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A POSITIVITY PROPERTY OF AMPLE VECTOR BUNDLES

CHRISTOPHE MOUROUGANE, SHIGEHARU TAKAYAMA

Abstract. Using Fujita-Griffiths method of computing metrics on Hodgebundles, we show that for
every semi-ample vector bundleE on a compact complex manifold, and every positive integerk, the
vector bundleSkE ⊗ det E has a continuous metric with Griffiths semi-positive curvature. If E is
ample, the metric can be made smooth and Griffiths positive.

1. INTRODUCTION

We consider a holomorphic vector bundleE on a compact complex manifold, and intend to con-
struct metrics on vector bundles associated toE which would reflect algebraic positivity properties
of E. We prove

Theorem 1.1. Let E be a semi-ample vector bundle on a compact complex manifold.Then for all
positive integerk, the vector bundlesSkE⊗det E have continuous metrics with Griffiths semi-positive
curvature.

Theorem 1.2. Let E be an ample vector bundle on a complex projective manifold. Then for all
positive integerk, the vector bundlesSkE ⊗ det E are Griffiths positive.

Our results provide a weak answer to a question raised by Griffiths on finding an analytic character-
ization of ampleness for vector bundles [9, problem (0.9)].These constructions may help to find some
topological properties of algebraic sub-varieties under ampleness assumptions for the normal bundle
(see for example [8] and [16] part two). The appearance of thedeterminant line bundle has the same
origin than its appearance in the vanishing theorem of Griffiths for the cohomology of ample vector
bundles. On projective spaces, abelian varieties, Grassmanian manifolds theses results were already
proved either by the Castelnuovo-Mumford criterion for global generation or by trying to mimic the
Frobenius morphisms overC ([17], [18]).

The idea to obtain the metric positivity is to construct cyclic coveringsYs of P(E), the variety of
rank one quotients ofE, in order to relate the (sheaf of germs of the) line bundleOE(−1) to the
structure sheaf ofYs. This may be seen as a metric aspect of Ramanujam’s idea to reduce vanishing
theorem to topological properties [19] (see also [15]). Applying Fujita-Griffiths method of computing
metrics on Hodge bundles, we will be able to compute the curvature of direct image of the structure
sheaf ofYs. We next have to deal with the singularities of the gotten metric. It turns out the metric on
the top direct image ofOYs

is semi-negatively curved and that its only singularities are zeros (i.e. may
vanish on non-zero vectors). This is far simpler than general results obtained by Kawamata, Zücker,
Kollár and Cattani-Kaplan-Schimd. Hence, adding metricsbuilt from different properly chosen cyclic
coverings lead to a non degenerate metric on(SkE ⊗ det E)⋆.

After having completed this work, we received a preprint from Bo Berndtsson where he proves
similar results using the subharmonicity properties of families of Bergman kernels [1].

Acknowledgment. The first named author warmely thanks Indranil Biswas for a collaboration in an
attempt to prove similar results.
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2. AMPLENESS AND POSITIVITY

We refer to [12] or [16] for basics about ample vector bundlesand to [9] or [4, chapter VII] for
basics about positive vector bundles. All vector bundles are assumed to be holomorphic.

A vector bundleE on a compact complex manifoldX is said to besemi-ampleif for some positive
integerk, its symmetric powerSkE is generated by its global sections. Associated toE, we have
π : P(E) → X the variety of rank one quotients ofE together with its tautological quotient line
bundleOE(1). The semi-ampleness ofE is rephrased that for everyx ∈ X, every sectionsx of OE(k)
over the fiberP(Ex) extends to a global section ofOE(k) overP(E). This in particular implies that
OE(k) is generated by its global sections. A vector bundleE is said to beampleif its associated line
bundleOE(1) is ample onP(E). This in particular implies the existence of an integerk such that for
everyx ∈ X, every sectionsx of OE(k) over the first infinitesimal neighborhood of the fiberP(Ex)
extends to a global section ofOE(k) overP(E).

