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A POSITIVITY PROPERTY OF AMPLE VECTOR BUNDLES

CHRISTOPHE MOUROUGANE, SHIGEHARU TAKAYAMA

Abstract. Using Fujita-Griffiths method of computing metrics on Hotigadles, we show that for
every semi-ample vector bundieon a compact complex manifold, and every positive intégéne
vector bundleS*E @ det E has a continuous metric with Griffiths semi-positive cunvat If £ is
ample, the metric can be made smooth and Griffiths positive.

1. INTRODUCTION

We consider a holomorphic vector bundleon a compact complex manifold, and intend to con-
struct metrics on vector bundles associatedtarhich would reflect algebraic positivity properties
of E. We prove

Theorem 1.1. Let £ be a semi-ample vector bundle on a compact complex maniididn for all
positive integek, the vector bundleS* Exdet £ have continuous metrics with Griffiths semi-positive
curvature.

Theorem 1.2. Let £ be an ample vector bundle on a complex projective manifoldenTfor all
positive integek, the vector bundle§*E  det E are Griffiths positive.

Our results provide a weak answer to a question raised bfit@sibn finding an analytic character-
ization of ampleness for vector bundI€s [9, problem (0.Bhlese constructions may help to find some
topological properties of algebraic sub-varieties unaeplaness assumptions for the normal bundle
(see for exampld]8] and[|L6] part two). The appearance ofléterminant line bundle has the same
origin than its appearance in the vanishing theorem of @rgfior the cohomology of ample vector
bundles. On projective spaces, abelian varieties, Gragamaanifolds theses results were already
proved either by the Castelnuovo-Mumford criterion forlgdbgeneration or by trying to mimic the
Frobenius morphisms ovét ([[L7], [L8]).

The idea to obtain the metric positivity is to construct aycloveringsY; of P(E), the variety of
rank one quotients of’, in order to relate the (sheaf of germs of the) line bur@lg—1) to the
structure sheaf of;. This may be seen as a metric aspect of Ramanujam’s ideauoaednishing
theorem to topological propertigs [19] (see alsd [15]). Ky Fujita-Griffiths method of computing
metrics on Hodge bundles, we will be able to compute the t¢urgaf direct image of the structure
sheaf ofY,. We next have to deal with the singularities of the gotternrimelt turns out the metric on
the top direct image ay, is semi-negatively curved and that its only singularitiesszeros (i.e. may
vanish on non-zero vectors). This is far simpler than gdmesallts obtained by Kawamata, Ziicker,
Kollar and Cattani-Kaplan-Schimd. Hence, adding metria$t from different properly chosen cyclic
coverings lead to a non degenerate metri¢ 8ht © det £)*.

After having completed this work, we received a preprintrirBo Berndtsson where he proves
similar results using the subharmonicity properties ofifees of Bergman kernelg]1].

AcknowledgmenfThe first named author warmely thanks Indranil Biswas fosleboration in an

attempt to prove similar results.
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2. AMPLENESS AND POSITIVITY

We refer to [IPR] or [16] for basics about ample vector bundied to [P] or [#, chapter VII] for
basics about positive vector bundles. All vector bundlesaaisumed to be holomorphic.

A vector bundleE on a compact complex manifold is said to besemi-ampléf for some positive
integerk, its symmetric powelS* £ is generated by its global sections. Associated’tove have
m : P(F) — X the variety of rank one quotients &f together with its tautological quotient line
bundleOx(1). The semi-ampleness éfis rephrased that for everye X, every section, of Og(k)
over the fibefP(E,) extends to a global section 6f; (k) overP(E). This in particular implies that
Og(k) is generated by its global sections. A vector burfdlis said to beampleif its associated line
bundleOg(1) is ample orP(E). This in particular implies the existence of an integesuch that for
everyx € X, every sectiors, of Og(k) over the first infinitesimal neighborhood of the fil®(~,)
extends to a global section 6%z (k) overP(E).

