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Abstract

The Jantzen sum formula for cyclotomic v-Schur algebras yields an identity for some
g-analogues of the decomposition matrices of these algebras. We prove a similar identity
for matrices of canonical bases of higher-level Fock spaces. We conjecture then that
those matrices are actually identical for a suitable choice of parameters. In particular,
we conjecture that decomposition matrices of cyclotomic v-Schur algebras are obtained
by specializing at ¢ = 1 some transition matrices between the standard basis and the
canonical basis of a Fock space.

1 Introduction

In order to study representations of the Ariki-Koike algebra associated to the complex reflec-
tion group G(I,1,m), Dipper, James and Mathas introduced in 1998 the cyclotomic v-Schur
algebra [DJM||. This algebra depends on the two integers | and m and on some deformation
parameters v, uy,...,u;. When [ = 1, the cyclotomic v-Schur algebra coincides with the
v-Schur algebra of [DJ]. It is an open problem to calculate the decomposition matrix of a
cyclotomic v-Schur algebra whose parameters are powers of a given n-th root of unity. To
this aim, James and Mathas proved, for cyclotomic v-Schur algebras, an important formula:
the Jantzen sum formula [JM]. Given a Jantzen filtration for Weyl modules, one can define a
g-analogue D(q) of the decomposition matrix; the coefficients of D(q) are graded decompo-
sition numbers of the composition factors of Weyl modules (see Definition P.5). The Jantzen
sum formula is equivalent to the identity D'(1) = J<D(1), where J< is a matrix of p-adic
valuations of factors of some Gram determinants (see Theorem R.J and Corollary R.7).

Let A(q) be the matrix of the canonical basis of the degree m homogeneous component
of a Fock representation of level [ of U, (sA[n) 0. Uglov provided in [Ud] an algorithm for
computing A(q).

In view of Ariki’s theorem for Ariki-Koike algebras [AJ], it seems natural to conjecture
that for a suitable choice of parameters, one has D(q) = A(g). This would provide an algo-
rithm for computing decomposition matrices of cyclotomic v-Schur algebras. Varagnolo and
Vasserot [VV]] proved for I = 1 that D(1) = A(1). Moreover, Ryom-Hansen showed that
this conjecture (still for I = 1) is compatible with the Jantzen-Schaper formula [Ry]. Passing
to higher level I > 1 requires the introduction of an extra parameter s; = (s1,...,s;) € Z!,



called multi-charge; this [-tuple parametrizes the Fock space of level [ introduced by Uglov.
We say that s; is m-dominant if for all 1 < d <1 —1, we have sg11 — sq > m. In this case,
we conjecture that D(q) = A(gq). Here, D(q) comes from a Jantzen filtration of the Weyl
modules of the cyclotomic v-Schur algebra S¢ = Scm(¢;¢%, ..., (%) with ¢ = exp(%).

Note that for any choice of roots of unity ¢**,...,¢* (that is, for any r1,...,r; € Z/nZ)

and any m we can find an m-dominant multi-charge s; = (s1,...,s;) such that (% = (%4
(1 <d <1). Therefore, putting ¢ = 1, our conjecture gives an algorithm for calculating the
decomposition matrix of an arbitrary cyclotomic v-Schur algebra Sc = Scm (¢;¢°, ..., ().

Such a conjecture is new even for type By, (case [ = 2).

Our conjecture is supported by the following theorem. We define in a combinatorial way
a matrix J~ for any multi-charge s;; if s; is m-dominant, then our matrix J= coincides with
the matrix J< of the Jantzen sum formula. We show then that for any multi-charge s;, we
have A’(1) = JXA(1) (Theorem P.§).

The proof of our theorem relies on a combinatorial expression for the derivative at ¢ = 1
of the matrix A(q), where A(q) is the matrix of the Fock space involution used for defining
A(q). Namely, we show that A’(1) = 2J~ (Theorem P.11). The coefficients of A(g) are some
analogues for Fock spaces of Kazhdan-Lusztig R-polynomials R, ,(q) for Hecke algebras. The
classical computation of R;, (1) was made in [GJ], in relation with the Kazhdan-Lusztig con-
jecture for multiplicities of composition factors of Verma modules.

Acknowledgments. 1 would like to thank Nicolas Jacon and my advisor Bernard Leclerc for
inspiring discussions about Ariki-Koike algebras. I also would like to thank Bernard Leclerc
for his assistance and constant advice when [ was writing this article. At last, I thank Andrew
Mathas, Hyohe Miyachi and the referee for their comments.

Notation 1.1 Let N (resp. N*) denote the set of nonnegative (resp. positive) integers, and
for a, b € R denote by [a;b] the discrete interval [a,b] N Z. Throughout this article, we fix
three integers n, I, m > 1. Let IT be the set of partitions of any integer and II, be the set
of [-multi-partitions of m. The Coxeter group of type A,_; (with r € N*) is the symmetric
group &, = (0, = (i,i+1) | 1 <i <r—1). Let £ be the length function on &, and w be the
unique element of maximal length in &,.. o

PART A: STATEMENT OF RESULTS

2 Statement of results

2.1 The Jantzen sum formula

Definition 2.1 ([AK], BM]]) Let R be a principal ideal domain. Let v be an invertible
element of R and u,...,u; € R. The Ariki-Koike algebra, denoted by

(1) H:HR:HR7m(U;U1,...,ul),



is the algebra defined over R with generators Tp,...,7T,,—1 and relations

(To—ul)---(To—ul) = 0,
ToToTy = TiToT1To,
(2) (T; +1)(T; —v) = 0 1<i<m-—1),
Tyl = TiaTiTi (1<i<m-—2),
LT, = T O<i<j—1<m—2).

Following [DJM], let
(3) S:SR:SR,m(v;ul,...,ul)

be the cyclotomic v-Schur algebra associated to H. Dipper, James and Mathas (see [DJM,
Theorem 6.12]) showed that S is a cellular algebra in the sense of [GIJ. Given \; € II.,
one defines as in [DJM], Definition 6.13] a right S-module W ();) which is a free R-module
of finite rank, called Weyl module. Since S is cellular, W (A;) is naturally equipped with a
symmetric bilinear form (-,-). Set

(4) L()\l) = W()\l)/rad W()\l),

where rad W (X\;) is the radical of the bilinear form (-,-). Assume temporarily that R is a
field. By [[DJM, Corollary 6.18], S is a quasi-hereditary algebra, so the theory of cellular al-
gebras of shows that {L()\;) | A; € ITl } is a complete set of non-isomorphic irreducible
S-modules (see [DJM], Theorem 6.16]). This implies that Ro(S), the Grothendieck group of
finitely-generated S-modules, is a free Z-module with basis {[L(N\;)] | A; € TIL, }.

From now on, we assume that R is a local ring, with unique maximal ideal p. Let v,
be the corresponding g-adic valuation map. Let K be the field of fractions of R and extend
v, to K in the natural way. Let F' = R/pR be the residue field, so (R, K, F') is a modular
system. If M is a right R-module, we denote by Mr = M ®p F' the specialized module and
denote similarly by Mg = M ®gr K the corresponding module defined over K. We shall use
this notation for Weyl modules and for § itself.

Definition 2.2 ([Jai], see also [[AM]) Let M be an R-module equipped with a symmetric
bilinear form (-,-). For all i € N, set

(5) M(i):={ue M |VveM, v,((u,v)) > i}.
The Jantzen filtration of M is the sequence
(6) MF:MF(O)DMF(l)D,

where Mp (i) := (M (i) + pM) /oM. o



Note that in the definition above, we have in particular Mp(1) = rad Mp. Moreover, if M is
free of finite rank (as an R-module), then we have Mp(i) = {0} for i large enough.

The following theorem was proved by James and Mathas (see [[M, Theorem 4.3]).

Theorem 2.3 (the Jantzen sum formula)
Assume that Sk is semisimple. Then in the Grothendieck group Ro(Sr), we have for all
A€ Hin.‘

(7) YWrs)l = D voloam) Wrlw))-

i>0 el

Here, the gx,u, € R are factors of some Gram determinants (see [FM, Definitions 3.1, 5.36
and Corollary 3.38]). O

Remark 2.4 The condition of semisimplicity of Sk is stated in [JM], Theorem 4.3] in terms
of the Poincaré polynomial for Hg, which is defined in [JM), Definition 3.40]. o

James and Mathas [JM] showed that only multi-partitions p; € TI!, such that p; <t A
contribute to the right hand-side of Theorem P.d (the definition of the dominance ordering
< is recalled in Definition B.1). They have given a combinatorial expression of Vo(ga,p,) 0
terms of ribbons contained in diagrams of [-multi-partitions. However, this combinatorial
expression makes sense even if A; does not dominate p;. We will therefore introduce in
Section B4 a matrix J = ( I, M) A el whose entries are these combinatorial expressions

without restriction on the pair (A, ;). More precisely, our indexing is chosen so that

®) j’\zf,uf = Vo(9rm) ity <A,

where the sign t denotes the conjugation of multi-partitions (see ([L9)). We are forced to use
conjugates here because the indexation from [JM] for the rows and columns of decomposi-
tion matrices is not compatible with the indexation from [[UZ] for the rows and columns of
transition matrices for Uglov’s canonical bases.

Now, let < be an arbitrary partial ordering on II!, and write A; < p; if A\; < p; and
A # py (AN, py € T1L). Define a matrix J< = (jiz,ul) by the formula

Al7l"l€H£n
) G A<y !
9 NI A, pyp 1),
©) Ix { 0 otherwise X m)
If we take < = <, then we get a matrix J< whose entries are, up to conjugation of multi-

partitions, the v, (gx,,,)’s of [TM].

We now derive a matrix identity equivalent to the Jantzen sum formula.

Definition 2.5 Let D(q) = (dx,,u,(q)) be the matrix defined by

Al My eHgn

(10)  da (@) =D [WeN;i)/We(\si+1) : Le(u))]d €Nlg) (A, €113,
>0



Note that dy: 1 (1) is equal to the multiplicity of Lr(p;) as a composition factor of Wg(X;),
1

so up to conjugation of multi-partitions (which amounts to reindexing the rows and columns
of the matrix), D(1) is the usual decomposition matrix of Sg.

Lemma 2.6 Let M = (mAhM))\l ettt be a matriz with integer entries. Then the following
statements are equivalent:

(i) In Ro(Sr), we have for all \; € TIL, : Z [WF()\1T7Z)] = Z M, v, [WF(VlT)],
>0 velll,
(i) D'(1) = MD(1).

Proof. Let A € IIL,,. Since {[Lp( ,ul )] | py € L} is a Z-basis of Ro(Sk), we have on the
one hand:

Z (Wi ( AZT, Z Z (W AZT, Lr(p lT)] [LF(HM

i>0 i>0 g, eIl

S (ZZ [(WeA; 5/ WeN 55 +1): LF(M?)])[LF(MT)]

el >0 j>1¢

= > (XX e/ WeN 5+ 1) L)) [Le(w))]

welll, 7>0 0<z<]

= Z Ay, ( 1) [Lr(u))].

