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Abstract

The Jantzen sum formula for cyclotomic v-Schur algebras yields an identity for some
q-analogues of the decomposition matrices of these algebras. We prove a similar identity
for matrices of canonical bases of higher-level Fock spaces. We conjecture then that
those matrices are actually identical for a suitable choice of parameters. In particular,
we conjecture that decomposition matrices of cyclotomic v-Schur algebras are obtained
by specializing at q = 1 some transition matrices between the standard basis and the
canonical basis of a Fock space.

1 Introduction

In order to study representations of the Ariki-Koike algebra associated to the complex reflec-
tion group G(l, 1,m), Dipper, James and Mathas introduced in 1998 the cyclotomic v-Schur
algebra [DJM]. This algebra depends on the two integers l and m and on some deformation
parameters v, u1, . . . , ul. When l = 1, the cyclotomic v-Schur algebra coincides with the
v-Schur algebra of [DJ]. It is an open problem to calculate the decomposition matrix of a
cyclotomic v-Schur algebra whose parameters are powers of a given n-th root of unity. To
this aim, James and Mathas proved, for cyclotomic v-Schur algebras, an important formula:
the Jantzen sum formula [JM]. Given a Jantzen filtration for Weyl modules, one can define a
q-analogue D(q) of the decomposition matrix; the coefficients of D(q) are graded decompo-
sition numbers of the composition factors of Weyl modules (see Definition 2.5). The Jantzen
sum formula is equivalent to the identity D′(1) = J⊳D(1), where J⊳ is a matrix of ℘-adic
valuations of factors of some Gram determinants (see Theorem 2.3 and Corollary 2.7).

Let ∆(q) be the matrix of the canonical basis of the degree m homogeneous component
of a Fock representation of level l of Uq(ŝln) [U2]. Uglov provided in [U2] an algorithm for
computing ∆(q).

In view of Ariki’s theorem for Ariki-Koike algebras [A2], it seems natural to conjecture
that for a suitable choice of parameters, one has D(q) = ∆(q). This would provide an algo-
rithm for computing decomposition matrices of cyclotomic v-Schur algebras. Varagnolo and
Vasserot [VV] proved for l = 1 that D(1) = ∆(1). Moreover, Ryom-Hansen showed that
this conjecture (still for l = 1) is compatible with the Jantzen-Schaper formula [Ry]. Passing
to higher level l ≥ 1 requires the introduction of an extra parameter sl = (s1, . . . , sl) ∈ Z

l,
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called multi-charge; this l-tuple parametrizes the Fock space of level l introduced by Uglov.
We say that sl is m-dominant if for all 1 ≤ d ≤ l − 1, we have sd+1 − sd ≥ m. In this case,
we conjecture that D(q) = ∆(q). Here, D(q) comes from a Jantzen filtration of the Weyl
modules of the cyclotomic v-Schur algebra SC = SC,m(ζ; ζs1, . . . , ζsl) with ζ := exp(2iπ

n
).

Note that for any choice of roots of unity ζr1, . . . , ζrl (that is, for any r1, . . . , rl ∈ Z/nZ)
and any m we can find an m-dominant multi-charge sl = (s1, . . . , sl) such that ζsd = ζrd

(1 ≤ d ≤ l). Therefore, putting q = 1, our conjecture gives an algorithm for calculating the
decomposition matrix of an arbitrary cyclotomic v-Schur algebra SC = SC,m(ζ; ζs1, . . . , ζsl).
Such a conjecture is new even for type Bm (case l = 2).

Our conjecture is supported by the following theorem. We define in a combinatorial way
a matrix J≺ for any multi-charge sl; if sl is m-dominant, then our matrix J≺ coincides with
the matrix J⊳ of the Jantzen sum formula. We show then that for any multi-charge sl, we
have ∆′(1) = J≺∆(1) (Theorem 2.8).

The proof of our theorem relies on a combinatorial expression for the derivative at q = 1
of the matrix A(q), where A(q) is the matrix of the Fock space involution used for defining
∆(q). Namely, we show that A′(1) = 2J≺ (Theorem 2.11). The coefficients of A(q) are some
analogues for Fock spaces of Kazhdan-Lusztig R-polynomials Rx,y(q) for Hecke algebras. The
classical computation of R′

x,y(1) was made in [GJ], in relation with the Kazhdan-Lusztig con-
jecture for multiplicities of composition factors of Verma modules.

Acknowledgments. I would like to thank Nicolas Jacon and my advisor Bernard Leclerc for
inspiring discussions about Ariki-Koike algebras. I also would like to thank Bernard Leclerc
for his assistance and constant advice when I was writing this article. At last, I thank Andrew
Mathas, Hyohe Miyachi and the referee for their comments.

Notation 1.1 Let N (resp. N
∗) denote the set of nonnegative (resp. positive) integers, and

for a, b ∈ R denote by [[a; b]] the discrete interval [a, b] ∩ Z. Throughout this article, we fix
three integers n, l, m ≥ 1. Let Π be the set of partitions of any integer and Πl

m be the set
of l-multi-partitions of m. The Coxeter group of type Ar−1 (with r ∈ N

∗) is the symmetric
group Sr = 〈σi = (i, i + 1) | 1 ≤ i ≤ r− 1〉. Let ℓ be the length function on Sr and ω be the
unique element of maximal length in Sr. ⋄

PART A: Statement of results

2 Statement of results

2.1 The Jantzen sum formula

Definition 2.1 ([AK, BM]) Let R be a principal ideal domain. Let v be an invertible
element of R and u1, . . . , ul ∈ R. The Ariki-Koike algebra, denoted by

(1) H = HR = HR,m(v;u1, . . . , ul),
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is the algebra defined over R with generators T0, . . . , Tm−1 and relations

(2)






(T0 − u1) · · · (T0 − ul) = 0,
T0T1T0T1 = T1T0T1T0,

(Ti + 1)(Ti − v) = 0 (1 ≤ i ≤ m− 1),
TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ m− 2),

TiTj = TjTi (0 ≤ i < j − 1 ≤ m− 2).

⋄

Following [DJM], let

(3) S = SR = SR,m(v;u1, . . . , ul)

be the cyclotomic v-Schur algebra associated to H. Dipper, James and Mathas (see [DJM,
Theorem 6.12]) showed that S is a cellular algebra in the sense of [GL]. Given λl ∈ Πl

m,
one defines as in [DJM, Definition 6.13] a right S-module W (λl) which is a free R-module
of finite rank, called Weyl module. Since S is cellular, W (λl) is naturally equipped with a
symmetric bilinear form 〈·, ·〉. Set

(4) L(λl) := W (λl)/rad W (λl),

where radW (λl) is the radical of the bilinear form 〈·, ·〉. Assume temporarily that R is a
field. By [DJM, Corollary 6.18], S is a quasi-hereditary algebra, so the theory of cellular al-
gebras of [GL] shows that {L(λl) | λl ∈ Πl

m} is a complete set of non-isomorphic irreducible
S-modules (see [DJM, Theorem 6.16]). This implies that R0(S), the Grothendieck group of
finitely-generated S-modules, is a free Z-module with basis {[L(λl)] | λl ∈ Πl

m}.

From now on, we assume that R is a local ring, with unique maximal ideal ℘. Let ν℘

be the corresponding ℘-adic valuation map. Let K be the field of fractions of R and extend
ν℘ to K in the natural way. Let F = R/℘R be the residue field, so (R,K,F ) is a modular
system. If M is a right R-module, we denote by MF = M ⊗R F the specialized module and
denote similarly by MK = M ⊗R K the corresponding module defined over K. We shall use
this notation for Weyl modules and for S itself.

Definition 2.2 ([Jan], see also [AM]) Let M be an R-module equipped with a symmetric
bilinear form 〈·, ·〉. For all i ∈ N, set

(5) M(i) := {u ∈M | ∀ v ∈M, ν℘(〈u, v〉) ≥ i}.

The Jantzen filtration of M is the sequence

(6) MF = MF (0) ⊃MF (1) ⊃ · · · ,

where MF (i) := (M(i) + ℘M)/℘M . ⋄
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Note that in the definition above, we have in particular MF (1) = rad MF . Moreover, if M is
free of finite rank (as an R-module), then we have MF (i) = {0} for i large enough.

The following theorem was proved by James and Mathas (see [JM, Theorem 4.3]).

Theorem 2.3 (the Jantzen sum formula)
Assume that SK is semisimple. Then in the Grothendieck group R0(SF ), we have for all
λl ∈ Πl

m:

(7)
∑

i>0

[WF (λl; i)] =
∑

µl∈Πl
m

ν℘(gλl,µl
) [WF (µl)].

Here, the gλl,µl
∈ R are factors of some Gram determinants (see [JM, Definitions 3.1, 3.36

and Corollary 3.38]). �

Remark 2.4 The condition of semisimplicity of SK is stated in [JM, Theorem 4.3] in terms
of the Poincaré polynomial for HR, which is defined in [JM, Definition 3.40]. ⋄

James and Mathas [JM] showed that only multi-partitions µl ∈ Πl
m such that µl ⊳ λl

contribute to the right hand-side of Theorem 2.3 (the definition of the dominance ordering
⊳ is recalled in Definition 3.1). They have given a combinatorial expression of ν℘(gλl,µl

) in
terms of ribbons contained in diagrams of l-multi-partitions. However, this combinatorial
expression makes sense even if λl does not dominate µl. We will therefore introduce in
Section 3.4 a matrix J =

(
jλl,µl

)
λl,µl∈Πl

m
whose entries are these combinatorial expressions

without restriction on the pair (λl,µl). More precisely, our indexing is chosen so that

(8) j
λ
†
l
,µ

†
l

= ν℘(gλl,µl
) if µl ⊳ λl,

where the sign † denotes the conjugation of multi-partitions (see (19)). We are forced to use
conjugates here because the indexation from [JM] for the rows and columns of decomposi-
tion matrices is not compatible with the indexation from [U2] for the rows and columns of
transition matrices for Uglov’s canonical bases.

Now, let 6 be an arbitrary partial ordering on Πl
m and write λl < µl if λl 6 µl and

λl 6= µl (λl, µl ∈ Πl
m). Define a matrix J< =

(
j<
λl,µl

)
λl, µl∈Πl

m
by the formula

(9) j<
λl,µl

:=

{
jλl,µl

if λl < µl

0 otherwise
(λl, µl ∈ Πl

m).

If we take 6 = E, then we get a matrix J⊳ whose entries are, up to conjugation of multi-
partitions, the ν℘(gλl,µl

)’s of [JM].

We now derive a matrix identity equivalent to the Jantzen sum formula.

Definition 2.5 Let D(q) =
(
dλl,µl

(q)
)
λl,µl∈Πl

m
be the matrix defined by

(10) dλl,µl
(q) :=

∑

i≥0

[
WF (λ†

l ; i)/WF (λ†
l ; i + 1) : LF (µ†

l )
]
qi ∈ N[q] (λl,µl ∈ Πl

m).

⋄
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Note that d
λ
†
l
,µ

†
l

(1) is equal to the multiplicity of LF (µl) as a composition factor of WF (λl),

so up to conjugation of multi-partitions (which amounts to reindexing the rows and columns
of the matrix), D(1) is the usual decomposition matrix of SF .

Lemma 2.6 Let M =
(
mλl,µl

)
λl,µl∈Πl

m
be a matrix with integer entries. Then the following

statements are equivalent:

(i) In R0(SF ), we have for all λl ∈ Πl
m :

∑

i>0

[WF (λ†
l ; i)] =

∑

νl∈Πl
m

mλl,νl
[WF (ν†

l )],

(ii) D′(1) = MD(1).

Proof. Let λl ∈ Πl
m. Since {

[
LF (µ†

l )
] ∣∣ µl ∈ Πl

m} is a Z-basis of R0(SF ), we have on the
one hand:

∑

i>0

[
WF (λ†

l ; i)
]

=
∑

i>0

∑

µl∈Πl
m

[
WF (λ†

l ; i) : LF (µ†
l )

][
LF (µ†

l )
]

=
∑

µl∈Πl
m

(∑

i>0

∑

j≥i

[
WF (λ†

l ; j) /WF (λ†
l ; j + 1) : LF (µ†

l )
])[

LF (µ†
l )

]

=
∑

µl∈Πl
m

(∑

j>0

∑

0<i≤j

[
WF (λ†

l ; j) /WF (λ†
l ; j + 1) : LF (µ†

l )
])[

LF (µ†
l )

]

=
∑

µl∈Πl
m

d′λl,µl
(1)

[
LF (µ†

l )
]
.

On the other hand, we have

∑

νl∈Πl
m

mλl,νl

[
WF (ν†

l )
]

=
∑

µl, νl∈Πl
m

mλl,νl

[
WF (ν†

l ) : LF (µ†
l )

][
LF (µ†

l )
]

=
∑

µl∈Πl
m

( ∑

νl∈Πl
m

mλl,νl

[
WF (ν†

l ) : LF (µ†
l )

])[
LF (µ†

l )
]

=
∑

µl∈Πl
m

( ∑

νl∈Πl
m

mλl,νl
dνl,µl

(1)
)[

LF (µ†
l )

]
.

since the
[
LF (µ†

l )
]
, µl ∈ Πl

m are linearly independent, the lemma follows. �

The Jantzen sum formula as stated in Theorem 2.3, together with (8) and Lemma 2.6,
implies the following result.