A vector bundleE is said to beGriffiths positive, if it can be endowed with a smooth hermitian
metric h such that for allx ∈ X and all non-zero decomposable tensorsv ⊗ e ∈ TXx ⊗ Ex, the
curvature term〈Θ(E, h)(v, v)e, e〉h is positive, whereΘ(E, h) ∈ C∞

1,1(X, Herm(E)) is the curvature
of the Chern connection∇E,h of (E, h). Recall the formula

〈Θ(E, h)ξ, ξ〉
||ξ||2 = −

√
−1∂∂ log ||ξ||2 +

〈∇E,hξ,∇E,hξ〉
||ξ||2 −

√
−1∂||ξ||2 ∧ ∂||ξ||2

||ξ||4(2.1)

≥ −
√
−1∂∂ log ||ξ||2

for a nowhere zero local holomorphic sectionξ of a holomorphic vector bundleE equipped with a
smooth hermitian metrich. The last two terms give the norm atx of the fundamental form of the
inclusionOXξ ⊂ E. A continuous hermitian metrich on a vector bundleb : E → X is said to be
Griffiths positive, if there exists a smooth positive real(1, 1)-form ωX onX such that in the sense of
currents

−
√
−1∂∂ log h(ξ) +

h(∇ξ)

h(ξ)
−

√
−1∂h(ξ) ∧ ∂h(ξ)

h(ξ)2
≥ b⋆ωX ,

whereh is seen as a continuous quadratic function on the total spaceE − X × {0}. At the points
where the metrich is smooth, these two notions of Griffiths positivity coı̈ncide.

The theory of resolution of the∂-equation withL2-estimates for example shows that Griffiths pos-
itivity and ampleness are equivalent for line bundles. Thisimplies through the curvature computation
of OE(1) that Griffiths positive vector bundles are ample. The converse is a problem raised by Grif-
fiths, and solved positively on curves by Umemura [21] using the concept of stability (see also [3]).

Notation and Assumption. In the rest of this paper, we will use the following notations. We let
E → X be a holomorphic vector bundle of rankr > 1 on a compact connected complex manifold
X, andπ : P(E) → X be the associatedPr−1-bundle with the line bundleOE(1). We assumeE is
semi-ample at least, and we take and fix an arbitrary positiveintegerk such thatSkE is generated by
its global sections.

3. CYCLIC COVERS

A reference for this part is [6,§ 3]. By our assumption at the end of§ 2, OE(k) is generated by
its global sections. Then Bertini’s theorem (see for example [11, page 137]) insures that a generic
sections of OE(k) overP(E) is transverse to the zero section (i.e.ds|Ds

: TP(E)|Ds
→ OE(k)|Ds

is
2



surjective), and defines a smooth divisorDs := (s = 0). Let

p = ps : Ys → P(E)

be the cyclic covering ofP(E) obtained by taking thek-th root out ofDs. We intend to study the
morphismπ ◦ p : Ys → X. The space

Ys := {l ∈ OE(1)/lk = s(p(l))}
is a smooth hypersurface of the total spaceOE(1), and the mapp is a finite cover totally ramified
along the zero locusDs of s. The spaceYs may also be described as the spectrum SpecAs of the
algebra

As :=
⊕+∞

i=0OE(−i)

(l⋆ − š(l⋆) , l⋆ ∈ OE(−k))

whereš is the sheaf inclusionOE(−k)
×s→ OE = OP(E). The direct image of the structure sheafOYs

is hencep⋆OYs
= As ≃ ⊕k−1

i=0 OE(−i). Simply note that no negative powerOE(−i) has non-zero
sections on the fibers ofπ to infer that the direct image(π ◦ p)⋆OYs

isOX . This shows that the fibers
of π ◦ p are connected and that the covering spaceYs is therefore connected. One can check by a
local computation that the morphismπ ◦ p is smooth over the setX − Σs of pointsx ∈ X where
s|P(Ex) ∈ Γ(P(Ex),OE(k)) is transverse to the zero section. We shall callΣs the discriminant locus
of π ◦ p.

We will in fact work with the top degree direct image of the structure sheaf. Becausep is a finite
morphism, the spectral sequence of composition of direct image functors reduces to the following:

Rr−1(π ◦ p)⋆OYs
= Rr−1π⋆

(
R0p⋆OYs

)

= Rr−1π⋆

(
⊕k−1

i=0 OE(−i)
)

= ⊕k−1
i=0 π⋆

(
ωP(E)/X ⊗OE(i)

)⋆
(3.1)

= ⊕k−1
i=0 π⋆ (OE(i − r) ⊗ π⋆ det E)⋆

= ⊕k−1
i=r

(
Si−rE ⊗ det E

)⋆
.

