the interpola-
tor ⊲⊳ asH ′ is closed under ı and f[ı] is a L-homomorphism. Since G′ contains im jG,
it follows from Lemma 2.1 that G′ = I(G). �

The following lemma is even more specific to pointed partially ordered abelian
groups.

Lemma 2.6. Let G be a pointed partially ordered abelian group. Then the following

statements hold:

(i) (I(G), jG(eG)) is an unperforated pointed interpolation group with jG(eG)
of index at most 2.

(ii) The subset jG[G] is cofinal in I(G).
(iii) If G is directed, then I(G) is a dimension group.

(iv) If eG is an order-unit of G, then jG(eG) is an order-unit of I(G).

Proof. (i) is trivial.
(ii) Denote by H the convex subgroup of I(G) generated by the image of jG.

Observe that H is closed under the canonical interpolator ⊲⊳ of I(G), so it is natu-
rally equipped with a structure of model for L. Denote by f the restriction of jG
from G to H , and by e′ : H →֒ I(G) the inclusion map. Denote by h the unique
L-homomorphism from I(G) to H such that h◦jG = f . From e′◦h◦jG = e′◦f = jG
and the universal property of jG, it follows that e′ ◦ h = idI(G), and so h(x) = x,
for all x ∈ I(G). Therefore, H = I(G).
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(iii) follows immediately from (i) and (ii), while (iv) follows immediately from (ii).
�

3. The functors E and F

It follows from [11, Theorem V.11.2.4] that in any quasivariety, one can form
the “object defined by a given set of generators and relations”. The following
definition uses this general construction in the case of pointed partially ordered
abelian groups.

Definition 3.1. For a setX , we denote by (E(X), eX) the pointed partially ordered
abelian group defined by generators aX

ξ , for ξ ∈ X , and relations 0 ≤ aX
ξ ≤ eX ,

for ξ ∈ X . We put bX
ξ = eX − aX

ξ , for all ξ ∈ X .

For Y ⊆ X , there are unique positive homomorphisms eY,X : E(Y ) → E(X) and
rX,Y : E(X) ։ E(Y ) such that

eY,X(eY ) = eX , eY,X(aY
η ) = aX

η , for all η ∈ Y, (3.1)

rX,Y (eX) = eY , rX,Y (aX
ξ ) =

{

aY
ξ , for all ξ ∈ Y,

0, for all ξ ∈ X \ Y.
(3.2)

Hence rX,Y ◦ eY,X = idE(Y ), and hence E(Y ) is a retract of E(X). Therefore,
we shall identify E(Y ) with its image eY,X [E(Y )] in E(X), so that eY,X becomes
the inclusion map from E(Y ) into E(X). Similarly, we shall from now on write e

instead of eX , aξ instead of aX
ξ , and bξ instead of b

X
ξ .

Definition 3.2. For sets X and Y and a map f : X → Y , we denote by E(f) the
unique positive homomorphism from E(X) to E(Y ) such that E(f)(e) = e and
E(f)(aξ) = af(ξ), for all ξ ∈ X .

The proof of the following lemma will introduce a useful explicit description of
the pointed partially ordered abelian group E(X).

Lemma 3.3. The correspondences X 7→ E(X), f 7→ E(f) define a functor from the

category of sets to the category of all unperforated partially ordered abelian groups

with order-unit. This functor preserves direct limits.

Proof. All items are established by standard categorical arguments, except the
statements about order-unit and, especially, unperforation, that require an explicit
description of E(X). Denote by P(X) the powerset of X , and by e the constant
function on P(X) with value 1. Furthermore, for all ξ ∈ X , we denote by aξ

the characteristic function of {Y ∈ P(X) | ξ ∈ Y }. Finally, we let FX be the
additive subgroup of Z

P(X) generated by {aξ | ξ ∈ X} ∪ {e}, endowed with its
componentwise ordering. The proof of the following claim is immediate.

Claim 1. For all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X), me+

∑

(nξaξ | ξ ∈ X) ≥ 0
in FX iff m+

∑

(nξ | ξ ∈ Y ) ≥ 0 in Z for every Y ∈ P(X).

Claim 2. There exists an isomorphism from E(X) onto FX that sends e to e and

each aξ to the corresponding aξ.

