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We discuss the effective interactions between two localized perturbations in one-dimensional (1D)
quantum liquids. For non-interacting fermions, the interactions exhibit Friedel oscillations, giving
rise to a RKKY-type interaction familiar from impurity spins in metals. In the interacting case, at
low energies, a Luttinger liquid description applies. In the case of repulsive fermions, the Friedel
oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type
interaction which depends only on the sound velocity and decays inversely with the separation.
The Casimir-type interaction between localized perturbations embedded in a fermionic environment
gives rise to a long range coupling between quantum dots in ultracold Fermi gases, opening a
novel alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic
quantum liquids in which the interaction between weak impurities turns out to be short ranged,
decaying exponentially on the scale of the healing length.

I. INTRODUCTION

Interactions between localized defects which are medi-
ated by the continuum they are embedded in, play an im-
portant role in many areas of physics. Typical examples
are the RKKY interaction between spins in a Fermi liquid
or the interaction between vortices in superfluids. In the
present work, we discuss interactions between impurities
in 1D quantum liquids. This study is motivated by the
recent realization of strongly interacting “atomic quan-
tum wires” with ultracold gases of both bosonic [1, 2, 3]
and fermionic atoms [4] and the proposal [5], that single
atoms in optical traps which are embedded in a superfluid
reservoir allow to realize an atomic analog of a quantum
dot with a tunable coupling to the environment. Such
quantum dots may be used to store qubits, which, un-
der certain conditions, can be completely decoupled from
their environment. Arrays of these dots thus appear as
ideal candidates for quantum information processing. It
is therefore of considerable interest to study the induced
interactions of such dots, mediated by the environment
they are embedded in. Similar questions arise also for
quantum dots in solid state realizations, e.g. in carbon
nanotubes [6], where the interaction is mediated by elec-
trons in the intervening wire.

Quite generally, for both bosons and fermions, the low
energy properties of a gapless 1D quantum liquid are
described by the so called Luttinger liquid (LL) phe-
nomenology [7, 8]: the effective theory is a hydrody-
namic energy functional characterized by the velocity of
sound u and the Luttinger interaction parameter K. In
particular, for fermions, K = 1 corresponds to the non-
interacting case, while K < 1 for repulsion. For repulsive
bosons, in turn, one has K > 1, with K → ∞ in the
limit of weak interactions, where a Gross-Pitaevskii or
Bogoliubov approximation applies. As shown by Kane
and Fisher [9], the interaction of a single impurity with
a LL depends crucially on the value of K: for K > 1,

the impurity is irrelevant for the low energy properties.
A 1D Bose liquid is therefore effectively superfluid, al-
though there is no true condensate [9, 10]. For K < 1
the impurity changes the ground state of the liquid in
a non-perturbative way, effectively cutting it into two
disconnected parts. In this case, we will see that the in-
duced interaction between two impurities is essentially a
Casimir-like effect. Indeed, at low energies, two impuri-
ties at distance r define a box with reflecting boundary
conditions for the phonon modes of the quantum liquid,
which leads to an attractive Casimir interaction energy
proportional to u/r with u the sound velocity. The case
K = 1 is marginal and corresponds to a non-interacting
Fermi gas in 1D or - equivalently -, a system of hard
core bosons, the Tonks-Girardeau gas [2, 3, 11]. In the
following we will study the interactions mediated by the
1D quantum liquid between two impurities for the var-
ious cases, including fermions with spin. We focus our
analysis on the case of static impurities, while the sit-
uation of a slow time dependence, relevant for atomic
quantum dots, where the interactions depend on the in-
ternal states is only discussed qualitatively at the end of
the paper.

II. ONE-DIMENSIONAL FERMIONIC LIQUID

A. Non-interacting fermions

Before considering the generic situation of impuri-
ties embedded in a sea of interacting particles, we first
address the marginal case K = 1 of non-interacting
fermions. For simplicity we start from a gas of N non-
interacting spinless fermions in the presence of two local-
ized impurities separated by a distance r. Considering
cold gases in atomic quantum wires, the solution of this
problem is not just an academic exercise. Indeed, since
fermions in a single hyperfine state have no s-wave inter-
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actions due to the Pauli principle, they realize an ideal
Fermi gas at sufficiently low temperatures. We assume
that the particles are contained in a periodic box of length
L with average density ρ0 ≡ N/L. The (grand canonical)
partition function of the liquid at a given temperature T
may be expressed in terms of a functional integral over
the Grassman fields (ψ̄, ψ) representing the fermions:

Z =

∫

Dψ̄Dψ exp(−SFL − Si). (1)

The corresponding action of an ideal gas is

SFL =

∫ β

0

dxdτ

[

ψ̄ ∂τψ −
(

1

2m
∇ψ̄∇ψ − µ ψ̄ψ

)]

, (2)

where τ is the imaginary time running from 0 to 1/T = β,
and µ is the chemical potential (we use units such that
~ = kB = 1). The fields are anti-periodic in imaginary
time. For short range interactions, appropriate for cold
atoms, the interaction of the impurities with the liquid
can be described by an additional contribution

Si =

∫ β

0

dτ
∑

α=1,2

gαψ̄(xα)ψ(xα), (3)

proportional to the local density at the impurity posi-
tions xα. Here, the index α = 1, 2 labels the impurities,
while the coupling constants gα describe the strength of
collisions between the atoms in the liquid and the im-
purities. The expression for Si is based on assuming
an effective pseudopotential for the interaction between
the impurity and the quantum liquid. More precisely,
the interaction should be replaced by a spatial integral
of the detailed impurity potential with the microscopic
density operator of the liquid. In what follows, we con-
sider both the actions (2) and (3) as the effective low
energy expressions with the fields (ψ̄, ψ) containing the
low energy part of the particle fields limited by the cut-
off frequency ωc. The value of ωc can be estimated as
ωc ∼ Min{u/l0, µ}, where u is the characteristic veloc-
ity of excitations (u = vF for an ideal Fermi gas), l0 is
the impurity size and µ = p2

F /2m is the chemical poten-
tial (at zero temperature) with pF = mvF ≡ πρ0, the
Fermi momentum. As will become clear from our results
below, the coupling constants gα are then - up to a fac-
tor vF - identical with the dimensionless backscattering
amplitudes f1,2(π) for fermions at the impurities. Micro-
scopically, they are thus determined by the solution of
the single particle scattering problem off a single impu-
rity. In practice, an appreciable value of the backscatter-
ing amplitude requires the impurity size to be smaller or
of the order of the interparticle spacing, since otherwise
the Fourier component of the potential at 2pF is close
to zero, and hence the dimensionless coupling constants
γα ≡ gα/vF vanish. Therefore, in the following, we will
take ωc ∼ µ.

