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ON GENERALIZED SOBOLEV ALGEBRAS AND THEIRAPPLICATIONSSéverine Bernard and Silvère P. NuiroIn the last two de
ades, many algebras of generalized fun
-tions have been 
onstru
ted, parti
ularly the so-
alled gener-alized Sobolev algebras. Our goal is to study the latter andsome of their main properties. In this framework, we poseand solve a nonlinear degenerated Diri
hlet problem with ir-regular data su
h as Dira
 generalized fun
tions.Key words : nonlinear degenerate Diri
hlet problem, generalized solu-tion, Sobolev algebra, non positive solution.2000 MSC : 35J70, 46F30, 46E35, 35D05, 35B50.1. Introdu
tionA theoreti
al study of most of the well-known algebras of generalized fun
-tions has pointed out two fundamental stru
tures. The �rst one is the alge-brai
 stru
ture of a solid fa
tor ring C of generalized numbers. The se
ondone is the topologi
al stru
ture de�ned by a family P of seminorms, ona lo
ally 
onvex linear spa
e E, whi
h is also an algebra. These algebrashave been denoted by A(C, E,P) and one speaks of (C, E,P)-algebras ofgeneralized obje
ts. The de�nition 
overs most of the well-known algebrasof generalized fun
tions, as for example, the Colombeau simpli�ed algebra[3℄, Goursat algebras [13℄ and asymptoti
 algebras [4℄. On the other hand,spe
ial 
hoi
es for E, P and C also allow the introdu
tion of some new al-gebras. One of them is the so-
alled Egorov extended algebra, be
ause ofthe similarity with the Egorov [5℄ algebra of generalized fun
tions. We havebeen interested in working within the framework of the so-
alled generalizedSobolev algebras based on the 
lassi
al Sobolev spa
es. As E is a di�erentialalgebra, the main interest of these algebras is to give a framework whi
h iswell suitable to solve many non linear di�erential problems with irregulardata. The method is based on the extension of a mapping from (E1,P1) into
(E2,P2) to a mapping from A(C1, E1,P1) into A(C2, E2,P2). This methodhas been introdu
ed, in the framework of asymptoti
 algebras, by A. Del
roixand D. S
arpalezos [4℄, and used, in the framework of (C, E,P)-algebras, tosolve a non linear Diri
hlet problem [12℄ and a non linear Neumann problem[11℄, both with irregular data by J.-A. Marti and S. P. Nuiro. In this paper,1



2 S. BERNARD AND S.P. NUIROour goal is to lift up the generalized Sobolev algebras, by giving more 
learde�nitions of all the statements and general results in this framework, inorder to work more easily with these algebras. We introdu
e the �rst ex-ample of ordered generalized Sobolev algebras, whi
h allows us to pose andeventually solve an obsta
le problem with irregular data. We also point outsome su�
ient properties for the existen
e of an embedding of some spa
einto a generalized Sobolev algebra. In the framework of generalized Sobolevalgebra, we are able to solve a non linear degenerated Diri
hlet problem [12℄with weaker assumptions.Consider Ω an open bounded domain of IRd (d ∈ IN∗) with a lips
hitz
ontinuous boundary ∂Ω, we 
an state this formal problem :
(P)

{

−∆Φ (u) + u = f in Ω,
u = g on ∂Ω,where f and g are non smooth fun
tions de�ned on Ω and ∂Ω respe
tively, Φan in
reasing real-valued di�erentiable fun
tion de�ned on IR so that Φ′ is a
ontinuous bounded fun
tion that 
an vanish on a �nite set of dis
rete pointsof IR. This is a quasilinear di�usion type problem, with non homogeneousDiri
hlet 
ondition on the boundary. One 
an remark that the formal se
ondorder di�erential operator L = − div (Φ′(.)∇x) + Id is a degenerated one,be
ause Φ′ 
an vanish. Thus, (P) is a Diri
hlet nonlinear ellipti
 degeneratedproblem. In order to solve this problem, we introdu
e an auxiliary problemby using an arti�
ial vis
osity regularization depending on a parameter ε.2. Spe
ial types of generalized algebras2.1. De�nitions. Let us, �rst, state that IK is IR or Cl , and 1I = (1Iε)ε where