Proof of Claim. It suffices to verify that FX satisfies the universal property defining
E(X), that is, for every pointed partially ordered abelian group (G, e) with elements
aξ ∈ G such that 0 ≤ aξ ≤ e, for ξ ∈ X , there exists a (necessarily unique) positive
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homomorphism from FX to G that sends e to e and each aξ to the corresponding aξ.
This, in turn, amounts to verifying the following statement:

me+
∑

(nξaξ | ξ ∈ X) ≥ 0 =⇒ me+
∑

(nξaξ | ξ ∈ X) ≥ 0, (3.3)

for all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X). As (nξ | ξ ∈ X) has finite support, we

may assume without loss of generality that X is finite. By Claim 1, the premise
of (3.3) means that m +

∑

(nξ | ξ ∈ Y ) ≥ 0 in Z for every Y ∈ P(X). We shall
conclude the proof by induction on |X |. For |X | = 0 it is immediate. For X = {ξ},
m ≥ 0, and m+ n ≥ 0, we compute

me+ naξ ≥ me+ (−m)aξ = m(e− aξ) ≥ 0.

Now the induction step. Pick η ∈ X , and set k = max{0,−nη}. Hence

−nη ≤ k ≤ m+
∑

(nξ | ξ ∈ Y ) , for all Y ⊆ X \ {η}. (3.4)

Therefore, the element

me+
∑

(nξaξ | ξ ∈ X) = (ke+ nηaη) +
(

(m− k)e+
∑

(nξaξ | ξ ∈ X \ {η})
)

is, by the induction hypothesis, expressed as the sum of two elements of G+, thus
it belongs to G+. � Claim 2.

It follows from Claim 2 that

me +
∑

(nξaξ | ξ ∈ X) ≥ 0 iff m+
∑

(nξ | ξ ∈ Y ) ≥ 0 for all Y ⊆ X, (3.5)

for all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X). Both statements about unperforation

and order-unit follow immediately. �

Notation 3.4. We put F = I ◦ E, the composition of the two functors I and E.

By using Lemmas 2.3 and 2.6, we obtain that F is a direct limits preserving
functor from the category of sets (with maps) to the category of dimension groups
(with positive homomorphisms).

Lemma 3.5. The canonical map jE(X) : E(X) → F(X) is an embedding, for every

set X.

Proof. We use the explicit description of E(X) given in the proof of Lemma 3.3.
Denote by BX the additive group of all bounded maps from P(X) to Z. Observe,
in particular, that e has index 1 in BX . Hence, E(X) ∼= FX embeds into the
dimension group (BX , e) with order-unit of index at most 1. For any interpolator ı
on BX , the structure (BX , ı) is a member of D, in which E(X) embeds. �

We shall always identify E(X) with its image in F(X), so that jE(X) becomes
the inclusion map from E(X) into F(X). Observe that despite what is suggested
by the proof of Lemma 3.5, the element e does not, as a rule, have index 1 in F(X),
but 2. The reason for this discrepancy is that for nonempty X , the canonical
map g : F(X) → BX is not one-to-one, even on the positive cone of F(X). Indeed,
picking ξ ∈ X and putting x = ⊲⊳(0, 0,aξ, e−aξ), we get x ∈ F(X)+. Furthermore,
there exists a normalized positive homomorphism h : (E(X), e) → (Z, 2) such that
h(aξ) = 1 and there exists an interpolator ı on Z such that ı(0, 0, 1, 1) = 1, so
h[ı](x) = ı(0, 0, h(aξ), h(e − aξ)) = ı(0, 0, 1, 1) = 1, and so x > 0. However,
2x ≤ aξ + (e − aξ) = e, thus 2g(x) ≤ g(e) = e, and so g(x) = 0.
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4. Supports and subgroups in F(X)

Throughout this section we shall fix a set X . For all Y ⊆ X , we put fY,X =
I(eY,X), the canonical embedding from F(Y ) into F(X). A support of an element
x ∈ F(X) is a subset Y of X such that x ∈ fY,X [F(Y )]. As the functor F preserves
direct limits, every element of F(X) has a finite support.

Now put sX,Y = I(rX,Y ), rX,Y = eY,X ◦ rX,Y , and sX,Y = I(rX,Y ). Hence
rX,Y is an idempotent positive endomorphism of E(X), and it can be defined as
in (3.2). Furthermore, sX,Y : F(X) → F(Y ) while sX,Y is an idempotent positive
endomorphism of F(X).

