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DISTRIBUTIVE CONGRUENCE LATTICES OF

CONGRUENCE-PERMUTABLE ALGEBRAS

PAVEL RŮŽIČKA, JIŘÍ TŮMA, AND FRIEDRICH WEHRUNG

Abstract. We prove that every distributive algebraic lattice with at most ℵ1

compact elements is isomorphic to the normal subgroup lattice of some group
and to the submodule lattice of some right module. The ℵ1 bound is optimal,
as we find a distributive algebraic lattice D with ℵ2 compact elements that is
not isomorphic to the congruence lattice of any algebra with almost permutable
congruences (hence neither of any group nor of any module), thus solving
negatively a problem of E. T. Schmidt from 1969. Furthermore, D may be
taken as the congruence lattice of the free bounded lattice on ℵ2 generators in
any non-distributive lattice variety.

Some of our results are obtained via a functorial approach of the semilattice-
valued ‘distances’ used by B. Jónsson in his proof of Whitman’s embedding
Theorem. In particular, the semilattice of compact elements of D is not the
range of any distance satisfying the V-condition of type 3/2. On the other
hand, every distributive 〈∨, 0〉-semilattice is the range of a distance satisfying
the V-condition of type 2. This can be done via a functorial construction.

Introduction

Representing algebraic lattices as congruence lattices of algebras often gives rise
to very hard open problems. The most well-known of those problems, the Con-

gruence Lattice Problem, usually abbreviated CLP, asks whether every distributive
algebraic lattice is isomorphic to the congruence lattice of some lattice, see the sur-
vey paper [22]. This problem has been solved recently by the third author in [26].
For algebraic lattices that are not necessarily distributive, there are several deep
results, one of the most remarkable, due to W. A. Lampe [13], stating that ev-

ery algebraic lattice with compact unit is isomorphic to the congruence lattice of

some groupoid. This result is further extended to join-complete, unit-preserving,
compactness preserving maps between two algebraic lattices [14].

Although some of our methods are formally related to Lampe’s, for example
the proof of Theorem 7.1 via Proposition 2.6, we shall be concerned only about
distributive algebraic lattices. This topic contains some not so well-known but also
unsolved problems, as, for example, whether every distributive algebraic lattice is
isomorphic to the congruence lattice of an algebra in some congruence-distributive

variety.
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If one drops congruence-distributivity, then one would expect the problems to
become easier. Consider, for example, the two following problems:

CGP. Is every distributive algebraic lattice isomorphic to the normal subgroup

lattice of some group?

CMP. Is every distributive algebraic lattice isomorphic to the submodule lattice of

some module?

The problem CGP was originally posed for finite distributive (semi)lattices by
E.T. Schmidt as [19, Problem 5]. A positive solution was provided by H. L. Silcock,
who proved in particular that every finite distributive lattice D is isomorphic to
the normal subgroup lattice of some finite group G (see [20]). P.P. Pálfy proved
later that G may be taken finite solvable (see [16]). However, the general question
seemed open until now. Similarly, the statement of CMP has been communicated
to the authors by Jan Trlifaj, and nothing seemed to be known about the general
case.

A common feature of the varieties of all groups and of all modules over a given
ring is that they are congruence-permutable, for example, any two congruences of
a group are permutable. Thus both CGP and CMP are, in some sense, particular
instances of the following question:

CPP (see [19, Problem 3]). Is every distributive algebraic lattice isomorphic to

the congruence lattice of some algebra with permuting congruences?

Although the exact formulation of [19, Problem 3] asked whether every Argue-

sian algebraic lattice is isomorphic to the congruence lattice of an algebra with
permutable congruences, it was mentioned there that even the distributive case
was open. Meanwhile, the Arguesian case was solved negatively by M. D. Haiman
[9, 10], however, the distributive case remained open.

Recall that an algebra A has almost permutable congruences (see [21]), if a∨b =
ab∪ba, for all congruences a, b ∈ Con A (where the notation ab stands for the usual
composition of relations). The three-element chain is an easy example of a lattice
with almost permutable congruences but not with permutable congruences. On
the other hand, it is not difficult to verify that every almost congruence-permutable

variety of algebras is congruence-permutable. The last two authors of the present
paper obtained in [21] negative congruence representation results of distributive
semilattices by lattices with almost permutable congruences, but nothing was said
there about arbitrary algebras with permutable congruences. Furthermore, our
attempts based on the “uniform refinement properties” introduced in that paper
failed, as these properties turned out to be quite lattice-specific.

In the present paper, we introduce a general framework that makes it possible
to extend the methods of [21] to arbitrary algebras, and thus solving CPP—and, in
fact, its generalization to algebras with almost permutable congruences—negatively.
Hence, both CGP and CMP also have negative solutions. In fact, the negative
solution obtained in CGP for groups extends to loops, as the variety of all loops
is also congruence-permutable. Another byproduct is that we also get a negative
solution for the corresponding problem for lattice-ordered groups, see also Problem 1.

Our counterexample is the same as in [18] and in [21], namely the congruence
lattice of a free lattice with at least ℵ2 generators in any non-distributive variety of
lattices. We also show that the size ℵ2 is optimal, by showing that every distributive
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algebraic lattice with at most ℵ1 compact elements is isomorphic to the submodule

lattice of some module, and also to the normal subgroup lattice of some locally finite

group, see Theorems 4.1 and 5.3. We also prove that every distributive algebraic

lattice with at most countably many compact elements is isomorphic to the ℓ-ideal
lattice of some lattice-ordered group, see Theorem 6.3.

In order to reach our negative results, the main ideas are the following.

(1) Forget about the algebraic structure, just keep the partition lattice repre-
sentation.

(2) State a weaker “uniform refinement property” that settles the negative
result.

For Point (1), we are looking for a very special sort of lattice homomorphism of
a given lattice into some partition lattice, namely, the sort that is induced, as in
Proposition 1.2, by a semilattice-valued distance, see Definition 1.1. For a 〈∨, 0〉-
semilattice S and a set X , an S-valued distance on X is a map δ : X × X → S
satisfying the three usual statements characterizing distances (see Definition 1.1).
Every such δ induces a map ϕ from S to the partition lattice of X (see Proposi-
tion 1.2), and if δ satisfies the so-called V-condition, then ϕ is a join-homomorphism.
Furthermore, the V-condition of type n says that the equivalences in the range of ϕ
are pairwise (n + 1)-permutable. Those “distances” have been introduced by B.
Jónsson for providing a simple proof of Whitman’s Theorem that every lattice can
be embedded into some partition lattice, see [11] or Theorems IV.4.4 and IV.4.8
in [6].

While it is difficult to find a suitable notion of morphism between partition
lattices, it is easy to do such a thing with our distances, see Definition 1.1. This
makes it possible to define what it means for a commutative diagram of 〈∨, 0〉-semi-
lattices to have a lifting, modulo the forgetful functor, by distances. In particular,
we prove, in Theorem 7.2, that the cube Dac considered in [21, Section 7] does not
have a lifting by any diagram of V-distances “of type 3/2”, that is, the equivalences
in the ranges of the corresponding partition lattice representations cannot all be
almost permutable. This result had been obtained only for lattices in [21].

The original proof of Theorem 7.2 was our main inspiration for getting a weaker
“uniform refinement property”, that we denote here by WURP= (see Definition 2.1).
First, we prove that if δ : X × X → S is an S-valued V-distance of type 3/2 with
range generating S, then S satisfies WURP= (see Theorem 2.3). Next, we prove
that for any free lattice F with at least ℵ2 generators in any non-distributive variety
of lattices, the compact congruence semilattice Conc F does not satisfy WURP=

(see Corollary 3.8). Therefore, ConF is not isomorphic to ConA, for any algebra A
with almost permutable congruences (see Corollary 3.7).