1Iε = 1 for all ε. The generalized algebras 
onstru
ted from E, a normed IK-algebra, are parti
ular 
ase of (C, E,P)-algebras [10℄, [12℄, [11℄, [13℄.Consider a subring A of the ring IK]0,1] so that 1I ∈ A, and whi
h, as aring, is solid (with 
ompatible latti
e stru
ture) in the following sense :De�nition 1. A is said to be solid if from (sε)ε ∈ A and |tε| ≤ |sε| for ea
h
ε ∈]0, 1] it follows that (tε)ε ∈ A.We also 
onsider an ideal IA of A whi
h is solid as well, and so that(1) ∀ (rε)ε ∈ IA, lim

ε→0
rε = 0.Then, we introdu
e the fa
tor ring C = A/IA, whi
h is 
alled a ring ofgeneralized numbers.De�nition 2. Let E be a normed algebra. We shall 
all N-generalized algebraall fa
tor algebra

A(C, E) = HA (E) /IIA
(E) ,



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 3where
HA (E) = {(uε)ε ∈ E]0,1] / (‖uε‖E)ε ∈ A+}and
IIA

(E) = {(uε)ε ∈ E]0,1] / (‖uε‖E)ε ∈ I+
A},when ‖ · ‖E is the norm on E, A+ = {(rε)ε ∈ A / ∀ε > 0, rε ∈ IR+} and

I+
A = {(rε)ε ∈ IA / ∀ε > 0, rε ∈ IR+}. Its ring of generalized numbers isde�ned as the ring

HA (IK) /IIA
(IK) = C = A/IA.Remark 1. We remark that the notation is A(C, E) instead of A(C, E,P)sin
e the family P is redu
ed to one single element. The algebra A(C, E) isalso a ve
tor spa
e on the �eld IK.Example 1. With

IA =
{

r = (rε)ε ∈ IR]0,1] | ∀k ∈ IN∗, |rε| = O
(

εk
)}and

A =
{

r = (rε)ε ∈ IR]0,1] | ∃k ∈ ZZ, |rε| = O
(

εk
)}

,we obtain a polynomial growth type N-generalized algebra.Example 2. We take
IA =

{

r = (rε)ε ∈ IR]0,1] | ∃ε0 ∈]0, 1], ∀ε ∈]0, ε0], rε = 0
}

,and A = IR]0,1]. With su
h A and IA, we obtain another N-generalizedalgebra.Example 3. When E is a Sobolev algebra (that is, for example, on theform Wm+1,p(Ω)∩Wm,∞(Ω), with m ∈]0,+∞[, p ∈ [1,+∞[ and Ω an opensubset of IRd (d ∈ IN∗)), respe
tively a Bana
h algebra, we will speak aboutgeneralized Sobolev algebra, respe
tively generalized Bana
h algebra, insteadof N-generalized algebra.2.2. Embeddings and weak equalities. In the following paragraph, weare going to show a way to embed E into A(C, E).Proposition 1. The mapping i0 de�ned on E, by :
∀u ∈ E, i0(u) = cl (u1Iε)ε ,is linear and one-to-one from E into A(C, E).Proof. For every u ∈ E, we have : (‖u1Iε‖E)

ε
= ‖u‖E 1I. Furthermore, as

‖u‖E ∈ IK and 1I ∈ A, there exists λ ∈ IN so that
∀ε, ‖uε‖E ≤ λ1Iε,



4 S. BERNARD AND S.P. NUIROand obviously λ1I ∈ A+. As a 
onsequen
e of the solid property whi
h impliesthat (uε)ε ∈ HA (E), we have i0(u) ∈ A(C, E). It 
an easily be proved that
i0 is linear and one-to-one.De�nition 3. The mapping i0 from E into A(C, E), de�ned in proposition1, will be the so-
alled trivial embedding of E into A(C, E).We 
an also embed some topologi
al ve
tor spa
e into A(C, E). Let (G,T )be a Hausdor� topologi
al ve
tor spa
e so that there exists a 
ontinuouslinear mapping j from (E, ‖.‖E) into (G,T ).De�nition 4. T ∈ G and U = cl (uε)ε ∈ A(C, E) are (G,T )-asso
iated if

j (uε) → T in (G,T ) as ε→ 0.It will be denoted by U G,T
∼ T.Remark 2. This de�nition does not depend on the 
hosen representative of

U . Indeed, let (eε)ε ∈ IIA
(E) . Therefore, lim

ε→0
‖eε‖E = 0, whi
h means that

eε → 0 in (E, ‖.‖E) as ε → 0. Consequently, we have j (eε) → 0 in (G,T )as ε→ 0.De�nition 5. Assume that U = cl (uε)ε , V = cl (vε)ε ∈ A(C, E). We shallsay that U and V are (G,T )-weakly equals if
(U − V )