€I,

On the other hand, we have

Yo maw [WrwD] = Y mau [Wr]) s Le(u])] [Lr(u)]

v €lll, wy, V€T,

- Z <Z Mx i [Wr(]) - LF(M)])[LF(MT)]

e,  vell,

= 3 (X i) e

uleﬂﬁn v elll,
since the [L F(HD]’ w, € I, are linearly independent, the lemma follows. O

The Jantzen sum formula as stated in Theorem P.3, together with (§) and Lemma P.4,
implies the following result.

Corollary 2.7 Assume that Sg is semisimple. Then with the notation above, we have

(11) D'(1) = J9D(1).



2.2 Statement of theorems

In this section, we state an important conjecture for computing the decomposition matrix of
the cyclotomic v-Schur algebra defined over C, with parameters equal to arbitrary powers of
a primitive n-th root of unity. This conjecture is supported by Theorem P.§.

2.2.1 Choice of parameters
Fix (r1,...,1;) € (Z/nZ)'. We shall define a modular system (R, K, F') with parameters such
that the specialized cyclotomic v-Schur algebra Sr is Sc m ((;¢7Y, ..., (%) with ¢ := exp(mT”).

We first define a modular system (R, K, F) as follows. Let R = C[z, #~!] be the ring of
Laurent polynomials in one indeterminate over the field C. Let

£ = exp(%) €C, p:=(x-¢, R:=Clz,z7Y,,
K :=C(zx) and F:=R/pR~C,

(12)

that is, p is the prime ideal in ﬁ spanned by x — £ with £ a primitive complex nl-th root of
unity, R is the localized ring of R at g, K is the field of fractions of R and F' is the residue field.

Following [[U3], we fix an I-tuple s; in
(13) L(ry,...,r;)) ={(s1,...,8) €Z |V1<d<I, ry=sqgmodn}.

Such an [-tuple is called a multi-charge. The multi-charge s; parametrizes a so-called (g-
deformed) Fock space of level I, denoted by Fy[s;] (see Section [.1)). Note that for a given
(r1,...,11) € (Z/nZ)" we have an infinite choice of Fock spaces F,[s;] such that s; is in
L(r1,...,17).

We now describe the choice of parameters for the cyclotomic v-Schur algebra S. These
parameters are similar to those used in [Jad] for Ariki-Koike algebras. They depend on n,
and on the multi-charge (s1,...,s;) € L(r1,...,r;) that we have fixed. Put

(14) v =2 and  wug = iglsand (1<d<l).

Note that we have Sp = S¢m((;¢71, ..., (%) with ¢ := exp(%). Note also that the algebra
Sk,m(v;ur, ..., ) is semisimple. Indeed, specializing = at 1 sends H g m (v; u1, ..., u;) on the
semisimple group algebra CG(l,1,m), so by the Tits deformation argument [[AT]], the algebra
Hi m(viug,...,u) is semisimple and so is Sk m(v;u1,. .., ;). Therefore, the Jantzen sum

formula (see Theorem P.3)) applies in our case. This leads in particular to the definition of a
matrix J< (see Section B.4).
2.2.2 Main result

Following [U2], let s; € L(x1,...,1;) and Fys;] be the corresponding Fock space of level [ (see
Section [.1]). As a vector space, F[s;] has a natural basis {|A\;,s;) | \; € II'} and a canonical



basis {G(A,81) | A € II'} indexed by [-multi-partitions. Let Fy[s;],, be the subspace of F[s/]
spanned by the |A;,s;)’s, A; € IIL,. Let A(q) be the matrix of the involution — of F[s],, with
respect to the standard basis, and let A(g) be the transition matrix between the standard

basis and the canonical basis of F[s], (see Sections [.4 and [£.3). Still following [[U9], we
associate to s; an ordering < (see Definition B.10). By (f) we get a matrix J=.

Theorem 2.8 Let s; € L(ry,...,1;). Then with the notation above, we have

(15) A'(1) = J2AQ).

Example 2.9 Take n =3, =2, s; = (1,0) and m = 3. Then we have on the one hand

JS =

O =R = O O -
[—

OO OO OO oo oo
OO OO O o o

—_ o = o -

o O O -

_ o -

i S i i S S e S i

-1

where dots over the main diagonal stand for zero entries. The [-multi-partitions of m which
index the bases of Fy[s;], are ordered decreasingly with respect to a total ordering finer than
< and they are displayed in the column located on the right of the matrix J=. On the other
hand, we compute A(g) using Uglov’s algorithm (see [Ud]). If we keep the same ordering for
the rows and the columns of A(q), we get the following matrix.

QO = o

s
)
R O o

>
S
Il
e e e e e R e e R e R
oR,oo0ox OO0 O~ -
cCooRer OF -
cCooco0 0O -
o o
Q[\’)
QO =
S O = o
Q=
_
P S S S i S iy S i

It is easy to check that A’(1) = JSA(1). o



Example 2.10 Take n = 3,1 =2, s; = (4, —3) and m = 3. Write the rows and the columns
of the following matrices with respect to a total ordering finer than <. Then

0 . ((1,1), (1))

0 0 . ((3),0)

o1 0 . ((2,1),0)

o 1 1 0 . ((2),(1)
J<_ |0 -1 1 0 0 . ((1,1,1),0)
10 0 0O O 0 0 . ((1),(2)
0 -1 0 1 1 00 ((1),(1,1))

0 0 -1 1 0 00 0 . (0,(3))

00 0 0 —-101 1 0 (0,(2,1))
01 0 -1 0 01 —1 1 0 (0,(1,1,1))

and
L. ((1,1),(1))
0o 1 . ((3),0)

0 g 1 . ((2,1),0)

0 ¢ ¢ 1 . EEQ),(l)))m

00 ¢g 0 1 . 1,1,1),

AD=1090 0 001 . (1), (2))
0 0 ¢2 ¢q g 0 1 . ((1),(1,1))

00 0 g 00 0 1 . (0,(3))
00 0 ¢2 00 ¢q g1 (0,(2,1))
00 0 0 qO0¢0gq'1 (0,(1,1,1))
Again, one can check that A’(1) = J2A(1). o

Theorem P.§ is equivalent to the following:

Theorem 2.11 With the notation of Theorem [.§, we have
(16) A1) =2J7.

Proof of the equivalence of Theorems [2.§ and P.1]. Since the canonical basis is invariant
under the — involution, we have A(q) = A(q)A(¢~!). Taking derivatives at ¢ = 1 yields
A'(1) = A/(1)A(1)—A(1)A’(1). Since A(1) is the identity matrix, we get 2A’(1) = A'(1)A(1).
As a consequence, Theorem implies Theorem R.§. Since A(1) is unitriangular, hence
invertible, the converse follows. U



We prove Theorem in Part C. Our proof is similar to the proof of [Ry]] in the level
one case. However the higher-level case is significantly more complicated and involves the
discussion of many cases (see Section []).

2.2.3 A conjecture for the decomposition matrix of S

Choose the parameters as in Section R.2.1]. Guided by the formal analogy between Theorem
P.§ on one hand, and the rephrasing of the Jantzen sum formula given in Corollary P.7 on
the other hand, we may wonder if for some s; € L(ry,...,1;), the corresponding matrix
J= coincides with the matrix J< coming from the Jantzen sum formula. This leads to the
following definition and conjecture.

Definition 2.12 Let M € N. We say that s; € L(ry,...,r;) is M-dominant if for all
1<d<l-1, we have

(17) Sd+1 — Sd Z M.

The point is that if s; is m-dominant, then we have J= = J< (see Proposition [.19).

Conjecture 2.13 Assume that s; € L(r1,...,1;) is m-dominant. Let D(q) be the g-analogue
of the decomposition matriz of S defined in Definition 2.4 with our choice of parameters given
in Section .2.1. Then we have

(18) D(q) = A(q).
0

If we put ¢ = 1 in Conjecture R.13, we thus get an algorithm for computing the decomposition
matrix of S¢ ., (¢; ¢, ..., (7)) with ¢ := exp(zzT”).

Remark 2.14 The assumption of m-dominance is necessary in Conjecture R.13. Indeed,
while the decomposition matrix D(1) only depends on the sequence (rq, ..., r;) of the residues
modulo n of the multi-charge s;, the matrix A(1) actually depends on s; itself. For example,
take n = 3, | = 2 and m = 3. Then the multi-charges (1,0) and (4, —3) are both in £(1,0),
but the corresponding matrices A(1) do not have the same number of zero entries (see Ex-

amples R.9 and P.10). o

Remark 2.15 Conjecture suggests that the matrix A(1) should not depend of the
choice of the multi-charge s; € L(r1,...,r;) provided it is M-dominant for M large enough.
This statement is proved in [[Y], Théoréme 4.30]), where an explicit value of M is given.
However, the fact that we might take M = m here is still conjectural. o



Example 2.16 Set n = 3, | = 2, (r1,r2) = (1,0) and m = 3. Then the specialized cy-
2im 2im

clotomic v-Schur algebra is Sc 3 (eT;eT,l). Take s; = (4,—3), so s; € L(ry,...,17) is
m-dominant. According to Conjecture R.13, we expect D(q) be equal to

ol K o

[

L)
KK O O o

QO = o

[

CoOO0O0O0OO0 OO0 O
cCo oo ocoR ~ -
oo o
oR,
QR oo O -
o0 O -
<
o — -
Q-
—_
AAAA//:/—\AAAA
[a—
©
S~—
H\/

(see Example R.1(). o

If we no longer assume that s; is m-dominant, then we expect A(g) be equal to a ¢-
analogue of the decomposition matrix of a quasi-hereditary covering (in the sense of Rouquier,
see [Rd]) of the Ariki-Koike algebra H. This covering, depending on s;, could come from a
rational Cherednik algebra through the Knizhnik-Zamolodchikov functor [GGOR]]. It should
be Morita-equivalent to the cyclotomic v-Schur algebra of [DJM)] if s; is m-dominant.

PART B: TOOLS FOR THE PROOF OF THEOREM [Z.17]

The next two sections recall some results about combinatorics of partitions and multi-
partitions on the one hand and higher-level Fock spaces on the other hand; all of them will
be used in the proof of Theorem P.11. However, there are no new results here, so the reader
familiar with these two topics may skip this part and come back to it later in order to get
the needed definitions and notation.

3 Combinatorics of partitions and multi-partitions

3.1 Definitions

We give here all the basic definitions about partitions and multi-partitions that we need
later; our main reference is [Mad]. Let » € N. A partition of r is a sequence of integers
A= (A1, A9, ..., Ax) such that Ay > Ay > ... > Ay > 0and Ay +---+ Ay = r. Each nonzero
A; is called a part of A\. The sum of all the parts of A is denoted by |A|. We identify two
partitions differing only by a tail of zeroes and write sometimes partitions as sequences of

10



integers with an infinite tail of zeroes. The only partition of 0 is denoted by (). The conjugate
of the partition A is the partition A\ defined by

(19) M=ty > (=1
for example, the conjugate of (4,3,3,2,1) is (5,4,3,1).