On the positive side, we explain why all previous attempts at finding similar
negative results for representations of type 2 (and above) failed. We prove, in
particular, that for every distributive 〈∨, 0〉-semilattice S, there exists a surjective

V-distance δS : XS ×XS ։ S of type 2, which, moreover, depends functorially on S
(see Theorem 7.1). In particular, the diagram D⊲⊳ considered in [23], which is not
liftable, with respect to the congruence lattice functor, in any variety whose con-
gruence lattices satisfy a nontrivial identity, is nevertheless liftable by V-distances
of type 2.
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Basic concepts

For elements x and y in an algebra A, we denote by ΘA(x, y), or Θ(x, y) if A
is understood, the least congruence of A that identifies x and y. Furthermore,
in case A is a lattice, we put Θ+

A(x, y) = ΘA(x ∧ y, x). We denote by ConA
(resp., Conc A) the lattice (resp., semilattice) of all compact (i.e., finitely generated)
congruences of A.

For join-semilattices S and T , a join-homomorphism µ : S → T is weakly dis-

tributive (see [24]), if for every c ∈ S and a, b ∈ T , if µ(c) ≤ a ∨ b, then there are
x, y ∈ S such that c ≤ x ∨ y, µ(x) ≤ a, and µ(y) ≤ b.

A diagram in a category C is a functor D : I → C, for some category I. For a
functor F : A → C, a lifting of D with respect to F is a functor Φ: I → A such that
the composition F ◦ Φ is naturally equivalent to D.

For a set X and a natural number n, we denote by [X ]n the set of all n-elements
subsets of X , and we put [X ]<ω =

⋃

([X ]n | n < ω). The following statement of
infinite combinatorics can be found in C. Kuratowski [12].

The Kuratowski Free Set Theorem. Let n be a positive integer and let X be

a set. Then |X | ≥ ℵn iff for every map Φ: [X ]n → [X ]<ω, there exists U ∈ [X ]n+1

such that u /∈ Φ(U \ {u}), for any u ∈ U .

As in [18, 24], only the case n = 2 will be used.
We identify every natural number n with the set {0, 1, . . . , n−1}, and we denote

by ω the set of all natural numbers.

1. V-distances of type n

Definition 1.1. Let S be a 〈∨, 0〉-semilattice and let X be a set. A map δ : X×X → S
is an S-valued distance on X , if the following statements hold:

(i) δ(x, x) = 0, for all x ∈ X .
(ii) δ(x, y) = δ(y, x), for all x, y ∈ X .
(iii) δ(x, z) ≤ δ(x, y) ∨ δ(y, z), for all x, y, z ∈ X .

The kernel of δ is defined as {〈x, y〉 ∈ X × X | δ(x, y) = 0}. The V-condition on δ
is the following condition:

For all x, y ∈ X and all a, b ∈ S such that δ(x, y) ≤ a ∨ b, there
are n ∈ ω \ {0} and z0 = x, z1, . . . , zn+1 = y such that for all
i ≤ n, δ(zi, zi+1) ≤ a in case i is even, while δ(zi, zi+1) ≤ b in
case i is odd.

In case n is the same for all x, y, a, b, we say that the distance δ satisfies the
V-condition of type n, or is a V-distance of type n.

We say that δ satisfies the V-condition of type 3/2, or is a V-distance of type 3/2,
if for all x, y ∈ X and all a, b ∈ S such that δ(x, y) ≤ a ∨ b, there exists z ∈ X
such that either (δ(x, z) ≤ a and δ(z, y) ≤ b) or (δ(x, z) ≤ b and δ(z, y) ≤ a).

We say that a morphism from λ : X × X → A to µ : Y × Y → B is a pair
〈f, f〉, where f : A → B is a 〈∨, 0〉-homomorphism and f : X → Y is a map such
that f(λ(x, y)) = µ(f(x), f(y)), for all x, y ∈ X . The forgetful functor sends
λ : X × X → A to A and 〈f, f〉 to f .

Denote by Eq X the lattice of all equivalence relations on a set X . For a positive
integer n, we say as usual that α, β ∈ EqX are (n + 1)-permutable, if γ0γ1 · · · γn =
γ1γ2 · · · γn+1, where γk is defined as α if k is even and as β if k is odd, for every
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natural number k. In particular, 2-permutable is the same as permutable. With
every distance is associated a homomorphism to some EqX , as follows.

Proposition 1.2. Let S be a 〈∨, 0〉-semilattice and let δ : X × X → S be an S-

valued distance. Then one can define a map ϕ : S → EqX by the rule

ϕ(a) = {〈x, y〉 ∈ X × X | δ(x, y) ≤ a}, for all a ∈ S.

Furthermore,

(i) The map ϕ preserves all existing meets.

(ii) If δ satisfies the V-condition, then ϕ is a join-homomorphism.

(iii) If the range of δ join-generates S, then ϕ is an order-embedding.

(iv) If the distance δ satisfies the V-condition of type n, then all equivalences

in the range of ϕ are pairwise (n + 1)-permutable.

Any algebra gives rise to a natural distance, namely the map 〈x, y〉 7→ Θ(x, y)
giving the principal congruences.

Proposition 1.3. Let n be a positive integer and let A be an algebra with (n + 1)-
permutable congruences. Then the semilattice Conc A of compact congruences of A
is join-generated by the range of a V-distance of type n.

Proof. Let δ : A × A → Conc A be defined by δ(x, y) = ΘA(x, y), the principal
congruence generated by 〈x, y〉, for all x, y ∈ A. The assumption that A has
(n+1)-permutable congruences means exactly that δ is a V-distance of type n. �

Of course, A has almost permutable congruences if and only if the canonical
distance ΘA : A × A → Conc A satisfies the V-condition of type 3/2.

We shall focus attention on three often encountered varieties all members of
which have permutable (i.e., 2-permutable) congruences:

— The variety of all right modules over a given ring R. The congruence
lattice of a right module M is canonically isomorphic to the submodule
lattice SubM of M . We shall denote by Subc M the 〈∨, 0〉-semilattice of
all finitely generated submodules of M .

— The variety of all groups. The congruence lattice of a group G is canon-
ically isomorphic to the normal subgroup lattice NSubG of G. We shall
denote by NSubc G the 〈∨, 0〉-semilattice of all finitely generated normal
subgroups of G.

— The variety of all ℓ-groups (i.e., lattice-ordered groups), see [1]. The con-
gruence lattice of an ℓ-group G is canonically isomorphic to the lattice
Idℓ G of all convex normal subgroups, or ℓ-ideals, of G. We shall denote
by Idℓ

c G the 〈∨, 0〉-semilattice of all finitely generated ℓ-ideals of G.

Hence we obtain immediately the following result.

Corollary 1.4.

(i) Let M be a right module over any ring R. Then Subc M is join-generated

by the range of a V-distance of type 1 on M .

(ii) Let G be a group. Then NSubc G is join-generated by the range of a V-

distance of type 1 on G.

(iii) Let G be an ℓ-group. Then Idℓ
c G is join-generated by the range of a V-

distance of type 1 on G.
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The V-distances corresponding to (i), (ii), and (iii) above are, respectively, given
by δ(x, y) = (x − y)R, δ(x, y) = [xy−1] (the normal subgroup of G generated by
xy−1), and δ(x, y) = G(xy−1) (the ℓ-ideal of G generated by xy−1).