The Grassman fields (ψ̄, ψ) are free everywhere apart
from the points x = x1,2 and hence can be easily in-
tegrated out by the following standard trick: first we

formally introduce four δ-functions into the integrand

Z =

∫

Dψ̄Dψ
∏

α=1,2

Dη̄αDηα δ[ψ(xα, τ) − ηα(τ)]

× δ[ψ̄(xα, τ) − η̄α(τ)] e−SFL−Si , (4)

where (η̄α, ηα) are the new Grassman variables describing
the fermions at the location of the individual impurities.
Then we introduce a set of auxiliary fields (κ̄α, κα) us-
ing the identity δ(f) ∼

∫

Dκ exp(i
∫

κfdτ) to rise the
δ-functions into the action. Finally, we integrate out the
fermionic fields (ψ̄, ψ), which appear only quadratically,
by Fourier transformation:

Z = Z0
FL

∫

∏

α=1,2

Dη̄αDηαDκ̄αDκαe
−S′−Si(η̄,η), (5)

where

Si(η̄, η) =

∫ β

0

dτ
∑

α=1,2

gαη̄αηα, (6)

and

S′ =
L

β

∑

n

∫

dp

2π

∑

α,β κ̄ακβe
ip(xα−xβ)

−iωn + ξp

− i
∑

α,n

(καηα + κ̄αη̄α), (7)

where ξp = p2/2m − µ, and the summation is over the
fermionic Matsubara frequencies ωn. The trivial prefac-
tor Z0

FL arises from the integration over the fermionic
fields in the absence of impurities, giving the grand par-
tition function of the homogeneous liquid. The fields
(κ̄α, κα) depend only on imaginary time τ , or frequency
ωn in the Fourier representation and thus the integral
over p can be easily calculated. Since for a sufficiently
large separation |x1 − x2| = r ≫ p−1

F , the interaction en-
ergy is small, the relevant frequencies are small compared
to the Fermi energy ωc ∼ µ ∼ vF pF . An expansion to
leading order in ωn ≪ µ then gives

S′ = − iL

βvF

∑

n

∑

α,α′

snκ̄ακα′eipF |xα−xα′ |sn

× e−|ωn|(1−δα,α′)/ωr − i
∑

α,n

(καηα + κ̄αη̄α), (8)

where ωr ≡ u/r ≪ µ and sn ≡ sign(ωn). The charac-
teristic frequency ωr will play an important role in our
subsequent discussions. Physically it represents the in-
verse flight time for a characteristic excitation in the liq-
uid between the locations of the two impurities, which
naturally obeys the inequality ωr ≪ ωc provided the im-
purities are much further apart than the average distance
between two fermions in the liquid. It is also the quanti-
zation energy between the two impurities. In order to ob-
tain the impurity interaction directly from the partition
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function, we integrate out the auxiliary fields (κ̄α, κα).
This results in an action

S′(η̄, η) =
βvF

iL

∑

n

(η̄1, η̄2)

(

fn −fnen

−fnen fn

) (

η1
η2

)

,

(9)
which only depends on the four time dependent Grass-
man fields (η̄α, ηα) which describe the Fermi field at the
impurity positions. The coefficients fn and en are defined
by

fn ≡ sn

1 − e2n
, en ≡ eisnpF r−|ωn|/ωr . (10)

Including the contribution (3) due to the interaction be-
tween the impurities and the liquid, the complete expres-
sion for the statistical sum (1) can now be written as

Z = Z0
FLZκ

∫

∏

α=1,2

Dη̄αDηαe
−S′−Si , (11)

where Zκ comes from the integration of the auxiliary
fields:

Zκ =
∏

n

(

iL

βvF

)2

(1 − e2n). (12)

The total effective action S′+Si is quadratic in the Grass-
man fields (η̄α, ηα) and thus the integration can be done
exactly to yield Z = Z0

FLZκZη, with

Zη =
∏

n

(

βvF

iL

)2
[

(fn + iγ1)(fn + iγ2) − (fnen)2
]

.

(13)
Here, the γα = gα/vF are the dimensionless backscat-
tering amplitudes, characterizing the interaction of the
impurities and the liquid. We can now obtain the free
energy of the 1D Fermi gas in the presence of the impu-
rities from F = − logZ/β as follows

F =F 0 − 1

β

∑

n

log{(1 − e2n)

× [(fn + iγ1)(fn + iγ2) − (fnen)2]}, (14)

where F 0 = − logZ0
FL/β is the free energy of the undis-

turbed, homogeneous liquid. The expression (14) is ill
defined as it stands, since it contains both the energy of
zero-point fluctuations in the gas, as well as the formally
divergent self-energies of the separate impurities. The
relevant interaction energy associated with a change of
the separation of the two impurities is given by:

V12 ≡ F (γα, r) − F (0, r) − [F (γα,∞) − F (0,∞)]

= F (γα, r) − F (γα,∞). (15)

The renormalization thus requires subtracting first the
free energy of the liquid without the impurities (γα = 0,
vacuum energy) and then the free energy of the system

when the impurities are very far apart (r → ∞, self-
energy of the impurities). While both the vacuum energy
and the individual self-energies are infinite in the absence
of a cutoff, the renormalized interaction (15) is finite and
independent of the cutoff (see also the discussion below
in section III A).

At low temperature T ≪ ωr we can switch from sum-
mation to integration according to dω = 2πTdn, so that
the effective interaction energy between the impurities
can be expressed as:

V12 = −
∫ ∞

0

dω

π
log

∣

∣

∣

∣

1 +
γ1γ2e

−2ω/ωr+2ipF r

1 + i(γ1 + γ2) − γ1γ2

∣

∣

∣

∣

. (16)

The integral can be performed analytically to yield our
final result for the impurity interaction at T = 0:

V12 =
vF

2πr
ℜLi2

(

− γ1γ2e
2ipF r

1 + i(γ1 + γ2) − γ1γ2

)

, (17)

where Li2 is the di-logarithmic function [12] and ℜ is
the real part. Obviously the interaction quite generally
falls off very slowly like 1/r with an amplitude, which
is a strictly periodic function. Its period π/pF = ρ−1

0

is equal to the average inter-particle distance. This is
a characteristic property of degenerate fermions, essen-
tially reflecting the well known Friedel oscillations of the
density (see below). Trivially, the interaction vanishes, if
one of the scattering amplitudes γ1,2 is zero.

A simple expression for the renormalized interaction
energy V12 is obtained in two limiting cases. First, if
the interaction of the impurities with the liquid is weak
γα ≪ 1, we can expand the di-logarithm in Eq. (17) to
obtain:

V12 = −γ1γ2vF

2π

cos(2pF r)

r
. (18)

In the limit of strong impurities γα ≫ 1, we find in turn
the result

V12 =
vF

2πr
ℜLi2

(

ei2pF r
)

, (19)

which is completely independent of the scattering ampli-
tudes. In this case, the interaction energy V12 can be rep-
resented as V12 = vF

2πrf(2pFr), where f(x) ≡ ℜLi2(e
ix) is

a periodic function bounded as follows fmin ≤ f ≤ fmax

where:

fmax,min = Li2(±1) =
π2

6
,−π

2

12
. (20)

A simple way of understanding the slow 1/r-decay and
the oscillations with period π/pF may be obtained in
the weak scattering limit Eq. (18). Indeed, the density
perturbation created by a single impurity of strength γ1

at position x1 is asymptotically given by:

ρ1(x) ≈ ρ0 −
γ1

2

cos(2pF |x− x1|)
2π|x− x1|

. (21)
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This expression for the Friedel oscillations in a spin-
less 1D non-interacting Fermi gas is valid in the limit
where γ1 ≪ 1 and |x − x1| ≫ ρ−1

0 [13]. Since the
impurities couple to the local density, the interaction
energy (excluding self-energies) of the system of two
weak impurities is simply obtained from U12(γα, r) =
g2ρ1(x2) + g1ρ2(x1) where γα ≪ 1. When renormalized
V12 = U12(γα, r) − U12(γα,∞), this interaction energy
coincides with Eq. (18). Alternatively, the result may be
derived by using the random-phase approximation (RPA)
as shown in the Appendix A.

The analysis in this section is readily generalized to the
case of a Fermi gas with spin. In fact for non-magnetic
impurities, such as considered in the current article, the
two spin modes are decoupled and therefore the energy
due to the presence of the two impurities is simply mul-
tiplied by a factor of two.