Corollary 2.7 Assume that SK is semisimple. Then with the notation above, we have

(11) D′(1) = J⊳D(1).

�
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2.2 Statement of theorems

In this section, we state an important conjecture for computing the decomposition matrix of
the cyclotomic v-Schur algebra defined over C, with parameters equal to arbitrary powers of
a primitive n-th root of unity. This conjecture is supported by Theorem 2.8.

2.2.1 Choice of parameters

Fix (r1, . . . , rl) ∈ (Z/nZ)l. We shall define a modular system (R,K,F ) with parameters such
that the specialized cyclotomic v-Schur algebra SF is SC,m(ζ; ζr1, . . . , ζrl) with ζ := exp(2iπ

n
).

We first define a modular system (R,K,F ) as follows. Let R̂ = C[x, x−1] be the ring of
Laurent polynomials in one indeterminate over the field C. Let

(12)
ξ := exp

(
2iπ
nl

)
∈ C, ℘ := (x− ξ), R := C[x, x−1]℘,

K := C(x) and F := R/℘R ≃ C,

that is, ℘ is the prime ideal in R̂ spanned by x− ξ with ξ a primitive complex nl-th root of
unity, R is the localized ring of R̂ at ℘, K is the field of fractions of R and F is the residue field.

Following [U2], we fix an l-tuple sl in

(13) L(r1, . . . , rl) := {(s1, . . . , sl) ∈ Z
l | ∀ 1 ≤ d ≤ l, rd = sd mod n}.

Such an l-tuple is called a multi-charge. The multi-charge sl parametrizes a so-called (q-
deformed) Fock space of level l, denoted by Fq[sl] (see Section 4.1). Note that for a given
(r1, . . . , rl) ∈ (Z/nZ)l we have an infinite choice of Fock spaces Fq[sl] such that sl is in
L(r1, . . . , rl).

We now describe the choice of parameters for the cyclotomic v-Schur algebra S. These
parameters are similar to those used in [Jac] for Ariki-Koike algebras. They depend on n, l
and on the multi-charge (s1, . . . , sl) ∈ L(r1, . . . , rl) that we have fixed. Put

(14) v := xl and ud := ξndxlsd−nd (1 ≤ d ≤ l).

Note that we have SF = SC,m(ζ; ζr1 , . . . , ζrl) with ζ := exp(2iπ
n

). Note also that the algebra
SK,m(v;u1, . . . , ul) is semisimple. Indeed, specializing x at 1 sends HK,m(v;u1, . . . , ul) on the
semisimple group algebra CG(l, 1,m), so by the Tits deformation argument [A1], the algebra
HK,m(v;u1, . . . , ul) is semisimple and so is SK,m(v;u1, . . . , ul). Therefore, the Jantzen sum
formula (see Theorem 2.3) applies in our case. This leads in particular to the definition of a
matrix J⊳ (see Section 3.4).

2.2.2 Main result

Following [U2], let sl ∈ L(r1, . . . , rl) and Fq[sl] be the corresponding Fock space of level l (see
Section 4.1). As a vector space, Fq[sl] has a natural basis {|λl, sl〉 | λl ∈ Πl} and a canonical
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basis {G(λl, sl) | λl ∈ Πl} indexed by l-multi-partitions. Let Fq[sl]m be the subspace of Fq[sl]
spanned by the |λl, sl〉’s, λl ∈ Πl

m. Let A(q) be the matrix of the involution of Fq[sl]m with
respect to the standard basis, and let ∆(q) be the transition matrix between the standard
basis and the canonical basis of Fq[sl]m (see Sections 4.2 and 4.3). Still following [U2], we
associate to sl an ordering ≺ (see Definition 3.10). By (9) we get a matrix J≺.

Theorem 2.8 Let sl ∈ L(r1, . . . , rl). Then with the notation above, we have

(15) ∆′(1) = J≺∆(1).

�

Example 2.9 Take n = 3, l = 2, sl = (1, 0) and m = 3. Then we have on the one hand

J≺ =





0 . . . . . . . . .
0 0 . . . . . . . .
0 0 0 . . . . . . .
0 0 0 0 . . . . . .
0 0 1 0 0 . . . . .
0 1 1 0 0 0 . . . .
0 −1 0 0 1 1 0 . . .
0 1 −1 0 1 −1 1 0 . .
0 1 −1 0 0 1 0 0 0 .
0 −1 0 0 −1 0 1 0 1 0





(
(1, 1), (1)

)
(
(3), ∅

)
(
∅, (3)

)
(
(1), (2)

)
(
∅, (2, 1)

)
(
(2), (1)

)
(
(1), (1, 1)

)
(
∅, (1, 1, 1)

)
(
(2, 1), ∅

)
(
(1, 1, 1), ∅

)

,

where dots over the main diagonal stand for zero entries. The l-multi-partitions of m which
index the bases of Fq[sl]m are ordered decreasingly with respect to a total ordering finer than
≺ and they are displayed in the column located on the right of the matrix J≺. On the other
hand, we compute ∆(q) using Uglov’s algorithm (see [U2]). If we keep the same ordering for
the rows and the columns of ∆(q), we get the following matrix.

∆(q) =





1 . . . . . . . . .
0 1 . . . . . . . .
0 0 1 . . . . . . .
0 0 0 1 . . . . . .
0 0 q 0 1 . . . . .
0 q q 0 0 1 . . . .
0 0 q2 0 q q 1 . . .
0 0 0 0 q2 0 q 1 . .
0 q2 0 0 0 q 0 0 1 .
0 0 0 0 0 q2 q 0 q 1





(
(1, 1), (1)

)
(
(3), ∅

)
(
∅, (3)

)
(
(1), (2)

)
(
∅, (2, 1)

)
(
(2), (1)

)
(
(1), (1, 1)

)
(
∅, (1, 1, 1)

)
(
(2, 1), ∅

)
(
(1, 1, 1), ∅

)

.

It is easy to check that ∆′(1) = J≺∆(1). ⋄
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Example 2.10 Take n = 3, l = 2, sl = (4,−3) and m = 3. Write the rows and the columns
of the following matrices with respect to a total ordering finer than ≺. Then

J≺ =





0 . . . . . . . . .
0 0 . . . . . . . .
0 1 0 . . . . . . .
0 1 1 0 . . . . . .
0 −1 1 0 0 . . . . .
0 0 0 0 0 0 . . . .
0 −1 0 1 1 0 0 . . .
0 0 −1 1 0 0 0 0 . .
0 0 0 0 −1 0 1 1 0 .
0 1 0 −1 0 0 1 −1 1 0





(
(1, 1), (1)

)
(
(3), ∅

)
(
(2, 1), ∅

)
(
(2), (1)

)
(
(1, 1, 1), ∅

)
(
(1), (2)

)
(
(1), (1, 1)

)
(
∅, (3)

)
(
∅, (2, 1)

)
(
∅, (1, 1, 1)

)

and

∆(q) =





1 . . . . . . . . .
0 1 . . . . . . . .
0 q 1 . . . . . . .
0 q2 q 1 . . . . . .
0 0 q 0 1 . . . . .
0 0 0 0 0 1 . . . .
0 0 q2 q q 0 1 . . .
0 0 0 q 0 0 0 1 . .
0 0 0 q2 0 0 q q 1 .
0 0 0 0 q 0 q2 0 q 1





(
(1, 1), (1)

)
(
(3), ∅

)
(
(2, 1), ∅

)
(
(2), (1)

)
(
(1, 1, 1), ∅

)
(
(1), (2)

)
(
(1), (1, 1)

)
(
∅, (3)

)
(
∅, (2, 1)

)
(
∅, (1, 1, 1)

)

.

Again, one can check that ∆′(1) = J≺∆(1). ⋄

Theorem 2.8 is equivalent to the following:

Theorem 2.11 With the notation of Theorem 2.8, we have

(16) A′(1) = 2J≺.

Proof of the equivalence of Theorems 2.8 and 2.11. Since the canonical basis is invariant
under the involution, we have ∆(q) = A(q)∆(q−1). Taking derivatives at q = 1 yields
∆′(1) = A′(1)∆(1)−A(1)∆′(1). Since A(1) is the identity matrix, we get 2∆′(1) = A′(1)∆(1).
As a consequence, Theorem 2.11 implies Theorem 2.8. Since ∆(1) is unitriangular, hence
invertible, the converse follows. �
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We prove Theorem 2.11 in Part C. Our proof is similar to the proof of [Ry] in the level
one case. However the higher-level case is significantly more complicated and involves the
discussion of many cases (see Section 7).

2.2.3 A conjecture for the decomposition matrix of S

Choose the parameters as in Section 2.2.1. Guided by the formal analogy between Theorem
2.8 on one hand, and the rephrasing of the Jantzen sum formula given in Corollary 2.7 on
the other hand, we may wonder if for some sl ∈ L(r1, . . . , rl), the corresponding matrix
J≺ coincides with the matrix J⊳ coming from the Jantzen sum formula. This leads to the
following definition and conjecture.

Definition 2.12 Let M ∈ N. We say that sl ∈ L(r1, . . . , rl) is M -dominant if for all
1 ≤ d ≤ l − 1, we have

(17) sd+1 − sd ≥M.

⋄

The point is that if sl is m-dominant, then we have J≺ = J⊳ (see Proposition 5.12).

Conjecture 2.13 Assume that sl ∈ L(r1, . . . , rl) is m-dominant. Let D(q) be the q-analogue
of the decomposition matrix of S defined in Definition 2.5 with our choice of parameters given
in Section 2.2.1. Then we have

(18) D(q) = ∆(q).

�

If we put q = 1 in Conjecture 2.13, we thus get an algorithm for computing the decomposition
matrix of SC,m(ζ; ζr1 , . . . , ζrl) with ζ := exp(2iπ

n
).

Remark 2.14 The assumption of m-dominance is necessary in Conjecture 2.13. Indeed,
while the decomposition matrix D(1) only depends on the sequence (r1, . . . , rl) of the residues
modulo n of the multi-charge sl, the matrix ∆(1) actually depends on sl itself. For example,
take n = 3, l = 2 and m = 3. Then the multi-charges (1, 0) and (4,−3) are both in L(1, 0),
but the corresponding matrices ∆(1) do not have the same number of zero entries (see Ex-
amples 2.9 and 2.10). ⋄

Remark 2.15 Conjecture 2.13 suggests that the matrix ∆(1) should not depend of the
choice of the multi-charge sl ∈ L(r1, . . . , rl) provided it is M -dominant for M large enough.
This statement is proved in [Y, Théorème 4.30]), where an explicit value of M is given.
However, the fact that we might take M = m here is still conjectural. ⋄

9



Example 2.16 Set n = 3, l = 2, (r1, r2) = (1, 0) and m = 3. Then the specialized cy-

clotomic v-Schur algebra is SC,3

(
e

2iπ
3 ; e

2iπ
3 , 1

)
. Take sl = (4,−3), so sl ∈ L(r1, . . . , rl) is

m-dominant. According to Conjecture 2.13, we expect D(q) be equal to

∆(q) =





1 . . . . . . . . .
0 1 . . . . . . . .
0 q 1 . . . . . . .
0 q2 q 1 . . . . . .
0 0 q 0 1 . . . . .
0 0 0 0 0 1 . . . .
0 0 q2 q q 0 1 . . .
0 0 0 q 0 0 0 1 . .
0 0 0 q2 0 0 q q 1 .
0 0 0 0 q 0 q2 0 q 1





(
(1, 1), (1)

)
(
(3), ∅

)
(
(2, 1), ∅

)
(
(2), (1)

)
(
(1, 1, 1), ∅

)
(
(1), (2)

)
(
(1), (1, 1)

)
(
∅, (3)

)
(
∅, (2, 1)

)
(
∅, (1, 1, 1)

)

(see Example 2.10). ⋄

If we no longer assume that sl is m-dominant, then we expect ∆(q) be equal to a q-
analogue of the decomposition matrix of a quasi-hereditary covering (in the sense of Rouquier,
see [Ro]) of the Ariki-Koike algebra H. This covering, depending on sl, could come from a
rational Cherednik algebra through the Knizhnik-Zamolodchikov functor [GGOR]. It should
be Morita-equivalent to the cyclotomic v-Schur algebra of [DJM] if sl is m-dominant.

PART B: Tools for the proof of Theorem 2.11

The next two sections recall some results about combinatorics of partitions and multi-
partitions on the one hand and higher-level Fock spaces on the other hand; all of them will
be used in the proof of Theorem 2.11. However, there are no new results here, so the reader
familiar with these two topics may skip this part and come back to it later in order to get
the needed definitions and notation.

3 Combinatorics of partitions and multi-partitions

3.1 Definitions

We give here all the basic definitions about partitions and multi-partitions that we need
later; our main reference is [Mac]. Let r ∈ N. A partition of r is a sequence of integers
λ = (λ1, λ2, . . . , λN ) such that λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 and λ1 + · · ·+ λN = r. Each nonzero
λi is called a part of λ. The sum of all the parts of λ is denoted by |λ|. We identify two
partitions differing only by a tail of zeroes and write sometimes partitions as sequences of
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integers with an infinite tail of zeroes. The only partition of 0 is denoted by ∅. The conjugate
of the partition λ is the partition λ† defined by

(19) λ†
i := ♯{j | λj ≥ i} (i ≥ 1);

for example, the conjugate of (4, 3, 3, 2, 1) is (5, 4, 3, 1).

