A K _ 0 -avoiding dimension group with an order-unit of index two
 Friedrich Wehrung

To cite this version:

Friedrich Wehrung. A $K _0$-avoiding dimension group with an order-unit of index two. 2005. hal00004942v1

HAL Id: hal-00004942

https://hal.science/hal-00004942v1

Preprint submitted on 20 May 2005 (v1), last revised 1 Jun 2005 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A K_{0}-AVOIDING DIMENSION GROUP WITH AN ORDER-UNIT OF INDEX TWO

FRIEDRICH WEHRUNG

Abstract

We prove that there exist a dimension group G whose positive cone is not isomorphic to the dimension monoid $\operatorname{Dim} L$ of any lattice L. The dimension group G has an order-unit, and can be taken of any cardinality greater than or equal to \aleph_{2}. As to determining the positive cones of dimension groups in the range of the Dim functor, the \aleph_{2} bound is optimal. This solves negatively the problem, raised by the author in 1998, whether any conical refinement monoid is isomorphic to the dimension monoid of some lattice. Since G has an order-unit of index 2 , this also solves negatively a problem raised in 1994 by K. R. Goodearl about representability, with respect to K_{0}, of dimension groups with order-unit of index 2 by unit-regular rings.

Introduction

The nonstable K-theory of a ring R studies the category of finitely generated projective right R-modules. The lattice-theoretical analogue of nonstable K-theory is encoded by the dimension monoid functor. The dimension monoid of a lattice L (see [16]) is the commutative monoid defined by generators $\Delta(x, y)$, for $x \leq y$ in L, and relations
(D0) $\Delta(x, x)=0$, for all $x \in L$.
(D1) $\Delta(x, z)=\Delta(x, y)+\Delta(y, z)$, for all $x \leq y \leq z$ in L.
(D2) $\Delta(x \wedge y, x)=\Delta(y, x \vee y)$, for all $x, y \in L$.
The dimension monoid $\operatorname{Dim} L$ is a precursor of the semilattice $\operatorname{Con}_{\mathrm{c}} L$ of compact congruences of L, in the sense that $\operatorname{Con}_{\mathrm{c}} L$ is isomorphic to the maximal semilattice quotient of $\operatorname{Dim} L$, see [16, Corollary 2.3]. Furthermore, although it is still an open problem whether $\operatorname{Dim} L$ is a refinement monoid (see Section 1 for a definition) for every lattice L (see [16, Problem 3]), the answer is known for a few large classes of lattices, namely, the class of all modular lattices ([16, Theorem 5.4]) and the class of all lattices without infinite bounded chains (see Theorem 6.18 and Corollary 7.8 in [16]).

The question of a converse, namely whether every refinement monoid is isomorphic to the dimension monoid of some lattice, was raised by the author in [16, Problem 4]. This question is an analogue, for the Dim functor, of the Congruence Lattice Problem that asks whether every distributive $\langle\mathrm{V}, 0\rangle$-semilattice is isomorphic to $\mathrm{Con}_{\mathrm{c}} L$, for some lattice L (see [14] for a survey). Partial positive answers were known. For example, it follows from [6, Theorem 1.5] and results in [16] (see the proof of Corollary 6.3) that for every dimension group G of cardinality at

[^0]most \aleph_{1}, the positive cone G^{+}is isomorphic to $\operatorname{Dim} L$ for some sectionally complemented, modular lattice L. For the cardinality \aleph_{2} and above, the problem was still open. Different, though related, positive results about the dimension theory of complete modular lattices but also of self-injective modules or AW*-algebras, are established in [7]. In particular, the dimension monoids of complete, complemented, modular, upper continuous lattices are completely characterized.

Main theorem. There exists a dimension group G with order-unit of index 2 such that for any lattice L, the positive cone G^{+}of G is not the image of $\operatorname{Dim} L$ under any V-homomorphism. Furthermore, G may be taken of any cardinality greater than or equal to \aleph_{2}.
(We refer to Section 1 for precise definitions.) In particular, G^{+}is not isomorphic to $\operatorname{Dim} L$, for any lattice L. This solves [16, Problem 4]. Also, G is not isomorphic to $K_{0}(R)$, for any unit-regular ring R (see Corollary 6.3), which solves negatively the problem raised by K. R. Goodearl on the last page of [4]. A stronger and more precise statement of the main theorem is presented in Theorem 6.2.

The proof of our result is based on the proofs of earlier counterexamples, the first of this sort, due to the author in [15], being a dimension group with order-unit of cardinality \aleph_{2} that is not isomorphic to $K_{0}(R)$, for any von Neumann regular ring R. Later counterexamples to related questions in lattice theory appeared in $[17,12,13]$. A common point of their proofs is that they all use the Kuratowski Free Set Theorem, in the form of Lemma 1.6. Also, they all express that certain distributive semilattices cannot be expressed as $\mathrm{Con}_{\mathrm{c}} L$, for lattices L with permutable congruences.

By contrast, the proof of our main theorem does not require any assumption about permutable congruences on the lattice L. Also, unlike the construct of [15], our dimension group counterexample is not a rational vector space. This is also the case for the dimension groups considered in [4], in which the order-unit has finite index. However, in [4] are proven positive results, not from the viewpoint of the dimension theory of lattices but from the closely related (see Lemma 1.4) viewpoint of the nonstable K-theory of von Neumann regular rings. For example [4, Theorem 4.3], whenever G is an abelian lattice-ordered group with order-unit of finite index, there exists a biregular locally matricial algebra R such that $G \cong K_{0}(R)$; hence $G^{+} \cong \operatorname{Dim} L$, where L is the lattice of all principal right ideals of R, see the proof of Corollary 6.3 (as R is unit-regular, it is sufficient to use R instead of $M_{2}(R)$).

1. Basic concepts

Every commutative monoid will be endowed with its algebraic quasi-ordering, defined by

$$
x \leq y \Longleftrightarrow(\exists z)(x+z=y)
$$

We say that M is conical, if $x \leq 0$ implies that $x=0$, for all $x \in M$. For commutative monoids M and N, a monoid homomorphism $\mu: M \rightarrow N$ is a V-homomorphism, if whenever $c \in M$ and $\bar{a}, \bar{b} \in N$ such that $\mu(c)=\bar{a}+\bar{b}$, there are a, $b \in M$ such that $c=a+b, \mu(a)=\bar{a}$, and $\mu(b)=\bar{b}$. An o-ideal of a commutative monoid M is a nonempty subset I of M such that $x+y \in I$ iff $x, y \in I$, for all x, $y \in M$. For an o-ideal I of a commutative monoid M, the least monoid congruence
\equiv_{I} that identifies all elements of I to zero is defined by

$$
x \equiv_{I} y \Longleftrightarrow(\exists u, v \in I)(x+u=y+v), \quad \text { for all } x, y \in M .
$$

We denote by M / I the quotient monoid M / \equiv_{I}, and we denote by $[x]_{I}$ the \equiv_{I}-class of any $x \in M$. The proof of the following lemma is straightforward.

Lemma 1.1. Let M and N be commutative monoids with N conical and let $\mu: M \rightarrow N$ be a monoid homomorphism. Then the subset $I=\{x \in M \mid \mu(x)=0\}$ is an o-ideal of M, and there exists a unique monoid homomorphism $\bar{\mu}: M / I \rightarrow N$ such that $\bar{\mu}\left([x]_{I}\right)=\mu(x)$ for all $x \in M$. Furthermore, if μ is a V-homomorphism, then so is $\bar{\mu}$.

A commutative monoid M is a refinement monoid, if $a_{0}+a_{1}=b_{0}+b_{1}$ in M implies the existence of $c_{i, j} \in M$, for $i, j<2$, such that $a_{i}=c_{i, 0}+c_{i, 1}$ and $b_{i}=c_{0, i}+c_{1, i}$, for all $i<2$. A $\langle\vee, 0\rangle$-semilattice S is distributive, if it is a refinement monoid. Equivalently, the ideal lattice of S is distributive, see [8, Section II.5].

We use the notation, terminology, and results of [2] for partially ordered abelian groups. For partially ordered abelian groups G and H, a group homomorphism $f: G \rightarrow H$ is a positive homomorphism, if $f\left[G^{+}\right] \subseteq H^{+}$. For a partially ordered abelian group G and a positive integer n, we say that an element $e \in G^{+}$has index at most n, if $(n+1) x \leq e$ implies that $x=0$, for all $x \in G^{+}$. We say that $e \in G^{+}$ is an order-unit of G, if for all $x \in G$, there exists a natural number n such that $x \leq n e$.

We say that a partially ordered abelian group G is

- an interpolation group, if for all $x, x^{\prime}, y, y^{\prime} \in G$, if $x, x^{\prime} \leq y, y^{\prime}$, then there exists $z \in G$ such that $x, x^{\prime} \leq z \leq y, y^{\prime}$;
- unperforated, if $m x \geq 0$ implies that $x \geq 0$, for every $x \in G$ and every positive integer m;
- directed, if $G=G^{+}+\left(-G^{+}\right)$;
- a dimension group, if G is a directed, unperforated interpolation group.

Particular cases of dimension groups are the simplicial groups, that is, the partially ordered abelian groups isomorphic to finite powers of the additive group \mathbb{Z} of all integers, ordered componentwise. A theorem of Effros, Handelman, and Shen states that dimension groups are exactly the direct limits of simplicial groups, but we shall not need this result in the present paper.

A pointed partially ordered abelian group is a pair $\left(G, e_{G}\right)$, where G is a partially ordered abelian group and $e_{G} \in G^{+}$. We shall call e_{G} the distinguished element of $\left(G, e_{G}\right)$. For pointed partially ordered abelian groups $\left(G, e_{G}\right)$ and $\left(H, e_{H}\right)$, a positive homomorphism $f: G \rightarrow H$ is normalized, if $f\left(e_{G}\right)=e_{H}$. We shall write pointed partially ordered abelian groups either in the form $\left(G, e_{G}\right)$ in case the distinguished element e_{G} needs to be specified, or simply G otherwise.