It should be emphasized that the calculation above,
can be immediately extended to the case of noninteract-
ing fermions in two or three dimensions d = 2, 3, giving
rise to an interaction energy for weak coupling of the form

V12 ∼ f1(π)f2(π)vF pF
cos(2pF r)

(pF r)d
, (22)

where fα(π) are the dimensionless backscattering ampli-
tudes of the impurities. This result follows most simply
by considering the density fluctuations δρ1(~x) induced
by a single impurity at position ~x1. As discussed, e.g., in
Ref. [14] they exhibit Friedel oscillations proportional to
the dimensionless backscattering amplitude f1(π) at the
Fermi energy. The resulting interaction energy is then
simply given by V12 ∝ f2(π)δρ1(~x2). In fact, this is a
special case of a general result [15], that the asymptotic
interaction between two impurities is determined by the
product of their backscattering amplitudes. In the pres-
ence of short range repulsive interactions between the
fermions, we expect that the result (22) remains quali-
tatively correct in the case of two and three dimensions.
This is based on the existence of a Fermi liquid descrip-
tion in d = 2, 3, which guarantees that the low energy
properties are qualitatively unchanged from those of a
Fermi gas. For example, assuming that the static den-
sity response function at 2pF is given by the particle-
hole bubble [16], the renormalization factor Z < 1 in the
single-particle Green function will give rise to a Fermi
liquid correction factor Z2 in V12. This argument, how-
ever, neglects possible vertex corrections in the density
response which may lead to an enhancement rather than
a suppression of the amplitude of the Friedel oscillations.
In fact this effectively happens in the one-dimensional
case, where the vanishing Z -factor gives rise to Friedel
oscillations, which decay more slowly than in the nonin-
teracting case (see below). While we are not aware of
a quantitative calculation of the 2pF -density response in
Fermi-liquids, it is very likely that they will give rise only
to finite, multiplicative corrections to Eq. (22). As we
will see below, however, the situation in one dimension

is quite different from that in d = 2, 3 in the sense, that
even qualitatively the asymptotic form of the interaction
is not given by the Friedel oscillation picture, even for
very weak impurities.

Finally, we mention a recent work dealing with neutron
matter. Bulgac et al. [17] consider a neutron star crust,
which is modeled as a degenerate non-interacting neutron
gas (i.e. an ideal 3D Fermi gas) containing various kinds
of defects or inhomogeneities (such as nuclei or bubbles)
immersed in it. These authors compute the interaction
energy between two defects resulting from the quantum
fluctuations of the Fermi sea of neutrons. They obtain
expressions similar to Eq. (22), which can be interpreted
as RKKY-like interactions between defects. In addition,
they discuss the influence of the shape of the defects and
consider situations with more than two defects.

B. Spinless Fermi Luttinger liquid

Realistic Fermi systems consist of interacting particles.
In three and also in two dimensions, it is possible to de-
scribe even strong interactions by Landau’s Fermi liquid
theory. As is well known, however, this concept fails in
one dimension. Here we consider fermions with repulsive
short-range interaction. At low-energy such a system ex-
hibits a gapless excitation spectrum with a linear disper-
sion, characteristic for the universality class of Luttinger
liquids (LL) [7, 8, 18].

For simplicity, we start by considering spinless
fermions, for which the low-energy description is given
by the following hydrodynamic action:

SLL =
1

2πK

∫

dxdτ

[

u(∂xθ)
2 +

1

u
(∂τθ)

2

]

. (23)

Here u is the sound velocity and K the Luttinger param-
eter. In a translationally invariant system, they obey the
relation uK = vF [8], with vF = pF /m = πρ0/m the
Fermi velocity of the associated non interacting spinless
Fermi gas. For repulsive interactions K < 1, in addition
K > 1/2 for contact interactions, see e.g. [19]. Since
the Luttinger liquid description only applies at low en-
ergies, the fields have to be cutoff at energy ωc ∼ µ.
The associated cutoff length a ≡ u/ωc is of order 1/ρ0.
Of course, for a quantitative calculation of the scale at
which the low energy description applies, a microscopic
model is needed, which allows to determine nonuniversal
properties. For single impurities in Luttinger liquids this
problem has only recently been discussed, see [20]. Since
we are concerned with the interaction at distances much
longer that the average interparticle separation, only the
low energy properties are relevant, which are well de-
scribed by the hydrodynamic action (23). The corre-
sponding field θ is related to the density of the liquid by

ρ(x) ≈
(

ρ0 +
∂xθ

π

)

[1 + 2 cos(2θ + 2pFx)] , (24)
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where ρ0 is the equilibrium density and only the first
harmonics are taken into account [8, 9].

The interaction between the impurities and the Lut-
tinger liquid is again taken to be of the form (3), i.e. a
coupling to the local density with scattering amplitudes
gα. Inserting the expansion (24) into this interaction,
gives rise to four different terms. The first term is just the
constant Hartree self-energy of the impurities, which - of
course - does not contribute to the renormalized interac-
tion energy V12. In addition, there are terms containing
∂xθ due to forward scattering. They describe quantum
corrections to the self energies but again are irrelevant
for the interactionV12 between two widely separated im-
purities. The dominant term for this interaction is the
contribution proportional to cos(2θ+2pFx), which is due
to backward scattering. In addition there are higher or-
der terms like ∂xθ cos(2θ+ 2pFx), however these are less
relevant in the renormalization group (RG) sense [21].
Taking only the most relevant part of the interaction,
the coupling between the impurities and the LL leads to
the following nonlinear contribution to the action

Si[Θ] ≈
∫ β

0

dτ
∑

α=1,2

2gαρ0 cos[2
√
πKΘ(xα) + 2pFxα] ,

(25)
where we introduced the renormalized field Θ by θ =
Θ
√
πK. The complete statistical sum of the system can

again be represented by a functional integral. To perform
the integration over the field Θ we use the same approach
as for the ideal Fermi gas: first we introduce the new vari-
ables Θ(x1, τ) = Θ1(τ) and Θ(x2, τ) = Θ2(τ) and then
insert the two δ-functions into the functional integral:

Z =

∫

DΘ
∏

α=1,2

DΘαδ[Θ(xα) − Θα]e−SLL−Si . (26)

We then transform the δ functions into the functional
integrals over auxiliary fields and perform the Gaussian
integration

Z = Z0
LLZκ

∫

DΘ1DΘ2e
−Seff−Si[Θα] , (27)

where the effective action for the real fields Θ1,2 is

Seff =
∑

n

(Θ1,−n,Θ2,−n)

(

fn −fnen

−fnen fn

) (

Θ1,n

Θ2,n

)

,

(28)
with the summation occurring over the bosonic Mat-
subara frequencies ωn, where fn ≡ β|ωn|/(1 − e2n) and
en ≡ e−|ωn|/ωr with ωr ≡ u/r. The factor Z0

LL comes
from the integration over Θ(x, τ) and is independent of
the impurities, describing the homogeneous Luttinger liq-
uid. By contrast, the factor

Zκ =
∏

n

(

1 − e2n
)−1/2

. (29)

which comes from the integration over the auxiliary
fields, describes the change in the phonon modes due to

the constraint on the Fermi fields at the positions of the
two impurities. Similar to the noninteracting situation,
this contribution depends on the associated characteristic
frequency ωr and is crucial in obtaining a finite interac-
tion energy V12 which is independent of the cutoff.

The remaining and now non-trivial functional integral
over the time-dependent fields Θα is of the same form as
the one which appears in the context of quantum Brown-
ian motion in a periodic potential [22]. Indeed the effec-
tive action (29) basically describes two quantum particles
subject to ohmic dissipation of dimensionless strength
1/K which move in a periodic potential generated by the
backscattering amplitude. As has been shown in [22] this
problem leads to a localized ground state if 1/K > 1 with
small fluctuations in the field Θ. For a quantum liquid
with sufficiently strong interactions between the fermions
K ≪ 1 and strong impurities γα ≫ 1, the functional in-
tegral (27) over the time-dependent fields Θα can thus
be calculated using the stationary phase approximation
(SPA): expanding the functions cos(2

√
πKΘα + 2pFxα)

from Eq. (25) to second order in the fields around one of
its minimum, we approximate the interaction Lagrangian
in the form

S̃i =

∫ β

0

dτ
∑

α=1,2

EαΘ2
α , (30)

where Eα = 4πKgαρ0. Physically this means that the in-
teraction between each of the impurities and the liquid is
sufficiently strong to pin the local phase Θ near the value
minimizing the potential energy. The quantities Eα play
the role of effective frequencies for the evolution of the
fields Θα. The approximation of the original Lagrangian
(25) by the quadratic form (30) is equivalent to an adi-
abatic approximation which describes physical processes
occurring slower than a time scale given by E−1

α . As the
typical frequency of interest is ωr, the stationary phase
approximation is valid when Eα ≫ ωr. It is thus appli-
cable in the case of strong impurities or - equivalently -
long distances (see below) in a strongly repulsive liquid:
rρ0γα ≫ 1/K2 ≫ 1.