An N -multi-partition of r is an N -tuple of partitions of integers summing up to r. Let
λ = (λ(1), . . . , λ(N)) be an N -multi-partition. The conjugate of λ is the multi-partition

λ† :=
(
(λ(N))†, . . . , (λ(1))†

)
. For 1 ≤ b ≤ N , write λ(b) = (λ

(b)
1 , λ

(b)
2 , . . .) the parts of λ(b). The

Young diagram of λ is the set

(20) {(i, j, b) ∈ N
∗ × N

∗ × [[1;N ]] | 1 ≤ j ≤ λ
(b)
i },

whose elements are called boxes or nodes of λ. If N = 1, namely, if λ is a partition, we
drop the third component in the symbol (i, j, b) of a node of λ. From now on we identify an
N -multi-partition with its Young diagram. We extend the notation |λ| in a natural way for
multi-partitions and define the dominance ordering on multi-partitions as follows.

Definition 3.1 Let λ and µ be two N -multi-partitions. We say that µ dominates λ and
write λ E µ if

(21) |λ| = |µ|

and for all k ≥ 0, 1 ≤ b ≤ N , we have

(22)

b−1∑

i=1

|λ(i)|+
k∑

j=1

λ
(b)
j ≤

b−1∑

i=1

|µ(i)|+
k∑

j=1

µ
(b)
j .

Write λ ⊳ µ if λ E µ and λ 6= µ. ⋄

If λ, µ ∈ Π are two partitions, write λ ⊂ µ if the diagram of λ is contained in the diagram of
µ, and the set-theoretic difference is called a skew diagram; we denote it by µ/λ. A path in
the skew diagram θ is a sequence of boxes (γ1, . . . , γN ) ∈ θN such that for all 1 ≤ i ≤ N−1, γi

and γi+1 have one common side. We say that θ is connected if given any two boxes γ, γ′ ∈ θ,
there exists a path within θ connecting γ to γ′. A ribbon is a connected skew diagram that
contains no 2 × 2 block of boxes. Let ρ be a ribbon. The head (resp. tail) of ρ is the node
γ = (i, j) ∈ ρ such that j− i is minimal (resp. maximal); we denote this node by hd(ρ) (resp.
tl(ρ)). If hd(ρ) = (i, j) and tl(ρ) = (i′, j′), the height of ρ is the integer ht(ρ) := i− i′ ∈ N.
Finally, the length of ρ is the number of boxes contained in ρ; we denote it by ℓ(ρ).

Example 3.2 On Figure 2 (see Section 3.4), the set of white squares represents the partition
(4, 1) ; ρ, ρ′ and ρ′′ are three ribbons of respective heights 2, 1 and 0 and of respective lengths
4, 4 and 3. ⋄
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A charged N -multi-partition is an element of ΠN ×Z
N . If (λ, s) ∈ ΠN ×Z

N is a charged
multi-partition and s = (s1, . . . , sN ), the content of the node γ = (i, j, b) ∈ λ is the integer

(23) cont(γ) := sb + j − i.

If M ∈ N
∗, the residue modulo M of γ is

(24) resM (γ) := cont(γ) mod M ∈ Z/MZ.

For all i ∈ Z, set

(25) Ni(λ) := ♯{γ ∈ λ | resn(γ) = i mod n} ;

this number depends on the multi-charge s. Define in a similar way Ni(θ) if θ is a skew
diagram contained in a charged partition.

3.2 The bijection τl, the ordering ≺ and abaci

Throughout the proof of Theorem 2.11, we need a large amount of notation which we in-
troduce here. In particular, we have to pass from l-multi-partitions (indexing the bases of
the Fock space) to partitions (indexing the bases of the q-wedge space – see Section 4.1) and
conversely. Following [U2], we achieve this using a bijection τl which can be described in
a combinatorial way (see Definition 3.6). This map is a variant of the bijection associating
to a partition its l-quotient and its l-core. We construct here τl using abaci; for another
(equivalent) description of τl and examples, see [U2, Remark 4.2 (ii) and Example 4.3]. The
bijection τl is used in particular for defining the partial ordering ≺ on Πl

m mentioned in
Section 2.2.2; see Definition 3.10.

3.2.1 Notation

The Euclidean algorithm shows that any integer k ∈ Z can be written in a unique way as

(26) k = c(k) + n(d(k)− 1) + nlm(k),

with c(k) ∈ [[1;n]], d(k) ∈ [[1; l]] and m(k) ∈ Z. Consider the map

(27) φ : Z→ Z, k 7→ c(k) + nm(k).

φ enjoys the following obvious properties, which we need later: for all k, k′ ∈ Z, we have

φ(k) ≡ c(k) ≡ k (mod n),(28)

(
k < k′, d(k) = d(k′)

)
=⇒ φ(k) < φ(k′),(29)

(
k ≤ k′, φ(k) ≥ φ(k′)

)
=⇒ m(k) = m(k′).(30)

12



For any r-tuple k = (k1, . . . , kr) ∈ Z
r, let

(31) c(k) := (c(k1), . . . , c(kr)) ∈ Z
r,

and define in a similar way d(k). The group Sr acts on the left on Z
r by

(32) σ.(k1, . . . , kr) = (kσ−1(1), . . . , kσ−1(r)) ((k1, . . . , kr) ∈ Z
r, σ ∈ Sr),

and a fundamental domain for this action is B := {(b1, . . . , br) ∈ Z
r | b1 ≥ · · · ≥ br}. Let

b(k) denote the element of B that is conjugated to d(k) under the action of Sr, Wk be the
stabilizer of b(k) (this is a parabolic subgroup of Sr) and ω(k) be the element of maximal
length in Wk. Let W k be the set of minimal length representatives in the left cosets Sr/Wk,
and v(k) be the element in W k such that d(k) = v(k).b(k).

Example 3.3 Let n = 3, l = 2, r = 4 and k = (12,−5, 2, 17). Then we have:

c(k) = (3, 1, 2, 2), d(k) = (2, 1, 1, 2), b(k) = (2, 2, 1, 1), v(k) = σ3σ2, ω(k) = σ1σ3. ⋄

Remark 3.4 Let k = (k1, . . . , kr) ∈ Z
r. We can describe the action of v(k)−1 on k as follows.

Consider k as a word formed by the letters ki and for 1 ≤ d ≤ l, denote by wd the subword
of k formed by the letters ki such that d(ki) = d. Then we have v(k)−1.k = wl · · ·w1. ⋄

3.2.2 The bijection τl, the ordering ≺ and abaci

Definition 3.5 A 1-runner abacus is a subset A of Z such that −k ∈ A and k /∈ A for all
large enough k ∈ N. In a less formal way, each k ∈ A corresponds to the position of a bead
on the horizontal abacus A which is full of beads on the left and empty on the right. Let A
be the set of 1-runner abaci. If N ≥ 1, an N -runner abacus is an N -tuple of 1-runner abaci.
If A = (A1, . . . , AN ) ∈ AN is an N -runner abacus, we identify A with the subset

(33) {(k, d) | 1 ≤ d ≤ N, k ∈ Ad} ⊂ Z× [[1;N ]].

⋄

To λ = (λ(1), . . . , λ(N)) ∈ ΠN and s = (s1, . . . , sN ) ∈ Z
N we associate the N -runner

abacus

(34) A(λ, s) := {(λ
(d)
i + sd + 1− i, d) | i ≥ 1, 1 ≤ d ≤ N}.

One checks easily that the map

(35) (λ, s) ∈ ΠN × Z
N 7→ A(λ, s) ∈ AN

is bijective.

Recall the definition of the maps k 7→ d(k) and k 7→ φ(k) from Section 3.2.1. Note that
k ∈ Z 7→

(
φ(k), d(k)

)
∈ Z× [[1; l]] is a bijection.
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Definition 3.6 The bijection τl : Π×Z ∼= A → Πl×Z
l ∼= Al is defined in terms of abaci by

the formula

(36) τl(A) :=
{(

φ(k), d(k)
) ∣∣ k ∈ A

}
∈ Al (A ∈ A).

⋄

Remark 3.7 Let λl ∈ Πl, sl = (s1, . . . , sl) ∈ Z
l, λ ∈ Π and s ∈ Z satisfying the relation

(λl, sl) = τl(λ, s). Then we have s = s1 + · · · + sl. ⋄

Notation 3.8 Let sl = (s1, . . . , sl) ∈ Z
l and s := s1 + · · · + sl. Write

(37) λl
sl←→ λ

if λ ∈ Π and λl ∈ Πl
m are related by (λl, sl) = τl(λ, s). We drop the sl in the notation if it is

clearly given by the context. ⋄

Example 3.9 Let n = 2, l = 3, m = 5 and sl = (0, 0,−1). Then Figure 1 shows that

(
(1, 1), (1, 1), (1)

) sl←→ (4, 3, 3, 2, 1).

-2
-3

-4-6-7-8
-1

0 1
2

3
4-5

-15
-5 2 8

-22 -16 -10 1-28 -23
7

-11-17 -4

-14-16
4 9 10

-26 -21 -20 -15 -14 -9 -8 -2 3
-3

-14-16
5 6 11 12

-24 -19 -18 -13 -12 -7 -6 0
-1

Figure 1: Computation of the bijection τl using abaci.

⋄

We now define a partial ordering ≺ on Πl
m as follows.
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Definition 3.10 Let sl = (s1, . . . , sl) ∈ Z
l. Let λl, µl ∈ Πl

m and λ, µ ∈ Π be such that

λl
sl←→ λ and µl

sl←→ µ. We say that λl precedes µl and write

(38) λl � µl

if µ dominates λ. In particular, by (21), λ and µ must be partitions of the same integer.
Note that the ordering � depends on the multi-charge sl that we consider. Write λl ≺ µl if
λl � µl and λl 6= µl. ⋄

3.3 β-numbers and ribbons

Throughout this section we fix an integer s ∈ Z.

Definition 3.11 Let λ = (λ1, λ2, . . .) ∈ Π be a partition with at most r parts. The r-tuple

(39) βr(λ) := (λ1 + s, λ2 + s− 1, . . . , λr + s− r + 1) ∈ Z
r

is called the r−list of β-numbers associated to (λ, s) or (with a slight abuse of notation) the
list or sequence of β-numbers associated to λ. The set of integers that form βr(λ) is denoted
by Br(λ). ⋄

With the notation of the definition above, note that βr(λ) is a decreasing sequence of
integers all greater than (or equal to) s + 1 − r. This sequence depends on the integer s we
have fixed, but we do not mention it in our notation. Note that a partition λ is completely
determined by its sequence of β-numbers. If r = |λ|, write more simply

(40) β(λ) := βr(λ) and B(λ) := Br(λ).

If f is a function defined on Z
r, it is convenient to consider f as a function (still denoted by

f) defined on the set of partitions of r by the formula

(41) f(λ) := f(β(λ)) (λ ∈ Π, |λ| = r).

For example, we define this way for any partition λ the vectors c(λ), d(λ) and so on. See
Section 3.2.1 for the corresponding notation.

In order to prove Theorem 2.11, we have to relate the adding/removal of a ribbon in
a charged partition and the corresponding β-numbers. Let us recall a classical result on
β-numbers (see e.g. [Mat1, Lemma 5.26]).

Lemma 3.12 Let ν and κ be two partitions with at most r parts, and let βr(ν) = (α1, . . . , αr)
and βr(κ) = (β1, . . . , βr) denote the sequences of β-numbers associated to ν and κ respectively.
Then the following statements are equivalent.

(i) ν ⊂ κ, and ρ := κ/ν is a ribbon of length h.

(ii) There exist positive integers b and h such that Br(ν) = {β1, . . . , βb−1, βb−h, βb+1, . . . , βr}.
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In this case, b is the row number of the tail of ρ and h is the length of ρ. Let σ ∈ Sr denote the
permutation obtained by arranging decreasingly the integers (β1, . . . , βb−1, βb−h, βb+1, . . . , βr).
Then we have ℓ(σ) = ht(ρ). Moreover, the content of the head of ρ is

(42) cont(hd(ρ)) = αc = βb − h,

where c is the row number of the head of ρ.