For any lattice L, the symbol $\Delta\left(-_{-}\right)$is extended to any pair of elements of L, by defining $\Delta(x, y)=\Delta(x \wedge y, x \vee y)$, for all $x, y \in L$. The map Δ thus extended satisfies all the basic properties defining distances, see [16, Proposition 1.9].
Lemma 1.2. The following statements hold, for all $x, y, z \in L$:
(i) $\Delta(x, y)=0$ iff $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$.

Of course, in (iii) above, the commutative monoid $\operatorname{Dim} L$ is endowed with its algebraic quasi-ordering.

The following result is an immediate consequence of [16, Lemma 4.11], applied to the partial semigroup of closed intervals of L endowed with projectivity as in [16, Section 5]. It concentrates most of the nontrivial information that we will need about the dimension monoid.
Lemma 1.3. Let L be a modular lattice, let $u \leq v$ in L, and let $\boldsymbol{a}, \boldsymbol{b} \in \operatorname{Dim} L$. If $\boldsymbol{a}+\boldsymbol{b}=\Delta(u, v)$, then there are a positive integer n and a decomposition $u=w_{0} \leq$ $w_{1} \leq \cdots \leq w_{2 n}=v$ such that

$$
\boldsymbol{a}=\sum\left(\Delta\left(w_{2 i}, w_{2 i+1}\right) \mid i<n\right) \text { and } \boldsymbol{b}=\sum\left(\Delta\left(w_{2 i+1}, w_{2 i+2}\right) \mid i<n\right)
$$

For a unital ring R, we denote by $\mathrm{FP}(R)$ the category of all finitely generated projective right R-modules, and by $V(R)$ the monoid of all isomorphism classes of members of $\operatorname{FP}(R)$, see [5]. The monoid $V(R)$ encodes the so-called nonstable K-theory of R. If $[X]$ denotes the isomorphism class of a member X of $\operatorname{FP}(R)$, then the addition of $V(R)$ is defined by $[X]+[Y]=[X \oplus Y]$, for all $X, Y \in \operatorname{FP}(R)$. The monoid $V(R)$ is, of course, always conical. In case R is von Neumann regular (that is, for all $x \in R$ there exists $y \in R$ such that $x y x=x$), $V(R)$ is a refinement monoid, see [3, Theorem 2.8].

It is well-known that for a von Neumann regular ring R, the matrix ring $M_{2}(R)$ is von Neumann regular [3, Theorem 1.7]. Denote by $\mathcal{L}(R)$ the (complemented, modular) lattice of principal right ideals of R. The nonstable K-theory of von Neumann regular rings and the dimension theory of lattices are related by the following result, which is an immediate consequence of [16, Proposition 10.31].
Lemma 1.4. Let R be a von Neumann regular ring, and put $L=\mathcal{L}\left(M_{2}(R)\right)$. Then $V(R) \cong \operatorname{Dim} L$.

An example due to G. M. Bergman, see [3, Example 4.26], shows that $\mathcal{L}\left(M_{2}(R)\right)$ cannot be replaced by $\mathcal{L}(R)$ in the statement of Lemma 1.4.

For a set X and a natural number n, we denote by $[X]^{n}$ (resp. $[X]^{\leq n}$) the set of all subsets Y of X such that $|Y|=n$ (resp., $|Y| \leq n$). Furthermore, we denote by $[X]^{<\omega}$ the set of all finite subsets of X. The set-theoretical core of the proof of the main theorem consists of the following two results.
Lemma 1.5. Let X be a set of cardinality at least \aleph_{2} and let $\Phi: X \rightarrow[X]^{<\omega}$. Then there exists a subset Y of X of cardinality \aleph_{2} such that $\eta \notin \Phi(\xi)$, for all distinct ξ, $\eta \in Y$.
Proof. This is a particular case of a result proved by D. Lázár [10]. See also [1, Corollary 44.2].
Lemma 1.6. Let X be a set of cardinality at least \aleph_{2}, let $\Psi:[X]^{2} \rightarrow[X]^{<\omega}$. Then there are distinct $\alpha, \beta, \gamma \in X$ such that $\alpha \notin \Psi(\{\beta, \gamma\}), \beta \notin \Psi(\{\alpha, \gamma\})$, and $\gamma \notin \Psi(\{\alpha, \beta\})$.
Proof. This is a particular case of a result proved by C. Kuratowski [9]. See also [1, Theorem 46.1].

We denote by $\mathbb{Z}^{(X)}$ the additive group of all maps $f: X \rightarrow \mathbb{Z}$ such that the support of f, namely $\{x \in X \mid f(x) \neq 0\}$, is finite. We identify n with the set $\{0,1, \ldots, n-1\}$, for every natural number n.

2. The functor I on partially ordered abelian groups

We shall denote by $\mathcal{L}=(-, 0, \mathbf{e}, \leq, \bowtie)$ the first-order signature consisting of one binary operation - (interpreted as the 'difference'), one binary relation \leq, two constants 0 and \mathbf{e}, and one 4 -ary operation \bowtie. Let \mathcal{D} denote the class of models of the following axiom system (Σ), written in \mathcal{L} :
(Σ)

$$
\begin{cases}(\text { POAG }) & \text { All axioms of partially ordered abelian groups in }(-, 0, \leq) . \\ (\text { POINT }) & 0 \leq \mathbf{e} . \\ (\text { UNPERF }) & \text { Unperforation. } \\ \text { (INDEX) } & (\forall x)(0 \leq 3 x \leq \mathbf{e} \Longrightarrow x=0) . \\ (\text { INTERP }) & \left(\forall x, x^{\prime}, y, y^{\prime}\right)\left(x, x^{\prime} \leq y, y^{\prime} \Longrightarrow x, x^{\prime} \leq \bowtie\left(x, x^{\prime}, y, y^{\prime}\right) \leq y, y^{\prime}\right) . \\ (\text { SYMM }) & \left(\forall x, x^{\prime}, y, y^{\prime}\right)\left(\bowtie\left(x, x^{\prime}, y, y^{\prime}\right)=\bowtie\left(x^{\prime}, x, y, y^{\prime}\right)=\bowtie\left(x, x^{\prime}, y^{\prime}, y\right)\right) .\end{cases}
$$

As all axioms of (Σ) are universal Horn sentences, it follows from basic results of the algebraic theory of quasivarieties (see [11, Section V.11]) that every model G for a subsignature \mathcal{L}^{\prime} of \mathcal{L} has a unique (up to isomorphism) \mathcal{L}^{\prime}-homomorphism $j_{G}: G \rightarrow \mathbf{I}(G)$ which is universal among \mathcal{L}^{\prime}-homomorphisms from G to some member of \mathcal{D}. This means that $\mathbf{I}(G)$ is a member of \mathcal{D}, and for every \mathcal{L}^{\prime}-homomorphism $f: G \rightarrow H$ with H a member of \mathcal{D}, there exists a unique \mathcal{L}-homomorphism $h: \mathbf{I}(G) \rightarrow H$ such that $f=h \circ j_{G}$.

Applying the universality to the \mathcal{L}-substructure of $\mathbf{I}(G)$ generated by the image of j_{G} yields immediately, in the particular case of pointed partially ordered abelian groups, the following lemma.
Lemma 2.1. For any pointed partially ordered abelian group G, the structure $\mathbf{I}(G)$ is the closure, under the operations $(x, y) \mapsto x-y$ and $\left(x, x^{\prime}, y, y^{\prime}\right) \mapsto \bowtie\left(x, x^{\prime}, y, y^{\prime}\right)$, of the image of j_{G}.

The operation \bowtie on $\mathbf{I}(G)$ is a particular instance of the following notion.
Definition 2.2. An interpolator on a partially ordered abelian group G is a map $\imath: G^{4} \rightarrow G$ that satisfies the axioms (INTERP) and (SYMM) of the axiom system (Σ). That is,

$$
\begin{aligned}
& \left(\forall x, x^{\prime}, y, y^{\prime} \in G\right)\left(x, x^{\prime} \leq y, y^{\prime} \Longrightarrow x, x^{\prime} \leq \imath\left(x, x^{\prime}, y, y^{\prime}\right) \leq y, y^{\prime}\right) \\
& \left(\forall x, x^{\prime}, y, y^{\prime} \in G\right)\left(\imath\left(x, x^{\prime}, y, y^{\prime}\right)=\imath\left(x^{\prime}, x, y, y^{\prime}\right)=\imath\left(x, x^{\prime}, y^{\prime}, y\right)\right)
\end{aligned}
$$

It is obvious that a partially ordered abelian group has an interpolator iff it is an interpolation group. We shall naturally view each member of \mathcal{D} as an ordered pair (G, \imath), where G is an unperforated partially ordered abelian group and \imath is an interpolator on G.

For pointed partially ordered abelian groups, the meaning of \mathbf{I} takes the following form: $\mathbf{I}(G)$ is a member of \mathcal{D}, the map j_{G} is a positive homomorphism from G to $\mathbf{I}(G)$, and for every $(H, \imath) \in \mathcal{D}$ and every normalized positive homomorphism $f: G \rightarrow H$, there exists a unique \mathcal{L}-homomorphism $h:(\mathbf{I}(G), \bowtie) \rightarrow(H, \imath)$ such that $f=h \circ j_{G}$. We shall denote this h by $f_{[\imath]}$, see the left hand side diagram of Figure 1. In case both G and H are partially ordered abelian groups and $f: G \rightarrow H$ is a normalized positive homomorphism, the map $\mathbf{I}(f)=\left(j_{H} \circ f\right)_{[\bowtie]}$ is the unique \mathcal{L}-homomorphism $h: \mathbf{I}(G) \rightarrow \mathbf{I}(H)$ such that $h \circ j_{G}=j_{H} \circ f$, see the middle diagram of Figure 1.

Standard categorical arguments give the following two lemmas.

Figure 1. Illustrating $f_{[2]}, \mathbf{I}(f)$, and Lemma 2.4.

Lemma 2.3. The correspondences $G \mapsto \mathbf{I}(G), f \mapsto \mathbf{I}(f)$ define a functor from the category of pointed partially ordered abelian groups with normalized positive homomorphisms to the category \mathcal{D} with \mathcal{L}-homomorphisms. This functor preserves direct limits.