Within the quadratic approximation (30), the full ef-
fective action in Eq. (27) is quadratic in Θα and hence
can be evaluated exactly Z = Z0

LLZκZΘ, where:

ZΘ =
∏

n

[

(fn + βE1)(fn + βE2) − (fnen)2
]−1/2

. (31)

The associated free energy F = − logZ/β is given by

F =F 0 +
1

2β

∑

n

log{(1 − e2n)

× [(fn + βE1)(fn + βE2) − (fnen)2]} , (32)

where F 0 = − logZ0
LL/β again describes the undis-

turbed, homogeneous liquid. From the free energy we
obtain the renormalized interaction energy between the
two impurities V12 in precisely the same manner as in
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Eq. (15):

V12 =
1

β

∑

n>0

log

(

1 − E1E2e
−2ωn/ωr

ω2
n + ωn(E1 + E2) + E1E2

)

.

(33)
At sufficiently low temperatures T ≪ ωr, the summation
may be replaced by an integral over the real frequency
ω:

V12 =
1

2π

∫ ∞

0

dω log

(

1 − E1E2e
−2ω/ωr

ω2 + ω(E1 + E2) + E1E2

)

.

(34)
In the limit of long distances (or strong impurities), i.e.

Eα ≫ ωr, the integral converges at ω ∼ ωr and hence
ω2 ≪ ωEα ≪ E2

α. For sufficiently large separations, we
thus obtain the simple universal interaction

V12 =
u

2πr

∫ ∞

0

dy log(1 − e−2y) = − π

24

u

r
, (35)

which decays inversely with distance. The short distance
regime, where Eα ≪ ωr, can, however, not be considered
within the stationary phase approximation (30). Indeed,
the latter is only justified if the characteristic energy scale
ω . ωr of excitations involved in the interaction does not
exceed the effective frequencies, i.e. if Eα ≫ ωr. As a
result, for intermediate and short distances, the interac-
tion energy V12 does not follow a simple 1/r -behavior.
In particular, it is impossible to describe the limit r → 0
without properly including a cutoff or working in a mi-
croscopic model from the beginning. It is only within
such a more complete calculation, that the full energy
F (γα, r)−F (0, r) of the two impurity problem approaches
the self energy of the doubled single impurity case, as ex-
pected on physical grounds. For a single scalar field in
1D, as described by our hydrodynamic action (23), this
calculation has recently been done by Jaffe [23].

The validity of the quadratic expansion (30) may be
extended to the whole relevant range K < 1 of the Lut-
tinger parameter with the help of the self-consistent har-
monic approximation (SCHA) [22, 24]. In the context
of Friedel oscillations around a single impurity in a Lut-
tinger liquid, this has been used by Egger and Grabert
[25]. It is based on making a quadratic approximation
(30) for the backscattering term, however with frequen-
cies Eα which are determined from Feynman’s variational
principle. Using Eq. (30) as the trial action, one has to
minimize the free energy

Fvar = − 1

β
log Z̃ +

1

β
〈S − S̃〉S̃ , (36)

where S = Seff + Si and S̃ = Seff + S̃i. Taking Eα as
variational parameters, we obtain

Eα

4πKgαρ0
=

(

1 +
ωc

Eα

)−K

, (37)

where ωc is the high-energy cut-off. Following [25], we
define the crossover scale r0 by Eα ≡ u/r0 when both

impurities have approximatively the same strength γ1 ≈
γ2 ≈ γ. The SCHA is a good approximation when K < 1
and Eα ≫ ωr, i.e. at long distances r > r0.

In the limit of strong impurities γα ≫ 1, the SCHA
frequencies Eα ≈ 4πKgαρ0 are the same as those ob-
tained within the stationary phase approximation and
the crossover scale is given by r0ρ0 ∼ 1/K2γ. In the
opposite limit γα ≪ 1, they are given by

Eα ≈ 4πKgαρ0

(

4πKgαρ0

ωc

)
K

1−K

(38)

and the crossover scale is

r0ρ0 ∼ (K2γ)−1/(1−K)(ρ0a)
−K/(1−K) , (39)

where ρ0a ∼ 1 for repulsive fermions. Note the singu-
lar behavior of the crossover scale r0 → ∞ in the limit
K → 1 of non-interacting fermions. This implies that the
regime of validity of the SCHA is moved out to extremely
long scales r0. Quite generally, therefore, the long dis-
tance behavior r ≫ r0 of the interaction energy is al-
ways given by the Casimir like expression (35) whenever
K < 1. The scale, however, beyond which this simple
result applies, strongly depends on the strength of the
backscattering amplitude and the repulsive interaction.

In order to study the limit of weak impurities and weak
interactions (γα ≪ 1 andK < 1 close to 1) in more detail,
we use perturbation theory. At second order in γα, and
when r ≫ ρ−1

0 , we find

V12 ∼ −γ1γ2
u

r

cos(2pF r)

a−2Kρ−2
0 (Kr)2K−2

Γ(K − 1/2)

Γ(K)
, (40)

where Γ(z) is the Gamma function (the proportional-
ity constant in (40) depends on the cutoff procedure,
i.e., on the precise relation between a and 1/pF ). The
above equation was obtained under the assumption that
1/2 < K < 1. When K = 1, it coincides with Eq. (18)
obtained for the non-interacting Fermi gas, with a par-
ticular choice of the cutoff length a. Perturbation the-
ory breaks down when, in order of magnitude, the in-
teraction energy (40) reaches the strong impurity (or
long distances) result (35): |V12| ∼ ωr. This occurs
for rρ0 ∼ γ−1/(1−K)(ρ0a)

−K/(1−K), in agreement with
Eq. (39), because 1/2 < K < 1. Therefore, the per-
turbative result (40) is valid for intermediate distances
ρ−1
0 ≪ r ≪ r0. At long distances r ≫ r0 it is replaced

by the Casimir-type result (35).
Finally, it is worth mentioning that the presence of two

impurities implies the possibility of a tunneling resonance
[9, 26]. The physics of such a resonance is, however, not
captured by the SCHA. This issue will be discussed in
more detail in the Appendix B.