An N-multi-partition of r is an N-tuple of partitions of integers summing up to r. Let
A= ()\(1), . ,)\(N)) be an N-multi-partition. The conjugate of X is the multi-partition
A= (()\(N))T, cee (A(l))T). For 1 < b < N, write A\(®) = ()\gb), )\;b), ...) the parts of A®). The
Young diagram of X is the set

. {(i..0) € N"x N* x [LN] | 1< < AP,

whose elements are called boxes or nodes of A. If N = 1, namely, if A is a partition, we
drop the third component in the symbol (i, j,b) of a node of A. From now on we identify an
N-multi-partition with its Young diagram. We extend the notation |A| in a natural way for
multi-partitions and define the dominance ordering on multi-partitions as follows.

Definition 3.1 Let A and p be two N-multi-partitions. We say that u dominates A and
write A < o if

(21) A= [l

and for all kK >0, 1 < b < N, we have

b—1 k b—1 k
i b i b
(22) STRAOLESTAD < ST @ ST Wl
i=1 j=1 i=1 j=1
Write A<t if A < and X # pu. o

If A\, u € IT are two partitions, write A C p if the diagram of X is contained in the diagram of
u, and the set-theoretic difference is called a skew diagram; we denote it by pu/A. A path in
the skew diagram 6 is a sequence of boxes (71, ...,7n) € 67 such that forall 1 <i < N—1, v
and ~;11 have one common side. We say that 0 is connected if given any two boxes 7,7 € 6,
there exists a path within 6 connecting v to 7. A ribbon is a connected skew diagram that
contains no 2 x 2 block of boxes. Let p be a ribbon. The head (resp. tail) of p is the node
v = (i,7) € p such that j — is minimal (resp. maximal); we denote this node by hd(p) (resp.
tl(p)). If hd(p) = (4,4) and tl(p) = (¢/,5'), the height of p is the integer ht(p) : =i — i’ € N.
Finally, the length of p is the number of boxes contained in p; we denote it by £(p).

Example 3.2 On Figure ] (see Section B.4), the set of white squares represents the partition

(4,1) ; p, p and p” are three ribbons of respective heights 2, 1 and 0 and of respective lengths
4, 4 and 3. o

11



A charged N -multi-partition is an element of IIV x ZN. If (X\,s) € IV x ZV is a charged
multi-partition and s = (sq1,...,sy), the content of the node v = (7,7,b) € A is the integer

(23) cont(y) := sp +j — .

If M e N*, the residue modulo M of ~ is

(24) resps(7y) := cont(y) mod M € Z/MZ.
For all ¢ € Z, set

(25) Ni(A) :== {7 € A | resp(y) =i mod n};

this number depends on the multi-charge s. Define in a similar way N;(0) if 0 is a skew
diagram contained in a charged partition.

3.2 The bijection 7;, the ordering < and abaci

Throughout the proof of Theorem P.11, we need a large amount of notation which we in-
troduce here. In particular, we have to pass from [-multi-partitions (indexing the bases of
the Fock space) to partitions (indexing the bases of the g-wedge space — see Section [L.1]) and
conversely. Following [UJ], we achieve this using a bijection 7, which can be described in
a combinatorial way (see Definition B.§). This map is a variant of the bijection associating
to a partition its l-quotient and its [-core. We construct here 7; using abaci; for another
(equivalent) description of 7; and examples, see [Ud, Remark 4.2 (ii) and Example 4.3]. The
bijection 7; is used in particular for defining the partial ordering < on IIl, mentioned in

Section R.2.9; see Definition B.10.

3.2.1 Notation

The Euclidean algorithm shows that any integer k € Z can be written in a unique way as
(26) k= c(k) +n(d(k) — 1) + nim(k),

with ¢(k) € [1;n], d(k) € [1;1] and m(k) € Z. Consider the map

(27) ¢:7— 17, k — c(k) + nm(k).

¢ enjoys the following obvious properties, which we need later: for all k, k' € Z, we have

(28) ¢(k)=c(k) =k (mod n),
(29) (k <K, d(k) = d(K')) = ¢(k) < ¢(K'),
(30) (k <K, (k) = ¢(k)) = m(k) = m(K').



For any r-tuple k = (ki1,...,k,) € Z", let
(31) o) 1= (clkr), .. c(ky)) € 2,
and define in a similar way d(k). The group &, acts on the left on Z" by
(32) o.(k1y .oy ke) = (kg1(1ys - s kgm1(r)) ((k1y..., k) €Z", 0 € 6,),

and a fundamental domain for this action is B := {(b1,...,b,) € Z" | by > --- > b.}. Let
b(k) denote the element of B that is conjugated to d(k) under the action of &,, Wi be the
stabilizer of b(k) (this is a parabolic subgroup of &,) and w(k) be the element of maximal

length in Wi. Let WX be the set of minimal length representatives in the left cosets &, Wi,
and v(k) be the element in W such that d(k) = v(k).b(k).

Example 3.3 Let n=3,1 =2, r =4 and k = (12,-5,2,17). Then we have:
C(k) = (3’ 1’2’2)’ d(k) = (2’ 1, 1’2)’ b(k) = (2’25 1, 1), U(k) = 0302, W(k) = 0103. ¢

Remark 3.4 Letk = (ki,...,k,) € Z". We can describe the action of v(k)~! on k as follows.
Consider k as a word formed by the letters k; and for 1 < d <[, denote by wy the subword
of k formed by the letters k; such that d(k;) = d. Then we have v(k) 1.k = w; - - - w;. o

3.2.2 The bijection 7;, the ordering < and abaci

Definition 3.5 A 1-runner abacus is a subset A of Z such that —k € A and k ¢ A for all
large enough k£ € N. In a less formal way, each k € A corresponds to the position of a bead
on the horizontal abacus A which is full of beads on the left and empty on the right. Let A
be the set of 1-runner abaci. If N > 1, an N-runner abacus is an N-tuple of 1-runner abaci.
If A= (Aq,...,Ax) € AV is an N-runner abacus, we identify A with the subset

(33) {(k,d) | 1<d <N, ke Ag} CZ x[1;N].
o
Tox =D, .. XMy eIV and s = (s1,...,sy) € ZV we associate the N-runner
abacus
(34) AN s) = {(A\D 4 sq+1—i,d) |i>1, 1<d<N}.

One checks easily that the map
(35) (A,s) e IV x ZNV 5 A(A,s) € AV
is bijective.

Recall the definition of the maps k — d(k) and k — ¢(k) from Section B.2.1]. Note that
k€ Z— (¢(k),d(k)) € Z x [1;1] is a bijection.
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Definition 3.6 The bijection 7, : 1T x Z =2 A — II' x Z! =2 A! is defined in terms of abaci by
the formula

(36) n(A) = {(¢(k),d(k)) | ke Ay e A (A€ A).

Remark 3.7 Let \; € IT!, s; = (81,...,81) € Z', X € II and s € Z satisfying the relation
(A1,81) = 11(A, s). Then we have s = 51 + -+ + s;. o

Notation 3.8 Let s; = (s1,...,5) € Z' and s := s1 + - - + ;. Write
(37) A L

if A € IT and X\; € ITL, are related by (A;,s;) = (A, s). We drop the s; in the notation if it is
clearly given by the context. o

Example 3.9 Let n =2,1 =3, m =5 and s; = (0,0, —1). Then Figure [l| shows that

((1,1),(1,1),(1)) <2 (4,3,3,2,1).

00,0200 200000200

I

|
|
|
|
| |
@D B (D) —es—s-
-3 | 4|9 10
| |
|
|
|
|
1

Figure 1: Computation of the bijection 7; using abaci.

We now define a partial ordering < on II!, as follows.
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Definition 3.10 Let s; = (s1,...,5) € Z'. Let A;, u; € IIl, and A\, € II be such that
A —5 X and w P EN . We say that A\; precedes p; and write

(38) A=y

if 4 dominates A. In particular, by (BI]), A and p must be partitions of the same integer.
Note that the ordering < depends on the multi-charge s; that we consider. Write A; < p; if
N <y and Ay # py. o

3.3 [(-numbers and ribbons

Throughout this section we fix an integer s € Z.
Definition 3.11 Let A = (A, \g,...) € II be a partition with at most r parts. The r-tuple
(39) BN =M +s,a+s—1,..., N +s—1r+1)e€Z"

is called the r—list of B-numbers associated to (A, s) or (with a slight abuse of notation) the
list or sequence of B-numbers associated to A. The set of integers that form 3, (\) is denoted
by By (A). o

With the notation of the definition above, note that 3,()) is a decreasing sequence of
integers all greater than (or equal to) s +1 — 7. This sequence depends on the integer s we
have fixed, but we do not mention it in our notation. Note that a partition A is completely
determined by its sequence of S-numbers. If r = |)|, write more simply

(40) BN :=B,(\) and  B(A) = B,(\).

If f is a function defined on Z", it is convenient to consider f as a function (still denoted by
f) defined on the set of partitions of r by the formula

(41) f)=fBR)  Aell, N[ =r7).

For example, we define this way for any partition A the vectors c¢()\), d(\) and so on. See
Section for the corresponding notation.

In order to prove Theorem .11, we have to relate the adding/removal of a ribbon in
a charged partition and the corresponding G-numbers. Let us recall a classical result on

B-numbers (see e.g. [Mat]], Lemma 5.26]).

Lemma 3.12 Let v and k be two partitions with at most r parts, and let B, (v) = (aq, ..., )
and B,.(k) = (61, .., Br) denote the sequences of 3-numbers associated to v and k respectively.
Then the following statements are equivalent.

(i) v C K, and p := k/v is a ribbon of length h.

(ii) There exist positive integers b and h such that B,.(v) = {1, Bo—1,06—h, Bos1s- -, Or}-
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In this case, b is the row number of the tail of p and h is the length of p. Let 0 € &, denote the
permutation obtained by arranging decreasingly the integers (51, ..., Bo—1, Bb—hy Bot1y- -« Br)-
Then we have £(c) = ht(p). Moreover, the content of the head of p is

(42) cont(hd(p)) = a. = B — h,
where ¢ is the row number of the head of p.