G,T
∼ 0.It will be denoted by U G,T

≃ V.Proposition 2. Assume that for every T ∈ G, there exists (uε)ε ∈ HA (E),so that
j (uε) → T in (G,T ), as ε→ 0.Then, there exists, at least, an embedding iG from (G,T ) into the N-generalizedalgebra A(C, E). Furthermore, if, for all v ∈ E, there exists (uε)ε ∈ HA (E),so that (uε − v)ε ∈ IIA
(E), then(2) ∀u ∈ E, (iG ◦ j) (u)

G,T
≃ i0(u).Proof. For every T ∈ G, there exists (uε)ε ∈ HA (E), so that

j (uε) → T in (G,T ) as ε→ 0.Let us state iG(T ) = cl (uε)ε. The mapping iG from G into A(C, E) isobviously linear. Let us prove that iG is one-to-one. If iG(T ) = 0 in A(C, E)then
iG(T ) = cl (eε)ε for (eε)ε ∈ IIA

(E) .We have eε → 0 in (E, ‖.‖E) whi
h implies that j (eε) → 0 in (G,T ), when-ever ε → 0. This leads to T = 0 in G, be
ause (G,T ) is a Hausdor� spa
e.The se
ond property is obvious.



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 5Remark 3. If there exists another su
h embedding i′G from (G,T ) into theN-generalized algebra A(C, E) then
∀T ∈ G, iG(T )

G,T
≃ i′G(T ).Example 4. Let j be the 
anoni
al embedding of (

L∞(Ω), ‖.‖L∞(Ω)

) in
(

H−2(Ω), σ
(

H−2(Ω),H2
0 (Ω)

)), where σ (

H−2(Ω),H2
0 (Ω)

) denotes the weaktopology on H−2(Ω). We will say that T ∈ H−2(Ω) and U = cl(uε)ε ∈
A(C, L∞(Ω)) are H−2(Ω)-asso
iated if

j(uε) → T in (

H−2(Ω), σ
(

H−2(Ω),H2
0 (Ω)

))

, as ε→ 0,and we will denote U
2
∼ T . Moreover, we will say that U ,V ∈ A(C, L∞(Ω))are H−2(Ω)-weakly equals if U − V

2
∼ 0 and we will denote U

2
≃ V.2.3. Mapping on N-generalized algebra. The idea of extension of map-ping has been introdu
ed by A. Del
roix and D. S
arpalezos [4℄, in theframework of asymptoti
 algebras. But it is, in fa
t, a parti
ular 
ase ofde�nition of mapping on A(C, E)-algebras.If θ = (θε)ε is a family of mappings from a normed algebra (E, ‖.‖E)into a normed algebra (F, ‖.‖F ), one 
an view θ as a mapping from the N-generalized algebra A(C, E) into the N-generalized algebra A(D, F ), wherewe have set C = A/IA and D = B/IB when A, IA, B and IB are as in �2.1.One remarks that the extension theorem of A. Del
roix and D. S
arpalezos[4℄ deals with the 
ase where θ = (θ)ε.Theorem 1. Let E and F be two normed algebras and (θε)ε a family ofappli
ations of E in F . We assume that1) A ⊂ B and IA ⊂ IB,2) there exists a family of polynomial fun
tions (Ψε)ε of one variable with
oe�
ients in A+ so that

∀ε > 0 , ∀x ∈ E , ‖θε(x)‖F ≤ Ψε(‖x‖E),3) there exists two families of polynomial fun
tions (Ψ1
ε)ε and (Ψ2

ε)ε ofone variable with 
oe�
ients in A+ so that Ψ2
ε(0) = 0 for all ε > 0,and

∀ε > 0 , ∀x, ξ ∈ E , ‖θε(x+ ξ) − θε(x)‖F ≤ Ψ1
ε(‖x‖E)Ψ2

ε(‖ξ‖E).Then there exists an appli
ation Θ : A(C, E) →A(D, F ), whi
h asso
iates
cl(θε(xε))ε with cl(xε)ε.Proof. First, let (xε)ε be in HA(E) and let us show that (θε(xε))ε is in
HB(F ). We have (‖xε‖E)ε in A+ so (Ψε(‖xε‖E))ε is also in A+, sin
e (Ψε)εhas 
oe�
ients in A+. Thus (‖θε(xε)‖F )ε) belongs to A+ ⊂ B+, due to(1) and (2), whi
h implies what we want. Then, let (iε)ε be in IIA