The assignments M 7→ Subc M , G 7→ NSubc G, and G 7→ Idℓ
c G can be canoni-

cally extended to direct limits preserving functors to the category of all 〈∨, 0〉-semi-
lattices with 〈∨, 0〉-homomorphisms.

2. An even weaker uniform refinement property

The following infinitary axiom WURP= is a weakening of all the various “uni-
form refinement properties” considered in [18, 21, 24]. Furthermore, the proof
that follows, aimed at obtaining Theorem 3.6, is very similar to the proofs of [18,
Theorem 3.3] and [21, Theorem 2.1].

Definition 2.1. Let e be an element in a 〈∨, 0〉-semilattice S. We say that S
satisfies WURP=(e), if there exists a positive integer m such that for all families
〈ai | i ∈ I〉 and 〈bi | i ∈ I〉 of elements of S such that e ≤ ai ∨bi for all i ∈ I, there
are a m-sequence 〈Iu | u < m〉 of subsets of I such that

⋃

(Iu | u < m) = I and
a family 〈ci,j | 〈i, j〉 ∈ I × I〉 of elements of S such that the following statements
hold:

(i) ci,j ≤ ai ∨ aj and ci,j ≤ bi ∨ bj , for all u < m and all i, j ∈ Iu.
(ii) e ≤ aj ∨ bi ∨ ci,j , for all u < m and all i, j ∈ Iu.
(iii) ci,k ≤ ci,j ∨ cj,k, for all i, j, k ∈ I.

Say that S satisfies WURP=, if S satisfies WURP=(e) for all e ∈ S.

The following easy lemma is instrumental in the proof of Corollary 3.7.

Lemma 2.2. Let S and T be 〈∨, 0〉-semilattices, let µ : S → T be a weakly dis-

tributive 〈∨, 0〉-homomorphism, and let e ∈ S. If S satisfies WURP=(e), then T
satisfies WURP=(µ(e)).

Theorem 2.3. Let S be a 〈∨, 0〉-semilattice and let δ : X ×X → S be a V-distance

of type 3/2 with range join-generating S. Then S satisfies WURP=.

Proof. Let e ∈ S. As S is join-generated by the range of δ, there are a positive
integer n and elements xℓ, yℓ ∈ X , for ℓ < n, such that e =

∨

(δ(xℓ, yℓ) | ℓ < n).
For all i ∈ I and all ℓ < n, from δ(xℓ, yℓ) ≤ ai ∨ bi and the assumption on δ it
follows that there exists zi,ℓ ∈ X such that

(2.1)
either δ(xℓ, zi,ℓ) ≤ ai and δ(zi,ℓ, yℓ) ≤ bi

or δ(xℓ, zi,ℓ) ≤ bi and δ(zi,ℓ, yℓ) ≤ ai.

For all i ∈ I and all ℓ < n, denote by P (i, ℓ) and Q(i, ℓ) the following statements:

P (i, ℓ) : δ(xℓ, zi,ℓ) ≤ ai and δ(zi,ℓ, yℓ) ≤ bi;

Q(i, ℓ) : δ(xℓ, zi,ℓ) ≤ bi and δ(zi,ℓ, yℓ) ≤ ai.

We shall prove that m = 2n is a suitable choice for witnessing WURP=(e). So
let U denote the powerset of n, and put

Iu = {i ∈ I | (∀ℓ ∈ u)P (i, ℓ) and (∀ℓ ∈ n \ u)Q(i, ℓ)}, for all u ∈ U.

We claim that I =
⋃

(Iu | u ∈ U). Indeed, let i ∈ I, and put u = {ℓ < n | P (i, ℓ)}.
It follows from (2.1) that Q(i, ℓ) holds for all ℓ ∈ n \ u, whence i ∈ Iu. Now we put

ci,j =
∨

(δ(zi,ℓ, zj,ℓ) | ℓ < n), for all i, j ∈ I,
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and we prove that the family 〈ci,j | 〈i, j〉 ∈ I × I〉 satisfies the required conditions,
with respect to the family 〈Iu | u ∈ U〉 of 2n subsets of I. So, let i, j, k ∈ I. The
inequality ci,k ≤ ci,j ∨ cj,k holds trivially.

Now suppose that i, j ∈ Iu, for some u ∈ U .
Let ℓ < n. If ℓ ∈ u, then

δ(zi,ℓ, zj,ℓ) ≤ δ(zi,ℓ, xℓ) ∨ δ(xℓ, zj,ℓ) ≤ ai ∨ aj ,

δ(xℓ, yℓ) ≤ δ(xℓ, zj,ℓ) ∨ δ(zj,ℓ, zi,ℓ) ∨ δ(zi,ℓ, yℓ) ≤ aj ∨ ci,j ∨ bi,

while if ℓ ∈ n \ u,

δ(zi,ℓ, zj,ℓ) ≤ δ(zi,ℓ, yℓ) ∨ δ(yℓ, zj,ℓ) ≤ ai ∨ aj ,

δ(xℓ, yℓ) ≤ δ(xℓ, zi,ℓ) ∨ δ(zi,ℓ, zj,ℓ) ∨ δ(zj,ℓ, yℓ) ≤ bi ∨ ci,j ∨ aj .

whence both inequalities δ(zi,ℓ, zj,ℓ) ≤ ai ∨ aj and δ(xℓ, yℓ) ≤ aj ∨ bi ∨ ci,j hold in
any case. Hence ci,j ≤ ai ∨ aj and e ≤ aj ∨ bi ∨ ci,j . Exchanging x and y in the
argument leading to the first inequality also yields that ci,j ≤ bi ∨ bj . �

Corollary 2.4. Let A be an algebra with almost permutable congruences. Then

Conc A satisfies WURP=.

Remark 2.5. In case the distance δ satisfies the V-condition of type 1, the statement
WURP= in Theorem 2.3 can be strengthened by taking m = 1 in Definition 2.1.
Similarly, if A is an algebra with permutable congruences, then Conc A satisfies
that strengthening of WURP=. In particular, as any group, resp. any module,
has permutable congruences, both NSubc G, for a group G, and Subc M , for a
module M , satisfy the strengthening of WURP= obtained by taking m = 1 in
Definition 2.1.

As we shall see in Theorem 3.6, not every distributive 〈∨, 0〉-semilattice can be
join-generated by the range of a V-distance of type 3/2. The situation changes
dramatically for type 2. It is proved in [8] that any modular algebraic lattice is
isomorphic to the congruence lattice of an algebra with 3-permutable congruences.
This easily implies the following result; nevertheless, we provide a much more direct
argument, which will be useful for the proof of Theorem 7.1.

Proposition 2.6. Any distributive 〈∨, 0〉-semilattice is the range of some V-distance

of type 2.