Lemma 2.4. Let E, F, G be pointed partially ordered abelian groups, let $\varphi: E \rightarrow F$ and $f: F \rightarrow G$ be normalized positive homomorphisms, and let \imath be an interpolator on G. Then $(f \circ \varphi)_{[\imath]}=f_{[[]} \circ \mathbf{I}(\varphi)$ (see the right hand side diagram of Figure 1).

The following lemma expresses that $f_{[\tau]}$ is not 'too far' from f.
Lemma 2.5. Let G and H be pointed partially ordered abelian groups, let $f: G \rightarrow H$ be a normalized positive homomorphism, and let \imath be an interpolator on H. Then the image of $f_{[2]}$ is the least \imath-closed subgroup of H containing the image of f.

Proof. Denote by H^{\prime} the least \imath-closed subgroup of H containing im f. The subset $G^{\prime}=\left\{x \in \mathbf{I}(G) \mid f_{[r]}(x) \in H^{\prime}\right\}$ is a subgroup of $\mathbf{I}(G)$, closed under the interpolator \bowtie as H^{\prime} is closed under \imath and $f_{[\imath]}$ is a \mathcal{L}-homomorphism. Since G^{\prime} contains im j_{G}, it follows from Lemma 2.1 that $G^{\prime}=\mathbf{I}(G)$.

The following lemma is even more specific to pointed partially ordered abelian groups.

Lemma 2.6. Let G be a pointed partially ordered abelian group. Then the following statements hold:
(i) $\left(\mathbf{I}(G), j_{G}\left(e_{G}\right)\right)$ is an unperforated pointed interpolation group with $j_{G}\left(e_{G}\right)$ of index at most 2.
(ii) The subset $j_{G}[G]$ is cofinal in $\mathbf{I}(G)$.
(iii) If G is directed, then $\mathbf{I}(G)$ is a dimension group.
(iv) If e_{G} is an order-unit of G, then $j_{G}\left(e_{G}\right)$ is an order-unit of $\mathbf{I}(G)$.

Proof. (i) is trivial.
(ii) Suppose that G is directed, and denote by H the convex subgroup of $\mathbf{I}(G)$ generated by the image of j_{G}. Observe that H is closed under the canonical interpolator \bowtie of $\mathbf{I}(G)$, so it is naturally equipped with a structure of model for \mathcal{L}. Denote by f the restriction of j_{G} from G to H, and by $e^{\prime}: H \hookrightarrow \mathbf{I}(G)$ the inclusion map. Denote by h the unique \mathcal{L}-homomorphism from $\mathbf{I}(G)$ to H such that $h \circ j_{G}=f$. From $e^{\prime} \circ h \circ j_{G}=e^{\prime} \circ f=j_{G}$ and the universal property of j_{G}, it follows that $e^{\prime} \circ h=\operatorname{id}_{\mathbf{I}(G)}$, and so $h(x)=x$, for all $x \in \mathbf{I}(G)$. Therefore, $H=\mathbf{I}(G)$.
(iii) follows immediately from (i) and (ii), while (iv) follows immediately from (ii).

3. The functors \mathbf{E} and \mathbf{F}

It follows from [11, Theorem V.11.4] that in any quasivariety, one can form the "object defined by a given set of generators and relations". The following definition uses this general construction in the case of pointed partially ordered abelian groups.

Definition 3.1. For a set X, we denote by $\left(\mathbf{E}(X), \boldsymbol{e}^{X}\right)$ the pointed partially ordered abelian group defined by generators \boldsymbol{a}_{ξ}^{X}, for $\xi \in X$, and relations $0 \leq \boldsymbol{a}_{\xi}^{X} \leq \boldsymbol{e}^{X}$, for $\xi \in X$. We put $\boldsymbol{b}_{\xi}^{X}=\boldsymbol{e}^{X}-\boldsymbol{a}_{\xi}^{X}$, for all $\xi \in X$.

For $Y \subseteq X$, there are unique positive homomorphisms $e_{Y, X}: \mathbf{E}(Y) \rightarrow \mathbf{E}(X)$ and $r_{X, Y}: \mathbf{E}(X) \rightarrow \mathbf{E}(Y)$ such that

$$
\begin{array}{ll}
e_{Y, X}\left(\boldsymbol{e}^{Y}\right)=\boldsymbol{e}^{X}, & e_{Y, X}\left(\boldsymbol{a}_{\eta}^{Y}\right)=\boldsymbol{a}_{\eta}^{X}, \\
r_{X, Y}\left(\boldsymbol{e}^{X}\right)=\boldsymbol{e}^{Y}, & r_{X, Y}\left(\boldsymbol{a}_{\xi}^{X}\right)= \begin{cases}\boldsymbol{a}_{\xi}^{Y}, & \text { for all } \eta \in Y, \\
0, & \text { for all } \xi \in Y,\end{cases} \tag{3.2}
\end{array}
$$

Hence $r_{X, Y} \circ e_{Y, X}=\operatorname{id}_{\mathbf{E}(Y)}$, and hence $\mathbf{E}(Y)$ is a retract of $\mathbf{E}(X)$. Therefore, we shall identify $\mathbf{E}(Y)$ with its image $e_{Y, X}[\mathbf{E}(Y)]$ in $\mathbf{E}(X)$, so that $e_{Y, X}$ becomes the inclusion map from $\mathbf{E}(Y)$ into $\mathbf{E}(X)$. Similarly, we shall from now on write \boldsymbol{e} instead of $\boldsymbol{e}^{X}, \boldsymbol{a}_{\xi}$ instead of \boldsymbol{a}_{ξ}^{X}, and \boldsymbol{b}_{ξ} instead of \boldsymbol{b}_{ξ}^{X}.
Definition 3.2. For sets X and Y and a map $f: X \rightarrow Y$, we denote by $\mathbf{E}(f)$ the unique positive homomorphism from $\mathbf{E}(X)$ to $\mathbf{E}(Y)$ such that $\mathbf{E}(f)(\boldsymbol{e})=\boldsymbol{e}$ and $\mathbf{E}(f)\left(\boldsymbol{a}_{\xi}\right)=\boldsymbol{a}_{f(\xi)}$, for all $\xi \in X$.

The proof of the following lemma will introduce a useful explicit description of the pointed partially ordered abelian group $\mathbf{E}(X)$.
Lemma 3.3. The correspondences $X \mapsto \mathbf{E}(X), f \mapsto \mathbf{E}(f)$ define a functor from the category of sets to the category of all unperforated partially ordered abelian groups with order-unit. This functor preserves direct limits.

Proof. All items are established by standard categorical arguments, except the statements about order-unit and, especially, unperforation, that require an explicit description of $\mathbf{E}(X)$. Denote by $\mathfrak{P}(X)$ the powerset of X, and by \bar{e} the constant function on $\mathfrak{P}(X)$ with value 1 . Furthermore, for all $\xi \in X$, we denote by \bar{a}_{ξ} the characteristic function of $\{Y \in \mathfrak{P}(X) \mid \xi \in Y\}$. Finally, we let F_{X} be the additive subgroup of $\mathbb{Z}^{\mathfrak{P}(X)}$ generated by $\left\{\bar{a}_{\xi} \mid \xi \in X\right\} \cup\{\bar{e}\}$, endowed with its componentwise ordering. The proof of the following claim is immediate.

Claim 1. For all $m \in \mathbb{Z}$ and all $\left(n_{\xi} \mid \xi \in X\right) \in \mathbb{Z}^{(X)}$, $m \bar{e}+\sum\left(n_{\xi} \bar{a}_{\xi} \mid \xi \in X\right) \geq 0$ in F_{X} iff $m+\sum\left(n_{\xi} \mid \xi \in Y\right) \geq 0$ in \mathbb{Z} for every $Y \in \mathfrak{P}(X)$.
Claim 2. There exists an isomorphism from $\mathbf{E}(X)$ onto F_{X} that sends \boldsymbol{e} to \bar{e} and each \boldsymbol{a}_{ξ} to the corresponding \bar{a}_{ξ}.

Proof of Claim. It suffices to verify that F_{X} satisfies the universal property defining $\mathbf{E}(X)$, that is, for every pointed partially ordered abelian group (G, e) with elements $a_{\xi} \in G$ such that $0 \leq a_{\xi} \leq e$, for $\xi \in X$, there exists a (necessarily unique) positive
homomorphism from F_{X} to G that sends \bar{e} to e and each \bar{a}_{ξ} to the corresponding a_{ξ}. This, in turn, amounts to verifying the following statement:

$$
\begin{equation*}
m \bar{e}+\sum\left(n_{\xi} \bar{a}_{\xi} \mid \xi \in X\right) \geq 0 \Longrightarrow m e+\sum\left(n_{\xi} a_{\xi} \mid \xi \in X\right) \geq 0 \tag{3.3}
\end{equation*}
$$

for all $m \in \mathbb{Z}$ and all $\left(n_{\xi} \mid \xi \in X\right) \in \mathbb{Z}^{(X)}$. As $\left(n_{\xi} \mid \xi \in X\right)$ has finite support, we may assume without loss of generality that X is finite. By Claim 1, the premise of (3.3) means that $m+\sum\left(n_{\xi} \mid \xi \in Y\right) \geq 0$ in \mathbb{Z} for every $Y \in \mathfrak{P}(X)$. We shall conclude the proof by induction on $|X|$. For $|X|=0$ it is immediate. For $X=\{\xi\}$, $m \geq 0$, and $m+n \geq 0$, we compute

$$
m e+n a_{\xi} \geq m e+(-m) a_{\xi}=m\left(e-a_{\xi}\right) \geq 0
$$

Now the induction step. Pick $\eta \in X$, and set $k=\max \left\{0,-n_{\eta}\right\}$. Hence

$$
\begin{equation*}
-n_{\eta} \leq k \leq m+\sum\left(n_{\xi} \mid \xi \in Y\right), \quad \text { for all } Y \subseteq X \backslash\{\eta\} \tag{3.4}
\end{equation*}
$$

Therefore, the element

$$
m e+\sum\left(n_{\xi} a_{\xi} \mid \xi \in X\right)=\left(k e+n_{\eta} a_{\eta}\right)+\left((m-k) e+\sum\left(n_{\xi} a_{\xi} \mid \xi \in X \backslash\{\eta\}\right)\right)
$$

is, by the induction hypothesis, expressed as the sum of two elements of G^{+}, thus it belongs to G^{+}.Claim 2.