(E) andlet us show that (θε(xε + iε) − θε(xε))ε is in IIB
(F ). Sin
e (‖xε‖E)ε and



6 S. BERNARD AND S.P. NUIRO
(‖iε‖E)ε are respe
tively in A+ and I+

A then (Ψ1
ε(‖xε‖E))ε and (Ψ2

ε(‖iε‖E))εare respe
tively in A+ and I+
A , sin
e, for i ∈ {1, 2}, (Ψi

ε)ε has 
oe�
ients in
A+. Then, (Ψ1

ε(‖xε‖E)Ψ2
ε(‖iε‖E))ε is in I+

A . Thus (‖θε(xε + iε)− θε(xε)‖F )εbelongs to I+
A ⊂ I+

B , due to (1) and (3), whi
h implies the required result.As a 
onsequen
e, we obtain the following result.Proposition 3. Assume that A ⊂ B and IA ⊂ IB. If (θε)ε is a family of
ontinuous linear mappings from a normed algebra E into a normed algebra
F , then (θε)ε also de�nes a mapping Θ from A(C, E) into A(D, F ).Example 5. Let Ω be an open subset of IRd and E = H1 (Ω) ∩ L∞ (Ω)with ‖u‖E = ‖u‖L∞(Ω) + ‖u‖H1(Ω). The 
anoni
al embedding i : u 7→ uis 
ontinuous as well as linear from the Bana
h algebra E into the Bana
halgebra L∞ (Ω). Obviously, the mapping i veri�es all the assumptions of theprevious proposition; this is why we 
an de�ne its extension I as a mappingfrom A (C, E) into A (C, L∞ (Ω)).In the same way, one 
an prove that :Proposition 4. Assume that (θε)ε is a family of mappings from a normedalgebra E into the topologi
al �eld (IK, |.|), so that

• there exists a family of polynomial fun
tions (Ψε)ε of one variable with
oe�
ients in A+ so that
∀ε > 0 , ∀x ∈ E , |θε(x)| ≤ Ψε(‖x‖E),

• there exists two families of polynomial fun
tions (Ψ1
ε)ε and (Ψ2

ε)ε ofone variable with 
oe�
ients in A+ so that Ψ2
ε(0) = 0 for all ε > 0,and

∀ε > 0 , ∀x, ξ ∈ E , |θε(x+ ξ) − θε(x)| ≤ Ψ1
ε(‖x‖E)Ψ2

ε(‖ξ‖E).Then there exists an appli
ation Θ : A(C, E) → C, whi
h asso
iates cl(θε(xε))εwith cl(xε)ε.Remark 4. If θ is a 
ontinuous linear mapping from a normed algebra
(E, ‖.‖E) into the topologi
al �eld (IK, |.|), then θ also de�nes a mapping,denoted by Θ, from A(C, E) into the fa
tor ring C = A/IA.2.4. An example of ordered generalized Sobolev algebra. Consider
A and IA as in �2.1, the Sobolev algebra L∞ (Ω), endowed with its usualtopology, with Ω an open bounded subset of IRd. Thus, we 
an 
onsider thealgebra A(C, L∞ (Ω)). It is easy to prove, by means of theorem 1, that themapping

p : L∞ (Ω) → L∞ (Ω)
u 7→ u+ = sup {u, 0} = 1

2(u+ |u|)



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 7
an be extended as a mapping P from A(C, L∞ (Ω)) into itself, de�ned by :
∀U = cl(uε)ε ∈ A(C, L∞ (Ω)), P(U) = cl(p(uε))ε,due to the following relation :

∀r, s ∈ IR,
∣

∣(r + s)+ − r+
∣

∣ ≤ |s| .We are now able to state the following result:Proposition 5. The generalized Sobolev algebra A(C, L∞ (Ω)) is partiallyordered by the following binary relation :
∀U, V ∈ A(C, L∞ (Ω)), U ≤ V ⇐⇒ P (U − V ) = 0.Proof. Obviously, the relation ≤ is re�exive, then we have to prove, for

U, V,W ∈ A(C, L∞ (Ω)), that :
U ≤ V and V ≤ U ⇒ U = V ;(3)
U ≤ V and V ≤W ⇒ U ≤W.(4)We state U = cl(uε)ε, V = cl(vε)ε and W = cl(wε)ε.Proof of property (3) : If U ≤ V and V ≤ U then, there exists (ϕε)ε and