Lemma 4.1. The following equations hold, for all Y , Z ⊆ X:

(i) fY,X ◦ sX,Y ◦ fY,X = fY,X .

(ii) sX,Y ◦ sX,Z = sX,Y ∩Z .

(iii) sX,Y ◦ fZ,X = fY ∩Z,Y ◦ sZ,Y ∩Z .

Proof. Apply the functor I to the following equations, whose verifications are im-
mediate (actually, it is easy to infer the first two equations from the third one):

eY,X ◦ rX,Y ◦ eY,X = eY,X ;

rX,Y ◦ rX,Z = rX,Y ∩Z ;

rX,Y ◦ eZ,X = eY ∩Z,Y ◦ rZ,Y ∩Z . �

Lemma 4.2. Let x ∈ F(X) and let Y ⊆ X. Then Y is a support of x iff

sX,Y (x) = x.

Proof. Suppose first that sX,Y (x) = x, and put y = sX,Y (x). Then x = sX,Y (x) =
fY,X(y) belongs to fY,X [F(Y )]. Conversely, suppose that x = fY,X(y), for some
y ∈ F(Y ). Then, using Lemma 4.1(i), we obtain

sX,Y (x) = fY,X ◦ sX,Y ◦ fY,X(y) = fY,X(y) = x. �

Corollary 4.3. Every element of F(X) has a least support, which is a finite subset

of X.

Proof. Let Y and Z be supports of x ∈ F(X). It follows from Lemma 4.2 and
Lemma 4.1(ii) that x = sX,Y (x) = sX,Z(x), thus x = sX,Y ◦sX,Z(x) = sX,Y ∩Z(x),
and so, again by Lemma 4.2, Y ∩ Z is a support of x. As x has a finite support,
the conclusion follows. �

We shall denote by supp(x) the least support of an element x of F(X).

Lemma 4.4. Let x ∈ F(X) and let Y ⊆ X. Then supp(sX,Y (x)) ⊆ supp(x) ∩ Y .

Proof. Put Z = supp(x). There is z ∈ F(Z) such that x = fZ,X(z), thus, using
Lemma 4.1(iii), sX,Y (x) = sX,Y ◦ fZ,X(z) = fY ∩Z,Y ◦ sZ,Y ∩Z(z), and so sX,Y (x)
belongs to the image of fY ∩Z,Y . �

Now we shall define certain additive subgroups GX
Z of F(X), for Z ∈ [X ]≤2.

First, we put GX
∅

= Ze. Next, for any ξ ∈ X , we denote by GX
{ξ} the subgroup of

F(X) generated by {aξ, bξ}. Finally, for all distinct ξ, η ∈ X , we put

cξ,η = ⊲⊳(0,aξ + aη − e,aξ,aη),

and we denote by GX
{ξ,η} the subgroup of F(X) generated by {aξ,aη, bξ, bη, cξ,η}.

As, by Axiom (SYMM) (see Section 2), cξ,η = cη,ξ, this definition is correct. For
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ξ ∈ X , we define a positive homomorphism ϕξ : Z
2 → GX

{ξ}, and for ξ 6= η in X , we

define a positive homomorphism ψξ,η : Z
4 → GX

{ξ,η}, by the rules

ϕξ(x0, x1) = x0aξ + x1bξ, (4.1)

ψξ,η(x0, x1, x2, x3) = x0cξ,η + x1(aξ − cξ,η) + x2(aη − cξ,η) + x3(cξ,η + e − aξ − aη),
(4.2)

for all x0, x1, x2, x3 ∈ Z.

Lemma 4.5.

(i) All maps ϕξ, for ξ ∈ X, and ψξ,η, for ξ 6= η in X, are isomorphisms.

(ii) GX
Y ∩GX

Z = GX
Y ∩Z , for all Y , Z ∈ [X ]≤2.

Proof. By the definition of E(X), there exists a unique positive homomorphism
τξ : E(X) → Z

2 that sends e to (1, 1), aξ to (1, 0), and aζ to (0, 0) for all ζ ∈ X\{ξ}.
Fix any interpolator ı on Z

2 and set πξ = (τξ)[ı]. Then πξ ◦ ϕξ fixes both vectors

(1, 0) and (1, 1), thus it is the identity. Therefore, ϕξ is an embedding, and thus an
isomorphism.