Here we have used Serre duality on the fibers of the smooth morphismπ with relative dualizing sheaf
ωP(E)/X = OE(−r) ⊗ π⋆ det E.

4. THE HODGE METRIC

We recall the basics on geometric variations of Hodge structures and Griffiths’s computations ([10,
theorem 6.2]) of the curvature the Hodge metric (see also [20, § 7] and [22, chapter 10]). We also
recall the method of Fujita [7]. Letf : Y → B be a projective and surjective morphism of complex
manifolds having connected fibers. We fix an ample line bundleonY .

4.1. The Hodge metric. Here we assume thatf : Y → B is smooth, in particular we regardf :
Y → B as a smooth family of polarized complex projective manifolds of dimensionn. Fix a non-
negative integerd. The local systemRdf⋆C can be realized as the sheaf of germs of the flat sections
of the holomorphic vector bundleHd

C
associated with the locally free sheaf(Rdf⋆C) ⊗OB endowed

with the flat holomorphic connection∇ : H
d
C

→ Ω1
B ⊗ H

d
C
, the Gauss-Manin connection. By

semi-continuity and Hodge decomposition, the vector spaces Hp,d−p(Yb, C) (b ∈ B) have constant
dimension. By elliptic theory they hence form a differentiable sub-bundleHp,d−p of H

d
C
. Denote by

F
p the differentiable sub-bundle⊕i≥pH

i,d−i of H
d
C
. By a theorem of Griffiths, theFp have natural

3



structure of holomorphic sub-vector bundles ofH
d
C

and they satisfy the transversality condition for the
Gauss-Manin connection∇F

p ⊂ Ω1
B⊗F

p−1. A relative Dolbeault theorem identifiesEp := F
p/Fp+1

with the holomorphic vector bundle associated with the locally free sheafRd−pf⋆Ω
p
Y/B.

We now recall the construction of the hodge metric on the primitive part ofEp. We fix a familyηb

(b ∈ B) of polarizations given by a section ofR2f⋆Z. The bilinear form on the fibers ofHd
C

given by

S(c1, c2) := (−1)
d(d−1)

2

∫

Yb

ηn−d
b ∧ c1 ∧ c2

is non-degenerate (hence defines a pseudo-metric) on the primitive partPd := Ker(ηn−d+1 : H
d →

H
2n−d+2) (which is also a differentiable sub-bundle ofH

d). The differentiable subbundlesHp,d−p

andH
p′,d−p′ are orthogonal unlessp + p′ = d and

h(c) := (
√
−1)p−qS(c, c)

defines a positive definite metric onHp,d−p
prim := H

p,d−p ∩ P
d. We setFp

prim := F
p ∩ P

d. Those
bundle also have natural holomorphic structures and satisfy the transversality condition for the in-
duced Gauss-Manin connection. We also setE

p
prim := F

p
prim/Fp+1

prim. The fiber-wise isomorphism of

(Ep
prim)b with Hp,d−p

prim (Yb, C) ⊂ Hd(Yb, C) enables to equip the holomorphic vector bundleE
p
prim with

a smooth positive definite hermitian metric, called the Hodge metric.
We need some definitions in order to express the curvature of the corresponding Chern connection.

Denote by∇p
: E

p → Ω1
B ⊗ E

p−1 theOB-linear map built by first lifting toFp applying the Gauss-
Manin connection and projecting toEp−1. The second fundamental form inC1,0

∞ (B, Hom(Fp,Hd
C
/Fp))

of the sequence
0 → F

p → H
d
C → H

d
C/Fp → 0

with respect to the Gauss-Manin connection (or equivalently with the flat metric onHd
C
) actually

induces∇p
: E

p → Ω1
B ⊗ E

p−1. Formulae for the curvature of quotient hermitian holomorphic
vector bundles then lead to

Theorem 4.1. [10, theorem 5.2]The curvatureΘ(Ep
prim) of the holomorphic vector bundleEp

prim

endowed with its Hodge metric is given by

〈Θ(Ep
prim)(V, V )σ, σ〉Hodge = 〈∇p

V σ,∇p

V σ〉Hodge − 〈(∇p+1

V )⋆σ, (∇p+1

V )⋆σ〉Hodge

whereV is a local vector field onB andσ a local section ofEp.