(ψε)ε in IIA
(L∞ (Ω)) so that (uε − vε)

+ = ϕε and (vε − uε)
+ = ψε. As,

uε − vε = (uε − vε)
+ − (vε − uε)

+ = ϕε − ψε,it follows that (uε − vε)ε = (ϕε − ψε)ε ∈ IIA
(L∞ (Ω)) , when
e U = V .Proof of property (4) : If U ≤ V and V ≤W then we have

(

∥

∥(uε − vε)
+
∥

∥

L∞(Ω)

)

ε
∈ IA ,

(

∥

∥(vε − wε)
+
∥

∥

L∞(Ω)

)

ε
∈ IA.By means of the solid property, we dedu
e, from the following inequality :

∥

∥(uε − wε)
+
∥

∥

L∞(Ω)
≤

∥

∥(uε − vε)
+
∥

∥

L∞(Ω)
+

∥

∥(vε − wε)
+
∥

∥

L∞(Ω)
,that (

(uε − wε)
+)

ε
∈ IIA

(L∞ (Ω)) , whi
h yields P(U −W ) = 0, that is tosay U ≤W .Proposition 6. For all u, v ∈ L∞ (Ω), we have i0(u) ≤ i0(v) if, and onlyif, u ≤ v in L∞ (Ω), that is u ≤ v almost everywhere in Ω.Proof. If i0(u) ≤ i0(v) then P (i0(u) − i0(v)) = 0. Consequently, thereexists (ϕε)ε , (eε)ε ∈ IIA
(L∞ (Ω)) so that (u− v + eε)

+ = ϕε, sin
e we have
uε − vε = u− v + eε for all ε. Taking into a

ount that

ϕε → 0 and eε → 0 in L∞ (Ω) , as ε→ 0,it may be seen that (u− v + eε)
+ = ϕε → 0 a.e. in Ω, when
e (u− v)+ =

0 a.e. in Ω, sin
e one 
an easily prove that
(u− v + eε)

+ → (u− v)+ in L∞ (Ω) , as ε→ 0.It means that u ≤ v a.e. in Ω.



8 S. BERNARD AND S.P. NUIROConversely, if u ≤ v a.e. in Ω then (u − v)+ = 0 a.e. in Ω. By de�nitionof P and i0, this leads to i0(u) ≤ i0(v).Proposition 7. Let u ∈ L∞ (Ω) and U ∈ A(C, L∞ (Ω)). If U L1(Ω)
∼ u (here

L1(Ω) is endowed with its usual topology) and U ≤ 0 then u ≤ 0 a.e. in Ω.Proof.We set U = cl(uε)ε. Sin
e U
L1(Ω)
∼ u then, as ε goes to 0,

uε → u in L1 (Ω), whi
h gives u+
ε → u+ in L1 (Ω), by means of the Lebesguedominated 
onvergen
e theorem. Sin
e U ≤ 0 then P (U) = 0. Conse-quently, there exists a sequen
e of fun
tions (ϕε)ε ∈ IIA

(L∞ (Ω)) so that
u+

ε = ϕε for all ε. Taking into a

ount that
ϕε → 0 in L∞ (Ω) , as ε→ 0,we �nd that u+

ε = ϕε → 0 a.e. in Ω, when
e u+ = 0 a.e. in Ω, whi
himplies u ≤ 0 a.e. in Ω.3. Solution of the nonlinear degenerate Diri
hlet problemAfter having solved the auxiliary problem by using an arti�
ial vis
osityregularization depending on a parameter ε, we solve our main problem (P)(see se
tion 1), in a generalized Sobolev algebra with the 
lassi
al equalityand with the weak one de�ned in example 4. Then we perform a littlequalitative study of the solution.3.1. The regularized Diri
hlet problem. Let us set
V+

A =

{

(rε)ε ∈ A+ / ∀ε > 0, rε ∈ ]0, 1]; lim
ε→0

rε = 0 ;

(

1

rε

)

ε

∈ A+

}

.Assume that V+
A 6= ∅ and then, for all (rε)ε in V+

A, set Φε = Φ + rεId. Thisse
tion 
onsists in proving the following proposition :Proposition 8. If f ∈ L∞(Ω) and g ∈ L∞(∂Ω) then there exists one, andonly one, fun
tion u ∈ H1(Ω) ∩ L∞(Ω) solution of the regularized problem
(Pε)