Now let ξ 6= η in X . There exists a unique positive homomorphism
σξ,η : E(X) → Z

4 such that

σξ,η(aξ) = (1, 1, 0, 0), σξ,η(aη) = (1, 0, 1, 0),

σξ,η(e) = (1, 1, 1, 1), σξ,η(aζ) = (0, 0, 0, 0), for all ζ ∈ X \ {ξ, η}.

Let ı be any interpolator on Z
4 and set ρξ,η = (σξ,η)[ı]. As

(0, 0, 0, 0), (1, 0, 0,−1) ≤ ρξ,η(cξ,η) ≤ (1, 1, 0, 0), (1, 0, 1, 0),

the only possibility is ρξ,η(cξ,η) = (1, 0, 0, 0). It follows that ρξ,η ◦ψξ,η fixes each of
the vectors (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), and (1, 1, 1, 1), whence it is the identity.
In particular, ψξ,η is an embedding, but it is obviously surjective, thus it is an
isomorphism.

Now let ξ 6= η in X , and let z ∈ GX
{ξ} ∩ G

X
{η}. There are x, y, x′, y′ ∈ Z such

that z = xaξ + ybξ = x′aη + y′bη. Applying ρξ,η yields (x, x, y, y) = (x′, y′, x′, y′),
whence x = x′ = y′ = y, and so z = xe ∈ GX

∅
. Therefore, GX

{ξ} ∩G
X
{η} = GX

∅
.

Finally, let ξ, η, ζ be distinct elements of X , and let z ∈ GX
{ξ,η} ∩G

X
{ξ,ζ}. There

are xi, yi ∈ Z, for i < 4, such that

z = x0cξ,η + x1(aξ − cξ,η) + x2(aη − cξ,η) + x3(cξ,η + e − aξ − aη)

= y0cξ,ζ + y1(aξ − cξ,ζ) + y2(aζ − cξ,ζ) + y3(cξ,ζ + e − aξ − aζ).
(4.3)

From ρξ,η(aζ) = (0, 0, 0, 0) it follows that ρξ,η(cξ,ζ) = (0, 0, 0, 0). Hence, applying
ρξ,η to (4.3) yields that (x0, x1, x2, x3) = (y1, y1, y3, y3), and thus x0 = x1, x2 = x3,
whence z = x0aξ + x2bξ ∈ GX

{ξ}. All other instances of (ii) can be easily deduced

from the two above. �

5. Smoothening interpolators on F(X)

In the present section we shall also fix a set X .

Definition 5.1. An interpolator ı on F(X) is smoothening of level 2, if all sub-
groups GX

Z (see Section 4), for Z ∈ [X ]≤2, are closed under ı.

Lemma 5.2. There exists a smoothening interpolator of level 2 on F(X).
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Proof. For all p = (x, x′, y, y′) ∈ F(X)4, we put rng p = {x, x′, y, y′}. It follows
from Lemma 4.5(ii) that the set

I(p) = {Z ∈ [X ]≤2 | rng p ⊆ GX
Z }

is closed under intersection, hence it has a greatest lower bound Zp in (P(X),⊆),
which belongs to I(p) in case I(p) is nonempty (otherwise Zp = X). Put Hp = GX

Zp
,

where we defineGX
X = F(X). SoHp contains rng p, and it follows from Lemma 4.5(i)

thatHp is a dimension group. Now we consider the equivalence relation ∼ on F(X)4

generated by all pairs (x, x′, y, y′) ∼ (x′, x, y, y′) and (x, x′, y, y′) ∼ (x, x′, y′, y), for
x, x′, y, y′ ∈ F(X), and we pick a subset C of F(X)4 such that for each p ∈ F(X)4

there exists a unique p ∈ C such that p ∼ p. For each p ∈ F(X)4, we put

ı(p) =

{

any z ∈ Hp such that x, x′ ≤ z ≤ y, y′, if x, x′ ≤ y, y′,

0, otherwise,

and then we define ı(p) = ı(p), for all p ∈ F(X)4. Observe that if rng p ⊆ GX
Z ,

with Z ∈ [X ]≤2, then Zp ⊆ Z, thus Hp = GX
Zp

⊆ GX
Z , and thus ı(p) ∈ Hp ⊆ GX

Z .