It follows from Claim 2 that

$$
\begin{equation*}
m \boldsymbol{e}+\sum\left(n_{\xi} \boldsymbol{a}_{\xi} \mid \xi \in X\right) \geq 0 \text { iff } m+\sum\left(n_{\xi} \mid \xi \in Y\right) \geq 0 \text { for all } Y \subseteq X \tag{3.5}
\end{equation*}
$$

for all $m \in \mathbb{Z}$ and all $\left(n_{\xi} \mid \xi \in X\right) \in \mathbb{Z}^{(X)}$. Both statements about unperforation and order-unit follow immediately.

Notation 3.4. We put $\mathbf{F}=\mathbf{I} \circ \mathbf{E}$, the composition of the two functors \mathbf{I} and \mathbf{E}.
By using Lemmas 2.3 and 2.6, we obtain that \mathbf{F} is a direct limits preserving functor from the category of sets (with maps) to the category of dimension groups (with positive homomorphisms).
Lemma 3.5. The canonical map $j_{\mathbf{E}(X)}: \mathbf{E}(X) \rightarrow \mathbf{F}(X)$ is an embedding, for every set X.

Proof. As both functors \mathbf{E} and \mathbf{I} preserve direct limits, it is sufficient to deal with the case where X is finite. We use the explicit description of $\mathbf{E}(X)$ given in the proof of Lemma 3.3. Denote by B_{X} the additive group of all bounded maps from $\mathfrak{P}(X)$ to \mathbb{Z}. Observe, in particular, that \bar{e} has index 1 in B_{X}. Hence, $\mathbf{E}(X) \cong F_{X}$ embeds into the dimension group (B_{X}, \bar{e}) with order-unit of index at most 1. For any interpolator \imath on B_{X}, the structure $\left(B_{X}, \imath\right)$ is a member of \mathcal{D}, in which $\mathbf{E}(X)$ embeds.

We shall always identify $\mathbf{E}(X)$ with its image in $\mathbf{F}(X)$, so that $j_{\mathbf{E}(X)}$ becomes the inclusion map from $\mathbf{E}(X)$ into $\mathbf{F}(X)$. Observe that despite what is suggested by the proof of Lemma 3.5, the element \boldsymbol{e} does not, as a rule, have index 1 in $\mathbf{F}(X)$, but 2. The reason for this discrepancy is that the canonical map from $\mathbf{F}(X)$ to B_{X} is not one-to-one.

4. Supports and subgroups in $\mathbf{F}(X)$

Throughout this section we shall fix a set X. For all $Y \subseteq X$, we put $f_{Y, X}=$ $\mathbf{I}\left(e_{Y, X}\right)$, the canonical embedding from $\mathbf{F}(Y)$ into $\mathbf{F}(X)$. A support of an element $\boldsymbol{x} \in \mathbf{F}(X)$ is a subset Y of X such that $\boldsymbol{x} \in f_{Y, X}[\mathbf{F}(Y)]$. As the functor \mathbf{F} preserves direct limits, every element of $\mathbf{F}(X)$ has a finite support.

Now put $\bar{r}_{X, Y}=e_{Y, X} \circ r_{X, Y}$. Hence $\bar{r}_{X, Y}$ can be defined as in (3.2), except that this time it is an idempotent positive endomorphism of $\mathbf{F}(X)$. Put $s_{X, Y}=\mathbf{I}\left(r_{X, Y}\right)$ and $\bar{s}_{X, Y}=\mathbf{I}\left(\bar{r}_{X, Y}\right)$. So $s_{X, Y}: \mathbf{F}(X) \rightarrow \mathbf{F}(Y)$, while $\bar{s}_{X, Y}: \mathbf{F}(X) \rightarrow \mathbf{F}(X)$ is an idempotent positive endomorphism.

Lemma 4.1. The following equations hold, for all $Y, Z \subseteq X$:
(i) $f_{Y, X} \circ s_{X, Y} \circ f_{Y, X}=f_{Y, X}$.
(ii) $\bar{s}_{X, Y} \circ \bar{s}_{X, Z}=\bar{s}_{X, Y \cap Z}$.
(iii) $s_{X, Y} \circ f_{Z, X}=f_{Y \cap Z, Y} \circ s_{Z, Y \cap Z}$.

Proof. Apply the functor I to the following equations, whose verifications are immediate (actually, it is easy to infer the first two equations from the third one):

$$
\begin{aligned}
& e_{Y, X} \circ r_{X, Y} \circ e_{Y, X}=e_{Y, X} \\
& \bar{r}_{X, Y} \circ \bar{r}_{X, Z}=\bar{r}_{X, Y \cap Z} ; \\
& r_{X, Y} \circ e_{Z, X}=e_{Y \cap Z, Y} \circ r_{Z, Y \cap Z} .
\end{aligned}
$$

Lemma 4.2. Let $\boldsymbol{x} \in \mathbf{F}(X)$ and let $Y \subseteq X$. Then Y is a support of \boldsymbol{x} iff $\bar{s}_{X, Y}(\boldsymbol{x})=\boldsymbol{x}$.
Proof. Suppose first that $\bar{s}_{X, Y}(\boldsymbol{x})=\boldsymbol{x}$, and put $\boldsymbol{y}=s_{X, Y}(\boldsymbol{x})$. Then $\boldsymbol{x}=\bar{s}_{X, Y}(\boldsymbol{x})=$ $f_{Y, X}(\boldsymbol{y})$ belongs to $f_{Y, X}[\mathbf{F}(Y)]$. Conversely, suppose that $\boldsymbol{x}=f_{Y, X}(\boldsymbol{y})$, for some $\boldsymbol{y} \in \mathbf{F}(Y)$. Then, using Lemma 4.1(i), we obtain

$$
\bar{s}_{X, Y}(\boldsymbol{x})=f_{Y, X} \circ s_{X, Y} \circ f_{Y, X}(\boldsymbol{y})=f_{Y, X}(\boldsymbol{y})=\boldsymbol{x}
$$

Corollary 4.3. Every element of $\mathbf{F}(X)$ has a least support, which is a finite subset of X.

Proof. Let Y and Z be supports of $\boldsymbol{x} \in \mathbf{F}(X)$. It follows from Lemma 4.2 and Lemma 4.1(ii) that $\boldsymbol{x}=\bar{s}_{X, Y}(\boldsymbol{x})=\bar{s}_{X, Z}(\boldsymbol{x})$, thus $\boldsymbol{x}=\bar{s}_{X, Y} \circ \bar{s}_{X, Z}(\boldsymbol{x})=\bar{s}_{X, Y \cap Z}(\boldsymbol{x})$, and so, again by Lemma $4.2, Y \cap Z$ is a support of \boldsymbol{x}. As \boldsymbol{x} has a finite support, the conclusion follows.

We shall denote by $\operatorname{supp}(\boldsymbol{x})$ the least support of an element \boldsymbol{x} of $\mathbf{F}(X)$.
Lemma 4.4. Let $\boldsymbol{x} \in \mathbf{F}(X)$ and let $Y \subseteq X$. Then $\operatorname{supp}\left(s_{X, Y}(\boldsymbol{x})\right) \subseteq \operatorname{supp}(\boldsymbol{x}) \cap Y$.
Proof. Put $Z=\operatorname{supp}(\boldsymbol{x})$. There is $\boldsymbol{z} \in \mathbf{F}(Z)$ such that $\boldsymbol{x}=f_{Z, X}(\boldsymbol{z})$, thus, using Lemma 4.1(iii), $s_{X, Y}(\boldsymbol{x})=s_{X, Y} \circ f_{Z, X}(\boldsymbol{z})=f_{Y \cap Z, Y} \circ s_{Z, Y \cap Z}(\boldsymbol{z})$, and so $s_{X, Y}(\boldsymbol{x})$ belongs to the image of $f_{Y \cap Z, Y}$.

Now we shall define certain additive subgroups G_{Z}^{X} of $\mathbf{F}(X)$, for $Z \in[X] \leq 2$. First, we put $G_{\varnothing}^{X}=\mathbb{Z e}$. Next, for any $\xi \in X$, we denote by $G_{\{\xi\}}^{X}$ the subgroup of $\mathbf{F}(X)$ generated by $\left\{\boldsymbol{a}_{\xi}, \boldsymbol{b}_{\xi}\right\}$. Finally, for all distinct $\xi, \eta \in X$, we put

$$
\boldsymbol{c}_{\xi, \eta}=\bowtie\left(0, \boldsymbol{a}_{\xi}+\boldsymbol{a}_{\eta}-\boldsymbol{e}, \boldsymbol{a}_{\xi}, \boldsymbol{a}_{\eta}\right),
$$

and we denote by $G_{\{\xi, \eta\}}^{X}$ the subgroup of $\mathbf{F}(X)$ generated by $\left\{\boldsymbol{a}_{\xi}, \boldsymbol{a}_{\eta}, \boldsymbol{b}_{\xi}, \boldsymbol{b}_{\eta}, \boldsymbol{c}_{\xi, \eta}\right\}$. As, by Axiom (SYMM) (see Section 2), $\boldsymbol{c}_{\xi, \eta}=\boldsymbol{c}_{\eta, \xi}$, this definition is correct. For
$\xi \in X$, we define a positive homomorphism $\varphi_{\xi}: \mathbb{Z}^{2} \rightarrow G_{\{\xi\}}^{X}$, and for $\xi \neq \eta$ in X, we define a positive homomorphism $\psi_{\xi, \eta}: \mathbb{Z}^{4} \rightarrow G_{\{\xi, \eta\}}^{X}$, by the rules

$$
\begin{align*}
\varphi_{\xi}\left(x_{0}, x_{1}\right) & =x_{0} \boldsymbol{a}_{\xi}+x_{1} \boldsymbol{b}_{\xi} \\
\psi_{\xi, \eta}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) & =x_{0} \boldsymbol{c}_{\xi, \eta}+x_{1}\left(\boldsymbol{a}_{\xi}-\boldsymbol{c}_{\xi, \eta}\right)+x_{2}\left(\boldsymbol{a}_{\eta}-\boldsymbol{c}_{\xi, \eta}\right)+x_{3}\left(\boldsymbol{c}_{\xi, \eta}+\boldsymbol{e}-\boldsymbol{a}_{\xi}-\boldsymbol{a}_{\eta}\right) \tag{4.2}
\end{align*}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.