Proof.  The proof of (i) = (ii) is easy. Conversely, assume that (i) holds. Then we must
have B, —h > s+ 1—r, and there must exist b < ¢ < r such that 5. > B, —h > feq1 (if c =1,
put feq1 := s—r). Note then that v is obtained from x by removing a ribbon p, where p C &
is the ribbon whose head is located at row ¢ of k and whose tail is located at row b of k. p is
actually a ribbon of length h. Moreover, with the notation of the statement of this lemma, we

have O"(/Bh .. 7ﬁb717ﬁb - h7ﬁb+17 o 7ﬁ7’) - (ﬁla cee 7/8b717/36+17 cee 7/867/36 - h7/36+17 .. 7ﬁ7’)7
hence o is a cycle of length ¢ — b = ht(p). Finally, the head of p has coordinates (¢, v. + 1),

so its content is equal to cont(hd(p)) = s+ (v.+ 1) —c = a. = B — h. U

Example 3.13 Let s = 4, r =5, k = (6,5,3,2,2) and v = (6,2,2,2,2). Then the skew
diagram p := k/v is a ribbon and we have b = 2, ¢ = 3 and h = 4. Moreover, we have

B(’k';) = (ﬁ17"'7/35) - (1078757372) and B(V) - (/317ﬁ37ﬁb_h7/347/85) = (1075747372) We
have o = (2, 3), hence ¢(c) =1 = ht(p). The head of p has coordinates (3, 3), so its content
is cont(hd(p)) =4 = B, — h. o

Lemma 3.14 Let v, x € II be such that |v| = |k| = r and v # k. Let B(v) = (au,..., )
and B(k) = (f1,...,0r) denote the sequences of B-numbers associated to v and k respectively.
Set p:=v/(vNK) and p' := k/(V N K).

1) Then, p and p' are two ribbons if and only ifﬁ(B(y) N B(ﬁ)) =r — 2. In this case,
denote by
. h the common length of p and p/,
.y the row number of the tail of p/,
.y the row number of the head of p/,
. @' the row number of the tail of p, and

. x the row number of the head of p.

Then we have

(43) {oili#a'y'y = {8 1j#2y}
(44) cont(hd(p)) = B, = azr — h and  cont(hd(p')) = oy = B, — h.

Let m € &, be the permutation obtained by arranging decreasingly the integers forming
B(v). Then we have £(m) = ht(p) + ht(p’).
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2) Assume that the conditions of 1) hold. Then we have the following equivalences, and
moreover one of the two following cases occurs:

(i) y<y <2’ <z <= vk,
(i) @ <z<y<y <= kv

Proof. 'We prove 1) by applying the previous lemma to the pairs of partitions (v Nk, v) and
(v Nk, k). Let us prove 2). The inequalities y < 3’ and 2’ < x are obvious. Since pNp’ =0,
one of the two following cases occurs: either 3’ < 2’ and then v <k, or x < y and then k <v.
This proves both implications =-, and since one of the two cases occurs, we get the desired
equivalences. O

3.4 Definition of the matrix J<

Let R be a local ring, with unique maximal ideal p. We define in this section a matrix
J = (J>‘l7/"l)>\l,y,l€ﬂlm’ with coefficients in R, depending on parameters m, [ € N* and v,
u1, ...,y € R. This matrix is closely related to the matrix formed by the entries v, (gx,,u,)
of [IM] (see (). Let Ay = A, ... AD), = (uW, ..., pW) € 11!, and consider the

following cases.

e Case (J1). Assume that A\; # p; and that there exist two integers d, d’ € [1;1], d # d’
satisfying the following conditions: (@ c A(@ X\d) < ,u(d/), MO = ;) for all integer
be [1;1]\{d,d'}, and p := AD /3@ and p' = p4) /N4 are two ribbons of the same
length h. Let hd(p) = (4, 4,d) denote the head of p and hd(p") = (¢, ;',d’) denote the
head of p’. Set

(45) £ 1= (—1)htP)+ht() and

(46) Ty = (g’ —ug? =),

e Case (Jy). Assume that \; # p; and that there exists d € [1;1] such that A®) = ,(®)
for all b # d, and p := MDD /ND A @Dy and pf = p@/(AD 0 p@) are two ribbons
of the same length h. By definition of p and p’, we have p N p’ = (), whence we get
(depending on the relative positions of p and p’) that either AD g 4@ or pld) g \@),
Assume that A9 < @ Let p” ¢ (A\@ N p(D) be the ribbon obtained by connecting
the tail of p to the head of p/, excluding the two latter nodes (see Figure E) Denote
by hd(p) = (i,7,d) (resp. hd(p') = (7,7, d"), resp. hd(p") = (i, j",d")) the head of p
(resp. p/, resp. p"), and finally set

(47) £ 1= (_1)ht(p)+ht(p’)7 £y 1= (_1)ht(pUp”)+ht(p”Up’) and
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(48) JALM . (ud(vjfi - f[)jliil))é‘l.(ud(fujii o Uju,z'u))ag.
If 1@ < XD set Ino = T -

e Case (J3). In all other cases, set

(49) Iy =1

Figure 2: The ribbons p, p’ and p” (the nodes of (A N u(®) — p” are depicted in white).

We now define a matrix J = J, = (j)‘l’/"l)AhulGHlm’ with integer coefficients, by the
formula

(50) Inan = Vo(Iaim) (A, € 113,).

Now, let < be an arbitrary partial ordering on IT!, and write A\; < p; if Aj < p; and A #
(A1, p; € TIL)). Recall the definition of the matrix J< = (j;l Hz) from (f) ; namely,

A eIl
put

) I A<y
(51) ‘7§L7IJ:1 = { 6“1 OtheI'WiSG (Al’ Nl € an)

If we take < = <, then we get a matrix J< whose entries correspond, up to conjugation
of multi-partitions, to the integers vy, (gx, ) of [IM] (see (H)). Given a multi-charge s;, we
shall also consider the matrix J~, where the ordering < (depending on s;) was introduced in
Definition B.10. This is the matrix J= of Theorems P.§ and R.11. If s; is m-dominant (in the
sense of Definition P.19), then the matrices J= and J< coincide (see Proposition f.19).

18



4 g-deformed higher-level Fock spaces

In this section we follow [[J3], to which we refer the reader for more details. The vector
spaces we consider here are over C(g), where ¢ is an indeterminate over C.

4.1 ¢-wedge products and higher-level Fock spaces

Let s € Z. Let A® denote the (semi-infinite) g-wedge space of charge s (this space is denoted
by A**% in [UZ)). A® is an integrable representation of level [ of the quantum algebra U, (;[n)
As a vector space, it has a natural basis formed by the so-called ordered q-wedge products.
These vectors can be written as

(52) Uk = Upy N Uy N0y

where k = (k;)i>1 is a decreasing sequence of integers such that k; = s +1 — 4 for i > 0.
The basis formed by the ordered wedge products is called standard. More generally, we use
the non-ordered wedge products; a non-ordered wedge product ux = ug, A ug, A--- € A®is
indexed by a sequence of integers (k;) such that k; = s+ 1 — i for i > 0, but we no longer
require that (k;) is decreasing. Any non-ordered wedge product can be written as a linear
combination of ordered wedge products by using the so-called ordering rules, which are given
in [U3, Proposition 3.16] and in a slightly different form in Proposition [.4.

The vectors of the standard basis of A® can also be indexed by partitions as follows. Let
Uk = Uk, N U, N\ -+ € A® be an ordered wedge product. For i > 1 set \; :=k; —s+1i—1;
then A := (A1, Ag,...) is a partition. We then write uy = |\, s). Note that if A has at most r
parts, then we have (ki,...,k.) = 3,()\), which explains the definition of the S-numbers we
gave in Definition B.11].

Let F,[s;] be the higher-level Fock space with multi-charge s; = (s1,...,s;) € Z' [U9]. As
a vector space, Fy[s;] has a natural basis {|A;,s;) | A; € II'} indexed by [-multi-partitions.
If s = 51+ -+ s, then Fy[s;] can be identified with a subspace of A® by the embedding
Fylsi] — A%, [A;,s1) — |), s), where ) is the partition such that A; < A (see Notation B.§ for
the meaning of «»). We make from now on this identification; in fact, A® is isomorphic to
the direct sum of all the F[t;]’s, where t; is any [-tuple of integers summing to s. Thus, the
vectors of the standard basis of A® can also be indexed by charged [-multi-partitions.

4.2 The involution —

In order to define the canonical basis of A®, we equip this space with an involution — .

Definition 4.1 The involution — of A® is the C-vector space automorphism that maps ¢ to
¢~ " and that acts on the standard basis of A® as follows [[Ud, Proposition 3.23 and Remark
3.24]. Let A € II be a partition of 7, and k = (k;) € ZN" be such that uy = |\, s). Then

(53) A, s) i= (—1)F@dO) gr@)=m ) (A A g ) A g Aty A

r+1 r42
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where for any a = (a1,...,a,) € Z", k(a) is the integer defined by

(54) wla) :=t{(i,7) EN? |[1<i<j<r a =a;},
and c(\) and d(\) are defined in Section B.2.1]. o

We can straighten the non-ordered wedge product in the right-hand side of (5J) in order
to express it as a linear combination of ordered wedge products.

One checks that — preserves the subspace

(55) Fylsilm = @ Clg) A, s1) C Fylsi).
€L,
Definition 4.2 Define a matrix A(q) = (akhm(q))kl’“len% with entries in C(q) by
(56) s = D ang (@ 1Ans) (g €TI).
)\lEHl

O

The matrix A(q) depends on n, [, s; and m. The ordering rules show that A(q) is unitriangular
with respect to <, that is

(57) aAl,lLl(q) #0= XN = 12 and a’>\z7>\l(q) =1 ()‘la JURS Hlm)

The same rules also imply that A(1) is the identity matrix.

4.3 Uglov’s canonical basis

Since the matrix A(g) of the involution of F[s;],, is unitriangular, a classical argument can
be used to prove the following result.

Theorem 4.3 ([02)]) There exists a unique basis {G(A;, 8) | Ny € T} of Fy[si]m satisfying
both following conditions:

(i) G, 81) =GN, 8),

(i) G s)—Ms) € @D aClallw s1). O

M €ITL,

Definition 4.4 The basis {G(A;,s;) | A, € T}, } is called the canonical basis of Fy[si]m.

Define a matrix A(q) = (AAlM(q))Al " with entries in Clg| by

(58) Glaps) = D Axw (@) [Ans)  (m eIL,).
€l
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The matrix A(g) depends on n, [, s; and m. By Condition (ii) of Theorem [£.3, the matrix
A(q) is also unitriangular with respect to <. By [[U3, Theorem 3.26], the entries of A(q)
can be expressed as Kazhdan-Lusztig polynomials related to parabolic modules of an affine
Hecke algebra of type A, so by [[KTJ, these entries are in N[g].

4.4 Another basis of A°. Ordering rules.

The ordering rules (R;)-(R4) from [[U3, Proposition 3.16] do not give at ¢ = 1 anticommuting
relations like ug, A ug, = —ug, A uk,, because of the signs involved in Rules (R3) and (Ry).
To fix this, we introduce another basis of A® that differs from the standard basis only by
signs. The basis we consider here is actually the basis of ordered wedge products introduced

in [U7)]. A% is graded by
(59) deg(|A, s)) :== || (A elI).