We now apply this result in the case of the family of the cycliccoversπ ◦ p : Ys → X obtained
by taking thek-th root of a sections of OE(k). We have to restrict the study over Zariski open sets
Y 0

s := (p ◦ π)−1(X − Σs) andX0 := X − Σs so thatπ ◦ p : Y 0
s → X0 becomes a smooth family.

Then, since∇0
vanishes, the above theorem implies the following

Corollary 4.2. The vector bundleE0
prim = E

0 = Rr−1(π ◦ p)⋆OY 0
s /X0 = ⊕k−1

i=r (Si−rE ⊗ det E)
⋆
|X0

with the Hodge metric is Griffiths semi-negative.

4.2. Singularities of the Hodge metric. We now deal with the general case, namelyf : Y → B may
not be smooth. In this section we will give rough descriptions of the singularities. Detailed results
need explicit form of the isomorphisms in (3.1) and will be given in§ 5.3. We therefore assume that
the baseB is one dimensional.

The Hodge metric on the direct image of the relative canonical sheaf is described as follows. Letb ∈
B be a point and let(U, t) be a local coordinate centered atb = {t = 0}. A sectionω ∈ Γ(U, f⋆KY/B)

4



– when regarded as a section inΓ(U, f⋆Hom(f ⋆KB, KY )) and applied tof ⋆dt – gives a section of
KY onf−1(U) which we denote byω · dt. If ϕb ∈ Γ(Yb, KYb

) fulfills the relationω · dt = ϕb ∧ f ⋆dt
overYb (which amounts to saying that in the differentiable trivializationY|U ≃ Yb × U , the sectionω
is sent toϕb), then the Hodge norm atb ∈ B of the sectionω is

||ω||2Hodge = (
√
−1)n(−1)

n(n−1)
2

∫

Yb

ϕb ∧ ϕb,

heren = dim Y − 1. Fujita checked that in this setting in casedim B = 1 the Hodge metric on
f⋆KY/B is bounded from below by a positive quantity and hence that the only possible singularities
of the Hodge metric onf⋆KY/B are poles (see [7, lemma 1.12]).

We just give the typical example which occurs for a local model of our cyclic covers (for some
positive integerm).

π ◦ p : Ys = {(t, z, l) ∈ C
3/lk = t + zm} → X = {t ∈ C}

(t, z, l) 7→ t

The cotangent bundleΩ1
Ys

is generated bydt, dz, dl subject to the relationklk−1dl−dt−mzm−1dz =
0. If ω · dt is written asη(z, l)dz ∧ dl for a holomorphic functionη(z, l), thenϕ0 may be chosen
to beϕ0 = k−1l1−kη(z, l)dz with a pole of orderk − 1 on the fiber overt = 0 and no singularities
elsewhere.

Now, note that over smooth fibers off , the Serre dual of an orthonormal basis(ωi) of (Γ(Yb, KYb
), Hodge)

is (ωi), which is an orthonormal basis of(H0,n(Yb, C), Hodge). Hence the Hodge metric onRr−1(π◦
p)⋆OYs

may acquire zeros at the pointsx over which the sections|P(Ex) is not transverse to the zero
section. This can also be inferred from the formula in§ 5.3 which furthermore proves the continuity
of the metric onRr−1(π ◦ p)⋆OYs

.

5. EXPLICIT ISOMORPHISM

We make explicit the isomorphisms in (3.1) in terms of Dolbeault isomorphism and Serre duality
for metrized vector bundles. This enables us to describe theHodge metric. We keep the notation and
assumption forE → X made at the end of§ 2. We furthermore fix a reference hermitian metricg on
E and then naturally onE⋆ and onOE(i).

5.1. Calculus lemma. To make Serre duality on a projective space explicit, we posean elementary
calculus lemma. We consider a projective spacePr−1 with a homogeneous coordinates[a] = (a1 :
. . . : ar) and with the Fubini-Study Kähler formΩ. Let zj = aj/a1 (2 ≤ j ≤ r) be a standard local
coordinate. We can write the volume form as

Ωr−1

(r − 1)!
=

(√
−1∂∂ log |a|2

)r−1

(2π)r−1(r − 1)!
= ǫr

dz2 ∧ dz3 ∧ · · · ∧ dzr ∧ dz2 ∧ dz3 ∧ · · · ∧ dzr

(1 + ||z||2)r
,

where we have setǫr := (
√
−1)r−1(−1)

(r−1)(r−2)
2 /(2π)r−1 and||z||2 =

∑r
j=2 |zj |2.