Hence, all GX
Z , for Z ∈ [X ]≤2, are closed under ı. Therefore, ı is a smoothening

interpolator of level 2 on F(X). �

Lemma 5.3. Let ı be a smoothening interpolator of level 2 on F(X). Then for

all Z ∈ [X ]≤2 and all x ∈ F(X) with support Z, the element (jE(X))[ı](x) belongs

to GX
Z .

Proof. Put g = jE(X). By the definition of a support, there exists z ∈ F(Z) such
that x = fZ,X(z). Therefore, by using Lemma 2.4,

g[ı](x) = g[ı] ◦ fZ,X(z) = g[ı] ◦ I(eZ,X)(z) = (g ◦ eZ,X)[ı](z).

However, im(g◦eZ,X) = E(Z) ⊆ GX
Z andGX

Z is closed under ı, hence, by Lemma 2.5,
the image of (g ◦ eZ,X)[ı] is contained in GX

Z . In particular, using Lemma 2.4, we

obtain that g[ı](x) = (g ◦ eZ,X)[ı](z) belongs to GX
Z . �

6. Proof of the main theorem

Let P (X,L, µ) denote the following statement:

X is a set, L is a lattice, and µ : DimL ։ F(X)+ is a surjective

V-homomorphism.

We say that µ is zero-separating, if µ−1{0} = {0}.

Lemma 6.1. If P (X,L, µ) holds, then P (X,L′, µ′) holds for some modular lat-

tice L′ and some zero-separating µ′.

Proof. It follows from Lemma 1.1 that I = {x ∈ DimL | µ(x) = 0} is an o-ideal
of DimL and the map µ : (DimL)/I ։ F(X)+, [x]I 7→ µ(x) is a V-homomor-
phism. However, it follows from Propositions 2.1 and 2.4 in [16] that (DimL)/I ∼=
Dim(L/θ), where θ is the congruence of L defined by x ≡θ y iff ∆(x, y) ∈ I, for all
x, y ∈ L. Hence, replacing L by L′ = L/θ, it suffices to prove that if µ separates
zero, then L is modular. If {o, a, b, c, i} is a (possibly degenerate) pentagon of L,
that is, o ≤ c ≤ a ≤ i, a ∧ b = o, and b ∨ c = i, then

µ∆(o, c) = µ∆(b, i) = µ∆(o, a) = µ∆(o, c) + µ∆(c, a),



12 F. WEHRUNG

thus, since F(X)+ is cancellative, µ∆(c, a) = 0. Therefore, since µ separates zero,
∆(c, a) = 0, and hence a = c. This proves the modularity of L. �

Our main theorem is a consequence of the following more precise result.

Theorem 6.2. Let X be a set, let L a lattice, and let µ : DimL ։ F(X)+ be a

V-homomorphism with image containing e. Then |X | ≤ ℵ1.

Proof. Suppose, to the contrary, that |X | ≥ ℵ2. It follows from Lemma 6.1 that we
may assume that L is modular and µ is zero-separating.

As µ is a monoid homomorphism and e ∈ imµ, there are a natural number n
and elements ui < vi in L, for i < n, such that e =

∑

(µ∆(ui, vi) | i < n). For all
ξ ∈ X , we obtain, by applying refinement in F(X)+ to the equation

aξ + bξ =
∑

(µ∆(ui, vi) | i < n) ,

decompositions of the form

aξ =
∑

(aξ,i | i < n) , bξ =
∑

(bξ,i | i < n) (6.1)

in F(X)+ such that

aξ,i + bξ,i = µ∆(ui, vi), for all i < n. (6.2)

Since L is modular and µ is a V-homomorphism, we are entitled to apply Lemma 1.3
to the latter equation, and hence we obtain a positive integer ℓξ,i and a finite chain
in L of the form

ui = x0
ξ,i ≤ x1

ξ,i ≤ · · · ≤ x
2ℓξ,i

ξ,i = vi

such that

aξ,i =
∑

(

µ∆(x2j
ξ,i, x

2j+1
ξ,i ) | j < ℓξ,i

)

, (6.3)

bξ,i =
∑

(

µ∆(x2j+1
ξ,i , x2j+2

ξ,i ) | j < ℓξ,i

)

. (6.4)

Now we define

Φ(ξ) =
⋃

(

suppµ∆(xj
ξ,i, x

j+1
ξ,i ) | i < n, j < 2ℓξ,i

)

, for all ξ ∈ X.