Proof. The proof of (i) ⇒ (ii) is easy. Conversely, assume that (ii) holds. Then we must
have βb−h ≥ s+1−r, and there must exist b ≤ c ≤ r such that βc > βb−h > βc+1 (if c = r,
put βc+1 := s−r). Note then that ν is obtained from κ by removing a ribbon ρ, where ρ ⊂ κ
is the ribbon whose head is located at row c of κ and whose tail is located at row b of κ. ρ is
actually a ribbon of length h. Moreover, with the notation of the statement of this lemma, we
have σ.(β1, . . . , βb−1, βb − h, βb+1, . . . , βr) = (β1, . . . , βb−1, βb+1, . . . , βc, βb − h, βc+1, . . . , βr),
hence σ is a cycle of length c− b = ht(ρ). Finally, the head of ρ has coordinates (c, νc + 1),
so its content is equal to cont(hd(ρ)) = s + (νc + 1)− c = αc = βb − h. �

Example 3.13 Let s = 4, r = 5, κ = (6, 5, 3, 2, 2) and ν = (6, 2, 2, 2, 2). Then the skew
diagram ρ := κ/ν is a ribbon and we have b = 2, c = 3 and h = 4. Moreover, we have
β(κ) = (β1, . . . , β5) = (10, 8, 5, 3, 2) and β(ν) = (β1, β3, βb − h, β4, β5) = (10, 5, 4, 3, 2). We
have σ = (2, 3), hence ℓ(σ) = 1 = ht(ρ). The head of ρ has coordinates (3, 3), so its content
is cont(hd(ρ)) = 4 = βb − h. ⋄

Lemma 3.14 Let ν, κ ∈ Π be such that |ν| = |κ| = r and ν 6= κ. Let β(ν) = (α1, . . . , αr)
and β(κ) = (β1, . . . , βr) denote the sequences of β-numbers associated to ν and κ respectively.
Set ρ := ν/(ν ∩ κ) and ρ′ := κ/(ν ∩ κ).

1) Then, ρ and ρ′ are two ribbons if and only if ♯
(
B(ν) ∩ B(κ)

)
= r − 2. In this case,

denote by

. h the common length of ρ and ρ′,

. y the row number of the tail of ρ′,

. y′ the row number of the head of ρ′,

. x′ the row number of the tail of ρ, and

. x the row number of the head of ρ.

Then we have

{αi | i 6= x′, y′} = {βj | j 6= x, y},(43)

cont(hd(ρ)) = βx = αx′ − h and cont(hd(ρ′)) = αy′ = βy − h.(44)

Let π ∈ Sr be the permutation obtained by arranging decreasingly the integers forming
B(ν). Then we have ℓ(π) = ht(ρ) + ht(ρ′).
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2) Assume that the conditions of 1) hold. Then we have the following equivalences, and
moreover one of the two following cases occurs:

(i) y ≤ y′ < x′ ≤ x ⇐⇒ ν ⊳ κ,
(ii) x′ ≤ x < y ≤ y′ ⇐⇒ κ ⊳ ν.

Proof. We prove 1) by applying the previous lemma to the pairs of partitions (ν ∩ κ, ν) and
(ν ∩ κ, κ). Let us prove 2). The inequalities y ≤ y′ and x′ ≤ x are obvious. Since ρ ∩ ρ′ = ∅,
one of the two following cases occurs: either y′ < x′ and then ν ⊳κ, or x < y and then κ⊳ ν.
This proves both implications ⇒, and since one of the two cases occurs, we get the desired
equivalences. �

3.4 Definition of the matrix J<

Let R be a local ring, with unique maximal ideal ℘. We define in this section a matrix
J =

(
Jλl,µl

)
λl,µl∈Πl

m
, with coefficients in R, depending on parameters m, l ∈ N

∗ and v,

u1, . . . , ul ∈ R. This matrix is closely related to the matrix formed by the entries ν℘(gλl,µl
)

of [JM] (see (8)). Let λl = (λ(1), . . . , λ(l)), µl = (µ(1), . . . , µ(l)) ∈ Πl
m, and consider the

following cases.

• Case (J1). Assume that λl 6= µl and that there exist two integers d, d′ ∈ [[1; l]], d 6= d′

satisfying the following conditions: µ(d) ⊂ λ(d), λ(d′) ⊂ µ(d′), λ(b) = µ(b) for all integer
b ∈ [[1; l]] \ {d, d′}, and ρ := λ(d)/µ(d) and ρ′ := µ(d′)/λ(d′) are two ribbons of the same
length ĥ. Let hd(ρ) = (i, j, d) denote the head of ρ and hd(ρ′) = (i′, j′, d′) denote the
head of ρ′. Set

(45) ε := (−1)ht(ρ)+ht(ρ′) and

(46) Jλl,µl
:=

(
udv

j−i − ud′v
j′−i′

)ε
.

• Case (J2). Assume that λl 6= µl and that there exists d ∈ [[1; l]] such that λ(b) = µ(b)

for all b 6= d, and ρ := λ(d)/(λ(d) ∩ µ(d)) and ρ′ := µ(d)/(λ(d) ∩ µ(d)) are two ribbons
of the same length ĥ. By definition of ρ and ρ′, we have ρ ∩ ρ′ = ∅, whence we get
(depending on the relative positions of ρ and ρ′) that either λ(d) ⊳ µ(d) or µ(d) ⊳ λ(d).
Assume that λ(d) ⊳ µ(d). Let ρ′′ ⊂ (λ(d) ∩ µ(d)) be the ribbon obtained by connecting
the tail of ρ to the head of ρ′, excluding the two latter nodes (see Figure 2). Denote
by hd(ρ) = (i, j, d) (resp. hd(ρ′) = (i′, j′, d′), resp. hd(ρ′′) = (i′′, j′′, d′′)) the head of ρ
(resp. ρ′, resp. ρ′′), and finally set

(47) ε1 := (−1)ht(ρ)+ht(ρ′), ε2 := (−1)ht(ρ∪ρ′′)+ht(ρ′′∪ρ′) and

17



(48) Jλl,µl
:=

(
ud(v

j−i − vj′−i′)
)ε1

.
(
ud(v

j−i − vj′′−i′′)
)ε2

.

If µ(d) ⊳ λ(d), set Jλl,µl
:= Jµl,λl

.

• Case (J3). In all other cases, set

(49) Jλl,µl
:= 1.
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Figure 2: The ribbons ρ, ρ′ and ρ′′ (the nodes of (λ(d) ∩ µ(d))− ρ′′ are depicted in white).

We now define a matrix J = J℘ =
(
jλl,µl

)
λl,µl∈Πl

m
, with integer coefficients, by the

formula

(50) jλl,µl
:= ν℘(Jλl,µl

) (λl,µl ∈ Πl
m).

Now, let 6 be an arbitrary partial ordering on Πl
m and write λl < µl if λl 6 µl and λl 6= µl

(λl, µl ∈ Πl
m). Recall the definition of the matrix J< =

(
j<
λl,µl

)
λl, µl∈Πl

m
from (9) ; namely,

put

(51) j<
λl,µl

:=

{
jλl,µl

if λl < µl

0 otherwise
(λl, µl ∈ Πl

m).

If we take 6 = E, then we get a matrix J⊳ whose entries correspond, up to conjugation
of multi-partitions, to the integers ν℘(gλl,µl

) of [JM] (see (8)). Given a multi-charge sl, we
shall also consider the matrix J≺, where the ordering ≺ (depending on sl) was introduced in
Definition 3.10. This is the matrix J≺ of Theorems 2.8 and 2.11. If sl is m-dominant (in the
sense of Definition 2.12), then the matrices J≺ and J⊳ coincide (see Proposition 5.12).
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4 q-deformed higher-level Fock spaces

In this section we follow [U2], to which we refer the reader for more details. The vector
spaces we consider here are over C(q), where q is an indeterminate over C.

4.1 q-wedge products and higher-level Fock spaces

Let s ∈ Z. Let Λs denote the (semi-infinite) q-wedge space of charge s (this space is denoted
by Λs+∞

2 in [U2]). Λs is an integrable representation of level l of the quantum algebra Uq(ŝln).
As a vector space, it has a natural basis formed by the so-called ordered q-wedge products.
These vectors can be written as

(52) uk = uk1 ∧ uk2 ∧ · · · ,

where k = (ki)i≥1 is a decreasing sequence of integers such that ki = s + 1 − i for i ≫ 0.
The basis formed by the ordered wedge products is called standard. More generally, we use
the non-ordered wedge products; a non-ordered wedge product uk = uk1 ∧ uk2 ∧ · · · ∈ Λs is
indexed by a sequence of integers (ki) such that ki = s + 1 − i for i ≫ 0, but we no longer
require that (ki) is decreasing. Any non-ordered wedge product can be written as a linear
combination of ordered wedge products by using the so-called ordering rules, which are given
in [U2, Proposition 3.16] and in a slightly different form in Proposition 4.4.

The vectors of the standard basis of Λs can also be indexed by partitions as follows. Let
uk = uk1 ∧ uk2 ∧ · · · ∈ Λs be an ordered wedge product. For i ≥ 1 set λi := ki − s + i − 1;
then λ := (λ1, λ2, . . .) is a partition. We then write uk = |λ, s〉. Note that if λ has at most r
parts, then we have (k1, . . . , kr) = βr(λ), which explains the definition of the β-numbers we
gave in Definition 3.11.

Let Fq[sl] be the higher-level Fock space with multi-charge sl = (s1, . . . , sl) ∈ Z
l [U2]. As

a vector space, Fq[sl] has a natural basis {|λl, sl〉 | λl ∈ Πl} indexed by l-multi-partitions.
If s = s1 + · · · + sl, then Fq[sl] can be identified with a subspace of Λs by the embedding
Fq[sl] →֒ Λs, |λl, sl〉 7→ |λ, s〉, where λ is the partition such that λl ↔ λ (see Notation 3.8 for
the meaning of ↔). We make from now on this identification; in fact, Λs is isomorphic to
the direct sum of all the Fq[tl]’s, where tl is any l-tuple of integers summing to s. Thus, the
vectors of the standard basis of Λs can also be indexed by charged l-multi-partitions.

4.2 The involution

In order to define the canonical basis of Λs, we equip this space with an involution .

Definition 4.1 The involution of Λs is the C-vector space automorphism that maps q to
q−1 and that acts on the standard basis of Λs as follows [U2, Proposition 3.23 and Remark
3.24]. Let λ ∈ Π be a partition of r, and k = (ki) ∈ ZN∗

be such that uk = |λ, s〉. Then

(53) |λ, s〉 := (−1)κ(d(λ))qκ(d(λ))−κ(c(λ))(ukr
∧ · · · ∧ uk1) ∧ ukr+1 ∧ ukr+2 ∧ · · · ,
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where for any a = (a1, . . . , ar) ∈ Z
r, κ(a) is the integer defined by

(54) κ(a) := ♯{(i, j) ∈ N
2 | 1 ≤ i < j ≤ r, ai = aj},

and c(λ) and d(λ) are defined in Section 3.2.1. ⋄

We can straighten the non-ordered wedge product in the right-hand side of (53) in order
to express it as a linear combination of ordered wedge products.

One checks that preserves the subspace

(55) Fq[sl]m :=
⊕

λl∈Πl
m

C(q) |λl, sl〉 ⊂ Fq[sl].

Definition 4.2 Define a matrix A(q) =
(
aλl,µl

(q)
)
λl,µl∈Πl

m
with entries in C(q) by

(56) |µl, sl〉 =
∑

λl∈Πl
m

aλl,µl
(q) |λl, sl〉 (µl ∈ Πl

m).

⋄

The matrix A(q) depends on n, l, sl and m. The ordering rules show that A(q) is unitriangular
with respect to �, that is

(57) aλl,µl
(q) 6= 0⇒ λl � µl and aλl,λl

(q) = 1 (λl,µl ∈ Πl
m).

The same rules also imply that A(1) is the identity matrix.

4.3 Uglov’s canonical basis

Since the matrix A(q) of the involution of Fq[sl]m is unitriangular, a classical argument can
be used to prove the following result.

Theorem 4.3 ([U2]) There exists a unique basis {G(λl, sl) | λl ∈ Πl
m} of Fq[sl]m satisfying

both following conditions:

(i) G(λl, sl) = G(λl, sl),

(ii) G(λl, sl)− |λl, sl〉 ∈
⊕

µl∈Πl
m

q C[q] |µl, sl〉. �

Definition 4.4 The basis {G(λl, sl) | λl ∈ Πl
m} is called the canonical basis of Fq[sl]m.

Define a matrix ∆(q) =
(
∆λl,µl

(q)
)
λl,µl∈Πl

m
with entries in C[q] by

(58) G(µl, sl) =
∑

λl∈Πl
m

∆λl,µl
(q) |λl, sl〉 (µl ∈ Πl

m).

⋄
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The matrix ∆(q) depends on n, l, sl and m. By Condition (ii) of Theorem 4.3, the matrix
∆(q) is also unitriangular with respect to �. By [U2, Theorem 3.26], the entries of ∆(q)
can be expressed as Kazhdan-Lusztig polynomials related to parabolic modules of an affine
Hecke algebra of type Ã, so by [KT], these entries are in N[q].

4.4 Another basis of Λs. Ordering rules.

The ordering rules (R1)-(R4) from [U2, Proposition 3.16] do not give at q = 1 anticommuting
relations like uk1 ∧ uk2 = −uk2 ∧ uk1 , because of the signs involved in Rules (R3) and (R4).
To fix this, we introduce another basis of Λs that differs from the standard basis only by
signs. The basis we consider here is actually the basis of ordered wedge products introduced
in [U1]. Λs is graded by

(59) deg(|λ, s〉) := |λ| (λ ∈ Π).