Lemma 5.1. Let m be a positive integer, and letI = (i1, i2, · · · , im) andJ = (j1, j2, · · · , jm) be
m-tuples of integers in{1, 2, · · · , r}.

(1) If I andJ are not equal modulo change of order, it follows from parity reasons that
∫

[a]∈Pr−1

ai1aj1ai2aj2 · · ·aimajm

|a|2m

Ωr−1

(r − 1)!
= 0.
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(2) If I andJ are equal modulo change of order, then
∫

[a]∈Pr−1

|a1|2m1 |a2|2m2 · · · |ar|2mr

|a|2m

Ωr−1

(r − 1)!
=

∏r
i=1 mi!

(r − 1 + m)!
.

Here the integeri appearsmi times inI (hence inJ), consequently0 ≤ mi ≤ m andm = m1 +
· · · + mr. One uses a convention0! = 1.

5.2. Explicit isomorphism. Since the problem : isomorphism in (3.1) is local onX, it is enough to
argue on a small open neighborhoodU of a fixed pointx0 ∈ X. Choose a local frame(ej)1≤j≤r for E
on U . A vector ofE (resp. of the dual bundleE⋆) will be denoted bya ∈ E (resp.a⋆ ∈ E⋆). Hence
a point onP(E) will be denoted by[a⋆] ∈ P(E).

We first describe the isomorphismSi−rE ⊗ det E ∼= π⋆(KP(E)/X ⊗ OE(i)). The isomorphism
Si−rE → π⋆OE(i − r) is given overx ∈ U with a⋆ ∈ E⋆

x by

Si−rEx → (π⋆OE(i − r))x = H0(P(Ex),OE(i − r)|P(Ex))

f 7→
(

P(Ex) → OE(i − r)|P(Ex)

[a⋆] 7→ 〈f, a⋆i−r〉(a⋆)−i+r

)
.

Here we denote bya⋆i−r the(i − r)-fold symmetric product, and by〈f, a⋆i−r〉 the duality pairing. A
vector of the bundleπ⋆(KP(E)/X ⊗OE(i)) is represented by a relative holomorphic(r−1)-from with
values inOE(i) with respect to a local coordinate of the fibers. We take a point [a⋆

0] ∈ P(Ex0) with
a⋆

0 =
∑r

j=1 a0je
⋆
j , and let assume thata01 6= 0 (this is not a special assumption). On a neighborhood

of [a⋆
0] ∈ P(E), we use a standard local coordinate on the fiber:zj = aj/a1 (2 ≤ j ≤ r) for

[a⋆] = [
∑r

j=1 aje
⋆
j ] ∈ P(E). There exists a canonical mapq : E⋆ − X × {0} → P(E) which is

expressed in local coordinates around a reference point(x0, a
⋆
0), by

q(x, a⋆) = q(x,
∑

aje
⋆
j ) = (x, [a1 : · · · : ar]) = (x, z2, . . . , zr).

The relative Euler sequence :

0 → OE(−1)
ι→ π⋆E⋆ p→ TP(E)/X ⊗OE(−1) → 0

– which is built from the mapq : E⋆ − X × {0} → P(E) – is given by

p

(
x, [a⋆],

∑

j≥1

bje
⋆
j

)
=

(
x, [a⋆],

∑

j≥2

bja1 − b1aj

a2
1

∂

∂zj

⊗ a⋆

)
.

Sincep(a1e
⋆
j ) = ∂

∂zj
⊗ a⋆, the natural determinant isomorphism for the relative Euler sequence reads

det TP(E)/X ⊗OE(−r) → π⋆ det E⋆

∂

∂z2
∧ ∂

∂z3
∧ · · · ∧ ∂

∂zr
⊗ (a⋆)r 7→

(
∑

j≥1

aje
⋆
j

)
∧ a1e

⋆
2 ∧ a1e

⋆
3 ∧ · · · ∧ a1e

⋆
r

= ar
1e

⋆
1 ∧ e⋆

2 ∧ · · · ∧ e⋆
r .