{

−∆Φε (u) + u = f in Ω,
u = g on ∂Ω.Proof. This proof goes in three steps.1)Maximum's prin
ipleWe are going to prove that if u ∈ H1(Ω) is a solution of this problem then

m ≤ u ≤M a.e. in Ω,



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 9with m = min{inf
Ω
f , inf

∂Ω
g} and M = max{sup

Ω
f , sup

∂Ω
g}, whi
h meansthat u belongs to L∞(Ω).Indeed, for su
h a u, we have, for all v in H1

0 (Ω)
∫

Ω
∇Φε(u)∇vdx+

∫

Ω
uvdx =

∫

Ω
fvdx,where dx denotes the Lebesgue measure on Ω. Let us 
onsider the fun
tion

v = (Φε(u) − Φε(M))+ then v is in H1
0 (Ω), so

∫

Ω
(∇(Φε(u) − Φε(M))+)2dx+

∫

Ω
u(Φε(u) − Φε(M))+dx =

∫

Ω
f(Φε(u) − Φε(M))+dx,sin
e Φε(M) is a 
onstant. Consequently,

‖(Φε(u) − Φε(M))+‖2
H1

0 (Ω) =

∫

Ω
(f −M)(Φε(u) − Φε(M))+dx

−

∫

Ω
(u−M)(Φε(u) − Φε(M))+dx.By de�nition of M , the �rst integral is negative and, sin
e the fun
tions Idand Φε are in
reasing, the se
ond one is non negative. Then

‖(Φε(u) − Φε(M))+‖2
H1

0 (Ω) ≤ 0,that is Φε(u) ≤ Φε(M) a.e. in Ω, whi
h implies the �rst part of the requiredresult, sin
e Φε is an in
reasing fun
tion. For the se
ond part, we use asimilar method by taking v = (Φε(u) − Φε(m))−.2)Existen
e of a solution in H1(Ω)This result is obtained by using the S
hauder's �xed point theorem relatedto a weakly sequentially 
ontinuous mapping from a re�exive and separableBana
h spa
e into itself. Let us 
onsider w0 ∈ H1(Ω) the unique solution ofthe following linear Diri
hlet problem :
{

−∆w0 = 0 in Ω,
w0 = g on ∂Ω.Then a solution of the regularized problem is of the form w0 + w, with

w ∈ H1
0 (Ω) and for all v in H1

0 (Ω), one has
∫

Ω
Φ′

ε(w0+w)∇w0∇vdx+

∫

Ω
Φ′

ε(w0+w)∇w∇vdx+

∫

Ω
(w0+w)vdx =

∫

Ω
fvdx.



10 S. BERNARD AND S.P. NUIROConsequently, for all h ∈ H1
0 (Ω), let us look for wh in H1

0 (Ω) so that, for all
v in H1

0 (Ω),
∫

Ω

{

Φ̃′
ε(w0 + h)∇wh∇v + whv

}

dx

=

∫

Ω

{

fv − w0v − Φ̃′
ε(w0 + h)∇w0∇v

}

dx,where Φ̃ε is de�ned by
Φ̃ε(x) =







Φ(m) + rεx if x ≤ m
Φ(x) + rεx if x ∈]m,M [
Φ(M) + rεx if x ≥M.The existen
e and uniqueness of w0 and wh are ensured by the Lax-Milgram'stheorem. Moreover, for the test-fun
tion v = wh, we get

∫

Ω

{

Φ̃′
ε(w0 + h)|∇wh|

2 + |wh|
2
}

dx =

∫

Ω
fwhdx

−

∫

Ω

{

Φ̃′
ε(w0 + h)∇w0∇wh − w0wh

}

dx.Meanwhile,
∫

Ω

{

Φ̃′
ε(w0 + h)|∇wh|

2 + |wh|
2
}

dx ≥ rε

∫

Ω

{

|∇wh|
2 + |wh|

2
}

dx,

∫

Ω
fwhdx ≤ C(Ω)‖f‖L∞(Ω)‖wh‖H1

0 (Ω)and
−

∫

Ω

{

Φ̃′
ε(w0 + h)∇w0∇wh + w0wh

}

dx

≤ C(Ω)(1 + rε + ‖Φ′‖L∞(IR))‖w0‖H1(Ω)‖wh‖H1
0 (Ω)