Let ux = ug, Aug, A--- € A® be a (not necessarily ordered) wedge product of degree r. Set

(60) Vg = Ukl AN UICQ N = (—1)Z(U(k17"'7k’f))uk

and similarly Oy Ao Avg, = (= 1) ORL k) A Ay,
where v(kq,...,k.) € &, is defined in Section B.2.1]. (If k = (ki,...,k,) € Z", we hope that
the reader will make easily the difference between the permutation v(k) € &, and the wedge
product v = vg, A--- Avg,..) We say that the wedge product vy is ordered if so is uy. It is
straightforward to see, using the ordering rules for the uy’s given by [[UJ, Proposition 3.16],
that the ordering rules for the vy’s are given by the following proposition.

Proposition 4.5
(i) Let k1 < k2, and v € [0;nl — 1] (resp. § € [0;nl — 1]) denote the residue of c(k2) — c(k1)
(resp. of n(d(ks) — d(k1))) modulo nl. Then we have

(Rl) rvkl A ng = —’l}k2 A vkl ’lf’Y = 5 = Oa
Vg N Vky = _qilvkz N Vky
-2 —2i+1 . .
(Ry) S E;: et if v>0,6=0,
+(q_2 -1) Z quika_y—nli N Ukyfy+nli
i>0
Vg AN Vky = —QqUgy N\ Uk
9 2i—1 , .
(Ra) —(¢®—1) ; 4% Vky—nii N Vkyfnii ify=0,8 >0,
12

”
+H(a® = 1)) 4¥ Oky—s—nti N Vg +o4nii
>0
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Vg N Vky = —Vgy AUy

q —q —21
(q —q Z W”kg —nli N Uk +nli

i>1
2i+1 —2i—1
1 q +4q
_(y_ - Vi1 AV ;
(¢—q )% dtq 1 Ckemynli A Vkityinl if v>0,6 >0,
2i+1 —2i—1
q + C]
q —q Z —— = Uky—5—nli A Vky+6+nli
>0 q T T
20+2 _ =22
q
+g—q Z Uy y—b—nli N\ Vky 4yrbtnli
>0 q+q

where the sums range over the indices © such that the corresponding wedge products are or-

dered.

(ii) The rules from (i) are wvalid for any pair of adjacent factors of the gq-wedge product
Vg = Vky N Vky * - ]

Let us end this section by a useful piece of notation.

Notation 4.6 Let v € 1l be a partition of » and o € &,.. Set
(61) Uy = Ug B(v) and similarly Vo = Vg 8(1)

(these are wedge products of r factors each). We say that us., (resp. vs.,) is obtained from
uy (resp. v,) by permutation. o

PART C: PROOF OF THEOREM [E.11]

We now start the proof of Theorem R.11]. In Section [}, we give a simpler expression for
the entries of the matrix J~ (see Proposition p.§). In Section f|, we compute the derivative
at ¢ = 1 of the — involution of F[s;],, in terms of good sequences that we introduce in
Definition [p.4; the result is given in Proposition [f.§. We compare both expressions in Section
fl in order to complete the proof. Apart from this, we compare in Section f.J the matrices
J= and J< when the multi-charge s; is m-dominant.
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Notation for Part C From now on, we consider the modular system (R, K, F') (together
with the prime ideal p) with parameters defined in Section R.2.1 These parameters depend

onn,l, mand s; = (s1,...,8) € L(r1,...,r;) that we have fixed. Recall that to s; we
associated a partial ordering < (see Definition B.10) and a relation « (see Notation B.§).
Finally, put s :=s1 +--- + ;. o

5 Expression of the matrices J~ and J-

5.1 The matrices J and J~

We first give, with our choice of parameters, a simpler expression for J.

Lemma 5.1
1) Assume that (X\;, p;) satisfies the conditions (J1). Then we have

. (= 1)P@FE) Gf res, (hd(p)) = res, (hd(p')),
(62) Ixp = { 0 otherwise.

2) Assume that (X, p;) satisfies the conditions (J2). Then we have
(63) Ixan = (Z )M,

where

1 if resy(hd(p)) = res,(hd(p’)) and E;é 0 (mod n),
(64) e:=19 —1 if res,(hd(p)) # res,(hd(p’)) and h=0 (mod n),

0 otherwise,

and h is the common length of p and p'.

Proof. Let us prove 1). With our choice of parameters, we have
Ian = ()M o (Py ()
with Py, p, () := ugztU=0 — 420" =) Note that
Payyu(x) = €927 — €07,

where £ € C is a primitive nl-th root of unity and a; := dn, as = lsq — dn + l(j — i),
az :=d'n and a4 :=lsg —d'n +1(j/ — ). Using the fact that v,(z™) =0 for all N € Z and
2N Py, y, (z) € Clz] for a suitable N € Z, we get

Vp(PAz,ul(m))

Vo (P (7)) 2 1 4= P, (§) = 0,

Vo (P, (7)) = 2 <= Pxp (§) = Pﬁ\l,“l(g) =0.

v

0,
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A straightforward computation shows that we have v, (Px, ,(2)) > 1 if and only if we have
l(sq+7j—1i) =Il(sg +7 —1i) (mod nl), that is if and only if res,(hd(p)) = res,(hd(p)).
Moreover, we have

a; +az =az+ag (mod nl)
VK)(PAl#z(x)) 22 — { a2£a1+a2—1 — a4£a3+a4—1

{ a; +az =az+ag (mod nl)
ag = Qg

— { a1 =ag (mod nl)
ag = Qg

But the condition a; = a3 (mod nl) implies d = d’ (mod ), which is impossible since d and
d' are two distinct integers ranging from 1 to [. As a consequence, we have Vo(Pa () <1,
which proves 1). Let us now prove 2). With the notation of (J2), we have €3 = —e1, whence

ey = (_1)ht(p)+ht(pl)yp(P>\l’“l (z)), with

’U/d(ﬂfl(j_z) - xl(j/_i/))

Pru(@) = ud(xl(j*i) — xl(j”*i”))
LG =) =G-) _ 1 1 (cont(hd(p))—cont (hd(p))) _ ¢
GGy -1 glh

In order to complete the proof, we only have to notice that for NV € Z, we have Vp(xlN -1 =1
if nl divides IN, that is if n divides N, and v, (z"¥ — 1) = 0 otherwise. O

We now start analyzing carefully Cases (J;) and (J). Proposition f.d gives a character-
ization in terms of A and p of the pairs (A;, p;) that satisfy (J;) or (J2).

Lemma 5.2 Let Ay = AV, ... XDy e L and p; = (D, ..., 1) € T, be two distinct
multi-partitions, and X\, p € Il be such that \; < X\ and p; < p. Then the following
statements are equivalent:

(i) X C p, and p/X is a ribbon,

(i) A\; C gy, and there exists d € [1;1] such that pD /XD is a ribbon and A®) = p® for
all b e [1;1] \ {d}.

Proof.  Let us prove (i) = (ii). By Lemma B.1J, passing from A to p amounts, as far
as abacus diagrams are concerned, to passing from A(\,s) to A(u,s) by moving a bead
located at position k towards the right. As far as the [-runner abacus diagrams A(\;,s;)
and A(p,,s;) are concerned, this amounts to moving a bead located at position ¢(k) on the
runner d := d(k) towards the right. This together with Lemma B:13 applied to (A, u()
proves (ii). The converse is similar. O

Applying twice the previous lemma and Lemma yields the following result.
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Proposition 5.3 Let A\, pu; € an be two multi-partitions, and A, u € II be such that A; < A
and p; < p. Assume that |A| = |u| = 7. Then (A, ;) satisfies (J1) or (J2) if and only if
$(B(A\) N B(p)) =7 —2. a

The following notation will be very useful.

Notation 5.4 Let Ay = (AW ... AO) e II! and p, = (u, ..., u®) € IIL . Denote by A,
w € 11 the partitions such that A; <> A and p; <> p. Consider the statement

(65) XN <y (ie. A<p), [N=lu/=r and §(BA)NBp) =r-2.

Assume now that (X, p;) satisfies (65). In this case, we shall use in the sequel the following
notation. Let (aq,...,a,) and (81, ..., ;) denote the sequences of S-numbers associated to
A and p respectively. By Lemma applied to the pair (v, k) = (\, u), there exist positive
integers y, ¥/, @', x and h such that {«; | i # 2/,y'} = {6 | 7 # z,y}, ooy = By — h and
0yt = f3z + h. Moreover, by Proposition .3, (A, ;) satisfies (J1) or (J2). Let d,d" € [1;1]
and h € N* denote the integers introduced in the definition of Cases (J;) and (J2) (in Case
(J2), put d := d). Finally, denote by =, resp. 6 € [0;nl — 1] the residue of ¢(8y) — ¢(5z),
resp. n(d(By) — d(B;)) modulo nl. o

Remark 5.5 Proposition p.3 shows that if (A;, p;) does not satisfy (B3), then j3 w =0. 0

Remark 5.6 Recall Notation p.4 and assume that (A, p;) satisfies (B5). Since A<iu, Lemma,
implies 3’ < ', so we have

(66) Be < Br+h =0y <ay=Pp—h<p,.

These inequalities, together with {«a; | ¢ # 2’,y'} = {8; | j # x,y} and the fact that the 3;’s
are pairwise distinct, imply:

(67) {Be, B,y N B(N\) = 0.

Under assumption (BJ), the following technical lemma relates some (-numbers of D)
@) @ and u(d,) on the one hand to some G-numbers of A and p on the other hand.
Lemma 5.7 Recall Notation and assume that (A, p;) satisfies ([63).

1) Then, we have
(68) {d(Bz), d(By)} = {d(Bz + h),d(By — h)} = {d,d'}.
Moreover, for all 1 < b <1, we have
(69) H{l<i<r|da)=0bt={1 <i<r[ds)=0b};

let rp, denote this common value.

25



2) Assume that (A, ;) satisfies (64) and (J1). Then we have d(B;) = d and d(8,) = d'.
Let

q PO =), By (1D) = (1., 81,),
ﬁrd/(A(d)):(Wi?""’YTI’d/) and Brd/(#’(d)):((sll?""&?/"d/)

denote the sequences of B-numbers associated to \@ | (@) M) and ,u(d/). Denote by b
(resp. c¢) the row number of the tail (resp. head) of p, and denote by b (resp. ) the
row number of the tail (resp. head) of p'. By Statement 1), there exist integers k, k'
such that

(71) {k,k'} ={B: +h,B, —h}, d(k)=d and dK)=d.
Then we have
5c - ¢(ﬁx)7 Yo = ¢(k)7 Vé/ = ¢(kl)7 5;;’ = ¢(ﬁy)

(72) ~
and  h = ¢(k) — ¢(Bz) = ¢(By) — (k).