C. Spin-1/2 Fermi Luttinger liquid

In this section we generalize the above analysis by in-
cluding the spin degree of freedom, again using a Lut-
tinger liquid description.
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We consider N fermions in an equal mixture of spin up
and spin down components, i.e., N↑ = N↓ = N/2. Here
the (non-interacting) Fermi velocity is vF = pF /m =
πρ0/2m with ρ0 = N/L. Taking spin into account the
Euclidean action of the Luttinger liquid is generalized to

SLL[θµ] =
∑

µ=ρ,σ

1

2πKµ

∫

dxdτ

[

uµ(∂xθµ)2 +
1

uµ
(∂τθµ)2

]

,

(41)
where [θµ] is an abbreviation for [θρ, θσ]. This corre-
sponds to the usual “charge” θρ and “spin” θσ fields that
are linear combinations of the spin up and down fields:
θρ/σ = 1√

2
(θ↑ ± θ↓). The Luttinger liquid parameters

obey the relation Kρuρ = vF and in addition

K ≡ Kρ < 1 and Kσ = 1, (42)

where the first equation comes from considering repulsive
interactions and the second from the SU(2) symmetry of
the model with spin-independent interactions [18]. The
action term that describes the interaction with the impu-
rities is still given by Eq. (25) where the density is simply
the sum of the densities of the two spin modes that have
the same form as Eq. (24). As stated in the previous
section we only keep the most relevant term, which cor-
responds to backscattering by the impurity, and hence
obtain:

Si[θµ] =
∑

α=1,2

2gαρ0

∫ β

0

dτ cos[
√

2θρ(xα) + 2pFxα]

× cos[
√

2θσ(xα)] . (43)

Now we follow the same procedure as in previous sec-
tions and obtain

Z = Z0
LLZκ

∫

∏

α=1,2

∏

µ=ρ,σ

DΘµα e−Seff [Θµα]−Si[Θµα] ,

(44)
where we have rescaled the fields at the impurity posi-
tions by θµα =

√

πKµΘµα. The effective action Seff is
given by

Seff [Θµα] =
∑

n

∑

µ,α,δ

Iµ
αδ Θµα,−n Θµδ,n , (45)

where the n refers to the Matsubara frequencies ωn and
Iµ
αδ are the elements of the matrix

Iµ = fµn

(

1 −eµn

−eµn 1

)

, (46)

with fµn = β|ωn|/(1 − e2µn), eµn = e−|ωn|/ωµ , and ωµ =
uµ/r.

In order to calculate the partition function, we again
use the stationary phase approximation, which corre-
sponds to expanding Si around its minima to second or-
der in the fields, assuming that the impurities are strong,

i.e. γα = gα/vF ≫ 1. The nonlinear action Si is thus re-
placed by a quadratic approximation

S̃i = β
∑

µα

∑

n

Eµα|Θµα,n|2 , (47)

where Eµα = 2πKµ gαρ0.
Since the charge and spin fields are now completely

decoupled, we have Z̃ = ZρZσ, with:

Zµ =
∏

n

[

(fµn + βEµ1) (fµn + βEµ2) − (fµneµn)2
]−1/2

.

(48)
The total free energy F = Fρ + Fσ is then simply the
sum of the charge and spin contribution.

After renormalization the free energy is given by:

V12 =
1

β

∑

µ

∑

n>0

log

[

1 − Eµ1Eµ2 e
−2ωn/ωµ

(ω2
n + Eµ1)(ω2

n + Eµ2)

]

.

(49)
At low temperature T ≪ ωµ we can again replace the
sum over Matsubara frequencies by an integral. In the
limit of strong impurities ωµ ≪ Eµa we obtain

V12 =
∑

µ

uµ

∫ ∞

0

dy

2π
log(1−e−2y) = − π

24

uρ + uσ

r
. (50)

This is the straightforward generalization for spin 1/2
fermions of the result obtained in the previous section,
see Eq. (35). As discussed there, the SPA is valid only if
ωµ ≪ Eµa. Hence we are unable to calculate the inter-
action at shorter distances, where ωµ ≫ Eµa.

As in the case of spinless fermions, we can go beyond
the SPA regime, using the SCHA. In particular we use
S = Seff + Si and S̃ = Seff + S̃i in Eq. (36); and then
we minimize Fvar with respect to Eµa. In the case of
identical impurities, i.e. γ1 = γ2 = γ, the values of Eµα

that minimize Fvar are such that Eµ1 = Eµ2 = Eµ =
πKµE. For large distances, i.e., for ωµ ≪ Eµ, the SCHA
is valid and E is given by

E = 2gρ0

(

1 +
ωc

πKE

)−K/2 (

1 +
ωc

πE

)−1/2

, (51)

where ωc is the high energy cut-off. As in the spin-
less case, we can define the crossover scale as r0 =
max(uµ/Eµ) = vF /πK

2E, since K < 1. In the limit
of very strong impurity backscattering Eµ ≫ ωc, we
recover the SPA result, i.e. Eµ = 2πKµgρ0, and the
crossover scale is r0ρ0 ∼ 1/K2γ. For intermediate impu-
rity strength ωµ ≪ Eµ ≪ ωc, we obtain

Eρ = Eσ/K = 2πgρ0K
1

1−K

(

2πgρ0

ωc

)

1+K
1−K

, (52)

and the crossover scale in this case is given by

ρ0r0 ∼ γ−
2

1−KK− 3
1−K (aρ0)

− 1+K
1−K , (53)
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where a = vF /Kωc is a short-distance cutoff and aρ0 ∼ 1.
Note that, as in the spinless case, the crossover scale
diverges r0 → ∞ when K → 1. For weak interactions,
therefore, the result in Eq. (50) is only valid at very large
distances.

The regime of weak impurity strength can be studied
using perturbation theory. At second order in γα, we find

V12 = −γ1γ2
cos(2pF r)

rK
vFρ

2
0a

K+1πh(K) , (54)

where h(K) ≡ KK Γ(K/2)√
πΓ( K+1

2
) 2F1

(

K
2 ,

K
2 ; K+1

2 ; 1 −K2
)

and 2F1 is the hypergeometric function [27]. The func-
tion h(K) is a smooth, monotonically decreasing function
of K which diverges like h(K) ∼ 2/πK as K → 0 and
approaches one at K = 1. Note that the prefactor of V12

depends on the cut-off procedure. In particular, choos-
ing the cut-off a such that aρ0 = 1/

√
2π, this expression

coincides with the result in Eq. (18) for K = 1. The
perturbative result (57) is valid for r ≪ r0, with r0 given
in Eq. (53). At the crossover scale r = r0 and for K . 1,
|V12| ∼ ωr as in Eq. (50). In conclusion, therefore, the
interaction between two impurities follows the behavior
given by Eq. (54) only for intermediate distances and
weak interactions. By contrast, for large distances, there
is a crossover to the universal Casimir-type interaction
Eq. (50) which depends only on the velocities uρ and uσ.

D. Discussion

As our main result, we have shown that for separa-
tions much larger than the interparticle spacing, the in-
teraction energy of two impurities in a Luttinger liquid
of repulsive fermions (K < 1) is a Casimir-type interac-
tion, given by a very simple universal relation, Eq. (35)
(resp. Eq. (50)) for spinless (resp. spin 1/2) fermions. In
contrast to the result Eq. (19) obtained for strong impu-
rities in a non-interacting Fermi gas it does not contain
Friedel oscillations and is independent of both the im-
purity strengths and the interaction parameter K. The
physical origin of this long range force is thus quite dif-
ferent from the K = 1 case. In the non-interacting gas,
the long range force comes from the polarization of the
ground state. In the strongly interacting case, the Friedel
oscillations of the ground state density around each of the
independent impurity still exist [25] but they are not rel-
evant for the impurity interaction at long distances. In-
stead the result Eq. (35) is best understood as being the
Casimir interaction energy of two mirrors, i.e. impene-
trable impurities, in a phononic bath [28]. This interpre-
tation is supported by the direct calculation of the inter-
action energy of two mirrors in the vacuum fluctuations
of a 1D scalar field which represents the density modes
of the intervening quantum liquid, see, e.g., Ref. [29]. In
fact, a similar result has previously been found for the
force between two infinite mass beads on a string [30].

The Friedel oscillations are relevant for the interaction
between two impurities only in the non-interacting case
or at intermediate distances in the interacting Luttinger
liquid (K < 1), see Eq. (40) and (54).