Let uk = uk1 ∧ uk2 ∧ · · · ∈ Λs be a (not necessarily ordered) wedge product of degree r. Set

(60)
vk = vk1 ∧ vk2 ∧ · · · := (−1)ℓ(v(k1 ,...,kr))uk

and similarly vk1 ∧ · · · ∧ vkr
:= (−1)ℓ(v(k1 ,...,kr))uk1 ∧ · · · ∧ ukr

,

where v(k1, . . . , kr) ∈ Sr is defined in Section 3.2.1. (If k = (k1, . . . , kr) ∈ Z
r, we hope that

the reader will make easily the difference between the permutation v(k) ∈ Sr and the wedge
product vk = vk1 ∧ · · · ∧ vkr

.) We say that the wedge product vk is ordered if so is uk. It is
straightforward to see, using the ordering rules for the uk’s given by [U2, Proposition 3.16],
that the ordering rules for the vk’s are given by the following proposition.

Proposition 4.5
(i) Let k1 ≤ k2, and γ ∈ [[0;nl − 1]] (resp. δ ∈ [[0;nl − 1]]) denote the residue of c(k2)− c(k1)(
resp. of n(d(k2)− d(k1))

)
modulo nl. Then we have

(R1) vk1 ∧ vk2 = −vk2 ∧ vk1 if γ = δ = 0,

(R2)

vk1 ∧ vk2 = −q−1vk2 ∧ vk1

−(q−2 − 1)
∑

i≥1

q−2i+1vk2−nli ∧ vk1+nli

+(q−2 − 1)
∑

i≥0

q−2ivk2−γ−nli ∧ vk1+γ+nli

if γ > 0, δ = 0,

(R3)

vk1 ∧ vk2 = −qvk2 ∧ vk1

−(q2 − 1)
∑

i≥1

q2i−1vk2−nli ∧ vk1+nli

+(q2 − 1)
∑

i≥0

q2ivk2−δ−nli ∧ vk1+δ+nli

if γ = 0, δ > 0,
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(R4)
vk1 ∧ vk2 = −vk2 ∧ vk1

−(q − q−1)
∑

i≥1

q2i − q−2i

q + q−1
vk2−nli ∧ vk1+nli

−(q − q−1)
∑

i≥0

q2i+1 + q−2i−1

q + q−1
vk2−γ−nli ∧ vk1+γ+nli

+(q − q−1)
∑

i≥0

q2i+1 + q−2i−1

q + q−1
vk2−δ−nli ∧ vk1+δ+nli

+(q − q−1)
∑

i≥0

q2i+2 − q−2i−2

q + q−1
vk2−γ−δ−nli ∧ vk1+γ+δ+nli

if γ > 0, δ > 0,

where the sums range over the indices i such that the corresponding wedge products are or-
dered.

(ii) The rules from (i) are valid for any pair of adjacent factors of the q-wedge product
vk = vk1 ∧ vk2 · · · . �

Let us end this section by a useful piece of notation.

Notation 4.6 Let ν ∈ Π be a partition of r and σ ∈ Sr. Set

(61) uσ.ν := uσ.β(ν) and similarly vσ.ν := vσ.β(ν)

(these are wedge products of r factors each). We say that uσ.ν (resp. vσ.ν) is obtained from
uν ( resp. vν) by permutation. ⋄

PART C: Proof of Theorem 2.11

We now start the proof of Theorem 2.11. In Section 5, we give a simpler expression for
the entries of the matrix J≺ (see Proposition 5.8). In Section 6, we compute the derivative
at q = 1 of the involution of Fq[sl]m in terms of good sequences that we introduce in
Definition 6.4; the result is given in Proposition 6.8. We compare both expressions in Section
7 in order to complete the proof. Apart from this, we compare in Section 5.2 the matrices
J≺ and J⊳ when the multi-charge sl is m-dominant.
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Notation for Part C From now on, we consider the modular system (R,K,F ) (together
with the prime ideal ℘) with parameters defined in Section 2.2.1. These parameters depend
on n, l, m and sl = (s1, . . . , sl) ∈ L(r1, . . . , rl) that we have fixed. Recall that to sl we
associated a partial ordering ≺ (see Definition 3.10) and a relation ↔ (see Notation 3.8).
Finally, put s := s1 + · · ·+ sl. ⋄

5 Expression of the matrices J≺ and J⊳

5.1 The matrices J and J≺

We first give, with our choice of parameters, a simpler expression for J .

Lemma 5.1

1) Assume that (λl,µl) satisfies the conditions (J1). Then we have

(62) jλl,µl
=

{
(−1)ht(ρ)+ht(ρ′) if resn(hd(ρ)) = resn(hd(ρ′)),

0 otherwise.

2) Assume that (λl,µl) satisfies the conditions (J2). Then we have

(63) jλl,µl
= (−1)ht(ρ)+ht(ρ′)ε,

where

(64) ε :=






1 if resn(hd(ρ)) = resn(hd(ρ′)) and ĥ 6≡ 0 (mod n),

−1 if resn(hd(ρ)) 6= resn(hd(ρ′)) and ĥ ≡ 0 (mod n),
0 otherwise,

and ĥ is the common length of ρ and ρ′.

Proof. Let us prove 1). With our choice of parameters, we have

jλl,µl
= (−1)ht(ρ)+ht(ρ′)ν℘(Pλl,µl

(x))

with Pλl,µl
(x) := udx

l(j−i) − ud′x
l(j′−i′). Note that

Pλl,µl
(x) = ξa1xa2 − ξa3xa4 ,

where ξ ∈ C is a primitive nl-th root of unity and a1 := dn, a2 := lsd − dn + l(j − i),
a3 := d′n and a4 := lsd′ − d′n + l(j′ − i′). Using the fact that ν℘(xN ) = 0 for all N ∈ Z and
xNPλl,µl

(x) ∈ C[x] for a suitable N ∈ Z, we get

ν℘(Pλl,µl
(x)) ≥ 0,

ν℘(Pλl,µl
(x)) ≥ 1⇐⇒ Pλl,µl

(ξ) = 0,

ν℘(Pλl,µl
(x)) ≥ 2⇐⇒ Pλl,µl

(ξ) = P ′
λl,µl

(ξ) = 0.
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A straightforward computation shows that we have ν℘(Pλl,µl
(x)) ≥ 1 if and only if we have

l(sd + j − i) ≡ l(sd′ + j′ − i′) (mod nl), that is if and only if resn(hd(ρ)) = resn(hd(ρ′)).
Moreover, we have

ν℘(Pλl,µl
(x)) ≥ 2 ⇐⇒

{
a1 + a2 ≡ a3 + a4 (mod nl)
a2ξ

a1+a2−1 = a4ξ
a3+a4−1

⇐⇒

{
a1 + a2 ≡ a3 + a4 (mod nl)
a2 = a4

⇐⇒

{
a1 ≡ a3 (mod nl)
a2 = a4

.

But the condition a1 ≡ a3 (mod nl) implies d ≡ d′ (mod l), which is impossible since d and
d′ are two distinct integers ranging from 1 to l. As a consequence, we have ν℘(Pλl,µl

(x)) ≤ 1,
which proves 1). Let us now prove 2). With the notation of (J2), we have ε2 = −ε1, whence

jλl,µl
= (−1)ht(ρ)+ht(ρ′)ν℘(Pλl,µl

(x)), with

Pλl,µl
(x) :=

ud

(
xl(j−i) − xl(j′−i′)

)

ud

(
xl(j−i) − xl(j′′−i′′)

)

=
xl((j′−i′)−(j−i)) − 1

xl((j′′−i′′)−(j−i)) − 1
=

xl
(
cont(hd(ρ′))−cont(hd(ρ))

)
− 1

xlĥ − 1
.

In order to complete the proof, we only have to notice that for N ∈ Z, we have ν℘(xlN−1) = 1
if nl divides lN , that is if n divides N , and ν℘(xlN − 1) = 0 otherwise. �

We now start analyzing carefully Cases (J1) and (J2). Proposition 5.3 gives a character-
ization in terms of λ and µ of the pairs (λl,µl) that satisfy (J1) or (J2).

Lemma 5.2 Let λl = (λ(1), . . . , λ(l)) ∈ Πl
m and µl = (µ(1), . . . , µ(l)) ∈ Πl

m be two distinct
multi-partitions, and λ, µ ∈ Π be such that λl ↔ λ and µl ↔ µ. Then the following
statements are equivalent:

(i) λ ⊂ µ, and µ/λ is a ribbon,

(ii) λl ⊂ µl, and there exists d ∈ [[1; l]] such that µ(d)/λ(d) is a ribbon and λ(b) = µ(b) for
all b ∈ [[1; l]] \ {d}.

Proof. Let us prove (i) ⇒ (ii). By Lemma 3.12, passing from λ to µ amounts, as far
as abacus diagrams are concerned, to passing from A(λ, s) to A(µ, s) by moving a bead
located at position k towards the right. As far as the l-runner abacus diagrams A(λl, sl)
and A(µl, sl) are concerned, this amounts to moving a bead located at position φ(k) on the
runner d := d(k) towards the right. This together with Lemma 3.12 applied to (λ(d), µ(d))
proves (ii). The converse is similar. �

Applying twice the previous lemma and Lemma 3.14 yields the following result.
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Proposition 5.3 Let λl, µl ∈ Πl
m be two multi-partitions, and λ, µ ∈ Π be such that λl ↔ λ

and µl ↔ µ. Assume that |λ| = |µ| = r. Then (λl,µl) satisfies (J1) or (J2) if and only if
♯
(
B(λ) ∩B(µ)

)
= r − 2. �

The following notation will be very useful.

Notation 5.4 Let λl = (λ(1), . . . , λ(l)) ∈ Πl
m and µl = (µ(1), . . . , µ(l)) ∈ Πl

m. Denote by λ,
µ ∈ Π the partitions such that λl ↔ λ and µl ↔ µ. Consider the statement

(65) λl ≺ µl (i.e. λ ⊳ µ), |λ| = |µ| = r and ♯
(
B(λ) ∩B(µ)

)
= r − 2.

Assume now that (λl,µl) satisfies (65). In this case, we shall use in the sequel the following
notation. Let (α1, . . . , αr) and (β1, . . . , βr) denote the sequences of β-numbers associated to
λ and µ respectively. By Lemma 3.14 applied to the pair (ν, κ) = (λ, µ), there exist positive
integers y, y′, x′, x and h such that {αi | i 6= x′, y′} = {βj | j 6= x, y}, αy′ = βy − h and
αx′ = βx + h. Moreover, by Proposition 5.3, (λl,µl) satisfies (J1) or (J2). Let d, d′ ∈ [[1; l]]
and ĥ ∈ N

∗ denote the integers introduced in the definition of Cases (J1) and (J2) (in Case
(J2), put d′ := d). Finally, denote by γ, resp. δ ∈ [[0;nl − 1]] the residue of c(βy) − c(βx),
resp. n

(
d(βy)− d(βx)

)
modulo nl. ⋄

Remark 5.5 Proposition 5.3 shows that if (λl,µl) does not satisfy (65), then j≺λl,µl
= 0. ⋄

Remark 5.6 Recall Notation 5.4 and assume that (λl,µl) satisfies (65). Since λ⊳µ, Lemma
3.14 implies y′ < x′, so we have

(66) βx < βx + h = αx′ < αy′ = βy − h < βy.

These inequalities, together with {αi | i 6= x′, y′} = {βj | j 6= x, y} and the fact that the βi’s
are pairwise distinct, imply:

(67) {βx, βy} ∩B(λ) = ∅.

⋄

Under assumption (65), the following technical lemma relates some β-numbers of λ(d),
λ(d′), µ(d) and µ(d′) on the one hand to some β-numbers of λ and µ on the other hand.

Lemma 5.7 Recall Notation 5.4 and assume that (λl,µl) satisfies (65).

1) Then, we have

(68) {d(βx), d(βy)} = {d(βx + h), d(βy − h)} = {d, d′}.

Moreover, for all 1 ≤ b ≤ l, we have

(69) ♯{1 ≤ i ≤ r | d(αi) = b} = ♯{1 ≤ i ≤ r | d(βi) = b} ;

let rb denote this common value.
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2) Assume that (λl,µl) satisfies (65) and (J1). Then we have d(βx) = d and d(βy) = d′.
Let

(70)
βrd

(λ(d)) = (γ1, . . . , γrd
), βrd

(µ(d)) = (δ1, . . . , δrd
),

βrd′
(λ(d′)) = (γ′

1, . . . , γ
′
rd′

) and βrd′
(µ(d′)) = (δ′1, . . . , δ

′
rd′

)

denote the sequences of β-numbers associated to λ(d), µ(d), λ(d′) and µ(d′). Denote by b
( resp. c) the row number of the tail ( resp. head) of ρ, and denote by b′ ( resp. c′) the
row number of the tail ( resp. head) of ρ′. By Statement 1), there exist integers k, k′

such that

(71) {k, k′} = {βx + h, βy − h}, d(k) = d and d(k′) = d′.

Then we have

(72)
δc = φ(βx), γb = φ(k), γ′

c′ = φ(k′), δ′b′ = φ(βy)

and ĥ = φ(k)− φ(βx) = φ(βy)− φ(k′).

3) Assume that (λl,µl) satisfies (65) and (J2). Denote by

(73) βrd
(λ(d)) = (γ1, . . . , γrd

) and βrd
(µ(d)) = (δ1, . . . , δrd

)

the sequences of β-numbers associated to λ(d) and µ(d). Let b ( resp. c) denote the row
number of the tail ( resp. head) of ρ, and b′ ( resp. c′) denote the row number of the
tail ( resp. head) of ρ′. Then we have λ(d) ⊳ µ(d) and

(74)
δc = φ(βx), γb = φ(βx + h), γc′ = φ(βy − h), δb′ = φ(βy)

and ĥ = φ(βx + h)− φ(βx) = φ(βy)− φ(βy − h).