A vector bundleF is said to beGriffiths positive if it can be endowed with a smooth hermitian
metric i such that for alke € X and all non-zero decomposable tensors ¢ € TX, ® E,, the
curvature term©(E, h)(v, v)e, )y, is positive, wheré(E, h) € CP5 (X, Herm(E)) is the curvature
of the Chern connectioW z , of (E, h). Recall the formula

(O(F, h)§, €) (Vené, Venf)  V=10[¢]° A OJ¢J?

2.1
1) 12 B EE

—V-1dDlog ¢ +
> —V/-1Dlog|¢[?

for a nowhere zero local holomorphic secti9f a holomorphic vector bundl& equipped with a
smooth hermitian metrié. The last two terms give the norm atof the fundamental form of the
inclusionOx¢ C E. A continuous hermitian metrik on a vector bundlé : F — X is said to be
Griffiths positive if there exists a smooth positive rgal 1)-form wx on X such that in the sense of
currents

h(VE)  V=10h(§) A Oh(§)
h(€) h(€)?

whereh is seen as a continuous quadratic function on the total spaceX x {0}. At the points
where the metrié is smooth, these two notions of Griffiths positivity coitei
The theory of resolution of th@-equation withZ?-estimates for example shows that Griffiths pos-
itivity and ampleness are equivalent for line bundles. Tiniglies through the curvature computation
of Og(1) that Griffiths positive vector bundles are ample. The coswés a problem raised by Grif-
fiths, and solved positively on curves by Umemurg [21] usirggdoncept of stability (see aldd [3]).
Notation and Assumptionin the rest of this paper, we will use the following notason\e let
E — X be a holomorphic vector bundle of rank> 1 on a compact connected complex manifold
X,andr : P(E) — X be the associate®f —'-bundle with the line bundl®z(1). We assumé is
semi-ample at least, and we take and fix an arbitrary posittegerk such thatS*E is generated by
its global sections.

—V/—=1D log h(€) +

Z b*an

3. CyCLIC COVERS

A reference for this part i]6; 3]. By our assumption at the end 9@, Oz (k) is generated by
its global sections. Then Bertini’s theorem (see for exanfpll, page 137]) insures that a generic

sections of Og (k) overP(E) is transverse to the zero section (id8,p, : TP(E) p, — Op(k)p, is
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surjective), and defines a smooth dividoy := (s = 0). Let
p=ps Yy — P(E)

be the cyclic covering oP(F) obtained by taking thé-th root out of D;. We intend to study the
morphismr op : Y, — X. The space

Y, = {le Op(1)/1" = s(p(1))}
is a smooth hypersurface of the total sp&g(1), and the map is a finite cover totally ramified
along the zero locu®), of s. The spac&’; may also be described as the spectrum Speof the
algebra
L5 0p(—1)
(I =35(7), I* € Op(—k))

wheres is the sheaf inclusio® g (—k) =05 = Op(g). The direct image of the structure sheaf,
is hencep, Oy, = A, ~ @ 1Og(—i). Simply note that no negative powé;(—i) has non-zero
sections on the fibers afto infer that the direct imager o p), Oy, is Ox. This shows that the fibers
of m o p are connected and that the covering speceés therefore connected. One can check by a
local computation that the morphismo p is smooth over the seX — X, of pointsz € X where
sip(e.) € [(P(EL), Or(k)) is transverse to the zero section. We shall Zalthe discriminant locus
of 7 o p.

We will in fact work with the top degree direct image of theustiure sheaf. Becaugais a finite
morphism, the spectral sequence of composition of direaggrfunctors reduces to the following:

R Y (mop),Oy. = R 'x, (ROP*OYS)
= R (@12 0p(-1))
(3.1) = B (we(pyx © Op(i))”
= O l71 (Op(i —r) @ " det E)*
= & (STE®det E)".
Here we have used Serre duality on the fibers of the smoothhmsonar with relative dualizing sheaf
wpp)/x = Op(—r) ® 7 det E.

Ag =

4. THE HODGE METRIC

We recall the basics on geometric variations of Hodge sirestand Griffiths’s computationg$ (J10,
theorem 6.2]) of the curvature the Hodge metric (see dl3p§2Q and [22, chapter 10]). We also
recall the method of Fujitd]7]. Let : Y — B be a projective and surjective morphism of complex
manifolds having connected fibers. We fix an ample line buodl¥.