Lemma 4.5.

(i) All maps φ_{ξ}, for $\xi \in X$, and $\psi_{\xi, \eta}$, for $\xi \neq \eta$ in X, are isomorphisms.
(ii) $G_{Y}^{X} \cap G_{Z}^{X}=G_{Y \cap Z}^{X}$, for all $Y, Z \in[X] \leq 2$.

Proof. By the definition of $\mathbf{E}(X)$, there exists a unique positive homomorphism $\tau_{\xi}: \mathbf{E}(X) \rightarrow \mathbb{Z}^{2}$ that sends \boldsymbol{e} to $(1,1), \boldsymbol{a}_{\xi}$ to $(1,0)$, and \boldsymbol{a}_{ζ} to $(0,0)$ for all $\zeta \in X \backslash\{\xi\}$. Fix any interpolator \imath on \mathbb{Z}^{2} and set $\pi_{\xi}=\left(\tau_{\xi}\right)_{[2]}$. Then $\pi_{\xi} \circ \varphi_{\xi}$ fixes both vectors $(1,0)$ and $(1,1)$, thus it is the identity. Therefore, φ_{ξ} is an embedding, and thus an isomorphism.

Now let $\xi \neq \eta$ in X. There exists a unique positive homomorphism $\sigma_{\xi, \eta}: \mathbf{E}(X) \rightarrow \mathbb{Z}^{4}$ such that

$$
\begin{aligned}
\sigma_{\xi, \eta}\left(\boldsymbol{a}_{\xi}\right) & =(1,1,0,0), & & \sigma_{\xi, \eta}\left(\boldsymbol{a}_{\eta}\right)
\end{aligned}=(1,0,1,0), ~ 子 r, ~ f r o r ~ a l l ~ \zeta \in X \backslash\{\xi, \eta\} .
$$

Let \imath be any interpolator on \mathbb{Z}^{4} and set $\rho_{\xi, \eta}=\left(\sigma_{\xi, \eta}\right)_{[\imath]}$. As

$$
(0,0,0,0),(1,0,0,-1) \leq \rho_{\xi, \eta}\left(\boldsymbol{c}_{\xi, \eta}\right) \leq(1,1,0,0),(1,0,1,0)
$$

the only possibility is $\rho_{\xi, \eta}\left(\boldsymbol{c}_{\xi, \eta}\right)=(1,0,0,0)$. It follows that $\rho_{\xi, \eta} \circ \psi_{\xi, \eta}$ fixes each of the vectors $(1,0,0,0),(1,1,0,0),(1,0,1,0)$, and $(1,1,1,1)$, whence it is the identity. In particular, $\psi_{\xi, \eta}$ is an embedding, but it is obviously surjective, thus it is an isomorphism.

Now let $\xi \neq \eta$ in X, and let $\boldsymbol{z} \in G_{\{\xi\}}^{X} \cap G_{\{\eta\}}^{X}$. There are $x, y, x^{\prime}, y^{\prime} \in \mathbb{Z}$ such that $\boldsymbol{z}=x \boldsymbol{a}_{\xi}+y \boldsymbol{b}_{\xi}=x^{\prime} \boldsymbol{a}_{\eta}+y^{\prime} \boldsymbol{b}_{\eta}$. Applying $\rho_{\xi, \eta}$ yields $(x, x, y, y)=\left(x^{\prime}, y^{\prime}, x^{\prime}, y^{\prime}\right)$, whence $x=x^{\prime}=y^{\prime}=y$, and so $\boldsymbol{z}=x \boldsymbol{e} \in G_{\varnothing}^{X}$. Therefore, $G_{\{\xi\}}^{X} \cap G_{\{\eta\}}^{X}=G_{\varnothing}^{X}$.

Finally, let ξ, η, ζ be distinct elements of X, and let $\boldsymbol{z} \in G_{\{\xi, \eta\}}^{X} \cap G_{\{\xi, \zeta\}}^{X}$. There are $x_{i}, y_{i} \in \mathbb{Z}$, for $i<4$, such that

$$
\begin{align*}
\boldsymbol{z} & =x_{0} \boldsymbol{c}_{\xi, \eta}+x_{1}\left(\boldsymbol{a}_{\xi}-\boldsymbol{c}_{\xi, \eta}\right)+x_{2}\left(\boldsymbol{a}_{\eta}-\boldsymbol{c}_{\xi, \eta}\right)+x_{3}\left(\boldsymbol{c}_{\xi, \eta}+\boldsymbol{e}-\boldsymbol{a}_{\xi}-\boldsymbol{a}_{\eta}\right) \\
& =y_{0} \boldsymbol{c}_{\xi, \zeta}+y_{1}\left(\boldsymbol{a}_{\xi}-\boldsymbol{c}_{\xi, \zeta}\right)+y_{2}\left(\boldsymbol{a}_{\zeta}-\boldsymbol{c}_{\xi, \zeta}\right)+y_{3}\left(\boldsymbol{c}_{\xi, \zeta}+\boldsymbol{e}-\boldsymbol{a}_{\xi}-\boldsymbol{a}_{\zeta}\right) \tag{4.3}
\end{align*}
$$

From $\rho_{\xi, \eta}\left(\boldsymbol{a}_{\zeta}\right)=(0,0,0,0)$ it follows that $\rho_{\xi, \eta}\left(\boldsymbol{c}_{\xi, \zeta}\right)=(0,0,0,0)$. Hence, applying $\rho_{\xi, \eta}$ to (4.3) yields that $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(y_{1}, y_{1}, y_{3}, y_{3}\right)$, and thus $x_{0}=x_{1}, x_{2}=x_{3}$, whence $\boldsymbol{z}=x_{0} \boldsymbol{a}_{\xi}+x_{2} \boldsymbol{b}_{\xi} \in G_{\{\xi\}}^{X}$. All other instances of (ii) can be easily deduced from the two above.

5. Smoothening interpolators on $\mathbf{F}(X)$

In the present section we shall also fix a set X.
Definition 5.1. An interpolator \imath on $\mathbf{F}(X)$ is smoothening of level 2, if all subgroups G_{Z}^{X} (see Section 4), for $Z \in[X] \leq 2$, are closed under \imath.
Lemma 5.2. There exists a smoothening interpolator of level 2 on $\mathbf{F}(X)$.

Proof. For all $p=\left(x, x^{\prime}, y, y^{\prime}\right) \in \mathbf{F}(X)^{4}$, we put $\operatorname{rng} p=\left\{x, x^{\prime}, y, y^{\prime}\right\}$. It follows from Lemma 4.5(ii) that the set

$$
I(p)=\left\{Z \in[X]^{\leq 2} \mid \operatorname{rng} p \subseteq G_{Z}^{X}\right\}
$$

is closed under intersection, hence it has a greatest lower bound Z_{p} in $(\mathfrak{P}(X), \subseteq)$, which belongs to $I(p)$ in case $I(p)$ is nonempty (otherwise $Z_{p}=X$). Put $H_{p}=G_{Z_{p}}^{X}$, where we define $G_{X}^{X}=\mathbf{F}(X)$. So H_{p} contains rng p, and it follows from Lemma 4.5(i) that H_{p} is a dimension group. Now we consider the equivalence relation \sim on $\mathbf{F}(X)^{4}$ generated by all pairs $\left(x, x^{\prime}, y, y^{\prime}\right) \sim\left(x^{\prime}, x, y, y^{\prime}\right)$ and $\left(x, x^{\prime}, y, y^{\prime}\right) \sim\left(x, x^{\prime}, y^{\prime}, y\right)$, for $x, x^{\prime}, y, y^{\prime} \in \mathbf{F}(X)$, and we pick a subset C of $\mathbf{F}(X)^{4}$ such that for each $p \in \mathbf{F}(X)^{4}$ there exists a unique $\bar{p} \in C$ such that $p \sim \bar{p}$. For each $p \in \mathbf{F}(X)^{4}$, we put

$$
\bar{\imath}(p)= \begin{cases}\text { any } z \in H_{p} \text { such that } x, x^{\prime} \leq z \leq y, y^{\prime}, & \text { if } x, x^{\prime} \leq y, y^{\prime} \\ 0, & \text { otherwise }\end{cases}
$$

and we define $\imath(p)=\bar{\imath}(\bar{p})$, for all $p \in \mathbf{F}(X)^{4}$. Observe that if $\operatorname{rng} p \subseteq G_{Z}^{X}$, with $Z \in[X]^{\leq 2}$, then $Z_{p} \subseteq Z$, thus $H_{p}=G_{Z_{p}}^{X} \subseteq G_{Z}^{X}$, and thus $\imath(p) \in H_{p} \subseteq G_{Z}^{X}$. Hence, all G_{Z}^{X}, for $Z \in[X]^{\leq 2}$, are closed under \imath. Therefore, \imath is a smoothening interpolator of level 2 on $\mathbf{F}(X)$.

Lemma 5.3. Let \imath be a smoothening interpolator of level 2 on $\mathbf{F}(X)$. Then for all $Z \in[X] \leq 2$ and all $\boldsymbol{x} \in \mathbf{F}(X)$ with support Z, the element $\left(j_{\mathbf{E}(X)}\right)_{[2]}(\boldsymbol{x})$ belongs to G_{Z}^{X}.

Proof. Put $g=j_{\mathbf{E}(X)}$. By the definition of a support, there exists $\boldsymbol{z} \in \mathbf{F}(Z)$ such that $\boldsymbol{x}=f_{Z, X}(\boldsymbol{z})$. Therefore, by using Lemma 2.4,

$$
g_{[\imath]}(\boldsymbol{x})=g_{[\imath]} \circ f_{Z, X}(\boldsymbol{z})=g_{[\imath]} \circ \mathbf{I}\left(e_{Z, X}\right)(\boldsymbol{z})=\left(g \circ e_{Z, X}\right)_{[\imath]}(\boldsymbol{z}) .
$$

However, $\operatorname{im}\left(g \circ e_{Z, X}\right)=\mathbf{E}(Z) \subseteq G_{Z}^{X}$ and G_{Z}^{X} is closed under \imath, hence, by Lemma 2.5, the image of $\left(g \circ e_{Z, X}\right)_{[2]}$ is contained in G_{Z}^{X}. In particular, using Lemma 2.4, we obtain that $g_{[\imath]}(\boldsymbol{x})=\left(g \circ e_{Z, X}\right)_{[2]}(\boldsymbol{z})$ belongs to G_{Z}^{X}.