Proof. Let S be a distributive 〈∨, 0〉-semilattice. We first observe that the map
µS : S × S → S defined by the rule

(2.2) µS(x, y) =

{

x ∨ y, if x 6= y,

0, if x = y

is a surjective S-valued distance on S. Now suppose that we are given a surjective
S-valued distance δ : X × X → S, and let x, y ∈ X and a, b ∈ S such that
δ(x, y) ≤ a ∨ b. Since S is distributive, there are a′ ≤ a and b′ ≤ b such that
δ(x, y) = a′ ∨ b′. We put X ′ = X ∪ {u, v}, where u and v are two distinct outside
points, and we extend δ to a distance δ′ on X ′ by putting δ′(z, u) = δ(z, x) ∨ a′

and δ′(z, v) = δ(z, y)∨a′, for all z ∈ X , while δ′(u, v) = b′. It is straightforward to
verify that δ′ is an S-valued distance on X ′ extending δ. Furthermore, δ′(x, u) =
a′ ≤ a, δ′(u, v) = b

′ ≤ b, and δ′(v, y) = a′ ≤ a. Iterating this construction
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transfinitely, taking direct limits at limit stages, yields an S-valued V-distance of
type 2 extending δ. �

3. Failure of WURP= in Conc F , for F free bounded lattice

The main proof of the present section, that is, the proof of Theorem 3.6, follows
the lines of the proofs of [18, Theorem 3.3] and [21, Corollary 2.1]. However, there
are a few necessary changes, mainly due to the new “uniform refinement property”
not being the same as the previously considered ones. As the new result extends
to any algebra, and not only lattices (see Corollary 3.7), we feel that it is still
worthwhile to show the main lines of the proof in some detail.

From now on until Lemma 3.5, we shall fix a non-distributive lattice variety V.
For every set X , denote by BV(X) (or B(X) in case V is understood) the bounded

lattice in V freely generated by chains si < ti, for i ∈ X . Note that if Y is a subset
of X , then there is a unique retraction from B(X) onto B(Y ), sending each si to 0
and each ti to 1, for every i ∈ X \ Y . Thus, we shall often identify B(Y ) with
the bounded sublattice of B(X) generated by all si and ti (i ∈ Y ). Moreover,
the abovementioned retraction from B(X) onto B(Y ) induces a retraction from
Conc B(X) onto Conc B(Y ). Hence, we shall also identify Conc B(Y ) with the
corresponding subsemilattice of Conc B(X).

Now we fix a set X such that |X | ≥ ℵ2. We denote, for all i ∈ X , by ai and bi

the compact congruences of B(X) defined by

(3.1) ai = Θ(0, si) ∨ Θ(ti, 1); bi = Θ(si, ti).

In particular, note that ai ∨ bi = 1, the largest congruence of B(X).
Now, towards a contradiction, suppose that there are a positive integer n, a de-

composition X =
⋃

(Xk | k < n), and a family 〈ci,j | 〈i, j〉 ∈ X × X〉 of elements of
Conc B(X) witnessing the statement that Conc B(X) satisfies WURP=(1), where 1
denotes the largest congruence of B(X). We pick k < n such that |Xk| = |X |. By
“projecting everything on B(Xk)” (as in [21, page 224]), we might assume that
Xk = X .

Since the Conc functor preserves direct limits, for all i, j ∈ X , there exists a
finite subset F ({i, j}) of X such that both ci,j and cj,i belong to Conc B(F ({i, j})).
By Kuratowski’s Theorem, there are distinct elements 0, 1, 2 of X such that 0 /∈
F ({1, 2}), 1 /∈ F ({0, 2}), and 2 /∈ F ({0, 1}). Denote by π : B(X) ։ B({0, 1, 2})
the canonical retraction. For every i ∈ {0, 1, 2}, denote by i′ and i′′ the other
two elements of {0, 1, 2}, arranged in such a way that i′ < i′′. We put di =
(Conc π)(ci′,i′′ ), for all i ∈ {0, 1, 2}.

Applying the semilattice homomorphism Conc π to the inequalities satisfied by
the elements ci,j yields

d0 ⊆ a1 ∨ a2, b1 ∨ b2; d1 ⊆ a0 ∨ a2, b0 ∨ b2; d2 ⊆ a0 ∨ a1, b0 ∨ b1;(3.2)

d0 ∨ a2 ∨ b1 = d1 ∨ a2 ∨ b0 = d2 ∨ a1 ∨ b0 = 1;(3.3)

d1 ⊆ d0 ∨ d2.(3.4)

As in [18, Lemma 2.1], it is not hard to prove the following.

Lemma 3.1. The congruence di belongs to Conc B({i′, i′′}), for all i ∈ {0, 1, 2}.

Since V is a non-distributive variety of lattices, it follows from a classical result of
lattice theory that V contains as a member some lattice M ∈ {M3, N5}. Decorate
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the lattice M with three 2-element chains xi < yi (for i ∈ {0, 1, 2}) as in [18], which
we illustrate on Figure 1.

y1 = 1 y1 = 1

y0 = p x1 = q y2 = r

x0 = x2 = 0 x0 = x2 = 0

y0 = c
x1 = b

y2 = a

Figure 1. The decorations of M3 and N5.

The relevant properties of these decorations are summarized in the two following
straightforward lemmas.

Lemma 3.2. The decorations defined above satisfy the following inequalities

x0 ∧ y1 ≤ x1; y1 ≤ x1 ∨ y0; x1 ∧ y0 ≤ x0; y0 ≤ x0 ∨ y1;

x1 ∧ y2 ≤ x2; y2 ≤ x2 ∨ y1; x2 ∧ y1 ≤ x1; y1 ≤ x1 ∨ y2,

but y2 6≤ x2 ∨ y0.

Lemma 3.3. The sublattice of M generated by {xi′ , xi′′ , yi′ , yi′′} is distributive, for

all i ∈ {0, 1, 2}.

Now we shall denote by D be the free product (i.e., the coproduct) of two 2-
element chains, say u0 < v0 and u1 < v1, in the variety of all distributive lattices.
The lattice D is diagrammed on Figure 2.

The join-irreducible elements of D are u0, u1, v0, v1, u′

0 = u0 ∧ v1, u′

1 = u1 ∧ v0,
and w = v0 ∧ v1. Since D is finite distributive, its congruence lattice is finite
Boolean, with seven atoms p = ΘD(p∗, p), for p ∈ J(D) (where p∗ denotes the
unique lower cover of p in D), that is,

u0 = Θ+
D(u0, v1); u1 = Θ+

D(u1, v0);

v0 = Θ+
D(v0, u0 ∨ v1); v1 = Θ+

D(v1, u1 ∨ v0);

u′

0 = Θ+
D(u0 ∧ v1, u1); u′

1 = Θ+
D(u1 ∧ v0, u0);

w = ΘD((u0 ∧ v1) ∨ (u1 ∧ v0), v0 ∧ v1).

For all i ∈ {0, 1, 2}, let πi : B({i′, i′′}) → D be the unique lattice homomor-
phism sending si′ to u0, ti′ to v0, si′′ to u1, ti′′ to v1. Furthermore, denote by
ρ : B({0, 1, 2}) → M the unique lattice homomorphism sending si to xi and ti to yi

(for all i ∈ {0, 1, 2}); denote by ρi the restriction of ρ to B({i′, i′′}).
We shall restate [18, Lemma 3.1] here for convenience.

Lemma 3.4. Let L be any distributive lattice, let a, b, a′, b′ be elements of L.

Then the equality Θ+
L(a, b) ∩ Θ+

L(a′, b′) = Θ+
L(a ∧ a′, b ∨ b′) holds.

Now we put ei = (Conc πi)(di), for all i ∈ {0, 1, 2}.
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v0 ∨ v1 = 1

v0 v1

w

u0 u1

u′

0 u′

1

u0 ∧ u1 = 0

Figure 2. The distributive lattice D.