4.1. The Hodge metric. Here we assume thgt: Y — B is smooth, in particular we regarg :

Y — B as a smooth family of polarized complex projective manigadd dimensiom. Fix a non-
negative integed. The local systenR? f,C can be realized as the sheaf of germs of the flat sections
of the holomorphic vector bundH¢ associated with the locally free shé&? f,C) ® Op endowed
with the flat holomorphic connectiok : H — QL @ HZ, the Gauss-Manin connection. By
semi-continuity and Hodge decomposition, the vector spate (Y, C) (b € B) have constant
dimension. By elliptic theory they hence form a differebteasub-bundldi?<-? of HZ. Denote by

F? the differentiable sub-bundle;~,H"*?~ of H%. By a theorem of Griffiths, th&? have natural
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structure of holomorphic sub-vector bundledf and they satisfy the transversality condition for the
Gauss-Manin connectionF? C QL @ F*~1. A relative Dolbeault theorem identifi@’ := F? /Frt!
with the holomorphic vector bundle associated with thellgdeee sheafR¢—» f*Qf// B

We now recall the construction of the hodge metric on the piepart of E. We fix a family,
(b € B) of polarizations given by a section & f,Z. The bilinear form on the fibers @ given by

d(d—1) n—
S(c1,c) i=(—1)" 2 / A el A
Yy

is non-degenerate (hence defines a pseudo-metric) on thiipeipartP? .= Ker(n"~ ¢! : HY —
H?2"~4+2) (which is also a differentiable sub-bundle Hf'). The differentiable subbundldg?<-»
andH?-4*" are orthogonal unlegs+ p’ = d and

h(c) = (v—1)""15(c, )

defines a positive definite metric di’5 ” := H»4? 0 P We setF? . = F* NP’ Those
bundle also have natural holomorphic structures and gatisf transversality condition for the in-
duced Gauss-Manin connection. We alsolB§t,, = Fgmm/nglin The fiber-wise isomorphism of
(EY i) With Hﬁ;‘f;f(Yb, C) ¢ H*(Y,,C) enables to equip the holomorphic vector buridg, , with

a smooth positive definite hermitian metric, called the Hodugtric.

We need some definitions in order to express the curvatuteeafdrresponding Chern connection.
Denote byV” : EP — QL @ EP~! the O-linear map built by first lifting tof” applying the Gauss-
Manin connection and projecting &7—!. The second fundamental form@g° (B, Hom(F?, HL/Fr))
of the sequence

0 — FP — H: — HL/FF — 0
with respect to the Gauss-Manin connection (or equivajenith the flat metric onHZ) actually
inducesV’ : E? — QL ® EP~'. Formulae for the curvature of quotient hermitian holontrcp

vector bundles then lead to

Theorem 4.1. [0, theorem 5.2]The curvatured(E? ;) of the holomorphic vector bundig) ; .
endowed with its Hodge metric is given by

(O, )V, V)0, 0) trodge = (V0. Vo0 todge — (V0 )0 (V)"0 Hodge
whereV is a local vector field orB ando a local section oE?.

We now apply this result in the case of the family of the cyclwersr o p : Y, — X obtained
by taking thek-th root of a sectiors of Og (k). We have to restrict the study over Zariski open sets
Y0 :=(pom) (X —%,)andX? := X — 3, sothatrop : Y? — X° becomes a smooth family.
Then, sincev’ vanishes, the above theorem implies the following

*

Corollary 4.2. The vector bundI&’, ;. = E° = R"~!(7 0 p),Oyo,x0 = &' (S "E @ det E)xo

prim

with the Hodge metric is Griffiths semi-negative.

4.2. Singularitiesof theHodgemetric. We now deal with the general case, namglyY” — B may
not be smooth. In this section we will give rough descripsiar the singularities. Detailed results
need explicit form of the isomorphisms in (3.1) and will beeagi in§ 5.3. We therefore assume that
the baseB is one dimensional.