By applying Lázár’s Theorem (see Lemma 1.5), we obtain a subset X1 of X of
cardinality ℵ2 such that

η /∈ Φ(ξ), for all distinct ξ, η ∈ X1. (6.5)

By Lemma 5.2, there exists a smoothening interpolator ı of level 2 on F(X1). Now
we put

π = (jE(X1))[ı] ◦ sX,X1
, µ′ = π ◦ µ, (6.6)

a′
ξ,i = π(aξ,i), b′

ξ,i = π(bξ,i), for all ξ ∈ X1 and all i < n. (6.7)

For all ξ ∈ X , i < n, and j < 2ℓξ,i, it follows from Lemma 4.4 that Φ(ξ) ∩X1 is a

support of the element sX,X1
µ∆(xj

ξ,i, x
j+1
ξ,i ), hence, if ξ ∈ X1 and by using (6.5),

we obtain that {ξ} is a support of sX,X1
µ∆(xj

ξ,i, x
j+1
ξ,i ). Therefore, by applying

(jE(X1))[ı] and using Lemma 5.3, we obtain

µ′ ∆(xj
ξ,i, x

j+1
ξ,i ) ∈ GX1

{ξ}, for all ξ ∈ X1, i < n, and j < 2ℓξ,i. (6.8)
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By applying π to the equations (6.1)–(6.4) and observing that all elements of E(X1)
are fixed under π, we obtain the equations

aξ =
∑

(

a′
ξ,i | i < n

)

and bξ =
∑

(

b′ξ,i | i < n
)

, for all ξ ∈ X1, (6.9)

a′
ξ,i =

∑

(

µ′ ∆(x2j
ξ,i, x

2j+1
ξ,i ) | j < ℓξ,i

)

, for all ξ ∈ X1 and all i < n, (6.10)

b′ξ,i =
∑

(

µ′ ∆(x2j+1
ξ,i , x2j+2

ξ,i ) | j < ℓξ,i

)

, for all ξ ∈ X1 and all i < n. (6.11)

Fix ξ ∈ X1 and i < n. It follows from (6.8), (6.10), and (6.11) that both a′
ξ,i

and b′ξ,i belong to GX1

{ξ}. However, it follows from (6.9) that 0 ≤ a′
ξ,i ≤ aξ. Since

the isomorphism ϕ−1
ξ : GX1

{ξ} → Z
2 (see (4.1)) carries aξ to (1, 0), it follows that

a′
ξ,i ∈ {0,aξ}. (6.12)

It follows from (6.12), (6.8), and (6.10) that there exists j < ℓξ,i such that

µ′ ∆(x2j′

ξ,i , x
2j′+1
ξ,i ) = 0, for all j′ < ℓξ,i with j′ 6= j. (6.13)

Similarly, b′ξ,i ∈ {0, bξ} and there exists k < ℓξ,i such that

µ′ ∆(x2k′+1
ξ,i , x2k′+2

ξ,i ) = 0, for all k′ < ℓξ,i with k′ 6= k. (6.14)

We define an element zξ,i ∈ L as follows:

zξ,i =

{

x2j+1
ξ,i , if j ≤ k,

x2k+2
ξ,i , if j > k.

It follows easily from (6.10), (6.11), (6.13), and (6.14) that the following statements
hold:

a′
ξ,i = µ′ ∆(ui, zξ,i) and b′ξ,i = µ′ ∆(zξ,i, vi), if j ≤ k,

b′ξ,i = µ′ ∆(ui, zξ,i) and a′
ξ,i = µ′ ∆(zξ,i, vi), if j > k.

Let A(ξ, i) hold, if a′
ξ,i = µ′ ∆(ui, zξ,i) and b′

ξ,i = µ′ ∆(zξ,i, vi), and let B(ξ, i) hold,

if b′ξ,i = µ′ ∆(ui, zξ,i) and a′
ξ,i = µ′ ∆(zξ,i, vi). What will matter for us is that the

following property is satisfied:

Either A(ξ, i) or B(ξ, i) holds, for all ξ ∈ X1 and all i < n. (6.15)

Now we denote by U the powerset of n = {0, 1, . . . , n− 1}, and we put

Yu = {ξ ∈ X1 | (∀i ∈ u)A(ξ, i) and (∀i ∈ n \ u)B(ξ, i)}, for all u ∈ U.

Claim 1. X1 =
⋃

(Yu | u ∈ U).