By composition, we have an isomorphism

Si−rE ⊗ det E → π⋆

(
KP(E)/X ⊗OE(i)

)

f ⊗ e1 ∧ e2 ∧ · · · ∧ er 7→
(
[a⋆] 7→ 〈f, a⋆i−r〉ar

1dz2 ∧ dz3 ∧ · · · ∧ dzr ⊗ (a⋆)−i
)
.

6



Let (eI)|I|=i−r be a local frame ofSi−rE induced from(ej)1≤j≤r. Then by Lemma 5.1, the dual
basis of(eI ⊗ e1 ∧ e1 ∧ · · · ∧ er)|I|=i−r is represented through the integration along the fibers of
π : P(E) → X, up to some positive constant multiple, by the following setof ∂-closed relative
(0, r − 1)-forms with values inOE(−i) :

[a⋆] 7→ 〈eI , a⋆i−r〉ar
1ǫr

dz2 ∧ dz3 ∧ · · · ∧ dzr

(1 + ||z||2)r
⊗ (a⋆)i

||a⋆||2i
g⋆

.

We secondary write the isomorphism betweenRr−1(π ◦ p)⋆OYs
andRr−1π⋆ (R0p⋆OYs

) in Čech
cohomology. There is a standard Stein coveringW = {Wj}r

j=1 of π−1(U) with Wj = {[a⋆] ∈
P(E); a⋆ =

∑r
j=1 aje

⋆
j ∈ E⋆

x, x ∈ U, aj 6= 0}, providedU is a unit ball in a local chart. Then

Rr−1π⋆

(
R0p⋆OYs

)
(U) = Hr−1(π−1(U),⊕k−1

i=0 OE(−i)) = Ȟr−1(W,⊕k−1
i=0 OE(−i)).

We use a Stein coveringp−1W = {p−1(Wj)}r
j=1 of (π ◦ p)−1(U) to computeRr−1(π ◦ p)⋆OYs

.
Because the higher direct images ofOYs

by p vanish, the Stein coveringp−1W is acyclic for the
p⋆-functor. Then,

Rr−1(π ◦ p)⋆OYs
(U) = Hr−1((π ◦ p)−1(U),OYs

) = Ȟr−1(p−1W,OYs
).

The isomorphism betweeňHr−1(W,⊕k−1
i=0 OE(−i)) and Ȟr−1(p−1W,OYs

) is given by pull back,
viewing elements ofOE(−i) as relative homogeneous polynomials of degreei on the total space of
OE(1). The correspondance betweenČech and Dolbeault cohomologies can be made explicit using
a partition of unity as in [2, II proposition 9.8]. We find an explicit isomorphism as follows.

Lemma 5.2. The following map describes the isomorphism in (3.1) :

⊕k−1
i=r Si−rE⋆ ⊗ det E⋆ → Rr−1(π ◦ p)⋆OYs

e⋆
I ⊗ e⋆

1 ∧ e⋆
2 ∧ · · · ∧ e⋆

r 7→
(

(x, [a⋆], l) 7→ ǫr〈li, (a⋆)i〉p⋆ 〈eI , a⋆i−r〉ar
1dz2 ∧ dz3 ∧ · · · ∧ dzr

||a⋆||2i
g⋆(1 + ||z||2)r

)
.

5.3. Singularities of the Hodge metric (explicit formula). In our case:π ◦ p : Ys → X, the
singularities of the Hodge metric can be described more explicitly. We keep the notations of the
previous paragraph.

In the local frame(a⋆)−k for OE(k), the sections ∈ H0(P(E),OE(k)) is given by a local holo-
morphic functionσ = σ(x, z2, . . . , zr) ass([a⋆]) = σ · (a⋆)−k. OnYs the equalitylk = s([a⋆]) reads
λk = σ, whereλ = 〈l, a⋆〉 is the local coordinates on the fibers ofOE(1). Then by Lemma 5.2, after
integrating along the fibers ofp, the Hodge metrichs(e

⋆
I ⊗ e⋆

1 ∧ e⋆
2 ∧ · · · ∧ e⋆

r) on a neighborhoodU
of x0 ∈ X is of the form, up to some positive constant multiple,

x 7→ k

∫

[a⋆]∈Pr−1(Ex)

|〈eI , a
⋆i−r〉|2|a1|2r|σ| 2i

k

||a⋆||4i
g⋆

Ωr−1

(r − 1)!