6. Proof of the main theorem

Let $P(X, L, \mu)$ denote the following statement:
X is a set, L is a lattice, and $\mu: \operatorname{Dim} L \rightarrow \mathbf{F}(X)^{+}$is a surjective V-homomorphism.
We say that μ is zero-separating, if $\mu^{-1}\{0\}=\{0\}$.
Lemma 6.1. If $P(X, L, \mu)$ holds, then $P\left(X, L^{\prime}, \mu^{\prime}\right)$ holds for some modular lattice L^{\prime} and some zero-separating μ^{\prime}.
Proof. It follows from Lemma 1.1 that $I=\{\boldsymbol{x} \in \operatorname{Dim} L \mid \mu(\boldsymbol{x})=0\}$ is an o-ideal of $\operatorname{Dim} L$ and the map $\bar{\mu}:(\operatorname{Dim} L) / I \rightarrow \mathbf{F}(X)^{+},[\boldsymbol{x}]_{I} \mapsto \mu(\boldsymbol{x})$ is a V-homomorphism. However, it follows from Propositions 2.1 and 2.4 in [16] that $(\operatorname{Dim} L) / I \cong$ $\operatorname{Dim}(L / \theta)$, where θ is the congruence of L defined by $x \equiv_{\theta} y$ iff $\Delta(x, y) \in I$, for all $x, y \in L$. Hence, replacing L by $L^{\prime}=L / \theta$, it suffices to prove that if μ separates zero, then L is modular. If $\{o, a, b, c, i\}$ is a (possibly degenerate) pentagon of L, that is, $o \leq c \leq a \leq i, a \wedge b=o$, and $b \vee c=i$, then

$$
\mu \Delta(o, c)=\mu \Delta(b, i)=\mu \Delta(o, a)=\mu \Delta(o, c)+\mu \Delta(c, a),
$$

thus, since $\mathbf{F}(X)^{+}$is cancellative, $\mu \Delta(c, a)=0$. Therefore, since μ separates zero, $\Delta(c, a)=0$, and hence $a=c$. This proves the modularity of L.

Our main theorem is a consequence of the following more precise result.
Theorem 6.2. Let X be a set, let L a lattice, and let $\mu: \operatorname{Dim} L \rightarrow \mathbf{F}(X)^{+}$be a V-homomorphism with image containing \boldsymbol{e}. Then $|X| \leq \aleph_{1}$.

Proof. Suppose, to the contrary, that $|X| \geq \aleph_{2}$. It follows from Lemma 6.1 that we may assume that L is modular and μ is zero-separating.

As μ is a monoid homomorphism and $\boldsymbol{e} \in \operatorname{im} \mu$, there are a natural number n and elements $u_{i}<v_{i}$ in L, for $i<n$, such that $\boldsymbol{e}=\sum\left(\mu \Delta\left(u_{i}, v_{i}\right) \mid i<n\right)$. For all $\xi \in X$, we obtain, by applying refinement in $\mathbf{F}(X)^{+}$to the equation

$$
\boldsymbol{a}_{\xi}+\boldsymbol{b}_{\xi}=\sum\left(\mu \Delta\left(u_{i}, v_{i}\right) \mid i<n\right)
$$

decompositions of the form

$$
\begin{equation*}
\boldsymbol{a}_{\xi}=\sum\left(\boldsymbol{a}_{\xi, i} \mid i<n\right), \quad \boldsymbol{b}_{\xi}=\sum\left(\boldsymbol{b}_{\xi, i} \mid i<n\right) \tag{6.1}
\end{equation*}
$$

in $\mathbf{F}(X)^{+}$such that

$$
\begin{equation*}
\boldsymbol{a}_{\xi, i}+\boldsymbol{b}_{\xi, i}=\mu \Delta\left(u_{i}, v_{i}\right), \text { for all } i<n . \tag{6.2}
\end{equation*}
$$

Since L is modular and μ is a V -homomorphism, we are entitled to apply Lemma 1.3 to the latter equation, and hence we obtain a positive integer $\ell_{\xi, i}$ and a finite chain in L of the form

$$
u_{i}=x_{\xi, i}^{0} \leq x_{\xi, i}^{1} \leq \cdots \leq x_{\xi, i}^{2 \ell_{\xi, i}}=v_{i}
$$

such that

$$
\begin{align*}
\boldsymbol{a}_{\xi, i} & =\sum\left(\mu \Delta\left(x_{\xi, i}^{2 j}, x_{\xi, i}^{2 j+1}\right) \mid j<\ell_{\xi, i}\right) \tag{6.3}\\
\boldsymbol{b}_{\xi, i} & =\sum\left(\mu \Delta\left(x_{\xi, i}^{2 j+1}, x_{\xi, i}^{2 j+2}\right) \mid j<\ell_{\xi, i}\right) . \tag{6.4}
\end{align*}
$$

Now we define

$$
\Phi(\xi)=\bigcup\left(\operatorname{supp} \mu \Delta\left(x_{\xi, i}^{j}, x_{\xi, i}^{j+1}\right) \mid i<n, j<2 \ell_{\xi, i}\right), \quad \text { for all } \xi \in X
$$

By applying Lázár's Theorem (see Lemma 1.5), we obtain a subset X_{1} of X of cardinality \aleph_{2} such that

$$
\begin{equation*}
\eta \notin \Phi(\xi), \text { for all distinct } \xi, \eta \in X_{1} . \tag{6.5}
\end{equation*}
$$

By Lemma 5.2, there exists a smoothening interpolator \imath of level 2 on $\mathbf{F}\left(X_{1}\right)$. Now we put

$$
\begin{array}{rlrl}
\pi & =\left(j_{\mathbf{E}\left(X_{1}\right)}\right)_{[2]} \circ s_{X, X_{1}}, \quad \mu^{\prime} & =\pi \circ \mu, \\
\boldsymbol{a}_{\xi, i}^{\prime} & =\pi\left(\boldsymbol{a}_{\xi, i}\right), & \boldsymbol{b}_{\xi, i}^{\prime} & =\pi\left(\boldsymbol{b}_{\xi, i}\right), \tag{6.7}
\end{array} \quad \text { for all } \xi \in X_{1} \text { and all } i<n .
$$

For all $\xi \in X, i<n$, and $j<2 \ell_{\xi, i}$, it follows from Lemma 4.4 that $\Phi(\xi) \cap X_{1}$ is a support of the element $s_{X, X_{1}} \mu \Delta\left(x_{\xi, i}^{j}, x_{\xi, i}^{j+1}\right)$, hence, if $\xi \in X_{1}$ and by using (6.5), we obtain that $\{\xi\}$ is a support of $s_{X, X_{1}} \mu \Delta\left(x_{\xi, i}^{j}, x_{\xi, i}^{j+1}\right)$. Therefore, by applying $\left(j_{\mathbf{E}\left(X_{1}\right)}\right)_{[2]}$ and using Lemma 5.3, we obtain

$$
\begin{equation*}
\mu^{\prime} \Delta\left(x_{\xi, i}^{j}, x_{\xi, i}^{j+1}\right) \in G_{\{\xi\}}^{X_{1}}, \quad \text { for all } \xi \in X_{1}, i<n, \text { and } j<2 \ell_{\xi, i} . \tag{6.8}
\end{equation*}
$$

By applying π to the equations (6.1)-(6.4) and observing that all elements of $\mathbf{E}\left(X_{1}\right)$ are fixed under π, we obtain the equations

$$
\begin{align*}
\boldsymbol{a}_{\xi} & =\sum\left(\boldsymbol{a}_{\xi, i}^{\prime} \mid i<n\right) \text { and } \boldsymbol{b}_{\xi}=\sum\left(\boldsymbol{b}_{\xi, i}^{\prime} \mid i<n\right), \quad \text { for all } \xi \in X_{1}, \tag{6.9}\\
\boldsymbol{a}_{\xi, i}^{\prime} & =\sum\left(\mu^{\prime} \Delta\left(x_{\xi, i}^{2 j}, x_{\xi, i}^{2 j+1}\right) \mid j<\ell_{\xi, i}\right), \quad \text { for all } \xi \in X_{1} \text { and all } i<n, \tag{6.10}\\
\boldsymbol{b}_{\xi, i}^{\prime} & =\sum\left(\mu^{\prime} \Delta\left(x_{\xi, i}^{2 j+1}, x_{\xi, i}^{2 j+2}\right) \mid j<\ell_{\xi, i}\right), \quad \text { for all } \xi \in X_{1} \text { and all } i<n . \tag{6.11}
\end{align*}
$$

Fix $\xi \in X_{1}$ and $i<n$. It follows from (6.8), (6.10), and (6.11) that both $\boldsymbol{a}_{\xi, i}^{\prime}$ and $\boldsymbol{b}_{\xi, i}^{\prime}$ belong to $G_{\{\xi\}}^{X_{1}}$. However, it follows from (6.9) that $0 \leq \boldsymbol{a}_{\xi, i}^{\prime} \leq \boldsymbol{a}_{\xi}$. Since the isomorphism $\varphi_{\xi}^{-1}: G_{\{\xi\}}^{X_{1}} \rightarrow \mathbb{Z}^{2}$ (see (4.1)) carries \boldsymbol{a}_{ξ} to (1,0), it follows that

$$
\begin{equation*}
\boldsymbol{a}_{\xi, i}^{\prime} \in\left\{0, \boldsymbol{a}_{\xi}\right\} . \tag{6.12}
\end{equation*}
$$

It follows from (6.12), (6.8), and (6.10) that there exists $j<\ell_{\xi, i}$ such that

$$
\begin{equation*}
\mu^{\prime} \Delta\left(x_{\xi, i}^{2 j^{\prime}}, x_{\xi, i}^{2 j^{\prime}+1}\right)=0, \text { for all } j^{\prime}<\ell_{\xi, i} \text { with } j^{\prime} \neq j . \tag{6.13}
\end{equation*}
$$