Lemma 3.5. The containments e− ⊆ ei ⊆ e+ hold for all i ∈ {0, 1, 2}, where we

put

e− = Θ+
D(u0 ∧ v1, u1) ∨ Θ+

D(v1, u1 ∨ v0),

e+ = Θ+
D(u0 ∧ v1, u1) ∨ Θ+

D(v1, u1 ∨ v0) ∨ Θ+
D(u1 ∧ v0, u0) ∨ Θ+

D(v0, u0 ∨ v1).

Proof. Applying Conc πi to the inequalities (3.2) and (3.3) yields the following
inequalities:

ei ⊆ Θ(0, u0) ∨ Θ(0, u1) ∨ Θ(v0, 1) ∨ Θ(v1, 1),(3.5)

ei ⊆ Θ(u0, v0) ∨ Θ(u1, v1),(3.6)

ei ∨ Θ(0, u1) ∨ Θ(v1, 1) ∨ Θ(u0, v0) = 1.(3.7)

By using Lemma 3.4 and the distributivity of ConD, we obtain, by meeting (3.5)
and (3.6), the inequality ei ⊆ e+. On the other hand, by using (3.7) together with
the equality

Θ(0, u1) ∨ Θ(v1, 1) ∨ Θ(u0, v0) = u0 ∨ u1 ∨ u′

1 ∨ v0 ∨ w,

(see Figure 2), we obtain that e− = u′

0 ∨ v1 ⊆ ei. �

Now, for all i ∈ {0, 1, 2}, it follows from Lemma 3.3 that there exists a unique
lattice homomorphism ϕi : D → M such that ϕi ◦ πi = ρi. Since Conc is a functor,
we get from this and from Lemma 3.5 that for all i ∈ {0, 1, 2},

(3.8) (Conc ρ)(di) = (Conc ϕi)(ei) ⊆ (Conc ϕi)(e
+)

= (Conc ϕi)(Θ
+(u0 ∧ v1, u1)∨Θ+(v1, u1 ∨ v0)∨Θ+(u1 ∧ v0, u0)∨Θ+(v0, u0 ∨ v1))

= Θ+(xi′ ∧ yi′′ , xi′′ ) ∨ Θ+(yi′′ , xi′′ ∨ yi′) ∨ Θ+(xi′′ ∧ yi′ , xi′ ) ∨ Θ+(yi′ , xi′ ∨ yi′′).
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while

(3.9) (Conc ρ)(di) = (Conc ϕi)(ei) ⊇ (Conc ϕi)(e
−)

= (Conc ϕi)(Θ
+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0))

= Θ+(xi′ ∧ yi′′ , xi′′ ) ∨ Θ+(yi′′ , xi′′ ∨ yi′).

In particular, we obtain, using Lemma 3.2,

(Conc ρ)(d0) = 0,

(Conc ρ)(d2) = 0,

while (Conc ρ)(d1) ⊇ Θ+(x0 ∧ y2, x2) ∨ Θ+(y2, x2 ∨ y0) 6= 0.

On the other hand, by applying Conc ρ to (3.4), we obtain that

(Conc ρ)(d1) ⊆ (Conc ρ)(d0) ∨ (Conc ρ)(d2),

a contradiction. Therefore, we have proved the following theorem.

Theorem 3.6. Let V be any non-distributive variety of lattices, let X be any set

such that |X | ≥ ℵ2. Denote by BV(X) the free product in V of X copies of a two-

element chain with a least and a largest element added. Then Conc BV(X) does

not satisfy WURP= at its largest element.

A “local” version of Theorem 3.6 is presented in Theorem 7.2.
Observe that Conc BV(X), being the semilattice of compact congruences of a

lattice, is distributive.
As in [18, Corollary 4.1], we obtain the following.

Corollary 3.7. Let L be any lattice that admits a lattice homomorphism onto a

free bounded lattice in the variety generated by either M3 or N5 with ℵ2 generators.

Then Conc L does not satisfy WURP=. In particular, there exists no V-distance

of type 3/2 with range join-generating Conc L. Hence there is no algebra A with

almost permutable congruences such that ConL ∼= ConA.

Proof. The first part of the proof goes like the proof of [18, Corollary 4.1], using
Lemma 2.2. The rest of the conclusion follows from Theorem 2.3. �

Corollary 3.8. Let V be any non-distributive variety of lattices and let F be any

free (resp., free bounded) lattice with at least ℵ2 generators in V. Then there exists

no V-distance of type 3/2 with range join-generating Conc F . In particular, there

is no algebra A with almost permutable congruences such that Con F ∼= Con A.

By using Corollary 1.4, we thus obtain the following.

Corollary 3.9. Let V be a non-distributive variety of lattices, let F be any free

(resp., free bounded) lattice with at least ℵ2 generators in V, and put D = ConF—a

distributive, algebraic lattice with ℵ2 compact elements. Then there is no module M
(resp., no group G, no ℓ-group G) such that SubM ∼= D (resp., NSub G ∼= D,

Idℓ G ∼= D).

Hence, not every distributive algebraic lattice is isomorphic to the submodule
lattice of some module, or to the normal subgroup lattice of some group. However,
our proof of this negative result requires at least ℵ2 compact elements. As we shall
see in Sections 4 and 5, the ℵ2 bound is, in both cases of modules and groups,
optimal.
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4. Representing distributive algebraic lattices with at most ℵ1

compact elements as submodule lattices of modules

In this section we deal with congruence lattices of right modules over rings.

Theorem 4.1. Every distributive 〈∨, 0〉-semilattice of size at most ℵ1 is isomorphic

to the submodule lattice of some right module.

Proof. Let S be a distributive 〈∨, 0〉-semilattice of size at most ℵ1. If S has a
largest element, then it follows from the main result of [25] that S is isomorphic
to the semilattice Idc R of all finitely generated two-sided ideals of some (unital)
von Neumann regular ring R.

In order to reduce ideals to submodules, we use a well-known trick. As R is
a bimodule over itself, the tensor product R = Rop ⊗ R can be endowed with a
structure of (unital) ring, with multiplication satisfying (a⊗b)·(a′⊗b′) = (a′a)⊗(bb′)
(both a′a and bb′ are evaluated in R). Then R is a right R-module, with scalar
multiplication given by x · (a⊗ b) = axb, and the submodules of R

R
are exactly the

two-sided ideals of R. Hence, Subc R
R

= Idc R ∼= S.
In case S has no unit, it is an ideal of the distributive 〈∨, 0, 1〉-semilattice S′ =

S ∪ {1} for a new largest element 1. By the previous paragraph, S′ ∼= Subc M
for some right module M , hence S ∼= Subc N where N is the submodule of M
consisting of those elements x ∈ M such that the submodule generated by x is sent
to an element of S by the isomorphism Subc M ∼= S′. �

The commutative case is quite different. For example, for a commutative von Neu-
mann regular ring R, if IdR is finite, then, as it is distributive and complemented,
it must be Boolean. In particular, the three-element chain is not isomorphic to the
ideal lattice of any commutative von Neumann regular ring. Even if regularity is
removed, not every finite distributive lattice is allowed. For example, one can prove
the following result: A finite distributive lattice D is isomorphic to the submodule

lattice of a module over some commutative ring iff D is isomorphic to the ideal

lattice of some commutative ring, iff D is a product of chains. In particular, the
square 2 × 2 with a new bottom (resp., top) element added is not isomorphic to
the submodule lattice of any module over a commutative ring.

5. Representing distributive algebraic lattices with at most ℵ1

compact elements as normal subgroup lattices of groups

Every nonabelian simple group is “neutral” in the sense of [3]. Hence, the di-
rection (1)⇒(5) in [3, Theorem 8.5] yields the following well-known result, which
holds despite the failure of congruence-distributivity in the variety of all groups.