≤ C(Ω)(2 + ‖Φ′‖L∞(IR))‖w0‖H1(Ω)‖wh‖H1
0 (Ω),where C(Ω) denotes a 
onstant depending on Ω. Thus,

‖wh‖H1
0 (Ω) ≤

1

rε
C(Ω)

[

‖f‖L∞(Ω) + (2 + ‖Φ′‖L∞(IR))‖w0‖H1(Ω)

]

.Noti
ing that ‖w0‖H1(Ω) depends only on g and Ω and not on ε, we obtainthat ‖wh‖H1
0 (Ω) ≤

C(Ω, f, g)

rε
, whi
h implies that the 
losed ball B(0, Rε) of
enter 0 and radius Rε = C(Ω,f,g)

rε
of the separable Hilbert spa
e H1

0 (Ω) isstable by the appli
ation
Π : H1

0 (Ω) → H1
0 (Ω)

h 7→ wh.



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 11Now we have to prove that for all sequen
e (hn)n of B(0, Rε) 
onvergingweakly to h, when n tends to +∞, the sequen
e (Π(hn))n 
onverges weaklyto Π(h). Let us 
onsider su
h a sequen
e (hn)n. Sin
e (Π(hn))n is bounded,we 
an extra
t a subsequen
e, still denoted by (Π(hn))n, so that
Π(hn) ⇀ χ in H1

0 (Ω).As the imbedding of H1
0 (Ω) into L2(Ω) is 
ompa
t, after another extra
tion,we have

{

Π(hn) → χ in L2(Ω),
hn → h in L2(Ω) and a.e. in Ω.Sin
e Φ̃′

ε is a bounded and pie
ewise 
ontinuous fun
tion and, using theLebesgue dominated 
onvergen
e theorem, we have also
Φ̃′

ε(w0 + hn) → Φ̃′
ε(w0 + h) in L2(Ω).Moreover, for all n in IN and all v in H1

0 (Ω), we have
∫

Ω

{

Φ̃′
ε(w0 + hn)∇whn

∇v + whn
v
}

dx

=

∫

Ω

{

fv − w0v − Φ̃′
ε(w0 + hn)∇w0∇v

}

dx.Passing to the limit, as n tends to the in�nity, in this previous equality, weobtain that, for all v in H1
0 (Ω),

∫

Ω

{

Φ̃′
ε(w0 + h)∇χ∇v + χv

}

dx

=

∫

Ω

{

fv − w0v − Φ̃′
ε(w0 + h)∇w0∇v

}

dx.Meanwhile, for all h in H1
0 (Ω), there is one and only one wh = Π(h), so

Π(h) = χ and the whole sequen
e (Π(hn))n 
onverges weakly to Π(h) in
H1

0 (Ω). We 
an now apply the �xed point theorem and 
on
lude that thereis w in H1
0 (Ω) so that Π(w) = w. Setting u = w0 + w, we have u in H1(Ω)and, for all v in H1

0 (Ω),
∫

Ω
Φ̃′

ε(u)∇u∇vdx+

∫

Ω
uvdx =

∫

Ω
fvdx,that is to say that u is solution of

{

−∆Φ̃ε(u) + u = f in Ω,
u = g on ∂Ω.Using a method similar to the �rst step, for this problem, we 
an prove that

m ≤ u ≤M a.e. in Ω,



12 S. BERNARD AND S.P. NUIROwhi
h shows, in fa
t, that u is solution of the regularized problem and ubelongs to H1(Ω) ∩ L∞(Ω).Moreover,
‖u‖H1(Ω) ≤ ‖w0‖H1(Ω) + ‖w‖H1

0 (Ω).But, by de�nition of w0, we have ‖w0‖H1(Ω) ≤ C(Ω)‖g‖L∞(∂Ω) and we provethat
‖w‖H1

0 (Ω) ≤
1

rε
C(Ω)

[

‖f‖L∞(Ω) + (2 + ‖Φ′‖L∞(IR))‖w0‖H1(Ω)

]

,so(5) ‖u‖H1(Ω) ≤
C(Ω)

rε

[

‖f‖L∞(Ω) + (2 + ‖Φ′‖L∞(IR))‖g‖L∞(∂Ω)

]

.3)Uniqueness of the solution in H1(Ω)Let u1 and u2 in H1(Ω) be two solutions of the regularized problem, thenfor all v belonging to H1
0 (Ω), one has