Proof. We pass from µl to λl by removing the ribbon ρ′ and by adding the ribbon ρ.
This amounts, as far as the abacus diagrams A(µl, sl) and A(λl, sl) are concerned, to moving
two beads (see the proof of Lemma 5.2). Moving these two beads amounts, as far as the
abacus diagrams A(µ, s) and A(λ, s) are concerned, to moving the beads located at posi-
tions {βx, βy} towards the positions {βx + h, βy − h}, which proves the first two equalities
of Statement 1). The last parts of Statement 1) come from this and from the equality
{αi | i 6= x′, y′} = {βj | j 6= x, y}.

Let us now prove Statement 2). A careful analysis of the moves of the beads described
above shows more precisely that the following properties hold:

(i) {γb, γ
′
c′} = {φ(βx + h), φ(βy − h)} and {δ′b′ , δc} = {φ(βx), φ(βy)}.

(ii) Let K ∈ {βx, βx + h, βy −h, βy}. Then we have φ(K) ∈ {γb, δc} if and only if d(K) = d
and φ(K) ∈ {γ′

c′ , δ
′
b′} if and only if d(K) = d′.
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Let us first prove that d(βx) = d. Assume that d(βx) = d′. By (i) and (ii), we have
φ(βx) ∈ {δ′b′ , δc} ∩ {γ

′
c′ , δ

′
b′}. This implies φ(βx) = δ′b′ . Indeed, if φ(βx) 6= δ′b′ , we must have

φ(βx) = δc = γ′
c′ ∈ {φ(βx + h), φ(βy − h)} by (i). Let K ∈ {βx + h, βy − h} be such that

φ(K) = γ′
c′ = φ(βx). By (ii), we have d(K) = d(βx); moreover, we have φ(K) = φ(βx),

whence K = βx. This contradicts (66), so φ(βx) = δ′b′ . Let K ∈ {βx +h, βy−h} be such that
d(K) = d′. By (66) and (29), we have φ(K) > φ(βx) = δ′b′ , hence by (ii) we have φ(K) = γ′

c′ .
As a consequence, we have γ′

c′ > δ′b′ . Moreover, by Lemma 3.12 applied to (λ(d′), µ(d′)), we

have γ′
c′ = δ′b′ − ĥ < δ′b′ , which is absurd. By Statement 1), we thus have d(βx) = d and

d(βy) = d′. Now let k be the integer defined by (71) and assume that k = βx + h (the proof
for the case k = βy − h is similar). By (ii) we have {γb, δc} = {φ(βx), φ(βx + h)}. Moreover,

by Lemma 3.12 applied to (λ(d), µ(d)), we have δc = γb − ĥ < γb. By (66) and (29), we
therefore have δc = φ(βx) and γb = φ(βx + h), whence ĥ = γb − δc = φ(βx + h) − φ(βx). By
a similar argument, we get γ′

c′ = φ(βy − h), δ′b′ = φ(βy) and ĥ = φ(βy)− φ(βy − h).

Let us now prove 3). Since λ ⊳ µ, by (66) and (29) we have

φ(βx) < φ(βx + h) < φ(βy − h) < φ(βy).

Moreover, a careful analysis of the moves of the beads mentioned at the beginning of the
proof shows that

{δb′ , δc} = {φ(βx), φ(βy)} and {γb, γc′} = {φ(βx + h), φ(βy − h)}.

Assume that δc = φ(βy). Since φ(βy) > φ(βx + h), φ(βy) > φ(βy − h) and γb is in the
set {φ(βx + h), φ(βy − h)}, we must have δc > γb. Moreover, applying Lemma 3.14 to the

pair (λ(d), µ(d)) yields γb = δc + ĥ > δc, which is absurd. We thus have δc = φ(βx) and
δb′ = φ(βy). Since φ(βx) < φ(βy), we have δc < δb′ , whence c > b′. Applying again Lemma
3.14 shows that λ(d) ⊳ µ(d) and b′ ≤ c′ < b ≤ c. In particular, we have c′ < b, whence
γb < γc′ . Since φ(βx + h) < φ(βy − h), we have γb = φ(βx + h) and γc′ = φ(βy − h). Lemma

3.14 then implies that ĥ = γb−δc = φ(βx +h)−φ(βx) and ĥ = δb′−γc′ = φ(βy)−φ(βy−h). �

We are now ready to derive the expressions of the j≺λl,µl
’s that we need for proving

Theorem 2.11.

Proposition 5.8 Recall Notation 5.4.

1) Assume that (λl,µl) satisfies (J1) and λl ≺ µl. Then we have δ > 0 and

(75) j≺λl,µl
=

{
(−1)ht(ρ)+ht(ρ′) if h ≡ γ (mod nl) or h ≡ δ (mod nl),

0 otherwise.

2) Assume that (λl,µl) satisfies (J2) and λl ≺ µl. Then we have δ = 0 and

(76) j≺λl,µl
= (−1)ht(ρ)+ht(ρ′)ε,
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where

(77) ε :=






1 if h ≡ γ (mod nl) and h 6≡ 0 (mod nl),
−1 if h 6≡ γ (mod nl) and h ≡ 0 (mod nl),
0 otherwise.

Proof. We prove only Statement 1), the proof of Statement 2) being similar. Recall the
notation from Lemma 5.7. The statement δ > 0 comes from Statement 1) of that lemma.
Applying Lemma 3.12 to the pairs (λ(d), µ(d)) and (λ(d′), µ(d′)) yields

resn(hd(ρ)) = δc mod n and resn(hd(ρ′)) = γ′
c′ mod n.

By Lemma 5.1, it is thus enough to prove the equivalence

δc ≡ γ′
c′ (mod n)⇐⇒

(
h ≡ γ (mod nl) or h ≡ δ (mod nl)

)
.

By Statement 1) of Lemma 5.7, one of the two following cases occurs.

• First case: we have d(βx) = d(βx + h) and d(βy) = d(βy − h). By Lemma 5.7 and (28),
we have the following equivalences, where congruences stand modulo n:

δc ≡ γ′
c′ ⇐⇒ φ(βx) ≡ φ(βy − h)⇐⇒ βx ≡ βy − h⇐⇒ h ≡ γ.

It remains thus to prove that δc ≡ γ′
c′ (mod n) =⇒ h ≡ γ (mod nl). Assume that

δc ≡ γ′
c′ (mod n); we then have h ≡ γ (mod n). This and the equality d(βx) = d(βx+h)

force d(h) = 1, whence h ≡ γ (mod nl).

• Second case: we have d(βx) = d(βy − h) and d(βy) = d(βx + h). By arguing as above
we prove the equivalence

δc ≡ γ′
c′ (mod n)⇐⇒ h ≡ 0 (mod n).

Assume that δc ≡ γ′
c′ (mod n). Then we have h ≡ 0 (mod n), whence

d(βy) = d(βx + h) ≡ d(βx) + d(h)− 1 (mod l),

whence n(d(h) − 1) ≡ n
(
d(βy) − d(βx)

)
≡ δ (mod nl) and h ≡ δ (mod nl). As a con-

sequence, we have in this case δc ≡ γ′
c′ (mod n)⇐⇒ h ≡ δ (mod nl), which completes

the proof. �

Remark 5.9 Recall Notation 5.4 and assume that (λl,µl) satisfies (J1) and j≺λl,µl
6= 0. Then

the proof of Proposition 5.8 shows in particular that

(78) φ(βx) ≡ φ(k′) (mod n),

where k′ ∈ Z is defined by (71). ⋄
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5.2 What happens if the multi-charge sl is m-dominant

The goal of this section is to show that with our choice of parameters, the matrix J⊳ is a
special case of a matrix J≺ when the multi-charge sl is m-dominant (see Proposition 5.12).
However, the results we prove here will not be used for the proof of Theorem 2.11.

Lemma 5.10 Let λl,µl ∈ Πl
m, and let λ, µ ∈ Π be such that λl ↔ λ and µl ↔ µ. Assume

that jλl,µl
6= 0. Then we have, with the notation from (J1), (J2) and (25) :

(79) Ni(ρ) = Ni(ρ
′) (i ∈ Z) and |λ| = |µ|.

Proof. Since jλl,µl
is nonzero, Lemma 5.1 shows that at least one of the following cases

occurs:

• First case: we have resn(hd(ρ)) = resn(hd(ρ′)). Note that if ρ is a ribbon, then the
integers cont(γ), γ ∈ ρ are pairwise distinct, and the set formed by these numbers is
exactly the interval [[cont(hd(ρ)); cont (tl(ρ))]]. Combining this with the assumption
resn(hd(ρ)) = resn(hd(ρ′)) and ĥ = ℓ(ρ) = ℓ(ρ′), we get that Ni(ρ) = Ni(ρ

′) for any
i ∈ Z.

• Second case: we have ĥ ≡ 0 (mod n). Then for any i ∈ Z, we have the equalities
Ni(ρ) = Ni(ρ

′) = ĥ/n.

Let us now show that |λ| = |µ|. Let ν l := λl ∩ µl, and let ν ∈ Π be such that ν l ↔ ν.
We claim that

h := |λ| − |ν| =
(
(n− 1)l + 1

)
N0(ρ) +

(
ĥ−N0(ρ)

)
.

By induction on ĥ, we can restrict ourselves to the case when ĥ = 1, that is ρ contains a
single node γ. Let r ∈ N be such that λ and ν have at most r parts. By Lemma 3.12, there
exist α ∈ Br(ν) and β ∈ Br(λ) such that Br(ν) \ {α} = Br(λ) \ {β} and α = β − h. The
abacus diagrams A(ν, s) and A(λ, s) differ only by the moving of a bead; the same thing holds
for the diagrams A(ν l, sl) and A(λl, sl). By considering the initial and the final positions of
these two beads, we get

φ(β) = φ(α) + ĥ = φ(α) + 1 and d(β) = d(α) = d.

Moreover, by Lemma 3.12 and (28), we have resn(γ) = φ(α) mod n = α mod n. Let
us now distinguish two cases. If resn(γ) = 0 mod n (i.e. if N0(ρ) = 1), then we have
α = n + n(d − 1) + nlm with m ∈ Z, whence φ(β) = φ(α) + 1 = 1 + n(m + 1). Since
d(β) = d, we get β = 1 + n(d− 1) + nl(m + 1), whence h = β − α = (n − 1)l + 1. Similarly,
if resn(γ) 6= 0 mod n (i.e. if N0(ρ) = 0), then we have h = 1. This proves the claimed
formula. In a similar way we prove that |µ|− |ν| =

(
(n− 1)l +1

)
N0(ρ

′)+
(
ĥ−N0(ρ

′)
)
. Since

N0(ρ) = N0(ρ
′), we do have |λ| = |µ|. �
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Lemma 5.11 Let λl,µl ∈ Πl
m, and λ, µ ∈ Π be such that λl ↔ λ and µl ↔ µ. Assume that

|λ| = |µ|. Consider the following cases:

1) (λl,µl) satisfies (J1), jλl,µl
6= 0 and sl is m-dominant,

2) (λl,µl) satisfies (J2).

Then in either case, we have: λl ≺ µl ⇐⇒ λl ⊳ µl.

Proof. In either case, we can apply Proposition 5.3 and then Lemma 3.14 to get that λl ≺ µl

or µl ≺ λl. It is thus enough to prove that λl ≺ µl ⇒ λl ⊳ µl. Assume from now on that
λl ≺ µl and (λl,µl) satisfies either case of Lemma 5.11. Then by Proposition 5.3, (λl,µl)
satisfies (65) ; therefore (66) holds. Recall Notation 5.4. If (λl,µl) satisfies (J2), then by
Statement 3) of Lemma 5.7, we have λ(d) ⊳ µ(d). Moreover, for all b ∈ [[1; l]] \ {d} we have
λ(b) = µ(b), whence λl ⊳ µl. Assume now that (λl,µl) satisfies (J1), jλl,µl

6= 0 and sl is

m-dominant. The key point of the proof is the following. Let ν l =
(
ν(1), . . . , ν(l)

)
∈ Πl

m be
such that |ν| = r, where ν is the partition such that νl ↔ ν. Then under the assumption
that sl is m-dominant, we have

(∗)
(
d(k) < d(k′), k, k′ ∈ B(ν)

)
⇒ φ(k) ≥ φ(k′).