Lemma 5.1. Let n < ω and let 〈Gi | i < n〉 be a finite sequence of simple non-

abelian groups. Then the normal subgroups of
∏

i<n Gi are exactly the trivial ones,

namely the products of the form
∏

i<n Hi, where Hi is either Gi or {1Gi
}, for all

i < n. Consequently, NSub
(
∏

i<n Gi

)

∼= 2n.

We denote by F the class of all finite products of alternating groups of the
form An, for n ≥ 5. For a group homomorphism f : G → H , we denote by
NSub f : NSubG → NSub H the 〈∨, 0〉-homomorphism that with any normal sub-
group X of G associates the normal subgroup of H generated by f [X ]. The following
square amalgamation result is crucial. It is an analogue for groups of [7, Theorem 1]
(for lattices) or [25, Theorem 4.2] (for regular algebras over a division ring).
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Lemma 5.2. Let G0, G1, G2 be groups in F and let f1 : G0 → G1 and f2 : G0 → G2

be group homomorphisms. Let B be a finite Boolean semilattice, and, for i ∈ {1, 2},
let gi : NSub Gi → B be 〈∨, 0〉-homomorphisms such that

(5.1) g1 ◦ NSub f1 = g2 ◦ NSub f2.

Then there are a group G in F, group homomorphisms gi : Gi → G, for i ∈ {1, 2},
and an isomorphism α : NSubG → B such that g1◦f1 = g2◦f2 and α◦NSub gi = gi

for all i ∈ {1, 2}.

Outline of proof. We follow the lines of the proofs of [7, Theorem 1] or [25, The-
orem 4.2]. First, by decomposing B as a finite power of 2, observing that F is
closed under finite direct products, and using Lemma 5.1, we reduce to the case
where B = 2, the two-element chain. Next, denoting by h the 〈∨, 0〉-homomor-
phism appearing on both sides of (5.1), we put G′

0 = {x ∈ G0 | h([x]) = 0}
(where [x] denotes, again, the normal subgroup generated by x), and, similarly,
G′

i = {x ∈ Gi | gi([x]) = 0}, for i ∈ {1, 2}. So G′

i is a normal subgroup of Gi, for
all i ∈ {0, 1, 2}, and replacing Gi by Gi/G′

i makes it possible to reduce to the case
where both g1 and g2 separate zero while both f1 and f2 are group embeddings.

Hence the problem that we must solve is the following: given group embeddings
fi : G0 →֒ Gi, for i ∈ {1, 2}, we must find a finite, simple, nonabelian group G with
group embeddings gi : Gi →֒ G such that g1 ◦ f1 = g2 ◦ f2. By the positive solution
of the amalgamation problem for finite groups (see [15, Section 15]), followed by
embedding the resulting group into some alternating group with index at least 5,
this is possible. �

Now every distributive 〈∨, 0〉-semilattice of size at most ℵ1 is the direct limit of
some direct system of finite Boolean 〈∨, 0〉-semilattices and 〈∨, 0〉-homomorphisms;
furthermore, we may assume that the indexing set of the direct system is a 2-ladder,
that is, a lattice with zero where every interval is finite and every element has at
most two immediate predecessors. Hence, by imitating the method of proof used in
[7, Theorem 2] or [25, Theorem 5.2], it is not difficult to obtain the following result.

Theorem 5.3. Every distributive 〈∨, 0〉-semilattice of size at most ℵ1 is isomorphic

to the finitely generated normal subgroup semilattice of some group which is a direct

limit of members of F.

Reformulating the result in terms of algebraic lattices rather than semilattices,
together with the observation that all direct limits of groups in F are locally finite,
gives the following.

Corollary 5.4. Every distributive algebraic lattice with at most ℵ1 compact ele-

ments is isomorphic to the normal subgroup lattice of some locally finite group.

6. Representing distributive algebraic lattices with at most ℵ0

compact elements as ℓ-ideal lattices of ℓ-groups

The variety of ℓ-groups is quite special, as it is both congruence-distributive and
congruence-permutable. The following lemma does not extend to the commutative
case (for example, Z×Z cannot be embedded into any simple commutative ℓ-group).

Lemma 6.1. Every ℓ-group can be embedded into some simple ℓ-group.
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Proof. It follows from [17, Corollary 5.2] that every ℓ-group G embeds into an ℓ-
group H in which any two positive elements are conjugate. In particular, H is
simple. �

The following result is a “one-dimensional” analogue for ℓ-groups of Lemma 5.2.

Lemma 6.2. For any ℓ-group G, any finite Boolean semilattice B, and any 〈∨, 0〉-

homomorphism f : Idℓ
c G → B, there are an ℓ-group H, an ℓ-homomorphism f : G → H,

and an isomorphism α : Idℓ
c H → B such that f = α ◦ Idℓ

c f .

Proof. Suppose first that B = 2. Observing that I = {x ∈ G | f (G(x)) = 0} is an
ℓ-ideal of G, we let H be any simple ℓ-group extending G/I (see Lemma 6.1), we
let f : G → H be the composition of the canonical projection G ։ G/I with the

inclusion map G/I →֒ H , and we let α : Idℓ
c H → 2 be the unique isomorphism.

Now suppose that B = 2n, for a natural number n. For each i < n, we apply
the result of the paragraph above to the i-th component f i : Idℓ

c G → 2 of f ,
getting a simple ℓ-group Hi, an ℓ-homomorphism fi : G → Hi, and the isomorphism
αi : Idℓ

c Hi → 2. Then we put H =
∏

i<n Hi, f : x 7→ 〈fi(x) | i < n〉, and we let

α : Idℓ
c H → 2n be the canonical isomorphism. �

Theorem 6.3. Every distributive at most countable 〈∨, 0〉-semilattice is isomorphic

to the semilattice of all finitely generated ℓ-ideals of some ℓ-group.

Equivalently, every distributive algebraic lattice with (at most) countably many
compact elements is isomorphic to the ℓ-ideal lattice of some ℓ-group.

Proof. It follows from [2, Theorem 3.1] (see also [4, Theorem 6.6]) that every dis-
tributive at most countable 〈∨, 0〉-semilattice S can be expressed as the direct
limit of a sequence 〈Bn | n < ω〉 of finite Boolean semilattices, with all transition
maps fn : Bn → Bn+1 and limiting maps gn : Bn → S being 〈∨, 0〉-homomor-

phisms. We fix an ℓ-group G0 with an isomorphism α0 : Idℓ
c G0 ։ B0. Suppose

having constructed an ℓ-group Gn with an isomorphism αn : Idℓ
c Gn → Bn. Ap-

plying Lemma 6.2 to fn ◦ αn, we obtain an ℓ-group Gn+1, an ℓ-homomorphism

fn : Gn → Gn+1, and an isomorphism αn+1 : Idℓ
c Gn+1 → Bn+1 such that fn◦αn =

αn+1 ◦ Idℓ
c fn. Defining G as the direct limit of the sequence

G0

f0
// G1

f1
// G2

f2
// . . . . . . ,

an elementary categorical argument yields an isomorphism from Idℓ
c G onto the

direct limit S of the sequence 〈Bn | n < ω〉. �

7. Functorial representation by V-distances of type 2

Observe that the argument of Proposition 2.6 is only a small modification (with
a more simple-minded proof) of B. Jónsson’s proof that every modular lattice has a
type 2 representation, see [11] or [6, Theorem IV.4.8]. It follows from Corollary 3.7
that “type 2” cannot be improved to “type 1”. In view of Proposition 1.2, this is
somehow surprising, as every distributive lattice has an embedding with permutable
congruences into some partition lattice. This illustrates the observation that one
can get much more from a distance than from an embedding into a partition lattice.