Similarly, $\boldsymbol{b}_{\xi, i}^{\prime} \in\left\{0, \boldsymbol{b}_{\xi}\right\}$ and there exists $k<\ell_{\xi, i}$ such that

$$
\begin{equation*}
\mu^{\prime} \Delta\left(x_{\xi, i}^{2 k^{\prime}+1}, x_{\xi, i}^{2 k^{\prime}+2}\right)=0, \text { for all } k^{\prime}<\ell_{\xi, i} \text { with } k^{\prime} \neq k . \tag{6.14}
\end{equation*}
$$

We define an element $z_{\xi, i} \in L$ as follows:

$$
z_{\xi, i}= \begin{cases}x_{\xi, i}^{2 j+1}, & \text { if } j \leq k \\ x_{\xi, i}^{2 k+2}, & \text { if } j>k\end{cases}
$$

It follows easily from (6.10), (6.11), (6.13), and (6.14) that the following statements hold:

$$
\begin{aligned}
\boldsymbol{a}_{\xi, i}^{\prime} & =\mu^{\prime} \Delta\left(u_{i}, z_{\xi, i}\right) \text { and } \boldsymbol{b}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right), \text { if } j \leq k, \\
\boldsymbol{b}_{\xi, i}^{\prime} & =\mu^{\prime} \Delta\left(u_{i}, z_{\xi, i}\right) \text { and } \boldsymbol{a}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right), \text { if } j>k .
\end{aligned}
$$

Let $A(\xi, i)$ hold, if $\boldsymbol{a}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(u_{i}, z_{\xi, i}\right)$ and $\boldsymbol{b}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right)$, and let $B(\xi, i)$ hold, if $\boldsymbol{b}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(u_{i}, z_{\xi, i}\right)$ and $\boldsymbol{a}_{\xi, i}^{\prime}=\mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right)$. What will matter for us is that the following property is satisfied:

Either $A(\xi, i)$ or $B(\xi, i)$ holds, for all $\xi \in X_{1}$ and all $i<n$.
Now we denote by U the powerset of $n=\{0,1, \ldots, n-1\}$, and we put

$$
Y_{u}=\left\{\xi \in X_{1} \mid(\forall i \in u) A(\xi, i) \text { and }(\forall i \in n \backslash u) B(\xi, i)\right\}, \quad \text { for all } u \in U .
$$

Claim 1. $X_{1}=\bigcup\left(Y_{u} \mid u \in U\right)$.
Proof of Claim. Let $\xi \in X_{1}$, and put $u=\{i<n \mid A(\xi, i)\}$. It follows from (6.15) that $B(\xi, i)$ holds, for all $i \in n \backslash u$. Therefore, $\xi \in Y_{u}$.

Now we put $\boldsymbol{d}_{\xi, \eta}=\sum\left(\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) \mid i<n\right)$, for all $\xi, \eta \in X_{1}$.
Claim 2. The following inequalities hold:
(i) $\boldsymbol{d}_{\xi, \zeta} \leq \boldsymbol{d}_{\xi, \eta}+\boldsymbol{d}_{\eta, \zeta}$, for all $\xi, \eta, \zeta \in X_{1}$;
(ii) $\boldsymbol{d}_{\xi, \eta} \leq \boldsymbol{a}_{\xi}+\boldsymbol{a}_{\eta}, \boldsymbol{b}_{\xi}+\boldsymbol{b}_{\eta}$, for all $u \in U$ and all $\xi, \eta \in Y_{u}$;
(iii) $\boldsymbol{e} \leq \boldsymbol{a}_{\eta}+\boldsymbol{b}_{\xi}+\boldsymbol{d}_{\xi, \eta}, \boldsymbol{a}_{\xi}+\boldsymbol{b}_{\eta}+\boldsymbol{d}_{\xi, \eta}$, for all $u \in U$ and all $\xi, \eta \in Y_{u}$.

Proof of Claim. Item (i) follows immediately from Lemma 1.2(iii).
Now let $u \in U$ and let $\xi, \eta \in Y_{u}$. Let $i<n$. If $i \in u$, then, by using again Lemma 1.2,

$$
\begin{aligned}
\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) & \leq \mu^{\prime} \Delta\left(z_{\xi, i}, u_{i}\right)+\mu^{\prime} \Delta\left(u_{i}, z_{\eta, i}\right)=\boldsymbol{a}_{\xi, i}^{\prime}+\boldsymbol{a}_{\eta, i}^{\prime} \\
\mu^{\prime} \Delta\left(u_{i}, v_{i}\right) & \leq \mu^{\prime} \Delta\left(u_{i}, z_{\eta, i}\right)+\mu^{\prime} \Delta\left(z_{\eta, i}, z_{\xi, i}\right)+\mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right) \\
& =\boldsymbol{a}_{\eta, i}^{\prime}+\boldsymbol{b}_{\xi, i}^{\prime}+\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right)
\end{aligned}
$$

while if $i \in n \backslash u$,

$$
\begin{aligned}
\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) & \leq \mu^{\prime} \Delta\left(z_{\xi, i}, v_{i}\right)+\mu^{\prime} \Delta\left(v_{i}, z_{\eta, i}\right)=\boldsymbol{a}_{\xi, i}^{\prime}+\boldsymbol{a}_{\eta, i}^{\prime} \\
\mu^{\prime} \Delta\left(u_{i}, v_{i}\right) & \leq \mu^{\prime} \Delta\left(u_{i}, z_{\xi, i}\right)+\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right)+\mu^{\prime} \Delta\left(z_{\eta, i}, v_{i}\right) \\
& =\boldsymbol{b}_{\xi, i}^{\prime}+\boldsymbol{a}_{\eta, i}^{\prime}+\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right)
\end{aligned}
$$

so that in any case,

$$
\begin{align*}
\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) & \leq \boldsymbol{a}_{\xi, i}^{\prime}+\boldsymbol{a}_{\eta, i}^{\prime} \tag{6.16}\\
\mu^{\prime} \Delta\left(u_{i}, v_{i}\right) & \leq \boldsymbol{a}_{\eta, i}^{\prime}+\boldsymbol{b}_{\xi, i}^{\prime}+\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) \tag{6.17}
\end{align*}
$$

Symmetrically, we can obtain

$$
\begin{align*}
\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) & \leq \boldsymbol{b}_{\xi, i}^{\prime}+\boldsymbol{b}_{\eta, i}^{\prime} \tag{6.18}\\
\mu^{\prime} \Delta\left(u_{i}, v_{i}\right) & \leq \boldsymbol{a}_{\xi, i}^{\prime}+\boldsymbol{b}_{\eta, i}^{\prime}+\mu^{\prime} \Delta\left(z_{\xi, i}, z_{\eta, i}\right) \tag{6.19}
\end{align*}
$$

Adding together all inequalities (6.16)-(6.19), for $i<n$, establishes both (ii) and (iii).
\square Claim 2.

By Claim 1, there exists $u \in U$ such that $\left|Y_{u}\right|=\aleph_{2}$. For the rest of the proof we fix such a subset u. We define $\Psi(\{\xi, \eta\})=\operatorname{supp} \boldsymbol{d}_{\xi, \eta}$, for all distinct $\xi, \eta \in Y_{u}$. Applying Kuratowski's Theorem (see Lemma 1.6) to the map Ψ, we obtain distinct elements $\alpha, \beta, \gamma \in Y_{u}$ such that $\alpha \notin \Psi(\{\beta, \gamma\}), \beta \notin \Psi(\{\alpha, \gamma\})$, and $\gamma \notin \Psi(\{\alpha, \beta\})$.

Put $X_{2}=\{\alpha, \beta, \gamma\}$. It follows from Lemma 5.2 that there exists a smoothening interpolator \jmath of level 2 on $\mathbf{F}\left(X_{2}\right)$. Put $\pi^{\prime}=\left(j_{\mathbf{E}\left(X_{2}\right)}\right)_{[\jmath]} \circ s_{X_{1}, X_{2}}$, a positive homomorphism from $\mathbf{F}\left(X_{1}\right)$ to $\mathbf{F}\left(X_{2}\right)$. For all distinct $\xi, \eta \in Y_{u}$, it follows from Lemma 4.4 that $\Psi(\{\xi, \eta\}) \cap X_{2}$ is a support of the element $s_{X_{1}, X_{2}}\left(\boldsymbol{d}_{\xi, \eta}\right)$. Hence, we obtain that the pair $\{\xi, \eta\}$ is a support of $s_{X_{1}, X_{2}}\left(\boldsymbol{d}_{\xi, \eta}\right)$, for all distinct $\xi, \eta \in X_{2}$. Therefore, putting $\boldsymbol{d}_{\xi, \eta}^{\prime}=\pi^{\prime}\left(\boldsymbol{d}_{\xi, \eta}\right)$, applying $\left(j_{\mathbf{E}\left(X_{1}\right)}\right)_{[J]}$, and using Lemma 5.3, we obtain that

$$
\begin{equation*}
\boldsymbol{d}_{\xi, \eta}^{\prime} \in G_{\{\xi, \eta\}}^{X_{2}}, \quad \text { for all distinct } \xi, \eta \in X_{2} \tag{6.20}
\end{equation*}
$$

Applying the positive homomorphism π^{\prime} to the inequalities in Claim 2, we obtain the following new inequalities, for all distinct $\xi, \eta, \zeta \in X_{2}$:
(i) $\boldsymbol{d}_{\xi, \zeta}^{\prime} \leq \boldsymbol{d}_{\xi, \eta}^{\prime}+\boldsymbol{d}_{\eta, \zeta}^{\prime}$
(ii) $\boldsymbol{d}_{\xi, \eta}^{\prime} \leq \boldsymbol{a}_{\xi}+\boldsymbol{a}_{\eta}, \boldsymbol{b}_{\xi}+\boldsymbol{b}_{\eta}$.
(iii) $\boldsymbol{e} \leq \boldsymbol{a}_{\eta}+\boldsymbol{b}_{\xi}+\boldsymbol{d}_{\xi, \eta}^{\prime}, \boldsymbol{a}_{\xi}+\boldsymbol{b}_{\eta}+\boldsymbol{d}_{\xi, \eta}^{\prime}$.