Indeed, let k, k′ ∈ B(ν), b := d(k), b′ := d(k′) and N (resp. N ′) be the number of parts
of ν(b) (resp. ν(b′)). Since ν l ↔ ν, we have φ(k) ∈ BN (ν(b)) and φ(k′) ∈ BN ′(ν(b′)). As

a consequence, there exist i ∈ [[1;N ]], i′ ∈ [[1;N ′]] such that φ(k) = sb + ν
(b)
i − i + 1 and

φ(k′) = sb′ + ν
(b′)
i′ − i′ + 1. Since sl is m-dominant and b < b′, we have

φ(k)− φ(k′) = (sb − sb′) + (i′ − i) + (ν
(b)
i − ν

(b′)
i′ )

≥ sb − sb′ −N − ν
(b′)
i′ ≥ sb − sb′ − (|ν(b)|+ |ν(b′)|) ≥ sb − sb′ − |ν l|

≥ 0,

which shows (∗). We now claim that d(βx) ≥ d(βy). Assume indeed that d(βx) < d(βy).
Recall that (66) holds. By (∗) applied to (k, k′) = (βx, βy), we have φ(βx) ≥ φ(βy). This,
(66) and (30) imply that m(βx) = m(βy), where the map k 7→ m(k) is defined in Section
3.2.1. Since this map is increasing, we have by (66) :

m(βx) ≤ m(βx + h) ≤ m(βy − h) ≤ m(βy) = m(βx),

so equalities hold throughout. Let now k′ ∈ Z be the integer defined by (71). Since j≺λl,µl
6= 0

by assumption, we can apply Remark 5.9 and get φ(βx) ≡ φ(k′) (mod n). This together
with m(βx) = m(k′) forces φ(βx) = φ(k′). Moreover, by Statement 2 of Lemma 5.7, we have
0 < ĥ = φ(βy)− φ(k′) ≤ φ(βx)− φ(k′), which is absurd. Therefore we have d(βx) ≥ d(βy) as
claimed. Again by Statement 2) of Lemma 5.7, we have d(βx) = d and d(βy) = d′, whence

d > d′. Moreover, we have |µ(d′)| = |λ(d′)| + ĥ, |µ(d)| = |λ(d)| − ĥ and µ(b) = λ(b) for all
b ∈ [[1; l]] \ {d, d′}. This and the inequality d′ < d imply λl ⊳ µl. �
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Proposition 5.12 Assume that sl is m-dominant. Then we have J≺ = J⊳.

Proof. Let λl, µl ∈ Πl
m. If jλl,µl

= 0, then we have j≺λl,µl
= j⊳

λl,µl
= 0 and we are done.

Assume now that jλl,µl
6= 0. It is enough to prove that λl ≺ µl ⇔ λl ⊳ µl. Note that by

Lemma 5.10, we have |λ| = |µ|, where λ, µ ∈ Π are such that λl ↔ λ and µl ↔ µ. Moreover,
since jλl,µl

6= 0, (λl,µl) satisfies either (J1) or (J2). We can therefore apply Lemma 5.11 to
conclude. �

Remark 5.13 The reader should be warned that the orderings ≺ and ⊳ do not necessarily
coincide, even if the multi-charge sl is m-dominant. For example, let n = 2, l = 2, m = 6,
sl = (3,−3), λl =

(
(2, 1), (1, 1, 1)

)
and µl =

(
(3), (2, 1)

)
. Then we have λl ⊳ µl; however,

the partitions λ and µ such that λl ↔ λ and µl ↔ µ are λ = (9, 6, 3, 1, 1, 1, 1, 1, 1, 1) and
µ = (10, 3, 3, 2, 2, 2, 1, 1, 1), so λl and µl are not comparable with respect to � . ⋄

6 Admissible sequences, good sequences

In this section we compute the matrix A′(1). To this aim, we examine in detail the straight-
ening of the wedge product vk = vk1 ∧ · · · ∧ vkr

. If vk is not ordered, there are in general
several ways to straighten it by applying recursively the rules (R1)-(R4). In the sequel, we
decide to straighten at each step the first infraction that occurs in vk, that is, the first
vki
∧ vki+1

with ki ≤ ki+1. This leads to the notion of admissible sequence that we introduce
in Definition 6.2. Fix an entry a′λl,µl

(1) of A′(1). We give in Proposition 6.8 an expression of
it in terms of admissible sequences. Each sequence having a nonzero contribution is called a
good sequence. We then show that there exists at most one good sequence (see Propositions
6.12 and 6.13), and it if exists we compute its length modulo 2 (see Proposition 6.14).

6.1 Definitions

Definition 6.1 Let k = (k1, . . . , kr) and l = (l1, . . . , lr) ∈ Z
r. We say that the wedge prod-

ucts vk and vl are adjacent if there exists 1 ≤ i ≤ r−1 (i is then necessarily unique) such that:

(i) ki ≤ ki+1, and kj > kj+1 for all 1 ≤ j ≤ i− 1,

(ii) kj = lj for all j ∈ [[1; r]] \ {i, i + 1},

(iii) the wedge product vli ∧ vli+1
appears in the straightening of vki

∧ vki+1
.

In this case, denote by t ∈ [[1; 4]] the index of the rule (Rt) applied for the straightening
of vki

∧ vki+1
and by α(vk, vl) ∈ Z[q, q−1] the coefficient of vli ∧ vli+1

in the resulting linear

combination. If (li, li+1) = (ki+1, ki), then write vk

•
→ vl and set m(vk, vl) := 0. Otherwise,

write vk

t
→ vl and set m(vk, vl) := 1; note that t ≥ 2 in this case. In either case, write more

simply vk → vl.

31



Definition 6.2 The sequence V = (vki
)0≤i≤N is called admissible if each vki

is a wedge
product of r factors and if we have

(80) vk0 → vk1 → · · · → vkN
;

in this case, N is called the length of the sequence V. Set

(81) αV(q) :=

N∏

i=1

α(vki−1
, vki

) ∈ Z[q, q−1] and m(V) :=

N∑

i=1

m(vki−1
, vki

) ∈ N.

Recall Notation 4.6 and the definition of ω from Notation 1.1. Let λ, µ ∈ Π be two
partitions of r. We say that the sequence of wedge products V = (vki

)0≤i≤N is (λ, µ)-
admissible if it is an admissible sequence of wedge products (of r factors for each of them)
such that vkN

= vλ and vk0 = vω.µ. ⋄

Remark 6.3 It is easy to see that if λ 6= µ, then there cannot exist any (λ, µ)-admissible
sequence V = (vki

)0≤i≤N such that m(V) = 0. ⋄

Definition 6.4 A (λ, µ)-admissible sequence V such that m(V) = 1 is called a good sequence
(with respect to (λ, µ)). Such a sequence can be written as

(82) vω.µ
•
→ · · ·

•
→ u

t
→ v

•
→ · · ·

•
→ vλ,

with t ∈ [[2; 4]]. ⋄

Remark 6.5 If a good sequence (with respect to (λ, µ)) exists, then we have

(83) ♯
(
B(λ) ∩B(µ)

)
= r − 2.

⋄

6.2 Reduction to the good sequences

Recall the expression of the involution of Fq[sl]m given in (53). Expressing this involution
in terms of the vk’s and then using Definition 6.2 yields the following expression for the
coefficients of A(q).

Lemma 6.6 Let λl, µl ∈ Πl
m and λ, µ ∈ Π be the partitions such that λl ↔ λ and µl ↔ µ.

Assume that |λ| = |µ|. Then we have

(84) aλl,µl
(q) = ε(λl,µl) qκ(d(µ))−κ(c(µ))

∑

V

αV(q),

where the sum ranges over all (λ, µ)-admissible sequences V, and ε(λl,µl) is the sign de-
fined by

(85) ε(λl,µl) := (−1)κ(d(µ))+ℓ(v(ω.µ))+ℓ(v(λ)) .

�
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Remark 6.7 One should be aware that in general several terms might contribute to this
sum, so the statement at the beginning of [Ry, Section 4] is not correct. However, we can fix
the argument from [Ry] by showing first that only good sequences do contribute to a′λl,µl

(1)

(see Proposition 6.8), and then that there exists at most one good sequence (see Propositions
6.12 and 6.13). ⋄

Proposition 6.8 Let λl, µl ∈ Πl
m be two distinct multi-partitions, and λ, µ ∈ Π be such

that λl ↔ λ and µl ↔ µ. Assume that |λ| = |µ| = r. Then we have

(86) a′λl,µl
(1) = ε(λl,µl)

∑

V

α′
V(1),

where the sum ranges over all the good sequences with respect to (λ, µ), and ε(λl,µl) is the
sign defined by (85).

Proof. By Lemma 6.6, we have

aλl,µl
(q) = ε(λl,µl)

∑

V

fV(q),

where the sum ranges over all the (λ, µ)-admissible sequences V and fV(q) is the Laurent
polynomial defined by fV(q) := qκ(d(µ))−κ(c(µ))αV(q). Note that if V is an admissible se-
quence, then we have m(V) ≥ 1 (because λ 6= µ), and moreover the rules (R1)-(R4) imply
that

αV(q) ∈ (q2 − 1)m(V)
Z[q, q−1].

As a consequence, if V is a (λ, µ)-admissible sequence such that m(V) ≥ 2, then (q2 − 1)2

divides fV(q) in Z[q, q−1], whence f ′
V

(1) = 0. Moreover, if V is a good sequence, then the
previous discussion shows that αV(1) = 0, whence

f ′
V(1) =

(
κ(d(µ))− κ(c(µ))

)
αV(1) + α′

V(1) = α′
V(1).

�

6.3 Existence and uniqueness of the good sequence

We first give (see Proposition 6.12) some sufficient conditions for the existence of a good
sequence (with respect to a given pair (λ, µ)). In order to do this, we must study the
sequence of permutations that we apply to the components of wedge products when we go
through an admissible sequence

(87) vk0

•
→ vk1

•
→ · · ·

•
→ vkN

,

where k0, . . . , kN ∈ Z
r and vω.k0 is ordered.
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Notation 6.9 Let σ, τ ∈ Sr. Write

(88) σ → τ

if there exists 1 ≤ i ≤ r−1 such that σ(i) < σ(i+1), with i minimal for this property, and such

that τ = σiσ. The relation → on Sr is closely related to the relation
•
→ on wedge products of

r factors. Recall that for vk = vk1∧· · ·∧vkr
and σ ∈ Sr, we have vσ.k = vk

σ−1(1)
∧· · ·∧vk

σ−1(r)
.

Then by definition we have σ → τ if and only if vσ−1.k
•
→ vτ−1.k, where k = (k1, . . . , kr) ∈ Z

r

is such that vω.k is ordered (namely, k1 < · · · < kr). ⋄

Consider now the following reduced expression for the longest element in Sr :

(89) ω = (σ1σ2 · · · σr−1)(σ1σ2 · · · σr−2) · · · (σ1σ2)(σ1),

and for 0 ≤ i ≤ r(r−1)
2 let ω[i] denote the right factor of length i in this word (by convention,

ω[0] = id). For example, for r ≥ 3 we have ω[5] = σ2σ3σ1σ2σ1. The sequence (ω[i])
0≤i≤

r(r−1)
2

enjoys the following property: if id = σ(0) → σ(1) → · · · → σ(k) with 0 ≤ k ≤ r(r−1)
2 , then

σ(i) = ω[i] for all 0 ≤ i ≤ k. In particular, we have ω[i− 1]→ ω[i] for all 1 ≤ i ≤ r(r−1)
2 .

Lemma 6.10 Let i, j ∈ [[1; r]] be such that i < j. Then there exist two integers k ∈ [[1; r−1]]

and e ∈ [[0; r(r−1)
2 −1]], determined in a unique way by the following properties: (ω[e])(k) = i,

(ω[e])(k+1) = j and ω[e+1] = σkω[e]. Namely, we have k = j−i and e = (j−1)(j−2)
2 +(i−1).

Proof. Left to the reader. �

Example 6.11 Take r = 6, i = 2 and j = 5. Then we have

(1,2,3,4,5,6
1,2,3,4,5,6)→(1,2,3,4,5,6

2,1,3,4,5,6)→(1,2,3,4,5,6
2,3,1,4,5,6)→(1,2,3,4,5,6

3,2,1,4,5,6)→(1,2,3,4,5,6
3,2,4,1,5,6)→(1,2,3,4,5,6

3,4,2,1,5,6)→(1,2,3,4,5,6
4,3,2,1,5,6)→(1,2,3,4,5,6

4,3,2,5,1,6)=ω[e],

whence e = 7 = (j−1)(j−2)
2 + (i− 1) and k = 3 = j − i. ⋄

Proposition 6.12 Recall Notation 5.4. Assume that (λl,µl) satisfies (65), (γ, δ) 6= (0, 0)
and h ≡ η (mod nl), with η ∈ {0, γ, δ, γ + δ}. Then there exists a good sequence with respect
to (λ, µ).

Proof. We construct a good sequence

(∗) vω.µ
•
→ · · ·

•
→ u

t
→ v

•
→ · · ·

•
→ vλ

as follows.
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• Step 1: construction of vω.µ
•
→ · · ·

•
→ u. We construct this part of Sequence (∗) in

terms of the relation → on Sr. Let e and k = x − y be the integers given by Lemma
6.10 applied with the integers i := r + 1 − x and j := r + 1 − y. Then we have the
sequence ω[0] → · · · → ω[e], hence the sequence vω[0]−1.(ω.µ)

•
→ · · ·

•
→ vω[e]−1.(ω.µ) is

admissible. Put u := vω[e]−1.(ω.µ) = v(ωω[e])−1.µ.