Proof of Claim. Let ξ ∈ X1, and put u = {i < n | A(ξ, i)}. It follows from (6.15)
that B(ξ, i) holds, for all i ∈ n \ u. Therefore, ξ ∈ Yu. � Claim 1.

Now we put dξ,η =
∑

(µ′ ∆(zξ,i, zη,i) | i < n), for all ξ, η ∈ X1.

Claim 2. The following inequalities hold:

(i) dξ,ζ ≤ dξ,η + dη,ζ , for all ξ, η, ζ ∈ X1;

(ii) dξ,η ≤ aξ + aη, bξ + bη, for all u ∈ U and all ξ, η ∈ Yu;

(iii) e ≤ aη + bξ + dξ,η,aξ + bη + dξ,η, for all u ∈ U and all ξ, η ∈ Yu.
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Proof of Claim. Item (i) follows immediately from Lemma 1.2(iii).
Now let u ∈ U and let ξ, η ∈ Yu. Let i < n. If i ∈ u, then, by using again

Lemma 1.2,

µ′ ∆(zξ,i, zη,i) ≤ µ′ ∆(zξ,i, ui) + µ′ ∆(ui, zη,i) = a′
ξ,i + a′

η,i,

µ′ ∆(ui, vi) ≤ µ′ ∆(ui, zη,i) + µ′ ∆(zη,i, zξ,i) + µ′ ∆(zξ,i, vi)

= a′
η,i + b

′
ξ,i + µ′ ∆(zξ,i, zη,i),

while if i ∈ n \ u,

µ′ ∆(zξ,i, zη,i) ≤ µ′ ∆(zξ,i, vi) + µ′ ∆(vi, zη,i) = a′
ξ,i + a′

η,i,

µ′ ∆(ui, vi) ≤ µ′ ∆(ui, zξ,i) + µ′ ∆(zξ,i, zη,i) + µ′ ∆(zη,i, vi)

= b′
ξ,i + a′

η,i + µ′ ∆(zξ,i, zη,i),

so that in any case,

µ′ ∆(zξ,i, zη,i) ≤ a′
ξ,i + a′

η,i, (6.16)

µ′ ∆(ui, vi) ≤ a′
η,i + b′ξ,i + µ′ ∆(zξ,i, zη,i). (6.17)

Symmetrically, we can obtain

µ′ ∆(zξ,i, zη,i) ≤ b
′
ξ,i + b

′
η,i, (6.18)

µ′ ∆(ui, vi) ≤ a′
ξ,i + b′

η,i + µ′ ∆(zξ,i, zη,i), (6.19)

Adding together all inequalities (6.16)–(6.19), for i < n, establishes both (ii)
and (iii). � Claim 2.

By Claim 1, there exists u ∈ U such that |Yu| = ℵ2. For the rest of the proof
we fix such a subset u. We define Ψ({ξ, η}) = suppdξ,η, for all distinct ξ, η ∈ Yu.
Applying Kuratowski’s Theorem (see Lemma 1.6) to the map Ψ, we obtain distinct
elements α, β, γ ∈ Yu such that α /∈ Ψ({β, γ}), β /∈ Ψ({α, γ}), and γ /∈ Ψ({α, β}).

Put X2 = {α, β, γ}. It follows from Lemma 5.2 that there exists a smoothen-
ing interpolator  of level 2 on F(X2). Put π′ = (jE(X2))[] ◦ sX1,X2

, a positive

homomorphism from F(X1) to F(X2). For all distinct ξ, η ∈ Yu, it follows from
Lemma 4.4 that Ψ({ξ, η})∩X2 is a support of the element sX1,X2

(dξ,η). Hence, we
obtain that the pair {ξ, η} is a support of sX1,X2

(dξ,η), for all distinct ξ, η ∈ X2.
Therefore, putting d

′
ξ,η = π′(dξ,η), applying (jE(X1))[], and using Lemma 5.3, we

obtain that

d
′
ξ,η ∈ GX2

{ξ,η}, for all distinct ξ, η ∈ X2. (6.20)

Applying the positive homomorphism π′ to the inequalities in Claim 2, we obtain
the following new inequalities, for all distinct ξ, η, ζ ∈ X2:

(i) d′
ξ,ζ ≤ d′

ξ,η + d′
η,ζ

(ii) d′
ξ,η ≤ aξ + aη, bξ + bη.