By applying the isomorphism $\psi_{\xi, \eta}^{-1}$ (see (4.2)) to the inequalities (ii) and (iii) above, we obtain the inequalities

$$
\begin{aligned}
\psi_{\xi, \eta}^{-1}\left(\boldsymbol{d}_{\xi, \eta}^{\prime}\right) & \leq(1,1,0,0)+(1,0,1,0) \\
\psi_{\xi, \eta}^{-1}\left(\boldsymbol{d}_{\xi, \eta}^{\prime}\right) & \leq(0,0,1,1)+(0,1,0,1) \\
(1,1,1,1) & \leq \psi_{\xi, \eta}^{-1}\left(\boldsymbol{d}_{\xi, \eta}^{\prime}\right)+(1,0,1,0)+(0,0,1,1) \\
(1,1,1,1) & \leq \psi_{\xi, \eta}^{-1}\left(\boldsymbol{d}_{\xi, \eta}^{\prime}\right)+(1,1,0,0)+(0,1,0,1)
\end{aligned}
$$

which leaves the only possibility

$$
\psi_{\xi, \eta}^{-1}\left(\boldsymbol{d}_{\xi, \eta}^{\prime}\right)=(0,1,1,0)
$$

that is,

$$
\boldsymbol{d}_{\xi, \eta}^{\prime}=\boldsymbol{a}_{\xi}+\boldsymbol{a}_{\eta}-2 \boldsymbol{c}_{\xi, \eta} .
$$

Therefore, applying the inequality (i) above with $(\xi, \eta, \zeta)=(\alpha, \beta, \gamma)$, we obtain

$$
\begin{equation*}
\boldsymbol{c}_{\alpha, \beta}+\boldsymbol{c}_{\beta, \gamma} \leq \boldsymbol{a}_{\beta}+\boldsymbol{c}_{\alpha, \gamma} \tag{6.21}
\end{equation*}
$$

in $\mathbf{F}\left(X_{2}\right)$. However, we shall now prove that (6.21) does not hold. Indeed, the structure $\left(\mathbb{Z}^{2},(2,1)\right)$ is a dimension group with order-unit of index 2 , thus it expands to some member $\left(\mathbb{Z}^{2},(2,1), \iota\right)$ of \mathcal{D} (where ι is an interpolator on \mathbb{Z}^{2}) such that

$$
\iota((0,0),(0,-1),(1,0),(1,0))=(0,0) \text { and } \iota((0,0),(0,0),(1,0),(1,1))=(1,0)
$$

Now there exists a unique normalized positive homomorphism $h:\left(\mathbf{E}\left(X_{2}\right), \boldsymbol{e}\right) \rightarrow$ $\left(\mathbb{Z}^{2},(2,1)\right)$ such that

$$
h\left(\boldsymbol{a}_{\alpha}\right)=h\left(\boldsymbol{a}_{\gamma}\right)=(1,0), \text { and } h\left(\boldsymbol{a}_{\beta}\right)=(1,1)
$$

By definition, $h(\boldsymbol{e})=(2,1)$, so we can compute

$$
\begin{aligned}
h_{[\ell]}\left(\boldsymbol{c}_{\alpha, \gamma}\right) & =\iota\left((0,0), h\left(\boldsymbol{a}_{\alpha}+\boldsymbol{a}_{\gamma}-\boldsymbol{e}\right), h\left(\boldsymbol{a}_{\alpha}\right), h\left(\boldsymbol{a}_{\gamma}\right)\right) \\
& =\iota((0,0),(0,-1),(1,0),(1,0)) \\
& =(0,0), \\
h_{[l]}\left(\boldsymbol{c}_{\alpha, \beta}\right) & =\iota\left((0,0), h\left(\boldsymbol{a}_{\alpha}+\boldsymbol{a}_{\beta}-\boldsymbol{e}\right), h\left(\boldsymbol{a}_{\alpha}\right), h\left(\boldsymbol{a}_{\beta}\right)\right) \\
& =\iota((0,0),(0,0),(1,0),(1,1)) \\
& =(1,0), \\
h_{[\iota]}\left(\boldsymbol{c}_{\beta, \gamma}\right) & =\iota\left((0,0), h\left(\boldsymbol{a}_{\beta}+\boldsymbol{a}_{\gamma}-\boldsymbol{e}\right), h\left(\boldsymbol{a}_{\beta}\right), h\left(\boldsymbol{a}_{\gamma}\right)\right) \\
& =\iota((0,0),(0,0),(1,1),(1,0)) \\
& =(1,0) .
\end{aligned}
$$

Therefore, applying $h_{[\iota]}$ to the inequality (6.21) yields the inequality $(2,0) \leq(1,1)$ (in \mathbb{Z}^{2} !), a contradiction.

Corollary 6.3. For any set X, the following conditions are equivalent:
(i) There exists a lattice L such that $\operatorname{Dim} L \cong \mathbf{F}(X)^{+}$.
(ii) There exists a complemented modular lattice L such that $\operatorname{Dim} L \cong \mathbf{F}(X)^{+}$.
(iii) There exists a von Neumann regular ring R such that $V(R) \cong \mathbf{F}(X)^{+}$.
(iv) There exists a locally matricial ring R such that $K_{0}(R) \cong \mathbf{F}(X)$.
(v) $|X| \leq \aleph_{1}$.

Proof. (i) \Rightarrow (v) follows immediately from Theorem 6.2.
Now suppose that $|X| \leq \aleph_{1}$. Then $\mathbf{F}(X)$ is a dimension group of cardinality at most \aleph_{1}; moreover, it has an order-unit (namely, \boldsymbol{e}). By [6, Theorem 1.5], for any field \mathbb{F}, there exists a locally matricial algebra R over \mathbb{F} such that $K_{0}(R) \cong \mathbf{F}(X)$. Hence (v) implies (iv).
(iv) \Rightarrow (iii) is trivial, as $V(R) \cong K_{0}(R)^{+}$for any locally matricial ring (and, more generally, for any unit-regular ring) R.

Now assume (iii). Since R is von Neumann regular, it follows from Lemma 1.4 that $V(R) \cong \operatorname{Dim} L$, where L is the (complemented modular) lattice of all principal right ideals of $M_{2}(R)$. Hence $\operatorname{Dim} L \cong \mathbf{F}(X)^{+}$, and so (ii) holds.

Finally, $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is a tautology.
We conclude the paper with a problem.
Problem. Is every conical refinement monoid of cardinality at most \aleph_{1} isomorphic to $\operatorname{Dim} L$, for some modular lattice L ?

Even for countable monoids the question above is open. It is formally similar to the fundamental open problem raised by K. R. Goodearl in his survey paper [5], that asks which refinement monoids are isomorphic to $V(R)$ for some von Neumann regular ring R. A positive answer to Goodearl's question would yield a positive answer to the problem above, with L sectionally complemented modular.

References

[1] P. Erdős, A. Hajnal, A. Máté, and R. Rado, "Combinatorial Set Theory: Partition Relations for Cardinals", Studies in Logic and the Foundations of Mathematics 106, North-Holland, Amsterdam - New York - Oxford, 1984. 347 p.
[2] K. R. Goodearl, "Partially Ordered Abelian Groups with Interpolation", Mathematical Surveys and Monographs, Vol. 20. American Mathematical Society, Providence, R.I., 1986. xxii +336 p.
[3] K. R. Goodearl, "Von Neumann Regular Rings", Second edition, Krieger, Malabar, Fl., 1991, $\mathrm{xvi}+412 \mathrm{p}$.
[4] K. R. Goodearl, K_{0} of regular rings with bounded index of nilpotence, in: Abelian Group Theory and Related Topics (R. Göbel, P. Hill, and W. Liebert, eds.), Contemporary Mathematics 171 (1994), 173-199.
[5] K. R. Goodearl, Von Neumann regular rings and direct sum decomposition problems, in: Abelian Groups and Modules, Padova 1994 (A. Facchini and C. Menini, eds.), Dordrecht (1995) Kluwer, 249-255.
[6] K. R. Goodearl and D. E. Handelman, Tensor products of dimension groups and K_{0} of unitregular rings, Canad. J. Math. 38, no. 3 (1986), 633-658.
[7] K. R. Goodearl and F. Wehrung, The complete dimension theory of partially ordered systems with equivalence and orthogonality, Mem. Amer. Math. Soc., to appear.
[8] G. Grätzer, "General Lattice Theory. Second edition", new appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998. xx +663 p.
[9] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17.
[10] D. Lázár, On a problem in the theory of aggregates, Compositio Math. 3 (1936), 304.
[11] A.I. Mal'cev, "Algebraic Systems", Algebraic systems. (Algebraicheskie sistemy) (Russian) Sovremennaja Algebra. Moskau: Verlag "Nauka", Hauptredaktion für physikalischmathematische Literatur. 392 p., 1970. English translation: Die Grundlehren der mathematischen Wissenschaften. Band 192. Berlin - Heidelberg - New York: Springer-Verlag; Berlin: Akademie-Verlag, 1973. xii+317 p.
[12] M. Ploščica, J. Tůma, and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76, no. 2 (1998), 269-278.
[13] J. Tůma and F. Wehrung, Simultaneous representations of semilattices by lattices with permutable congruences, Internat. J. Algebra Comput. 11, no. 2 (2001), 217-246.
[14] J. Tůma and F. Wehrung, A survey of recent results on congruence lattices of lattices, Algebra Universalis 48, no. 4 (2002), 439-471.
[15] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177-206
[16] F. Wehrung, The dimension monoid of a lattice, Algebra Universalis 40, no. 3 (1998), 247411.
[17] F. Wehrung, A uniform refinement property for congruence lattices, Proc. Amer. Math. Soc. 127, no. 2 (1999), 363-370.

LMNO, CNRS UMR 6139, Département de Mathématiques, BP 5186, Université de Caen, Campus 2, 14032 Caen Cedex, France

E-mail address: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

[^0]: Date: May 20, 2005.
 2000 Mathematics Subject Classification. 06B10, 06C05, 16E50, 19A49.
 Key words and phrases. Lattice; monoid; dimension monoid; dimension group; index; V-homomorphism; modular lattice; von Neumann regular ring; locally matricial.