3) Assume that (A, ;) satisfies ([64) and (J2). Denote by
(73) Brd()‘(d)) = (717"'7'77’(1) and Brd(u(d)) = (517'--757’(1)

the sequences of B-numbers associated to AD gnd u(d). Let b (resp. ¢) denote the row
number of the tail (resp. head) of p, and V' (resp. ') denote the row number of the
tail (resp. head) of p'. Then we have M g p D) gnd

5(: = ¢(BI)5 Yo = QS(BI + h), Ye! = QS(By - h)’ 6b’ = gb(ﬂy)

(74) -
and h = ¢(Bs +h) — d(Bz) = ¢(8y) — ¢(By — h).
Proof.  We pass from p; to A; by removing the ribbon p’ and by adding the ribbon p.
This amounts, as far as the abacus diagrams A(u;,s;) and A(A;,s;) are concerned, to moving
two beads (see the proof of Lemma @) Moving these two beads amounts, as far as the
abacus diagrams A(u,s) and A(\,s) are concerned, to moving the beads located at posi-
tions {3, 8y} towards the positions {8, + h, 3, — h}, which proves the first two equalities
of Statement 1). The last parts of Statement 1) come from this and from the equality

{ai li# 2"y} ={B; | j # = y}-

Let us now prove Statement 2). A careful analysis of the moves of the beads described
above shows more precisely that the following properties hold:

(1) {w 7wt ={0(Be +h),¢(By =)} and {8}, 0} = {D(B2), (By)}-

(ii) Let K € {Bs, Bz + h, By —h,By}. Then we have ¢(K) € {, 0.} if and only if d(K) =d
and ¢(K) € {7, d},} if and only if d(K) = d'.
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Let us first prove that d(8,) = d. Assume that d(8;) = d’. By (i) and (ii), we have
&(Bz) € {0;,,0. N {~.,0;,}. This implies ¢(3;) = d;,. Indeed, if ¢(8;) # d;,, we must have
&(Bz) = 0c =L € {&(Bz + h),d(By —h)} by (i). Let K € {8, + h, 3, — h} be such that
O(K) = ., = ¢(B:). By (ii), we have d(K) = d(f,); moreover, we have ¢(K) = ¢(f,),
whence K = 3,. This contradicts (B6)), so ¢(3,) = 6;,. Let K € {3, +h, 3, — h} be such that
d(K) = d'. By (B6) and (R9), we have ¢(K) > ¢(3;) = 6, hence by (ii) we have ¢(K) = 7.,.
As a consequence, we have 7., > d;,. Moreover, by Lemma applied to ()\(d,), ,u(d,)), we
have +/, = 0}, — h < d;,, which is absurd. By Statement 1), we thus have d(3,) = d and
d(8y) = d'. Now let k be the integer defined by ([1) and assume that k = 3, + h (the proof
for the case k = 3, — h is similar). By (ii) we have {y,0.} = {¢(582), (8 + h)}. Moreover,
by Lemma B19 applied to (A4, (@), we have 6. = , — h < v. By (b6) and (RY), we
therefore have 6. = ¢(f8;) and v, = ¢(5; + h), whence h= Yo — 0c = ¢(Bz + h) — d(Bz). By
a similar argument, we get v, = ¢(8, — h), 0;, = #(,) and h= d(By) — ¢(By — h).

'~

Let us now prove 3). Since A < u, by (66) and (29) we have

(b(ﬁx) < ¢(ﬁaf + h) < ¢(By - h) < ¢(By)

Moreover, a careful analysis of the moves of the beads mentioned at the beginning of the
proof shows that

{0y,0c} ={6(B2),0(By)}  and {7y, 7} = {d(Be + h), &(By — h)}.

Assume that 6. = ¢(8y). Since ¢(8y) > ¢(Br + h), ¢(By) > #(By — h) and ~, is in the
set {¢(Bz + h),p(By — h)}, we must have d. > ,. Moreover, applying Lemma to the

pair (A4, 1 @) yields ~, = 6, + h > 6, which is absurd. We thus have J, = #(Bz) and
Sy = (By). Since ¢(B) < ¢(By), we have d. < d, whence ¢ > V. Applying again Lemma
B.14 shows that A9 < @ and ¥ < ¢ < b < ¢. In particular, we have ¢ < b, whence
W < Yer- Since ¢(By + h) < ¢(By — h), we have v, = ¢(8; + h) and v = ¢(By — h). Lemma
then implies that & = v, — 6, = ¢(Bz +h) —¢(B,) and h = Sy — 7o = d(By) —o(By—h). O

We are now ready to derive the expressions of the j;l " s that we need for proving

Theorem .

Proposition 5.8 Recall Notation [5.].
1) Assume that (A, p;) satisfies (J1) and X < p;. Then we have § > 0 and

(75) [ (=)PtE) irp =4 (mod nl) or h=6 (mod nl),
Inom = 0 otherwise.

2) Assume that (A, ;) satisfies (J2) and XN; < p;. Then we have § =0 and

(76) j;z = (_1)ht(ﬁ)+ht(/)')€7
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1 ifh=v (modnl) and h#0 (mod nl),
(77) e:=¢ —1 ifh#y (modnl) and h=0 (mod nl),
0  otherwise.

Proof. We prove only Statement 1), the proof of Statement 2) being similar. Recall the
notation from Lemma p.7. The statement § > 0 comes from Statement 1) of that lemma.
Applying Lemma to the pairs (A4, u(9)) and ()\(d/),,u(d/)) yields

res, (hd(p)) = 6. mod n and res, (hd(p)) =+ mod n.
By Lemma [.1], it is thus enough to prove the equivalence
6 =7, (modn)<= (h=~ (modnl) or h=§ (modnl)).
By Statement 1) of Lemma .7, one of the two following cases occurs.

e First case: we have d(8;) = d(3; + h) and d(8,) = d(8, — h). By Lemmap.q and (&),
we have the following equivalences, where congruences stand modulo n:

be=w == ¢(B) =By —h) <= B =0y —h <= h=1.

It remains thus to prove that 6. = 7., (mod n) = h = v (mod nl). Assume that
de = 7., (mod n); we then have h = v (mod n). This and the equality d(8;) = d(8,+h)
force d(h) = 1, whence h = v (mod nl).

e Second case: we have d(f;) = d(8, — h) and d(B,) = d(6; + h). By arguing as above

we prove the equivalence

bc =7 (modn) <= h=0 (modn).
Assume that 0. = 7, (mod n). Then we have h = 0 (mod n), whence
d(By) = d(Bs + h) = d(B:) +d(h) —1 (mod I),
whence n(d(h) — 1) = n(d(8y) — d(8:)) = ¢ (mod nl) and h =6 (mod nl). As a con-
sequence, we have in this case §. =7/, (mod n) <= h = (mod nl), which completes

the proof. O

Remark 5.9 Recall Notation .4 and assume that (X;, u;) satisfies (J;) and j;l Mz # 0. Then
the proof of Proposition [p.§ shows in particular that

(78) ¢(Br) = ¢(K')  (mod n),
where k' € Z is defined by ([71). o
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5.2 What happens if the multi-charge s; is m-dominant

The goal of this section is to show that with our choice of parameters, the matrix J< is a
special case of a matrix J= when the multi-charge s; is m-dominant (see Proposition [.19).
However, the results we prove here will not be used for the proof of Theorem R.11].

Lemma 5.10 Let A, pu; € 1L, and let \, p € TT be such that A\; < X and p; < p. Assume

m»

that jx,u, # 0. Then we have, with the notation from (J1), (J2) and (23) :

(79) Ni(p) = Ni(p') (i€Z) and |\ =|u|.

Proof.  Since jx, ., is nonzero, Lemma B.J] shows that at least one of the following cases
occurs:

e First case: we have res,(hd(p)) = res,(hd(p’)). Note that if p is a ribbon, then the
integers cont(7y),y € p are pairwise distinct, and the set formed by these numbers is
exactly the interval [cont(hd(p));cont (tl(p))]. Combining this with the assumption
res, (hd(p)) = res,(hd(p')) and h = £(p) = £(p), we get that N;(p) = N;(p') for any
1€ Z.

e Second case: we have h = 0 (mod n). Then for any i € Z, we have the equalities

Ni(p) = Ni(p) = h/n.

Let us now show that |A| = |u|. Let vy := XA; Ny, and let v € II be such that v; < v.
We claim that R
h =X = |v| = ((n — 1)l + 1) No(p) + (h — No(p)).

By induction on /f;, we can restrict ourselves to the case when h = 1, that is p contains a
single node 7. Let r € N be such that A and v have at most r parts. By Lemma B.13, there
exist a € By(v) and € B, (A) such that B,(v) \ {a} = B,(A\) \ {8} and a = 3 — h. The
abacus diagrams A(v, s) and A(\, s) differ only by the moving of a bead; the same thing holds
for the diagrams A(vy,s;) and A(A;,s;). By considering the initial and the final positions of
these two beads, we get

6(8) =dla) +h=d(@)+1 and  d(B)=d(a) = d.

Moreover, by Lemma and (RY), we have res,(y) = ¢(a) modn = amodn. Let
us now distinguish two cases. If res,(7) = Omodn (i.e. if Ny(p) = 1), then we have

a =n+n(d—1)+ nlm with m € Z, whence ¢(8) = ¢(a) +1 = 1+ n(m + 1). Since
d(B) =d, we get 8=1+n(d—1)+nl(m+ 1), whence h = 3 — a = (n — 1)l + 1. Similarly,
if res,(7) # O0mod n (i.e. if No(p) = 0), then we have h = 1. This proves the claimed
formula. In a similar way we prove that |u| —|v| = ((n—1)I+1)No(p') + (/ﬁ — No(p')). Since
No(p) = No(p'), we do have |A| = |ul. O
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Lemma 5.11 Let A\j,p; € 1L, and X, pn € 11 be such that A < X and p; < p. Assume that

m»

A| = |u|. Consider the following cases:
1) (X, i) satisfies (J1), ja,u 7 0 and s; is m-dominant,
2) (A1, ) satisfies (J2).
Then in either case, we have: A\j < p; <= A\; < ;.

Proof. 1In either case, we can apply Proposition p.J and then LemmaB.14 to get that A; <
or p; < A;. It is thus enough to prove that A; < p; = A; < p;. Assume from now on that
A < p; and (A, p;) satisfies either case of Lemma .11 Then by Proposition p.d, (A, i;)
satisfies (63); therefore (6d) holds. Recall Notation p.4. If (A;, ;) satisfies (J2), then by
Statement 3) of Lemma .7, we have A9 < u(9). Moreover, for all b € [1;1] \ {d} we have
MO = ;®) swhence A < ;. Assume now that (X;, p;) satisfies (Jp), a7 0 and s is
m~dominant. The key point of the proof is the following. Let v; = (y(l), e ,I/(l)) cII', be
such that |v| = r, where v is the partition such that v; <> v. Then under the assumption
that s; is m-dominant, we have

(%) (d(k) < d(K'), k,k' € B(v)) = ¢(k) > ¢(K).