We shall now present a strengthening of Proposition 2.6 that shows that the
construction can be made functorial. We introduce notations for the following
categories:
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(1) S, the category of all distributive 〈∨, 0〉-semilattices with 〈∨, 0〉-embed-
dings.

(2) D, the category of all surjective distances of the form δ : X ×X ։ S with
kernel the identity and S a distributive 〈∨, 0〉-semilattice, with morphisms
(see Definition 1.1) of the form 〈f, f 〉 : 〈X, λ〉 → 〈Y, µ〉 with both f and f

one-to-one.
(3) D2, the full subcategory of D consisting of all V-distances of type 2.

Furthermore, denote by Π: D → S the forgetful functor (see Definition 1.1).

Theorem 7.1. There exists a direct limits preserving functor Φ: S → D2 such that

the composition Π ◦ Φ is equivalent to the identity.

Hence the functor Φ assigns to each distributive 〈∨, 0〉-semilattice S a set XS

together with a surjective S-valued V-distance δS : XS × XS ։ S of type 2.

Proof. The proof of Proposition 2.6 depends of the enumeration order of a certain
transfinite sequence of quadruples 〈x, y, a, b〉, which prevents it from being functo-
rial. We fix this by adjoining all such quadruples simultaneously, and by describing
the corresponding extension. So, for a distance δ : X×X → S, we put S− = S\{0},
and

H(δ) = {〈x, y, a, b〉 ∈ X × X × S− × S− | δ(x, y) = a ∨ b}.

For ξ = 〈x, y, a, b〉 ∈ H(δ), we put x0
ξ = x, x1

ξ = y, aξ = a, and bξ = b. Now we

put X ′ = X ∪ {ui
ξ | ξ ∈ H(δ) and i ∈ {0, 1}}, where the elements ui

ξ are pairwise

distinct symbols outside X . We define a map δ′ : X ′ × X ′ → S by requiring δ′ to
extend δ, with value zero on the diagonal, and by the rule

δ′(ui
ξ, u

j
η) =

{

|i − j| · bξ, if ξ = η,

aξ ∨ aη ∨ δ(xi
ξ, x

j
η), if ξ 6= η,

δ′(ui
ξ, z) = δ′(z, ui

ξ) = δ(z, xi
ξ) ∨ aξ,

for all ξ, η ∈ H(δ), all i, j ∈ {0, 1}, and all z ∈ X .
It is straightforward, though somewhat tedious, to verify that δ′ is an S-valued

distance on X ′, that it extends δ, and that its kernel is the identity of X ′ in case
the kernel of δ is the identity of X (because the semilattice elements aξ and bξ are
nonzero). Furthermore, if S is distributive, then every V-condition problem for δ
of the form δ(x, y) ≤ a∨b can be refined to a problem of the form δ(x, y) = a′∨b′,
for some a′ ≤ a and b′ ≤ b (because S is distributive), and such a problem has a
solution of type 2 for δ′. Namely, in case both a′ and b′ are nonzero (otherwise the
problem can be solved in X), put ξ = 〈x, y, a′, b′〉, and observe that δ′(x, u0

ξ) = a′,

δ′(u0
ξ, u

1
ξ) = b′, and δ′(u1

ξ, y) = a′.

Hence, if we put 〈X0, δ0〉 = 〈X, δ〉, then 〈Xn+1, δn+1〉 = 〈(Xn)′, (δn)′〉 for all

n < ω, and finally X =
⋃

(Xn | n < ω) and δ =
⋃

(δn | n < ω), the pair
Ψ(〈X, δ〉) = 〈X, δ〉 is an S-valued V-distance of type 2 extending 〈X, δ〉. Ev-
ery morphism 〈f, f 〉 : 〈X, λ〉 → 〈Y, µ〉 in S extends canonically to a morphism
〈f ′, f〉 : 〈X ′, λ′〉 → 〈Y ′, µ′〉 (the underlying semilattice map f is the same), by
defining

f ′(ui
ξ) = ui

fξ, for all ξ ∈ H(λ) and all i < 2,

where we put, of course,

f〈x, y, a, b〉 = 〈f(x), f(y), f (a), f (b)〉, for all 〈x, y, a, b〉 ∈ H(λ).
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Hence, by an easy induction argument, 〈f, f〉 extends canonically to a morphism
Ψ(〈f, f〉) = 〈f, f〉 : 〈X, λ〉 → 〈Y , µ〉, and the correspondence 〈f, f 〉 7→ 〈f, f〉 is
itself a functor. As the construction defining the correspondence 〈X, δ〉 7→ 〈X ′, δ′〉
is local, the functor Ψ preserves direct limits.

It remains to find something to start with, to which we can apply Ψ. A possibility
is to use the distance µS , given by (2.2), introduced in the proof of Proposition 2.6.
The correspondence S 7→ µS defines a functor, in particular, if f : S →֒ T is an
embedding of distributive 〈∨, 0〉-semilattices, then the equality µT (f(x), f(y)) =
f(µS(x, y)) holds, for all x, y ∈ S. The desired functor Φ is given by Φ(S) =
Ψ(〈S, µS〉), for any distributive 〈∨, 0〉-semilattice S. �

In contrast with the result of Theorem 7.1, we shall isolate a finite, “combina-
torial” reason for the forgetful functor from V-distances of type 3/2 to distributive
〈∨, 0〉-semilattices not to admit any left inverse. By contrast, we recall that for V-
distances of type 2, the corresponding result is positive, see Theorem 7.1. In order
to establish the negative result, we shall use the example Dac of [21, Section 7], and
extend the corresponding result from lattices with almost permutable congruences
to arbitrary V-distances of type 3/2.

We recall that Dac is the (commutative) cube of finite Boolean semilattices
represented on Figure 3, where P(X) denotes the powerset algebra of a set X and
e, f , g, h0, h1, and h2 are the 〈∨, 0〉-homomorphisms (and, in fact, 〈∨, 0, 1〉-em-
beddings) defined by their values on atoms as follows:

e(1) = {0, 1},

f :

{

{0} 7→ {0, 1},

{1} 7→ {2, 3},
g :

{

{0} 7→ {0, 2},

{1} 7→ {1, 3},

h0 :



















{0} 7→ {0, 4, 7},

{1} 7→ {3, 5, 6},

{2} 7→ {2, 5, 6},

{3} 7→ {1, 4, 7},

h1 :



















{0} 7→ {0, 4, 5, 7},

{1} 7→ {1, 4, 6, 7},

{2} 7→ {2, 5, 6, 7},

{3} 7→ {3, 4, 5, 6},

h2 :



















{0} 7→ {0, 4, 6},

{1} 7→ {1, 5, 7},

{2} 7→ {3, 5, 7},

{3} 7→ {2, 4, 6},

P(8)

P(4)

h2

=={{{{{{{{
P(4)

h1

OO

P(4)

h0

aaCCCCCCCC

P(2)

f

OO

f





EE









P(2)

g44444444

YY444

f










EE




P(2)

g

OO

g444

YY44444444

2

e

aaDDDDDDDD
e

OO ==zzzzzzzz
e

==zzzzzzzz

Figure 3. The cube Dac, unliftable by V-distances of type 3/2.
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Theorem 7.2. The diagram Dac has no lifting, with respect to the forgetful functor,

by distances, surjective at level 0 and satisfying the V-condition of type 3/2 at

level 1.