The Hodge metric on the direct image of the relative candsloaaf is described as follows. Liet

B be apointand lefU, t) be alocal coordinate centeredbat {t = 0}. A sectionw € I'(U, f.Ky/)
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— when regarded as a sectionlitU, f,Hom(f*Kpg, Ky)) and applied tof*dt — gives a section of
Ky on f~1(U) which we denote by - dt. If p, € T'(Y}, Ky, ) fulfills the relationw - dt = ¢, A f*dt
overY; (which amounts to saying that in the differentiable tridationY|;; ~ Y}, x U, the sectionw
Is sent top,), then the Hodge norm atc B of the sectionw is

n n(n—1) _
o = (V=I)(—1)" 5 /Y o0 AT,
b

heren = dimY — 1. Fujita checked that in this setting in casen B = 1 the Hodge metric on
f+Ky,p is bounded from below by a positive quantity and hence thabttly possible singularities
of the Hodge metric orf, Ky, 5 are poles (se¢][7, lemma 1.12]).

We just give the typical example which occurs for a local mafeour cyclic covers (for some
positive integern).

mop: Yo={(t,2,1) e C}/I* =t +2"} — X ={tcC}
(t,2,1) =t

The cotangent bundl@}. is generated by, dz, dI subject to the relatiohl*~'dl — dt —mz""'dz =
0. If w - dt is written asn(z,l)dz A dl for a holomorphic functiom(z,1), theny, may be chosen
to beyp, = k~11*"*n(z,1)d> with a pole of orderk — 1 on the fiber ovet = 0 and no singularities
elsewhere.

Now, note that over smooth fibers pfthe Serre dual of an orthonormal bagis) of (I'(Y;, Ky, ), Hodge)
is (w;), which is an orthonormal basis 0f/°"(Y;, C), Hodge). Hence the Hodge metric 0"~ (ro
p).Oy, may acquire zeros at the pointover which the sectionp z,) is not transverse to the zero
section. This can also be inferred from the formulg 13 which furthermore proves the continuity
of the metric oriR" (7 o p),Oy..

5. EXPLICIT ISOMORPHISM

We make explicit the isomorphisms ih (3.1) in terms of Dolldeasomorphism and Serre duality
for metrized vector bundles. This enables us to describeltitge metric. We keep the notation and
assumption fol? — X made at the end &ff2. We furthermore fix a reference hermitian metrion
FE and then naturally o> and onOg (7).

5.1. Calculuslemma. To make Serre duality on a projective space explicit, we @oselementary
calculus lemma. We consider a projective spte' with a homogeneous coordinates = (a; :

. a,) and with the Fubini-Study Kahler forf. Letz; = a;/a; (2 < j < r) be a standard local
coordinate. We can write the volume form as

Q-1 (vV—1dDlog |a\2)H _dxANdz Ao ANdz ANdzs Adzs A N dZ,

= €r )
(r—1)! (2m)r =1 (r —1)! (1+z]2)
_— (r=1)(r=2) . .
where we have set := (v—1)""'(=1)" =2 /(2n)" " and|z|* = 37_, [/,
Lemma 5.1. Letm be a positive integer, and let = (i1, 9, - , i) @ndJ = (j1, 42, ,jm) b€
m-tuples of integers iq1,2,--- ,r}.
(1) If I and J are not equal modulo change of order, it follows from parggsons that
/ iy @y Wiy Ty +* Qi Gy 0
[a]ePr—1 '

[a[2m (r—1)!
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(2) If I and J are equal modulo change of order, then

/ |a1|2m1|a2|2m2 ...|ar|2mr Qrfl _ H;“Zl m2|
(a]ePr—1 la|>™ (r—1! (r—14+m)l

Here the integet appearsm; times in/ (hence inJ), consequentlyp < m; < m andm = m; +
.-+ + m,. One uses a conventidh = 1.

5.2. Explicit isomorphism. Since the problem : isomorphism in_([8.1) is local &nit is enough to
argue on a small open neighborhddaf a fixed pointz, € X. Choose a local framg;);<;<, for £
onU. A vector of E (resp. of the dual bundl&*) will be denoted by: € E (resp.a* € E*). Hence
a point onP(E) will be denoted bya*] € P(E).