Indeed, let k, k" € B(v), b := d(k), b/ := d(k’) and N (resp. N’) be the number of parts
of v® (resp. v®)). Since v; < v, we have ¢(k) € By(v®) and ¢(k') € By (™). As
a consequence, there exist ¢ € [1; N], ¢/ € [1; N'] such that ¢(k) = sp + Vi(b) — i+ 1 and
oK) = sy + ) — i 4 1. Since s; is m-dominant and b < V', we have

Z‘/

(k) — d(K') = (sp —sp) + (1 —i) + (Vi(b) — ¥
> s —sy = N=vf) = sy = (WO ) = s sy —|u
>0,

which shows (x). We now claim that d(5;) > d(8,). Assume indeed that d(5;) < d(Gy).
Recall that (B6) holds. By (x) applied to (k,k') = (834, 8,), we have ¢(8;) > ¢(8,). This,
(fg) and (BQ) imply that m(8;) = m(B,), where the map k +— m(k) is defined in Section
B.2.1. Since this map is increasing, we have by (56):

m(Be) <m(Be +h) < m(By — h) < m(ﬁy) =m(B),

so equalities hold throughout. Let now k' € Z be the integer defined by ([1]). Since j;h " #0
by assumption, we can apply Remark p. and get ¢(8;) = ¢(k’) (mod n). This together
with m(3;) = m(k') forces ¢(8,) = ¢(k’). Moreover, by Statement 2 of Lemma [5.7, we have
0<h= d(By) — d(K') < ¢(Bz) — ¢(k'), which is absurd. Therefore we have d(8;) > d(3y) as
claimed. Again by Statement 2) of Lemma p.q, we have d(8,) = d and d(8,) = d’, whence
d > d'. Moreover, we have |u(@)]| = |A(@))| +h, || = |\ —h and p® = \® for all
be[1;1]\{d,d'}. This and the inequality d’ < d imply A; < p;. O
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Proposition 5.12 Assume that s; is m-dominant. Then we have J~ = J<.

Proof.  Let \;, p; € an. If jx,u, = 0, then we have j;z,m = jfum = (0 and we are done.
Assume now that jy, ,, # 0. It is enough to prove that A; < p; < A; < p;. Note that by
Lemma p.10, we have || = |u|, where A, p € II are such that A\; <+ X and p, < p. Moreover,
since jx,pu, 7 0, (A1, ;) satisfies either (J1) or (J2). We can therefore apply Lemma to
conclude. O

Remark 5.13 The reader should be warned that the orderings < and <1 do not necessarily
coincide, even if the multi-charge s; is m-dominant. For example, let n =2, | = 2, m = 6,
st = (3,-3), & = ((2,1),(1,1,1)) and p; = ((3),(2,1)). Then we have A; < p;; however,
the partitions A\ and g such that A; < X and p; < p are A = (9,6,3,1,1,1,1,1,1,1) and
w=(10,3,3,2,2,2,1,1,1), so A; and p; are not comparable with respect to < . o

6 Admissible sequences, good sequences

In this section we compute the matrix A’(1). To this aim, we examine in detail the straight-
ening of the wedge product vx = vg, A--- Avg,.. If v is not ordered, there are in general
several ways to straighten it by applying recursively the rules (R;)-(R4). In the sequel, we
decide to straighten at each step the first infraction that occurs in vy, that is, the first
Ug; A\ Vg, With k; < k;11. This leads to the notion of admissible sequence that we introduce
in Definition p.3. Fix an entry aj, p, (1) of A’(1). We give in Proposition 6.9 an expression of
it in terms of admissible sequences. Each sequence having a nonzero contribution is called a
good sequence. We then show that there exists at most one good sequence (see Propositions

and [p.13), and it if exists we compute its length modulo 2 (see Proposition [6.14).

6.1 Definitions

Definition 6.1 Let k = (k1,..., k) and 1 = (I1,...,l,) € Z". We say that the wedge prod-
ucts vk and vy are adjacent if there exists 1 < i < r—1 (i is then necessarily unique) such that:

(1) k; < kiJrl, and k‘j > kﬁj+1 forall 1 <j<i-—1,
(ii) k; =1 for all j € [1;7] \ {4, + 1},

(iii) the wedge product v, A vy, , appears in the straightening of vy, A vy

i4+1 i+1°

In this case, denote by ¢ € [1;4] the index of the rule (R;) applied for the straightening
of vg, Avg,,, and by a(vk,v) € Zlg,q '] the coefficient of v;; A vy, in the resulting linear
combination. If (I;,1;11) = (kiy1, k;), then write vy — vy and set m(vy,v;) := 0. Otherwise,
write vy N vy and set m(vk, v1) := 1; note that ¢ > 2 in this case. In either case, write more
simply v — 1.
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Definition 6.2 The sequence V = (uvy,)o<i<n is called admissible if each vy, is a wedge
product of r factors and if we have

(80) Vkg = Vk; — = Vky

in this case, N is called the length of the sequence V. Set

N N
(81)  av(q):= Ha(vkkl,vki) € Zlqg,q7Y and  m(V):= Zm(UkFkai) eN.
i=1

i=1

Recall Notation [L.§ and the definition of w from Notation [ Let A, u € II be two
partitions of r. We say that the sequence of wedge products V = (vy,)o<i<n is (A, u)-
admissible if it is an admissible sequence of wedge products (of r factors for each of them)
such that vy, = vy and v, = v, 4. o

Remark 6.3 It is easy to see that if A # pu, then there cannot exist any (A, u)-admissible
sequence V = (v, )o<i<n such that m(V) = 0. o

Definition 6.4 A (), u)-admissible sequence V such that m(V) = 1 is called a good sequence
(with respect to (A, p)). Such a sequence can be written as

(82) vw_u—>---l>ui>vl>---ﬁv>\,

with t € [2;4]. o
Remark 6.5 If a good sequence (with respect to (A, 1)) exists, then we have

(83) §(BON) N B(p) =r—2.

6.2 Reduction to the good sequences

Recall the expression of the involution — of F[s;],, given in (§3). Expressing this involution
in terms of the v’s and then using Definition [.9 yields the following expression for the
coefficients of A(q).

Lemma 6.6 Let \;, p, € I, and X\, p € 11 be the partitions such that A\; < \ and p; < .
Assume that |A| = |p|. Then we have

(84) ax (0) = (N, py) AR N "oy (g),
v
where the sum ranges over all (A, p)-admissible sequences V, and (X, p;) is the sign de-

fined by
(85) e, ) = (— 1)< H@ )+
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Remark 6.7 One should be aware that in general several terms might contribute to this
sum, so the statement at the beginning of [Ryl, Section 4] is not correct. However, we can fix
the argument from [Ry] by showing first that only good sequences do contribute to a’Al, , (1)
(see Proposition [.g), and then that there exists at most one good sequence (see Propositions

and B.13). °

Proposition 6.8 Let A\;, u; € Hlm be two distinct multi-partitions, and X\, u € 11 be such
that A\; > X\ and p; < . Assume that |\ = |u| = r. Then we have

(86) Ay (1) = ey ) Y 0y (1),
A%

where the sum ranges over all the good sequences with respect to (A, p), and (X, py) is the

sign defined by ([83).
Proof. By Lemma p.g, we have

EOYNTH (q) = 5()‘17 /J’l) Z fV(Q)7

\%

where the sum ranges over all the (A, u)-admissible sequences V and fyv(q) is the Laurent
polynomial defined by fv(q) := ¢®dW)=re) oy (q). Note that if V is an admissible se-
quence, then we have m(V) > 1 (because A # p), and moreover the rules (R;)-(R4) imply
that

av(g) € (¢ —1)"VZ[q,q7").

As a consequence, if V is a (), u)-admissible sequence such that m(V) > 2, then (¢* — 1)?
divides fv(g) in Z[g,q~], whence f%(1) = 0. Moreover, if V is a good sequence, then the
previous discussion shows that av (1) = 0, whence

Fu(1) = (s(d(p) — r(e(w))av (1) + ay (1) = ay(1).

6.3 Existence and uniqueness of the good sequence

We first give (see Proposition p.12) some sufficient conditions for the existence of a good
sequence (with respect to a given pair (A, u)). In order to do this, we must study the
sequence of permutations that we apply to the components of wedge products when we go
through an admissible sequence

[ ] [ [ ]
(87) Vky — Vk; — **° — Vkys

where ko, ...,kn € Z" and v, k, is ordered.
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Notation 6.9 Let o, 7 € &,.. Write
(88) o—T

if there exists 1 < ¢ < r—1 such that o(i) < o(i+1), with i minimal for this property, and such
that 7 = o;0. The relation — on &, is closely related to the relation — on wedge products of

r factors. Recall that for vy = v, A---Avg, and 0 € &,, we have v, x = v 1 ARERYVIY )/ iy
Then by definition we have o — 7 if and only if v,—1 ) — v, -1, where k = (ky,...,k,) € Z"
is such that v,k is ordered (namely, k; < --- < k;). o

Consider now the following reduced expression for the longest element in &,
(89) w= (o109 0,_1)(0102 - 0p_2) -+ (0102)(01),

and for 0 <i < @ let w[i] denote the right factor of length ¢ in this word (by convention,

w[0] =id). For example, for r > 3 we have w[5] = 0203010201. The sequence (w]i ])O<z< r(r—1)
2

enjoys the following property: if id = 0(®© — ¢ — ... — ¢ with 0 < k < T( D) , then

0@ = w[i] for all 0 <4 < k. In particular, we have w[i — 1] — wli] for all 1 < i < T(TQ 1).

Lemma 6.10 Let i, j € [1;7] be such that i < j. Then there exist two integers k € [1;r — 1]
and e € [0; % —1], determined in a unique way by the following properties: (w [ ])( ) =1,
(wle])(k+1) = j and wle+1] = oxwle]. Namely, we have k = j—i and e = G=10=2) 1) +(i—1).

Proof. Left to the reader. O

Example 6.11 Take r =6, ¢ = 2 and j = 5. Then we have

1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6) (1,2,3,4,5,6)7
( - —\2,3,1,4,5,6 3,2,1,4,5,6) \3,2,4,1,5,6) \3,4,2,1,5,6) " \4,3,2,1,5,6) " \4,3,2,5,1,6 =w|

Whencee:7:w2(jf2)+(i—1)andk:?):j—z'. o

Proposition 6.12 Recall Notation [5.] Assume that (A, ;) satisfies (64), (v,9) # (0,0)
and h =7 (mod nl), with n € {0,7,d,v+ 6}. Then there exists a good sequence with respect

to (A, ).