The resulting picture is consistent with the RG calcu-
lation of Kane and Fisher for a single impurity [9]: when
K < 1 and γ > 0, the backscattering amplitude is renor-
malized to strong coupling in the low energy (or long
distance r ≫ r0) limit. The liquid is thus effectively cut
into pieces, with the impurities acting like perfect mir-
rors for the acoustic modes, resulting in a Casimir force
between them. The scale on which the impurities flow
to strong coupling depends on: i) the initial strength of
the impurities γ and ii) the flow velocity given by 1−K,
see below. When the impurities are strong and the liq-
uid is strongly interacting, the impurities flow quickly to
strong coupling. The associated crossover scale r0 is thus
of the order of the interparticle distance. By contrast,
when the impurities are weak and the liquid is almost
non-interacting, it takes very long distances to reach the
asymptotic regime. Qualitatively, the crossover scale r0
for two weak impurities can already be obtained from the
scaling theory for a single impurity. Indeed, the pertur-
bative flow equation of Kane and Fisher [9] gives as the
running impurity strength:

γeff ≈ γ(r/a)1−K . (55)

The crossover scale r0 then corresponds to the distance
at which the running impurity strength γeff becomes of
order one, i.e. r0ρ0 ∼ γ−1/(1−K), in agreement with
Eq. (39), because ρ0a ∼ 1 and 1/2 < K < 1 for repulsive
fermions with contact interactions. For longer distances,
the impurity reaches strong coupling and cuts the liquid
into disconnected pieces.

III. ONE-DIMENSIONAL BOSE LIQUID

In this section, we discuss the case of two impurities
in a one-dimensional Bose liquid. In particular, we con-
sider 1D bosons with short range repulsive interactions
gBδ(x). As was first shown by Lieb and Liniger [31],
the dimensionless interaction parameter γB ≡ mgB/ρ0

in this problem is inversely proportional to the density.
The strong coupling, Tonks-Girardeau, limit γB ≫ 1 is
thus reached either for strong repulsion or at low den-
sities. Within a low-energy effective Luttinger liquid
description, the Luttinger parameter K for interacting
bosons is larger than 1. It is related to the sound ve-
locity u by u = πρ0/mK. In the weakly interacting,
Gross-Pitaevskii limit γB ≪ 1, the Luttinger parameter
diverges like K ≈ π/

√
γB → ∞. For strong coupling

γB ≫ 1 in turn, one finds K ≈ 1+4/γB → 1. The singu-
lar case of non-interacting bosons (γB = 0) is discussed
separately in Appendix C.
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A. Classical ground state energy and vacuum
fluctuations

Before starting the explicit calculation of the renor-
malized impurity interaction energy V12(r) in the case
of bosons, we discuss a limitation of our quantum hy-
drodynamic approach when treating the Bose case. We
will shortly see, why this limitation was not discussed
in the context of fermions. In quantum hydrodynamics,
the ground state energy E0 is obtained as the sum of
two terms: the classical ground state energy Ecl.

0 and the

quantum vacuum fluctuations Eq.fl.
0 , see e.g. Ref. [32].

The classical ground state energy Ecl.
0 [ρ0(x)] is a func-

tional of the density profile ρ0(x). Now, the presence
of impurities or boundaries in a quantum liquid modifies
the density profile ρ0(x) over distances of the order of the
healing length ξ ≡ 1/

√
mµ. This in turns modifies the

classical ground state energy in addition to the change
in the quantum vacuum fluctuations, which are responsi-
ble for the Casimir-type interaction energy. In the LL
approach, the classical ground state energy is usually
neglected and only the fluctuations above the classical
ground state are taken into account. In a homogeneous
system, the classical ground state energy is just a con-
stant in the Hamiltonian and can therefore be safely ig-
nored. Provided that the healing length is much smaller
than the system size, the effect of the boundaries disap-
pears for bulk properties. In fermionic quantum liquids,
the healing length is of the order of the interparticle dis-
tance 1/ρ0. Therefore, introducing two impurities with a
separation r ≫ 1/ρ0 leaves the classical ground state en-
ergy unchanged. However, in the case of bosons, the heal-
ing length is much larger than the interparticle spacing,
diverging like ξ ∼ K/ρ0 for weak interactions γB → 0.
The condition r ≫ ξ for neglecting the contribution of
the classical ground state energy in the calculation of the
renormalized interaction energy between impurities V12

thus becomes increasingly restrictive for small γB . As we
will see, this leaves us only with an exponentially small
interaction, quite in contrast to the case of fermions.

B. Weak impurities and weakly interacting bosons

In the case of a weakly interacting Bose gas γB ≪ 1
(corresponding to high densities) the Bogoliubov ap-
proach is quantitatively applicable, as was shown long
ago by Lieb and Liniger [31]. The physical reason for
that is, that the healing length ξ ≈ 1/ρ0

√
γB in this limit

is much larger than the average interparticle spacing.
The situation is therefore essentially equivalent to the
weak coupling limit of a 3D Bose-Einstein condensate at
low densities, where interactions between two impurities
have recently been discussed by Klein and Fleischhauer
[33] (the interaction energy V12 is called the conditional
energy shift and denoted by ∆ in this work). The ex-
plicit calculation is based on the Bogoliubov approach
and assumes that the dimensionless impurity strength

γ ≡ mg/πρ0 is much smaller than one. Adapting the
calculation of Ref. [33] to a one-dimensional gas, we ob-
tain

V12(γ, r) ≈ −γ2ρ0ξ
π2ρ2

0

m
exp (−2r/ξ) (56)

to lowest order in γ. The interaction energy between
widely separated impurities in a weakly interacting Bose
gas thus vanishes exponentially on the scale set by the
healing length ξ. As discussed above, this calculation as-
sumes that the impurities modify the density profile only
locally, which is also the physical reason for the vanishing
interaction at r ≫ ξ.

The preceding result can again be qualitatively under-
stood with the help of the scaling theory of Kane and
Fisher [9] for a single weak impurity in a LL. Indeed,
when K > 1, the effective coupling of a single impurity
is renormalized to zero in the low-energy limit. The RG
flow thus starts at high-energy ωc = u/a ∼ µ (corre-
sponding to a short distance cutoff a ∼ ξ) and ends at
a much lower energy ωr = u/r which is set by the sep-
aration r of the two impurities. Similar to the case of
fermions, we define a crossover scale r0 by the condition
that the effective dimensionless impurity strength at this
scale is of order one:

γeff ≈ γ(a/r)K−1 ∼ 1 ⇔ r0 ≈ ξγ1/(K−1) . ξ . (57)

Since γ ≪ 1 for weak impurities and K = π/
√
γB → ∞

due to the weak interaction condition, we find r0 ≈ ξ.
This confirms that there is no interaction between two
weak impurities embedded in a weakly interacting Bose
gas when they are further apart than a distance of the
order of the healing length. More generally, the scaling
theory indicates that there is no long range interaction
between weak impurities even in a strongly interacting
Bose gas, in which K & 1. Of course the limiting case
K = 1 of hard-core bosons is special as is the caseK = ∞
of no interaction at all. The latter case is treated in
Appendix C and shows, that there is no interaction be-
tween the impurities whatever the impurity strength. In
strong contrast to that, the limit of a Tonks-Girardeau
gas of hard-core bosons is equivalent to the case of non-
interacting fermions for properties, depending only on
the modulus of the ground state wavefunction like the
density distribution. On the basis of the calculations in
section II A, one thus expects a long-range interaction of
the form (17) between impurities in a Tonks-Girardeau
gas which exhibits Friedel-like oscillations. In view of the
fact that the momentum distribution of hard-core bosons
is quite different from that of a free Fermi gas, show-
ing no jump at pF , this is a quite remarkable result [34].
Another singular limit, where long-range interactions ap-
pear in a Bose liquid is that of impenetrable impurities
γ = ∞. For arbitrary values ∞ > K > 1 of the inter-
actions, the interacting Bose liquid is then cut in three
disconnected pieces. The impurities thus act as perfect
mirrors for the low energy phonon excitations of the in-
tervening Bose liquid, giving rise to a Casimir interaction
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energy precisely as in Eq. (50) for spinless fermions. It
appears, however, that the limit of impenetrable impuri-
ties at arbitrary energies is nonphysical, imposing strict
Dirichlet boundary conditions on a scalar field [23]. The
Casimir force is thus expected to be restricted to γ = ∞,
while for any finite γ only short range interactions should
survive. Describing these crossovers in detail, clearly re-
quires a quantitative theory of impurity interactions in
1D Bose liquids at arbitrary values of K and γ, an inter-
esting problem for further study.