(iii) e ≤ aη + bξ + d
′
ξ,η,aξ + bη + d

′
ξ,η.
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By applying the isomorphism ψ−1
ξ,η (see (4.2)) to the inequalities (ii) and (iii) above,

we obtain the inequalities

ψ−1
ξ,η(d′

ξ,η) ≤ (1, 1, 0, 0) + (1, 0, 1, 0),

ψ−1
ξ,η(d′

ξ,η) ≤ (0, 0, 1, 1) + (0, 1, 0, 1),

(1, 1, 1, 1) ≤ ψ−1
ξ,η(d′

ξ,η) + (1, 0, 1, 0) + (0, 0, 1, 1),

(1, 1, 1, 1) ≤ ψ−1
ξ,η(d′

ξ,η) + (1, 1, 0, 0) + (0, 1, 0, 1),

which leaves the only possibility

ψ−1
ξ,η(d′

ξ,η) = (0, 1, 1, 0),

that is,

d′
ξ,η = aξ + aη − 2cξ,η.

Therefore, applying the inequality (i) above with (ξ, η, ζ) = (α, β, γ), we obtain

cα,β + cβ,γ ≤ aβ + cα,γ (6.21)

in F(X2). However, we shall now prove that (6.21) does not hold. Indeed, the
structure (Z2, (2, 1)) is a dimension group with order-unit of index 2, thus it expands
to some member (Z2, (2, 1), ι) of D (where ι is an interpolator on Z

2) such that

ι((0, 0), (0,−1), (1, 0), (1, 0)) = (0, 0) and ι((0, 0), (0, 0), (1, 0), (1, 1)) = (1, 0).

Now there exists a unique normalized positive homomorphism h : (E(X2), e) →
(Z2, (2, 1)) such that

h(aα) = h(aγ) = (1, 0), and h(aβ) = (1, 1).

By definition, h(e) = (2, 1), so we can compute

h[ι](cα,γ) = ι((0, 0), h(aα + aγ − e), h(aα), h(aγ))

= ι((0, 0), (0,−1), (1, 0), (1, 0))

= (0, 0),

h[ι](cα,β) = ι((0, 0), h(aα + aβ − e), h(aα), h(aβ))

= ι((0, 0), (0, 0), (1, 0), (1, 1))

= (1, 0),

h[ι](cβ,γ) = ι((0, 0), h(aβ + aγ − e), h(aβ), h(aγ))

= ι((0, 0), (0, 0), (1, 1), (1, 0))

= (1, 0).

Therefore, applying h[ι] to the inequality (6.21) yields the inequality (2, 0) ≤ (1, 1)

(in Z
2!), a contradiction. �

Corollary 6.3. For any set X, the following conditions are equivalent:

(i) There exists a lattice L such that DimL ∼= F(X)+.

(ii) There exists a complemented modular lattice L such that DimL ∼= F(X)+.

(iii) There exists a von Neumann regular ring R such that V (R) ∼= F(X)+.

(iv) There exists a locally matricial ring R such that K0(R) ∼= F(X).
(v) |X | ≤ ℵ1.
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Proof. (i)⇒(v) follows immediately from Theorem 6.2.
Now suppose that |X | ≤ ℵ1. Then F(X) is a dimension group of cardinality at

most ℵ1; moreover, it has an order-unit (namely, e). By [6, Theorem 1.5], for any
field F, there exists a locally matricial algebra R over F such that K0(R) ∼= F(X).
Hence (v) implies (iv).

(iv)⇒(iii) is trivial, as V (R) ∼= K0(R)+ for any locally matricial ring (and, more
generally, for any unit-regular ring) R.

Now assume (iii). Since R is von Neumann regular, it follows from Lemma 1.4
that V (R) ∼= DimL, where L is the (complemented modular) lattice of all principal
right ideals of M2(R). Hence DimL ∼= F(X)+, and so (ii) holds.

Finally, (ii)⇒(i) is a tautology. �

We conclude the paper with a problem.

Problem. Is every conical refinement monoid of cardinality at most ℵ1 isomorphic
to DimL, for some modular lattice L?

Even for countable monoids the question above is open. It is formally similar
to the fundamental open problem raised by K. R. Goodearl in his survey paper [5],
that asks which refinement monoids are isomorphic to V (R) for some von Neumann
regular ring R. A positive answer to Goodearl’s question would yield a positive
answer to the problem above, with L sectionally complemented modular.
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