for x ∈ U − Σs, whereΩ denotes the relative Fubini-Study Kähler form with respect to π : P(E) →
X. The local expression onYs whereσ has ak-th root may serve to check that the integrand is
homogeneous ina⋆ and that the Hodge metrichs is smooth onX−Σs. The Hodge metrichs is initially
defined onRr−1(π◦p)⋆OYs|X−Σs

as in§ 4.1. The above explicit formula onX−Σs also describes the
behavior ofhs aroundΣs. Thanks to this description, it is possible to extendhs as a continuous (but
maybe degenerate) hermitian metric onRr−1(π◦ p)⋆OYs

by the same formula also atx ∈ U ∩Σs. We
also call this continuous extensionhs the Hodge metric onRr−1(π◦p)⋆OYs

= ⊕k−1
i=r Si−rE⋆⊗det E⋆.
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6. PROOF OFTHEOREMS ; AMPLENESS AND POSITIVITY

Proof of Theorem 1.1.Let E be a semi-ample vector bundle of rankr > 1 on a compact complex
manifoldX. We take an arbitral positive integerk so thatSkE is generated by its global sections.

By the explicit expression in§ 5.3, Hodge metrics on⊕k−1
i=r (Si−rE ⊗ det E)

⋆ may acquire zeros
at the pointsx over which the sections|P(Ex) is identically zero. We now explain how the semi-
ampleness assumption on the vector bundleE helps to remove those singularities of the Hodge metric.
For every pointx in X, we choose a generic sectionsx of OE(k) over the fiberP(Ex) transverse to
the zero section. We extend the sectionsx to a global section ofOE(k) overP(E) and take a generic
section close to this extension. It will be transverse to thezero section on each fiber of points in a
neighborhood ofx, because this is an open condition. This shows that on the compact manifoldX,
adding a finite number of Hodge metricshα on ⊕k−1

i=r (Si−rE ⊗ det E)
⋆ seen as the direct image

Rr−1(π ◦ pα)⋆OYα
for different covering mapspα : Yα = Ysα

→ P(E) of degreek, we get a
continuous non-degenerate (i.e. positive on every non-zero vector) hermitian metrich =

∑ℓ
α=1 hα.

The metrichα is continuous onX, and smooth (as a Hodge metric on a smooth family) and non-
degenerate outside the discriminant locusΣsα

. The set of pointsx ∈ X where one of the sections
sα|P(Ex) is not transverse to the zero section is a proper Zariski closed subset ofX, that we will denote
by Σh := ∪αΣsα

.
Next let us discuss the curvature property on each direct summandSi−rE⊗det E for i = r, . . . , k−

1. Take a pointx0 in X − Σh, a non-zero vectorξ0 ∈ (Si−rE ⊗ det E)
⋆
x0

, and a nowhere zero local
holomorphic sectionξ ∈ Γ(U, (Si−rE ⊗ det E)

⋆
) achieving the valueξ0 at x0 and normal atx0 for

the metrich (i.e.∇hξ(x0) = 0). Then, the last two terms in the formula (2.1)

〈Θ((Si−rE ⊗ det E)
⋆
x0

, h)ξ, ξ〉
||ξ||2 = −

√
−1∂∂ log ||ξ||2h +

〈∇hξ,∇hξ〉
||ξ||2 −

√
−1∂||ξ||2 ∧ ∂||ξ||2

||ξ||4

vanish atx0. Now, Corollary 4.2: Griffiths curvature formula forRr−1(π ◦ pα)⋆OYα|X−Σh
asserts that

the functionlog ||ξ||2hα
– whose complex Hessian (or Levi form) is the opposite of the curvature of

a line sub-bundle of(Si−rE ⊗ det E)
⋆ – is plurisubharmonic onU . It then follows thatlog ||ξ||2h =

log(
∑

α ||ξ||2hα
) is plurisubharmonic onU . This gives the Griffiths semi-negativity of(Si−rE⊗det E)⋆

on X − Σh. Sinceh is continuous andΣh is an analytic subset (of zero Lebesgue measure), we can
conclude that the dual continuous metrich⋆ onSi−rE ⊗det E is Griffiths semi-positive on the whole
of X. �

Remark6.1. We can take the integerk large enough to make the rank ofSkE exceed the dimension
of X. This together with the generation by global sections ensure that a generic sectionsX of SkE
has no zero onX (see for example [13, II, ex 8.2]). No fiber ofπ is hence contained in the divisor
Ds of zeros of the sections ∈ H0(P(E),OE(k)), which is associated withsX via the isomorphism
SkE ∼= π⋆OE(k). (Then we can also see, by a local computation, that every irreducible component
of singular fibers ofπ ◦ p has multiplicity one.) In the formula in§ 5.3, if s is not identically zero
on Pr−1 over a pointx, the right hand side integral (the Hodge norm atx) is not zero. Hence the
Hodge metric associated to the coveringYs is non-degenerate on the whole ofX. The metrich = hs

is continuous onX, and smooth (as a Hodge metric on a smooth family) outsideΣs. This gives a
slight simplication of the proof of Theorem 1.1.
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Proof of Theorem 1.2.We now assume thatE is ample. Let us recall Legendre-type formula for a
metrich =

∑ℓ
α=1 hα on (Si−rE ⊗ det E)⋆ gotten from different cyclic coveringsYsα

(for a (1, 0)-
form u, |u|2 denotes

√
−1u ∧ u) :

√
−1∂∂ log(

∑

α

||ξ||2hα
) =

∑
α ||ξ||2hα

√
−1∂∂ log ||ξ||2hα∑

α ||ξ||2hα

+

∑
α<β

∣∣∣∂ log ||ξ||2hα
− ∂ log ||ξ||2hβ

∣∣∣
2

||ξ||2hα
||ξ||2hβ

(
∑

α ||ξ||2hα
)2

.

Applying Griffiths curvature formula (Corollary 4.2) for individual covering and the formula (2.1) for
a line subbundle we infer that in the right hand side, the firstterm is semi-positive. We need to add
further Hodge metricshα to make the second term – hence the left hand side – strictly positive.

The explicit expression in§ 5.3 will help to translate the algebraic ampleness assumption onE into
a positivity property for a well chosen metric onSi−rE ⊗det E. We may first assume that the chosen
local frame(ej)1≤j≤r for E is normal atx0 ∈ X for the fixed metricg onE. Hence, denoting byπ⋆

the push forward of currents byπ : P(E) → X – in other words, the integration along the fibers of
the proper submersionπ –, we have

∂ log hs(e
⋆
I ⊗ e⋆

1 ∧ e⋆
2 ∧ · · · ∧ e⋆

r) = 2iπ⋆

(
|〈eI , a

⋆i−r〉|2|a1|2r|σ| 2i
k
−1

||a⋆||4i
g⋆

∂σ ∧ Ωr−1

(r − 1)!

)
.

We now take a positive integerk so large that the map

H0
(
P(E),OE(k)

)
→ H0

(
P(E),OE(k) ⊗ π⋆(OX/M2

x)
)

is surjective for everyx ∈ X. By the compactness ofX, we can henceforth choose enough, but
a finite number of sectionssα ∈ H0(P(E),OE(k)) to ensure positivity in all the directions in the
Legendre formula. This gives continuous hermitian metricson SkE ⊗ det E with Griffiths positive
curvature. Using a regularization process as described in [18] these metrics may be smoothed keeping
Griffiths positivity of the curvature. �

Remark6.2. Griffiths [10, proposition 2.16] showed that the operator∇p
: E

p → Ω1
B ⊗ E

p−1 can
be expressed as a cup product with the Kodaira-Spencer classρ ∈ Ω1

B,b ⊗ H1(Yb, TYb) of the family
f : Y → B coupled with a natural pairing. In our setting, this in turn can be related with the
infinitesimal displacement of the hypersurfacesDs,x of P(Ex) given by the vanishing of the section
s|P(Ex), namely (see [14, chapter 5.2 (c)])

TX → H0(Ds,x,O(Ds,x)|Ds,x
)
(

δ⋆

→ H1(Ds,x, TDs,x)
)

v 7→ (∂ṽs)|Ds,x

(
7→ ρ(v)

)

whereṽ is a holomorphic vector field liftingv on P(Ex). The mapδ⋆ is the coboundary map in the
long exact sequence associated with the short exact sequence for the normal bundle of the divisorDs,x

0 → TDs,x → TP(Ex)|Ds,x
→ O(Ds,x)|Ds,x

→ 0.

Our computations make explicit the idea thatE being ample, the sectionss|P(Ex) move sufficiently to
make the operator∇p

: E
p → Ω1

B ⊗ E
p−1 have non-zero contribution in the curvature formula.
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