We first describe the isomorphisft"E @ det E = 7, (Kp(r)x @ Og(i)). The isomorphism
S*"E — mOg(i —r)is given overr € U with «* € E* by

STTE, — (mO0p(i—1)), = H'(P(E,), Op(i — 1)p(z,))
I <P<Ex> = Op(i =), )

@] {f T @)

Here we denote by*'~" the (i — r)-fold symmetric product, and byf, a**~") the duality pairing. A
vector of the bundler, (Kpg)/ x ® Og(7)) is represented by a relative holomorpbic- 1)-from with
values inO(i) with respect to a local coordinate of the fibers. We take atpajh € P(E,,) with

ay = Z;:1 apje;, and let assume tha, # 0 (this is not a special assumption). On a neighborhood

of [af] € P(E), we use a standard local coordinate on the fiber= a;/a; (2 < j < r) for
[a*] = [>7_; aje;] € P(E). There exists a canonical mgp: £* — X x {0} — P(F) which is
expressed in local coordinates around a reference pajnt;), by

q(z,a*) = q(z, Zajep =(x,lay : - ar)) = (x,22,...,2).
The relative Euler sequence :
—which is built from the mag : £* — X x {0} — P(F) —is given by

% % % b'CLl — blCL' 0 %
P (:E, la ],ijej) = <:p, la ]’Z]aifjﬁ—zj ®a ) :
j21 j=2

Sincep(ae}) = % ® a*, the natural determinant isomorphism for the relative Eségluence reads

det TP(E)/X (029 OE(—T) — 7 det E*

0 0 0
8—22/\8—,23/\'“/\82} ® (a*)" (Z@e?) Aajes Najey A -+ Aaer

Jj1

=ajef NesN---Nep.

By composition, we have an isomorphism
Si_TE X det E — T x (KIP’(E)/X X OE(Z))

foenean - Ne. — ([a*] — (f, " NValdzy Ndzs A - ANdz, @ (a*)7") .
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Let (er)r—i—- be a local frame of5’"E induced from(e;)1<j<,. Then by Lemmd 51, the dual
basis of(e; ® ey Aer A -+ A e)r=i—r iS represented through the integration along the fibers of
7 : P(F) — X, up to some positive constant multiple, by the following skb-closed relative
(0,7 — 1)-forms with values irOg(—i) :
dzo Ndzz A\ - Ndz, _ (a*)
(T +[=12) lax 13+

We secondary write the isomorphism betwgtr ! (7 o p),Oy. andR"'x, (R%p,Oy.) in Cech
cohomology. There is a standard Stein coverifig= {W;};_, of 7="(U) with W; = {[a*] €
P(E);a* = 375_, aje; € Ey,x € U,a; # 0}, providedU is a unit ball in a local chart. Then

R, (ROp.Oy,) (U) = H™ (x 7 (U), @A Op(~i)) = H (W, @53 O ().

We use a Stein covering W = {p~'(W;)};_, of (x o p)~"(U) to computeR" (7 o p),Oy,.
Because the higher direct images®f. by p vanish, the Stein covering='W is acyclic for the
p,.-functor. Then,

R (1 op)Oy,(U) = H ' ((mop)'(U),0x,) = H ' (p™'W, 0y,).
The isomorphism betweef” (W, &1 Op(—i)) and H"~'(p~'W, Oy,) is given by pull back,
viewing elements o0y (—i) as relative homogeneous polynomials of degrea the total space of

Og(1). The correspondance betwe@ach and Dolbeault cohomologies can be made explicit using
a partition of unity as in[J2, Il proposition 9.8]. We find anpticit isomorphism as follows.

[a*] — (er,a*")ale,

Lemma 5.2. The following map describes the isomorphisn{in|(3.1) :
OISTTE* @ det B* — R (mwop),. Oy,

T

4 (e, e Yaldzy Ndzg A - - N dZ,
eg@eiNesN---Ner — | (x,[a*],]) — (" (a*))p” -
e ( a3 (1 + 121%)"

5.3. Singularities of the Hodge metric (explicit formula). In our caser o p : Y, — X, the
singularities of the Hodge metric can be described morei@ikpl We keep the notations of the
previous paragraph.