• Step 2: construction of u
t
→ v. By assumption on e we have

u = vm1 ∧ · · · ∧ vmk−1
∧ vβx

∧ vβy
∧ vmk+2

∧ · · · ∧ vmr ,

where the mi’s are integers in B(µ), and the next step of the straightening of u consists
in straightening this wedge product with respect to its k-th and (k+1)-th components,
namely vβx

∧ vβy
. Since (γ, δ) 6= (0, 0), this elementary straightening involves Rule

(Rt) with t ∈ [[2; 4]]. Note that by (66), the wedge product vβy−h ∧ vβx+h is ordered.
Since h ≡ η (mod nl), Rule (Rt) shows that this wedge product appears in the linear
combination obtained by straightening vβx

∧ vβy
. Put

v := vm1 ∧ · · · ∧ vmk−1
∧ vβy−h ∧ vβx+h ∧ vmk+2

∧ · · · ∧ vmr .

It is clear that v is obtained from vλ by permutation, and the argument above shows

that u
t
→ v, which completes Step 2.

• Step 3: construction of v
•
→ · · ·

•
→ vλ. Set v1 := v. If v1 is not ordered, then the

elementary straightening of v1 gives a linear combination of wedge products, and one
of them, say v2, is obtained from v1 by permutation. If we apply this device sufficiently
many times, we get eventually an ordered wedge product which is of course vλ. This
completes Step 3 and the construction of the good sequence (∗). �

We now prove the converse of Proposition 6.12.

Proposition 6.13 Recall Notation 5.4 and assume that (λl,µl) satisfies (65). Assume
moreover that there exists a good sequence

(90) vω.µ = vk0

•
→ · · ·

•
→ vke

t
→ vke+1

•
→ · · ·

•
→ vkN

= vλ

with respect to (λ, µ), with t ∈ [[2; 4]]. Then this sequence is unique, t is also uniquely deter-
mined and moreover we have (γ, δ) 6= (0, 0) and h ≡ η (mod nl) with η ∈ {0, γ, δ, γ + δ}.

Proof. By assumption, vke
(resp. vke+1) is obtained from vµ (resp. vλ) by permutation. By

(67), there exist σ ∈ Sr and 1 ≤ k ≤ r − 1 such that

vke
= vσ.µ = vβ

σ−1(1)
∧ · · · ∧ vβ

σ−1(k−1)
∧ vβx

∧ vβy
∧ vβ

σ−1(k+2)
∧ · · · ∧ vβ

σ−1(r)
,

vke+1 = vβ
σ−1(1)

∧ · · · ∧ vβ
σ−1(k−1)

∧ vβy−h ∧ vβx+h ∧ vβ
σ−1(k+2)

∧ · · · ∧ vβ
σ−1(r)

,
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and vke+1 is obtained from vke
by straightening vβx

∧ vβy
with the rule (Rt). Since t ∈ [[2; 4]],

the last conditions of the statement of this proposition hold. It is not hard to see that k and
e satisfy the conditions of Lemma 6.10 with i := r + 1− x and j := r + 1− y, so k and e are
determined in a unique way. This determines completely the subsequence vk0

•
→ · · ·

•
→ vke

.
Moreover, t is uniquely determined by considering whether γ and δ are zero or not. The
expression of vke+1

given at the beginning of the proof shows that this wedge product is also
determined in a unique way. Let τ ∈ Sr be the unique permutation such that vke+1 = vτ.λ.
Note that by Condition (i) of Definition 6.1, there exists at most one admissible sequence
V having a given length and starting at a given wedge product such that m(V) = 0. As a

consequence, the sequence vτ.λ
•
→ · · ·

•
→ vλ, whose length is ℓ(τ), is in turn determined in a

unique way. �

6.4 Computation of the length modulo 2 of the good sequence

We now deal with the technical part of the proof of Theorem 2.11. The next proposition will
be used to show that if a′λl,µl

(1) and j≺λl,µl
are nonzero, then both numbers have the same

signs. This proposition deals with the only cases that we have to consider.

Proposition 6.14 Recall Notation 5.4 and assume that (λl,µl) satisfies (65). Assume
moreover that (γ, δ) 6= (0, 0) and h ≡ η (mod nl) with η ∈ {γ, δ}. Let then

(91) V = vω.µ
•
→ · · ·

•
→ vk

t
→ vl

•
→ · · ·

•
→ vλ

denote the unique good sequence with respect to (λ, µ) (see Propositions 6.12 and 6.13).
Denote by N the length of this sequence. Then we have

(92) (−1)N−1 = (−1)ht(ρ)+ht(ρ′)ε(λl,µl) ε,

where ε(λl,µl) is the sign defined by (85) and ε is the sign defined by

(93) ε :=

{
1 if δ > 0 and h ≡ δ (mod nl),
−1 otherwise.

Proof. Let σ, τ ∈ Sr be the permutations defined by vσω.µ = vk and vτ−1.λ = vl. Then we
have N = ℓ(σ) + 1 + ℓ(τ), whence (−1)N−1 = ε(σ)ε(τ). By Lemma 6.10, we can compute
ℓ(σ) and then ε(σ); it is however not straightforward to compute ℓ(τ). We compute only ε(τ)
by writing τ as a product of 7 permutations σ(1), . . . , σ(7) whose signs are easily computable.

* Set first
σ(1) := σ−1 and v1 := vσ(1) .l ;

v1 is thus obtained from vω.µ by replacing βx (located at the (r +1−x)-th component)
by βy − h, and βy (located at the (r + 1− y)-th component) by βx + h.
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* By Statement 1) of Lemma 5.7, one of the following cases occurs:

– First case: d(βx) = d(βy − h) and d(βy) = d(βx + h),

– Second case: d(βx) = d(βx + h), d(βy) = d(βy − h) and d(βx) 6= d(βy).

It is easy to see that the first case occurs if and only if δ = 0 or h ≡ δ (mod nl), and
that the second case occurs if and only if δ > 0 and h ≡ γ (mod nl). Set

σ(2) :=

{
id if the first case occurs

(r + 1− x, r + 1− y) if the second case occurs

and v2 := vσ(2)σ(1) .l ;

in the second case, v2 is obtained from v1 by permuting βx + h and βy − h. In either
case, σ(2) is constructed in order to have d(σ(2)σ(1).l) = d(ω.µ) and subsequently
v(σ(2)σ(1).l) = v(ω.µ).

* Set
σ(3) := v(σ(2)σ(1).l)−1 = v(ω.µ)−1 and v3 := vσ(3)σ(2)σ(1).l .

By remark 3.4 applied to σ(2)σ(1).l, v3 is a wedge product that can be written as

v3 = v
k

(l) ∧ · · · ∧ v
k

(1) ,

where each v
k

(b) , 1 ≤ b ≤ l is a wedge product such that each component vk of v
k

(b)

satisfies d(k) = b. In this case and for the rest of the proof, we say that v3 is block-
decomposable and call v

k
(b) (1 ≤ b ≤ l) the b-th block of v3.

* Set now
σ(4) := ω(k) = ω(l) and v4 := vσ(4)σ(3)σ(2)σ(1) .l,

where ω(k) is defined in Section 3.2.1 (the equality ω(k) = ω(l) comes from Lemma
5.7). For 1 ≤ b ≤ l denote by

rb := ♯{1 ≤ i ≤ r | d(αi) = b} = ♯{1 ≤ i ≤ r | d(βi) = b}

the number of factors of the block v
k

(b) (the equality of both numbers defining rb comes

again from Lemma 5.7). Let 1 ≤ b ≤ l. Then σ(4) acts on the b-th block of v3 as the
permutation

(1,...,rb

rb,...,1

)
. Since vµ is ordered, we can see that for all b ∈ [[1; l]] \ {d, d′}, the

b-th block of v4 is also ordered.

* Write temporarily v4 = vk1∧· · ·∧vkr
, and let i (resp. j) ∈ [[1; r]] be such that ki = βy−h

(resp. kj = βx + h). Define σ(5) and v5 by

σ(5) :=

{
id if δ > 0

(i, j) if δ = 0
and v5 := vσ(5)σ(4)σ(3)σ(2)σ(1) .l ;

we have σ(5) = id if and only if βy − h and βx + h are in the same block of v4.
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* Let σ(6) ∈ Sr be the permutation that acts separately on each block of v5 by reordering
it and set

v6 := vσ(6)σ(5)σ(4)σ(3)σ(2)σ(1).l .

Let us describe the action of σ(6) more precisely. If δ = 0, then σ(6) acts on the d-th
block of v5 as the permutation π from Lemma 3.14, and σ(6) acts trivially on the other
blocks. If δ > 0, then σ(6) acts as the product of two permutations σ′

d and σ′
d′ , where

each σ′
b, b ∈ {d, d′} acts on the b-th block of v5 as the permutation denoted by σ in

Lemma 3.12 and σ′
b acts trivially on the other blocks. As a consequence, we have in

either case
ε(σ(6)) = (−1)ht(ρ)+ht(ρ′).

* Finally, put

σ(7) := v(λ) and v7 := vσ(7)σ(6)σ(5)σ(4)σ(3)σ(2)σ(1).l .

Note that vλ is ordered, v6 is obtained from vλ by permutation, v6 is block-decomposable
and all the blocks of v6 are ordered. By the remark following the definition of σ(3), we
have vv(λ)−1.λ = v6, whence v7 = vλ.

As a consequence, we do have τ = σ(7) · · · σ(1), where the σ(i)’s are defined above, hence
(−1)N−1 = ε(σ)

∏7
i=1 ε(σ(i)). By considering different cases we see that ε(σ(2)) ε(σ(5)) = ε,

where ε is defined by (93). Moreover, we have

ε(σ(4)) = ε(ω(k)) =

l∏

b=1

(−1)
rb(rb−1)

2 = (−1)κ(d(µ)).

We then have ε(σ(3)) ε(σ(4)) ε(σ(7)) = ε(λl,µl), whence the result. �

7 Proof of Theorem 2.11

Let λl, µl ∈ Πl
m, and λ, µ ∈ Π be the partitions such that λl ↔ λ and µl ↔ µ. We must

show that a′λl,µl
(1) = 2j≺λl,µl

. If λl 6≺ µl, then a′λl,µl
(1) = 0 by (57); on the other hand,

we have j≺λl,µl
= 0 in this case and we are done. Assume from now on that λl ≺ µl. If

(λl,µl) does not satisfy (65), then by Remark 6.5 there cannot exist any good sequence with
respect to (λ, µ), so by Proposition 6.8 we have a′λl,µl

(1) = 0 ; on the other hand, by Remark

5.5 we also have j≺λl,µl
= 0 in this case. Assume now that (λl,µl) satisfies (65), and recall

Notation 5.4. By Proposition 5.3, one of the cases (J1) or (J2) occurs and Proposition 5.8
then gives the expression of j≺λl,µl

. Moreover, Propositions 6.12 and 6.13 give necessary and
sufficient conditions on γ, δ and h for the existence of a good sequence, in which case it is
unique. Proposition 6.8 and Rules (R2)− (R4) then give the expression of a′λl,µl

(1). In order

to compare a′λl,µl
(1) and j≺λl,µl

, we have to consider 12 cases depending on the value of h
modulo nl and on whether γ and δ are zero or not. The results are shown in Figure 3. Here
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N is the length of the good sequence if it exists. Theorem 2.11 follows by comparing the last
two columns of the array and by applying Proposition 6.14 if the corresponding numbers are
nonzero. �

Number

Case of good
a′λl,µl

(1)

ε(λl,µl)

j≺λl,µl

(−1)ht(ρ)+ht(ρ′)

sequences

γ = δ = 0 0 0 0

γ > 0, δ = 0,
h 6≡ 0 (mod nl), h 6≡ γ (mod nl) 0 0 0

γ > 0, δ = 0, (−1)N−1 d
dq

∣∣∣
q=1

(
−(q−2 − 1)q−2i+1

)

i := h
nl
∈ N

∗ 1 = 2(−1)N−1 -1

γ > 0, δ = 0, (−1)N−1 d
dq

∣∣∣
q=1

(
(q−2 − 1)q−2i

)

i := h−γ
nl
∈ N 1 = −2(−1)N−1 1

γ = 0, δ > 0,
h 6≡ 0 (mod nl), h 6≡ δ (mod nl) 0 0 0

γ = 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
−(q2 − 1)q2i−1

)

i := h
nl
∈ N

∗ 1 = −2(−1)N−1 1

γ = 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
(q2 − 1)q2i

)

i := h−δ
nl
∈ N 1 = 2(−1)N−1 1

γ > 0, δ > 0,
h 6≡ 0 (mod nl), h 6≡ γ (mod nl), 0 0 0

h 6≡ δ (mod nl), h 6≡ γ + δ (mod nl)

γ > 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
−(q − q−1) q2i

−q−2i

q+q−1

)

i := h
nl
∈ N

∗ 1 = 0 0

γ > 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
−(q − q−1) q2i+1+q−2i−1

q+q−1

)

i := h−γ
nl
∈ N 1 = −2(−1)N−1 1

γ > 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
(q − q−1) q2i+1+q−2i−1

q+q−1

)

i := h−δ
nl
∈ N 1 = 2(−1)N−1 1

γ > 0, δ > 0, (−1)N−1 d
dq

∣∣∣
q=1

(
(q − q−1) q2i+2

−q−2i−2

q+q−1

)

i := h−γ−δ
nl
∈ N 1 = 0 0

Figure 3: List of the cases involved in the proof of Theorem 2.11.
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