Proof. Suppose that the diagram of Figure 3 is lifted by a diagram of distances,
with distances λ : X × X → 2, λi : Xi × Xi → P(2), µi : Yi × Yi → P(4), and
µ : Y × Y → P(8), for all i ∈ {0, 1, 2}, see Figure 4.

µ

µ2

@@�������
µ1

OO

µ0

^^=======

λ0

OO @@�������
λ1

^^=======

@@�������
λ2

OO^^=======

λ

^^<<<<<<<

OO @@�������

Figure 4. A commutative diagram of semilattice-valued distances.

We assume that λ is surjective and that λi is a V-distance of type 3/2, for all
i ∈ {0, 1, 2}. Denote by fU,V the canonical map from U to V given by this lifting,
for U below V among X , X0, X1, X2, Y0, Y1, Y2, Y . After having replaced each
of those sets U by its quotient by the kernel of the corresponding distance, and
then by its image in Y under fU,Y , we may assume that fU,V is the inclusion map
from U into V , for all U below V among X , X0, X1, X2, Y0, Y1, Y2, Y .

Since λ is surjective, there are x, y ∈ X such that λ(x, y) = 1. For all i ∈ {0, 1, 2},

λi(x, y) = e(λ(x, y)) = e(1) = {0, 1} = {0} ∪ {1},

thus, since λi satisfies the V-condition of type 3/2, there exists zi ∈ Xi such that

(7.1)
either λi(x, zi) = {0} and λi(zi, y) = {1} (say, P (i))

or λi(x, zi) = {1} and λi(zi, y) = {0} (say, Q(i)).

So we have eight cases to consider, according to which combination of P and Q
occurs in (7.1) for i ∈ {0, 1, 2}. In each case, we shall obtain the inequality

(7.2) µ(z0, z2) 6⊆ µ(z0, z1) ∪ µ(z1, z2),

which will contradict the triangular inequality for µ.

Case 1. P (0), P (1), and P (2) hold. Then µ2(z0, x) = fλ0(x, z0) = {0, 1} and
µ2(x, z1) = g(λ1(x, z1)) = {0, 2}, whence µ2(z0, z1) ⊆ {0, 1, 2}. Similarly, replac-
ing x by y in the argument above, µ2(z0, y) = fλ0(z0, y) = {2, 3} and µ2(y, z1) =
g(λ1(z1, y)) = {1, 3}, whence µ2(z0, z1) ⊆ {1, 2, 3}. Therefore, µ2(z0, z1) ⊆ {1, 2}.
On the other hand, from µ2(x, z0) ∪ µ2(z0, z1) = µ2(x, z1) ∪ µ2(z0, z1) the con-
verse inclusion follows, whence µ2(z0, z1) = {1, 2}. Similar computations yield that
µ1(z0, z2) = µ0(z1, z2) = {1, 2}.
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Hence, we obtain the equalities

µ(z0, z1) = h2µ2(z0, z1) = {1, 3, 5, 7},

µ(z0, z2) = h1µ1(z0, z2) = {1, 2, 4, 5, 6, 7},

µ(z1, z2) = h0µ0(z1, z2) = {2, 3, 5, 6}.

Observe that 4 belongs to µ(z0, z2) but not to µ(z0, z1) ∪ µ(z1, z2).

Case 2. P (0), P (1), and Q(2) hold. As in Case 1, we obtain

µ2(z0, z1) = {1, 2} and µ1(z0, z2) = µ0(z1, z2) = {0, 3},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) = {0, 1, 4, 7},
which confirms (7.2) and thus causes a contradiction.

Case 3. P (0), Q(1), and P (2) hold. We obtain

µ2(z0, z1) = µ0(z1, z2) = {0, 3} and µ1(z0, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {1, 2, 4, 5, 6, 7}, and µ(z1, z2) = {0, 1, 4, 7}.

Case 4. P (0), Q(1), and Q(2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = {0, 3} and µ0(z1, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) = {2, 3, 5, 6}.

Case 5. Q(0), P (1), and P (2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = {0, 3} and µ0(z1, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) = {2, 3, 5, 6}.

Case 6. Q(0), P (1), and Q(2) hold. We obtain

µ2(z0, z1) = µ0(z1, z2) = {0, 3} and µ1(z0, z2) = {1, 2},

thus µ(z0, z1) = {0, 2, 4, 6}, µ(z0, z2) = {1, 2, 4, 5, 6, 7}, and µ(z1, z2) = {0, 1, 4, 7}.

Case 7. Q(0), Q(1), and P (2) hold. We obtain

µ2(z0, z1) = {1, 2} and µ1(z0, z2) = µ0(z1, z2) = {0, 3},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {0, 3, 4, 5, 6, 7}, and µ(z1, z2) = {0, 1, 4, 7}.

Case 8. Q(0), Q(1), and Q(2) hold. We obtain

µ2(z0, z1) = µ1(z0, z2) = µ0(z1, z2) = {1, 2},

thus µ(z0, z1) = {1, 3, 5, 7}, µ(z0, z2) = {1, 2, 4, 5, 6, 7}, and µ(z1, z2) = {2, 3, 5, 6}.
In all cases, we obtain a contradiction. �

A “global” version of Theorem 7.2 is presented in Theorem 3.6.
The following corollary extends [21, Theorem 7.1] from lattices to arbitrary al-

gebras.

Corollary 7.3. The diagram Dac has no lifting, with respect to the congruence

lattice functor, by algebras with almost permutable congruences.

About other commonly encountered structures, we obtain the following.

Corollary 7.4. The diagram Dac has no lifting by groups with respect to the NSub
functor, and no lifting by modules with respect to the Sub functor.
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The following example offers a significant difference between the situations for
groups and modules.

Example 7.5. The diagonal map 2 →֒ 22 has no lifting, with respect to the Sub
functor, by modules over any ring. Indeed, suppose that A →֒ B × C is such a
lifting, with A, B, and C simple modules. Projecting on B and on C yields that A
is isomorphic to a submodule of both B and C, whence, by simplicity, A, B, and C
are pairwise isomorphic. But then, B×C ∼= B×B has the diagonal as a submodule,
so its submodule lattice cannot be isomorphic to 22.

By contrast, every square of finite Boolean 〈∨, 0〉-semilattices can be lifted, with
respect to the NSub functor, by groups, see Lemma 5.2.

8. Open problems

Although we do know that the negative result of Corollary 3.8 applies to ℓ-
groups (for every ℓ-group has permutable congruences), we do not know whether the
positive results proved here for modules (Theorem 4.1) or for groups (Theorem 5.3)
extend to ℓ-groups. The problem is that the class of all ℓ-groups does not satisfy the
amalgamation property, see [17, Theorem 3.1], so the proof of Lemma 5.2 cannot
be used in this context, and so we do not know how to extend Theorem 6.3 to the
first uncountable level.

Problem 1. Is every distributive algebraic lattice with ℵ1 compact elements iso-
morphic to the ℓ-ideal lattice of some ℓ-group?

Our next question is related to the functor Φ obtained in the statement of The-
orem 7.1.

Problem 2. Does there exist a functor Φ as in Theorem 7.1 that sends finite
semilattices to distances with finite underlying sets?

That is, can we assign functorially (with respect to 〈∨, 0〉-embeddings), to each
finite distributive 〈∨, 0〉-semilattice S, a surjective V-distance 〈XS , δS〉 of type 2
with δS : XS × XS ։ S and XS finite?
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