In the local frame(a*)~* for Og(k), the sections € H°(P(E), Og(k)) is given by a local holo-
morphic functions = o(x, 2, ..., 2,) ass([a*]) = o - (a*)~*. OnY, the equalityl* = s([a*]) reads
N = o, where) = (I, a*) is the local coordinates on the fibers®@f(1). Then by Lemm4#5]2, after
integrating along the fibers @f the Hodge metrid (e; @ e Aes A --- A er) on a neighborhood
of zy € X is of the form, up to some positive constant multiple,

x’_)k/ ‘<€I’a*z‘fr>‘2‘q1|2r‘a|% Or-1
[a*]ePr—1(Ey) Ja*] 5 (r—1)!

for z € U — 3, wheref) denotes the relative Fubini-Study Kahler form with redpecr : P(E) —

X. The local expression ol whereo has ak-th root may serve to check that the integrand is
homogeneous ia* and that the Hodge metric is smooth onX —32,. The Hodge metrié, is initially
defined orR"~!(7op), Oy, x_x, asin§ 4.1. The above explicit formula oki — 3 also describes the
behavior ofh, aroundX,. Thanks to this description, it is possible to exténdas a continuous (but
maybe degenerate) hermitian metricRt ! (7o p),Oy. by the same formula also ate UNY,. We

also call this continuous extensibpthe Hodge metric o’ (7 op), Oy, = &S " E* @ det E*.
7




6. PROOF OFTHEOREMS; AMPLENESS AND POSITIVITY

Proof of Theorem 1.1Let £ be a semi-ample vector bundle of rank> 1 on a compact complex
manifold X. We take an arbitral positive integkiso thatS* E is generated by its global sections.
By the explicit expression if§ 5.3, Hodge metrics om!~! (S""E ® det E)* may acquire zeros
at the pointsr over which the sectioBp,) is identically zero. We now explain how the semi-
ampleness assumption on the vector burilhelps to remove those singularities of the Hodge metric.
For every pointr in X, we choose a generic sectispof Og(k) over the fibelP(E,) transverse to
the zero section. We extend the sectigrio a global section oD g(k) overP(E) and take a generic
section close to this extension. It will be transverse tozw® section on each fiber of points in a
neighborhood of:, because this is an open condition. This shows that on th@acnmanifold.X,
adding a finite number of Hodge metribg on ©F=! (S*"E ® det E)" seen as the direct image
R™Y7 o pa)«Oy, for different covering mapg,, : Y, = Y,, — P(FE) of degreek, we get a
continuous non-degenerate (i.e. positive on every noa-zector) hermitian metrié = Zi:1 B
The metrich,, is continuous onX, and smooth (as a Hodge metric on a smooth family) and non-
degenerate outside the discriminant logls. The set of points: € X where one of the sections
Sa|p(E,) IS NOt transverse to the zero section is a proper Zariskedssibset of, that we will denote
by Y= UQESQ.
Next let us discuss the curvature property on each directsamdS " E®det Efori =r,... k—
1. Take a pointr, in X — X, a non-zero vectaf, € (S™"F @ det E);O, and a nowhere zero local
holomorphic sectior € I'(U, (S*"E ® det E)*) achieving the valug, at z, and normal at, for
the metrich (i.e. V,£(z0) = 0). Then, the last two terms in the formu[a{2.1)

(O((S™"E®det E); ,h)E, &)
1€]?