IV. EXPERIMENTAL REALIZATION AND
DETECTION OF THE CASIMIR-LIKE FORCE

The recent realization of one-dimensional ultracold
Fermi gases in a strong 2D optical lattice [4] provides
a novel opportunity to study Luttinger liquid effects in a
setup with cold gases, e.g. spin-charge separation [35]. In
order to study whether the Casimir interactions discussed
here might be observed in these systems, we consider an
atomic gas of fermions in two hyperfine states. These
two internal states play the role of (iso)spin 1/2 states.
In principle both the sign and the strength of the inter-
action can be controlled using scattering resonances, e.g.
a confinement induced resonance as shown by Olshanii
[36]. For simplicity, we assume that the two spin states
are equally populated N↑ = N↓ = N/2.

Following several recent ideas [5, 33, 37] which involve
trapping single atoms in ultracold gases, we consider an
atomic quantum dot (AQD) like configuration, which
consists of single atoms confined in a tight trap created
either magnetically or optically, e.g. by an additional
optical lattice. We assume that the confining potential
can be adjusted in such a way, that it does not affect the
atoms of the bath. The impurity atom, which is trapped
in a certain internal state |a〉 interacts with the atoms of
the bath through s-wave collisions. In the case where two
such AQDs are embedded in the bath and both impurity
atoms are in state |a〉, the system precisely realizes the
situation of two localized impurities interacting via a 1D
quantum liquid. Provided the liquid consists of spin-1/2
repulsive fermions, we expect that for distance r much
larger than the average interparticle spacing, the inter-
action is of the Casimir form given in Eq. (50). In princi-
ple, using a scattering resonance may allow to reach the
strong impurity regime γ ≫ 1 where the crossover scale
r0 is even smaller than the inter-particle distance 1/ρ0.

A possible way to detect the interaction energy V12(r),
is to do spectroscopy of a single trapped atom as a func-
tion of the distance r to a neighboring trapped atom. In
addition to the mean field line shifts modifying the inter-
nal levels of the impurity atom, the Casimir interaction
produces a line shift depending on distance as 1/r. For a
quantitative estimate of this effect, we compute the en-
ergy (50) for the experimental situation realized in Ref.
[4]. There, about N ∼ 100 40K atoms (per tube) form
an atomic wire of length L ∼ 10 µm. The temperature

Figure 1: Schematic setup of 2 AQDs coupled to a 1D atomic
reservoir. The impurity atoms (see text) in tightly confining
potential interact with the bath when their internal level is
|a >. Here δ is the renormalized detuning and Ω is the Rabi
frequency coming from a laser induced coupling, see section
V.

can be as low as T ∼ 50 nK, which is about one tenth
of the Fermi temperature. The Fermi velocity is of or-
der vF ∼ 2.10−2 m/s and we take uσ + uρ ∼ 2vF . As
the tube length is of the order of 10 µm and the inter-
particle distance 1/ρ0 ∼ 0.1 µm, we assume the inter-
impurity distance to be r ∼ 1 µm, which is larger than
the crossover length for strong impurities. This gives a
Casimir-related line shift of the order of 1 kHz, which is
in an experimentally accessible range. With the param-
eters given above, the characteristic frequency ωr is of
the order of ∼ 3T , which is not much larger than T as
required for the validity of the zero temperature limit in
which the Casimir force is obtained.

V. CONCLUSION

In conclusion, we studied the long-range interaction be-
tween two impurities mediated by the 1D quantum liquid
in which they are embedded. We found that for repulsive
fermions, the impurities interact via a RKKY-like inter-
action at intermediate distances and via a Casimir-like
force at large distances. The crossover scale separating
these two regimes depends on the strength of the im-
purities and on the interactions between fermions. We
proposed an experimental realization of such a system
with atomic quantum dots in an ultra-cold atomic gas
and suggested a way to detect the Casimir-type interac-
tion by spectroscopy of a single atom in an AQD.

An issue which is still open is to understand the inter-
action between impurities in a strongly interacting Bose
liquid. In particular, how does the short-range inter-
action (on the scale of the healing length) turn into a
long-range interactions featuring Friedel oscillations in
the Tonks-Girardeau limit? Another issue is to assess
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the validity of the self-consistent harmonic approxima-
tion (SCHA) used to discuss spin 1/2 fermions in section
II C. Indeed, it is not obvious that the variational ansatz,
which assumes decoupling of the charge and spin modes
in presence of the impurities, is a valid starting point.

In this paper, we studied static impurities. The situ-
ation becomes even more interesting if one has dynamic
impurities, as in an AQD. First, we discuss the possibility
of internal dynamics for the AQD. We have seen that the
characteristic frequencies of vacuum modes (excitations)
responsible for the long-range interactions between AQDs
are limited by ωr. This means that the effective interac-
tion potential between static impurities can be used (in
an adiabatic approximation) for time-dependent impu-
rity strengths γα(t) provided that the interaction prop-
erties change slowly compared with the time scale ω−1

r .
Consider, for instance, the configuration with two AQDs
described previously, see Figure 1 (a similar scheme for
two impurities in a 3D Bose-Einstein condensate is dis-
cussed in Ref. [33]). The two-level impurity atoms can
be described as isospins 1/2 or qubits. A laser can drive
transitions (equivalent to single-qubit gate) between the
two internal levels |a〉 and |b〉. In the adiabatic approx-
imation, the AQD variables are slow and can be taken
out of the integrals so that our previous treatment to
calculate the interaction between two impurities applies.
Thus one can easily write an effective Hamiltonian for
the 2 AQDs in the form

Heff =
∑

α=1,2

(

− δ
2
σ(α)

z + Ωσ(α)
x

)

+
1

2
V12(σ

(1)
z + 1)(σ(2)

z + 1) , (58)

where δ is the (renormalized) detuning, Ω is the (effec-
tive) Rabi frequency coming from the laser induced cou-

pling [5] and σ
(α)
x , σ

(α)
y , σ

(α)
z are the Pauli matrices de-

scribing the isospin 1/2 of each AQD α = 1, 2. The long-
range potential V12 depends, as we have seen, strongly
on the characteristics of the bath and on the distance
between the AQDs. In addition, the case of impurities
with internal dynamics embedded in a spin 1/2 fermionic
liquid is of course also relevant for discussing the RKKY
interaction in Luttinger liquids, as discussed perturba-
tively in [38].