Proof. We construct a good sequence
. ] t ]
(*) vw.u_>..._>u_)v_>..._)/v>\

as follows.
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e Step 1: construction of v, , 2 ... % u. We construct this part of Sequence (%) in
terms of the relation — on &,. Let e and kK = x — y be the integers given by Lemma
applied with the integers ¢ :=r+1—x and j := r 4+ 1 —y. Then we have the
sequence w[0] — --- — wle], hence the sequence Vyf0] 1 (wop0) . Ule] 1 (wopr) 18
admissible. Put u := Uple] L (wp) = Vlwole]) et

e Step 2: construction of u Ly, By assumption on e we have

u:vml/\---/\vmkﬂ/\vﬁx/\vgy/\vmk+2/\---/\vmr,

where the m;’s are integers in B(u), and the next step of the straightening of u consists
in straightening this wedge product with respect to its k-th and (k+ 1)-th components,
namely vg, A vg,. Since (v,0) # (0,0), this elementary straightening involves Rule
(R¢) with ¢ € [2;4]. Note that by (66), the wedge product vg,—p A vg,4+p is ordered.
Since h = n (mod nl), Rule (R;) shows that this wedge product appears in the linear
combination obtained by straightening vg, A vg,. Put

VIi=Up Ao AUy /\Uﬁy—h/\vﬁx+h/\vmk+2 N N,

It is clear that v is obtained from wv) by permutation, and the argument above shows

that u v, which completes Step 2.

e Step 3: construction of v — -+ > wvy. Set vi := v. If v; is not ordered, then the
elementary straightening of v; gives a linear combination of wedge products, and one
of them, say vo, is obtained from vy by permutation. If we apply this device sufficiently
many times, we get eventually an ordered wedge product which is of course vy. This
completes Step 3 and the construction of the good sequence (x). O

We now prove the converse of Proposition [6.13.

Proposition 6.13 Recall Notation and assume that (A, p;) satisfies (63). Assume
moreover that there exists a good sequence

. . t . .
(90) Vg = Vky — =+ = Uk, — Vgoyy — = ° — Ugy = Ux

with respect to (A, ), with t € [2;4]. Then this sequence is unique, t is also uniquely deter-
mined and moreover we have (vy,9) # (0,0) and h =n (mod nl) with n € {0,v,0,v + 0}.

Proof. By assumption, vy, (resp. vk,.,) is obtained from v, (resp. vy) by permutation. By
(67), there exist o0 € &, and 1 < k <7 — 1 such that

Vk, = Vop = vgo_l(l) VANRRRIVAN Uﬁo—l(k—n Nvg, A vg, VAN vgo_l(kH) VASRRIVA vga_lm,

Vkeyy = Uﬁo_l(l) VANCIERIVAY Uﬁo_l(k:—l) VAN VB, —h AN I A Vg, VANEERIAN Vg,

—1(k+2) —In )’
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and vk, , is obtained from vy, by straightening vg, Avg, with the rule (R;). Since t € [2;4],
the last conditions of the statement of this proposition hold. It is not hard to see that k£ and
e satisfy the conditions of Lemma with¢:=r+1—zand j:=7r+1—y, so k and e are
determined in a unique way. This determines completely the subsequence vy, . Uk, -
Moreover, t is uniquely determined by considering whether v and ¢ are zero or not. The
expression of vy, given at the beginning of the proof shows that this wedge product is also
determined in a unique way. Let 7 € &, be the unique permutation such that vy, , = v;.
Note that by Condition (i) of Definition p.J, there exists at most one admissible sequence
V having a given length and starting at a given wedge product such that m(V) = 0. As a
consequence, the sequence v,y — - -+ — vy, whose length is £(7), is in turn determined in a
unique way. O

6.4 Computation of the length modulo 2 of the good sequence

We now deal with the technical part of the proof of Theorem R.11. The next proposition will
be used to show that if as\l “l(l) and j;l p, are nonzero, then both numbers have the same
signs. This proposition deals with the only cases that we have to consider.

Proposition 6.14 Recall Notation and assume that (A;, ;) satisfies (63). Assume
moreover that (7,0) # (0,0) and h =n (mod nl) with n € {~,d}. Let then

t
(91) V:vw_ML---kaHUIL---LU)\

denote the unique good sequence with respect to (A, p) (see Propositions and [-13).
Denote by N the length of this sequence. Then we have

(92) ()N = (MO, ) e,

where £(A;, ;) is the sign defined by (84) and ¢ is the sign defined by

(93) 6._{ 1 4f 0>0and h=06 (mod nl),

—1 otherwise.

Proof. Let o, 7 € &, be the permutations defined by vy, = vk and v,-1 \ = v1. Then we
have N = {(c) + 1 + £(7), whence (—1)V~! = g(0)e(7). By Lemma p.10, we can compute
{(0) and then €(0); it is however not straightforward to compute ¢(7). We compute only &(7)
by writing 7 as a product of 7 permutations oV, ..., ¢(") whose signs are easily computable.

* Set first
=0 and V1= 0,0)1;

v is thus obtained from v, , by replacing 3, (located at the (r+1— x)-th component)
by B, — h, and , (located at the (r + 1 — y)-th component) by 3, + h.
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* By Statement 1) of Lemma .7, one of the following cases occurs:

— First case: d(8;) = d(By — h) and d(8y) = d(B + h),
— Second case: d(8;) = d(B, + h), d(By) = d(By, — h) and d(8;) # d(By).

It is easy to see that the first case occurs if and only if 6 = 0 or h = § (mod nl), and
that the second case occurs if and only if 6 > 0 and h =+ (mod nl). Set

5@ . id if the first case occurs
"l (r+1—=z,7+1—y) if the second case occurs
and Vo =V, 2),01) 13

in the second case, va is obtained from v; by permuting 3, +h and 3, — h. In either

case, 0 is constructed in order to have d(¢?¢().1) = d(w.p) and subsequently
v(e@ M 1) = v(w.p).

* Set
c® = v(c@ W17 = y(w.p)™? and V3 1= U,(3) 5(2) 1) | -
By remark B.4 applied to 0@ oM 1, v3 is a wedge product that can be written as
V3 =V A AU,

where each v, ), 1 < b < [is a wedge product such that each component vy of v @
satisfies d(k) = b. In this case and for the rest of the proof, we say that vs is block-
decomposable and call v, ) (1 < b < 1) the b-th block of vs.

Set now

oW .= wk) =w() and V4 1= Up(0) 5(3) 5 (2) (1) 1»

where w(k) is defined in Section (the equality w(k) = w(l) comes from Lemma
B.7). For 1 < b < denote by

ryi=#{1 <0< | d(ag) = b} = {1 < i < 7| d(B) = b}

the number of factors of the block v, ) (the equality of both numbers defining r, comes

again from Lemma @) Let 1 < b <1l Then o® acts on the b-th block of v3 as the
permutation (71,”1’) Since vy, is ordered, we can see that for all b € [1;1] \ {d,d'}, the
b-th block of v4 is also ordered.

Write temporarily v4 = vy, A---Avy,, and let i (resp. j) € [1;7] be such that k; = 8,—h
(resp. kj = By + h). Define o®) and v by

(5) ._ id if 6 >0 nd L .
g = (’L,]) if6=0 a V5 = v0(5)0(4)g(3)0(2)o’(1)_]7

we have 0® = id if and only if By — h and 3, + h are in the same block of v4.
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* Let 0(® € &, be the permutation that acts separately on each block of vs by reordering

it and set
V6 1= Vs(6) 5(5) g(4) g(3) g(2) (1) ] +

Let us describe the action of ¢(® more precisely. If § = 0, then o(® acts on the d-th
block of v5 as the permutation 7 from Lemma B.14, and o) acts trivially on the other
blocks. If § > 0, then ¢(® acts as the product of two permutations o/, and o/, where
each o}, b € {d,d'} acts on the b-th block of v as the permutation denoted by o in
Lemma and o acts trivially on the other blocks. As a consequence, we have in

either case
e(0®) = (_1)ht(p)+ht(p’).

Finally, put

7 . —
O'( ) = U()\) and V7 1= V(1) 5(6) 5(5) g(4) g(3) 5 (2) 5 (1) ] -

Note that vy is ordered, vg is obtained from vy by permutation, vg is block-decomposable
and all the blocks of vg are ordered. By the remark following the definition of ¢, we
have v,(y)-1., = Ve, whence vz = vy.

As a consequence, we do have 7 = ¢(7 ... () where the o0(9’s are defined above, hence
(—D)N=1 = ¢(0) szl e(¢™). By considering different cases we see that £(c(?)e(c®) = ¢,
where ¢ is defined by (D3). Moreover, we have

l
2(0) = () = [T (~)™ 4 = (-1,
b=1

We then have e(c®)) e(c®)e(6(M) = (N, i;), whence the result. O

7 Proof of Theorem .17

Let A;, p; € IIL , and A, p € TI be the partitions such that A; «» A and p; + p. We must
show that aj, , (1) = 2j;z7m' If Ay A py, then ay , (1) = 0 by (F7); on the other hand,
we have j;z, p =0 in this case and we are done. Assume from now on that A\; < p;. If
(A, ) does not satisfy (B), then by Remark [6.5 there cannot exist any good sequence with
respect to (A, it), so by Proposition .§ we have a’ALM (1) =0 ; on the other hand, by Remark
.5 we also have j;z, p, = 0 in this case. Assume now that (A1, i) satisfies (B3), and recall
Notation .4 By Proposition f.J, one of the cases (J;) or (J2) occurs and Proposition [.§
then gives the expression of j;l’ W Moreover, Propositions and give necessary and
sufficient conditions on v, § and h for the existence of a good sequence, in which case it is
unique. Proposition p.§ and Rules (Rg) — (R4) then give the expression of afy i, (1)- In order
to compare a'Ah M(l) and j;l’ o We have to consider 12 cases depending on the value of h
modulo nl and on whether v and § are zero or not. The results are shown in Figure f|. Here
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N is the length of the good sequence if it exists. Theorem
two columns of the array and by applying Proposition [6.14 if the corresponding numbers are

D.11] follows by comparing the last

nonzero. 0
Number
a’)\ (1) -~
Case of good m %
sequences
vy=6=0 0 0 0
v>0,0=0,
h#0 (mod nl), h #Z~ (mod nl) 0 0 0
v>0,0=0, OV (- a2
i:=L eN* 1 =2(—1)N-! -1
v >0,0=0, N (@ e
1= % eN 1 = —2(—1)N-1 1
v=20,0>0,
h#0 (mod nl), h Z§ (mod nl) 0 0 0
7=0,6>0, (—nN -t q:1<_(q2 —1)g* 1)
1:= % e N* 1 = —2(—1)N-! 1
v=20,6>0, N[ (@ = 0e?)
i=10eN 1 — 2(—1)N 1 1
v>0,0>0,
h# 0 (mod nl), h %~ (mod nl), 0 0 0
h#§ (mod nl), h Z~v+ 6 (mod nl)
v >0, 6 >0, (-pN-r qzl(*(qfq’1 q?;qq:l%)
1= % € N* 1 =0 0
7>0,6>0, (DN (- H L)
1= % eN 1 = —2(—1)N-! 1
v >0,0>0, DN (- a2
i=10eN 1 — 2(—1)N—1 1
v>0,0>0, (-pN-rL qzl((q,q—l)%)
i:=1"0 e N 1 =0 0

Figure 3: List of the cases involved in the proof of Theorem P.17.
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