(Vi€ Vi) vV-10J¢1* A O¢J?
€1 1€l

= —V 1P log [} +

vanish atr,. Now, Corollary[4.R: Griffiths curvature formula f@&"™ ! (r o Pa)«Oy, | x_x, asserts that

the functionlog |¢|7 — whose complex Hessian (or Levi form) is the opposite of thevature of

a line sub-bundle ofS""E ® det )" — is plurisubharmonic o®/. It then follows thatlog |¢|? =
log(3,, I€17. ) is plurisubharmonic oY. This gives the Griffiths semi-negativity 65" F@det £)*

on X — ¥,. Sinceh is continuous and’, is an analytic subset (of zero Lebesgue measure), we can
conclude that the dual continuous mefricon S*"E @ det E is Griffiths semi-positive on the whole

of X. O

Remark6.1 We can take the integérlarge enough to make the rank §f £ exceed the dimension
of X. This together with the generation by global sections enthat a generic sectiory of S¥E
has no zero otX (see for example[T13, II, ex 8.2]). No fiber ofis hence contained in the divisor
D, of zeros of the section € H(P(E), Og(k)), which is associated withy via the isomorphism
S*E =~ 7,0p(k). (Then we can also see, by a local computation, that evessitigible component
of singular fibers ofr o p has multiplicity one.) In the formula i B.3, if s is not identically zero
on P! over a pointz, the right hand side integral (the Hodge normztis not zero. Hence the
Hodge metric associated to the coverings non-degenerate on the wholeof The metrich = h,
is continuous onX, and smooth (as a Hodge metric on a smooth family) outSideThis gives a
slight simplication of the proof of Theorem 1.1.

8



Proof of Theorem 1.2We now assume that is ample. Let us recall Legendre-type formula for a
metrich = Zf;zl h, on (S™"E @ det E)* gotten from different cyclic coverings,, (for a (1,0)-
form u, |u|* denotes/—1u A7) :

2
_ S el T log e Suca|@lonlélz, — loglelz, | 112, IRz,
—1661 2 = a Q o )
SO S VORGAE

Applying Griffiths curvature formula (Corollafy 4.2) fordividual covering and the formul@ (2.1) for
a line subbundle we infer that in the right hand side, the fesnh is semi-positive. We need to add
further Hodge metricg,, to make the second term — hence the left hand side — stricsiyiy®

The explicit expression ifp.3 will help to translate the algebraic ampleness assompti £ into
a positivity property for a well chosen metric 6t E @ det E. We may first assume that the chosen
local frame(e;),<;<, for E is normal atr, € X for the fixed metrigy on E. Hence, denoting by,
the push forward of currents by : P(E) — X — in other words, the integration along the fibers of
the proper submersion—, we have

. do N
Ja* 5 (r—1)!

T

*i—7\ |2 2 201 Qr—l
dloghy(es @ e Ny A---Aet) = 2i7r*<|<el’a Y2 |ar|* |o| * 7)

We now take a positive integérso large that the map
HY(P(E),Op(k)) — H°(P(E),Op(k)® n*(Ox/M?2))

is surjective for everyr € X. By the compactness of, we can henceforth choose enough, but
a finite number of sections, € H°(P(E), Or(k)) to ensure positivity in all the directions in the
Legendre formula. This gives continuous hermitian mewicsS* £ ® det E with Griffiths positive
curvature. Using a regularization process as describgdirtfiese metrics may be smoothed keeping
Griffiths positivity of the curvature. O

Remark6.2 Griffiths [[LQ, proposition 2.16] showed that the opera&or : Er — QL @ EP~! can
be expressed as a cup product with the Kodaira—Spencerp:laﬁ}Bvb ® HY(Y,, TY;) of the family
f 'Y — B coupled with a natural pairing. In our setting, this in turemdoe related with the
infinitesimal displacement of the hypersurfades, of P(E,) given by the vanishing of the section
sip(E,), Namely (see[[14, chapter 5.2 (c)])
TX — HDyy.O(Di)p..) (5 H'(DusTD.y)
v (955) D, . — p(v)

wherev is a holomorphic vector field lifting onP(E,). The map* is the coboundary map in the
long exact sequence associated with the short exact segferthe normal bundle of the divisér, ,

0 — TD,, — TP(E,)p,, — O(Ds)p,, — 0.
Our computations make explicit the idea tiiabeing ample, the sectiongx,) move sufficiently to
make the operatdv’ : E? — QL ® EP~! have non-zero contribution in the curvature formula.
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