It is also possible to imagine external motion or dy-
namics for the impurities. The argument of adiabaticity
also holds in the case where the distance between the
impurities changes sufficiently slowly. This means that
the Casimir-like interaction could be used, for example,
to create long range attractive forces in mixtures of 1D
fermionic gases. However, when the external dynamics of
the impurities are taken into account on the same footing
as the bath dynamics other effects could reduce, if not
wash out, the Casimir force [39].
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Appendix A: RPA FOR WEAK IMPURITIES IN
AN IDEAL FERMI GAS

In this appendix, we give another derivation of the
weak coupling result (18) using the random phase ap-
proximation (RPA). The interaction between the two im-
purities may be written as the sum of two contributions:
a direct interaction (which is zero in the present case
due to the short range nature of the impurities), and an
indirect interaction induced via the polarization of the
medium. The polarization operator in the Fourier rep-
resentation Π(ωn, q) has a singularity at q = 2pF , which
leads to the appearance of the long range force. Specifi-
cally, we calculate the interaction energy of the two im-
purities using the RPA, which works well whenever only
states with very few particle-hole pairs are excited by the
perturbation, i.e. in the limit γα ≪ 1. For an ideal (spin-
less) Fermi gas the RPA Lagrangian can be represented
as (T = 0 and here we use the real time formalism from
the start):

SRPA =
1

2

∫

dt
∑

k

∑

p

(φ̇†pkφ̇pk − ω2
pkφ

†
pkφpk), (A1)

where ρk =
∑

p(2ωpk)1/2φpk is the RPA expression for

the fermion density, ωpk = (p + k)2/2m − p2/2m is the
energy of the electron-hole pair, and the summation over
the momentum p is limited by the conditions: |p| < pF

and |p+ k| > pF . The interaction of the AQDs with the
liquid can be written as

SRPA
i =

1

2

∑

pk

(2ωpk)1/2(φpkVk + φ†pkV−k), (A2)

where Vk = g1 + g2 exp(ikr). The total RPA action
SRPA+SRPA

i is quadratic, and hence the fields φpk can be
integrated out, so that the effective interaction between
the impurities is given by V12 = − 1

2

∑

k |Vk|2Π(ω = 0, k),
where the polarization operator is:

Π(0, k) = − 2

π

∫ pF

−pF

dp
1

2pk + k2
= − 1

πk
log

∣

∣

∣

∣

k + 2pF

k − 2pF

∣

∣

∣

∣

.

(A3)
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Substituting Vk, performing the integration by trans-
forming the integral along the real k axis into the inte-
grals along the brunch-cut corresponding to the singular-
ity of the log-function, and removing the self energies of
the separated impurities (renormalizing the interaction),
we find:

V12 = −γ1γ2vF

2π

cos(2pF r)

r
, (A4)

in agreement with Eq. (18).

Appendix B: COULOMB BLOCKADE AND
RESONANT TUNNELING

The present paper discusses the interaction energy be-
tween two impurities in an atomic quantum wire (i.e., a
1D quantum liquid made of atoms). In this appendix, we
wish to make contact with related subjects in the field
of mesoscopic conductors (or solid-state quantum wires):
namely Coulomb blockade and resonant tunneling of elec-
trons in a quantum wire with two tunnel junctions or bar-
riers (see, e.g., [9, 26]). For simplicity, we only consider
the case of spinless fermions.

We first consider an atomic quantum wire with
two impurities. When the impurities are strong
(or very far apart), the atomic quantum wire is
cut in three disconnected pieces and we may picture
the low energy behavior of the system as the fol-
lowing structure: left wire/impurity/island(or central
wire)/impurity/right wire. The Casimir effect occurring
in this system is directly related to the energy cost of
transferring a supplementary particle from one of the
wires to the island. In our case (neutral atoms inter-
acting via a short-range potential), this energy cost is a
finite size energy [40] equal to:

πvF /2K
2r . (B1)

With the help of the approximate relation K−2 ≈ 1 +
gf/πvF [9], this energy cost can be seen as the sum of
two contributions: a kinetic energy cost πvF /2r and an
interaction energy cost, resulting from the local interac-
tion with the other particles on the island, gf/2r, where
gf is the forward scattering coupling constant (in the
standard notation of the g-ology, gf = g2 = g4, see [18],
e.g.). Note that the finite size energy is of the order of
the zero-point kinetic energy of a phonon on the island
πvF /2Kr.

In the case of electrons in a solid-state quantum wire
with two tunnel junctions (corresponding to the struc-
ture: left electrode/barrier/island/barrier/right elec-
trode), the Coulomb blockade is due to the energy cost
of transferring a single electron from an electrode to the
island [9, 26]. However, this energy cost is not only
due to the finite size energy πvF /2K

2r (with K−2 ≈
1 + e2/ǫπvF , where e is the electron charge and ǫ is an
appropriate dielectric constant) but also gets an addi-
tional contribution from the charging energy e2/2C of

the capacitors (i.e. the two tunnel junctions), where C is
the sum of the capacitance of each tunnel junction [26].
The total energy cost is equal to πvF /2K

2r+e2/2C. The
charging energy is due to the long-range part of the in-
teraction between electrons and therefore does not arise
in the case of cold atoms interacting via a short-range
potential.

Another subject of comparison between the atomic
quantum wire and the solid-state quantum wire is the
possibility of tunneling resonances across the double bar-
rier structure [9, 26] (see [18] for review). Indeed,
in an atomic quantum wire with two impurities, when
cos(pF r) = 0 [9, 26] a tunneling resonance occur: the
energy cost to add a particle on the island vanishes and
particles can therefore tunnel trough the impurities. The
liquid is no more cut into disconnected pieces and we
do not expect a Casimir effect to occur. Tunneling res-
onances do not appear in our calculations because they
are not captured by the self-consistent harmonic approx-
imation we used, as discussed in Ref. [25] for example.
However such resonances are infinitely sharp at zero tem-
perature [9, 26] and therefore they do not play a major
role and should be easy to avoid experimentally.

Appendix C: IMPURITIES IN AN IDEAL BOSE
GAS

The ideal Bose gas (γB = 0) is a singular case: the
healing length ξ diverges and boundaries are therefore
felt over macroscopic distances. Here using quantum hy-
drodynamics makes no sense, but of course one can ex-
actly solve the problem from first principles (Schrödinger
equation). At zero temperature, all bosons are in the
same single-particle wavefunction ψ0 (the corresponding
many-body wavefunction is just a product or Hartree
state), which is the ground state of the single-particle
Schrödinger equation:

− 1

2m
∂2

xψ0(x)+g[δ(x−r/2)+δ(x+r/2)]ψ0(x) = ǫ0ψ0(x)

(C1)
We assume that the particles are on a ring of length L.
The ground state energy E0 for N bosons is given by
Nǫ0. For g ≥ 0, it is bounded as follows

ǫ0(g = 0, r) ≤ ǫ0(g, r) ≤ ǫ0(g = ∞, r), (C2)

which is an obvious consequence of the Schrödinger equa-
tion. In the following we will show that both bounds
are going to zero in the thermodynamic limit, implying
that E0(g, r) = 0 for all g ≥ 0. Therefore, the interac-
tion energy V12(g, r) ≡ E0(g, r)−E0(g, r → ∞) vanishes
whatever the distance between the impurities.

On the one hand, when the impurity strength is zero
g = 0, the ground state of the single-particle Schrödinger
equation with periodic boundary conditions is just the
constant wavefunction, which has zero energy ǫ0(r, g =
0) = 0. On the other hand, when g = ∞, the wave-
function has to vanish on the location of the impurities,
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implying some bending of the wavefunction and a corre-
sponding cost in kinetic energy. The ground state wave-
function is

ψ0(x) = ψm sin

(

2π(|x| − r/2)

L− r

)

if |x| > r/2

= 0 if |x| < r/2 (C3)

where ψm ≡ ψ0(x = ±(L + r)/4) is the maximum value
of the wavefunction and the energy is:

ǫ0(g = ∞, r) =
1

2m

(

2π

L− r

)2

(C4)

This quantity vanishes in the thermodynamic limit (L→
∞ at fixed density ρ0 = N/L) such that L ≫ r. There-
fore ǫ0(g = ∞, r) = 0 in the thermodynamic limit, for all
r such that r ≪ L. Of course, this conclusion does not
hold for an ideal Fermi gas, because fermions have to oc-
cupy different single-particle states (following the Pauli
principle) and therefore the average energy per particle
does not vanish in the thermodynamic limit.

In conclusion, there is no interaction energy between
two impurities in an ideal Bose gas, provided that the
distance r is much smaller than the ring size L, which is
always satisfied in the thermodynamic limit.
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