∫

Ω
∇(Φε(u1) − Φε(u2))∇vdx+

∫

Ω
(u1 − u2)vdx = 0.Taking v = Φε(u1) − Φε(u2), we 
an write that

‖Φε(u1) − Φε(u2)‖
2
H1

0 (Ω) +

∫

Ω
(u1 − u2)(Φε(u1) − Φε(u2))dx = 0.But it is the sum of two non negative terms, so both are equal to zero. Inparti
ular, ‖Φε(u1) − Φε(u2)‖

2
H1

0 (Ω)
= 0, that is u1 = u2, sin
e Φε is aninje
tive fun
tion.3.2. Strong solution of the generalized Diri
hlet problem.We aregoing to apply theorem 1 with E = L∞(Ω)×L∞(∂Ω), F = H1(Ω)∩L∞(Ω)and

θε : E → F
(f, g) 7→ θε(f, g) = uε,where uε is the solution of problem (Pε). Before, we are going to show thetwo following lemmas.Lemma 1. For all (f, g) in E and uε = θε(f, g) in F , we have

‖uε‖F ≤
C(Ω, ‖Φ′‖L∞(IR))

rε
‖(f, g)‖E .Proof. This result is an immediate 
onsequen
e of inequality (5) sin
e

max{|m| , |M |} is less than ‖(f, g)‖E = ‖f‖L∞(Ω) + ‖g‖L∞(∂Ω).



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 13Lemma 2. For all (f, g), (δ, η) in E, uε = θε(f, g) in F and uε + νε =
θε(f + δ, g + η) in F , we have

‖νε‖F ≤
C(Ω, ‖Φ′‖L∞(IR))

rε
‖(δ, η)‖E .Proof. By de�nition of θε, we have

{

−∆Φε(uε) + uε = f in Ω,
uε = g on ∂Ω,and

{

−∆Φε(uε + νε) + uε + νε = f + δ in Ω,
uε + νε = g + η on ∂Ω,so

{

−∆χε(νε) + νε = δ in Ω,
νε = η on ∂Ω,with χε = Φε(uε + ·) − Φε(uε) whi
h satis�es the same hypothesis as Φε ofse
tion 3.1. Consequently, νε is the solution of a similar problem as (Pε)and satis�es an inequality of the same type as (5), that is

‖νε‖F ≤
C(Ω, ‖χ′‖L∞(IR))

rε
‖(δ, η)‖E ,where χ = χε − rεId. And inequality ‖χ′‖L∞(IR) ≤ ‖Φ′‖L∞(IR) implies therequired result.Theorem 2. If (F ,G) belongs to A(C, L∞(Ω)×L∞(∂Ω)) then there is one,and only one, generalized fun
tion U= cl(uε)ε, belonging to A(C,H1(Ω) ∩

L∞(Ω)), so that(6) {

cl[−∆Φε(uε)]ε + U = F in A(C, L∞(Ω)),
Γ(U) = G in A(C, L∞(∂Ω)),where, by de�nition, Γ(U) = cl(uε|∂Ω

)ε = cl(gε)ε, when G = cl(gε)ε.Proof.We are going to apply theorem 1 with E = L∞(Ω) × L∞(∂Ω),
F = H1(Ω) ∩ L∞(Ω) and

θε : E → F
(f, g) 7→ θε(f, g) = uε,where uε is the solution of problem (Pε). In order to obtain the requiredresult, it su�
es to use the two previous lemmas and apply theorem 1 with

Ψε(x) =
C(Ω, ‖Φ′‖L∞(IR))

rε
x = Ψ2

ε(x)and Ψ1
ε(x) = 1, for all x in IR. The fa
t that Φ′ is bounded, ensuresthat (

C(Ω,‖Φ′‖L∞(IR))

rε

)

ε
is in A+. We set then U= Θ(F ,G) = cl(uε)ε =

cl(θε(fε, gε))ε when F= cl(fε)ε and G= cl(gε)ε.



14 S. BERNARD AND S.P. NUIRO3.3. Weak solution of the generalized Diri
hlet problem. In this se
-tion, we de�ne the notion of weak solution by using the weak equality de�nedin example 4.Theorem 3. With the assumptions of theorem 2, if F = cl(fε)ε and G =
cl(gε)ε are su
h that(7) ∃(rε)ε ∈ V+

A , lim
ε→0+

rε max
{

‖gε‖L∞(∂Ω), ‖fε‖L∞(Ω)

}

= 0,then there is one, and only one, generalized fun
tion U whi
h belongs to
A(C,H1(Ω) ∩ L∞(Ω)) and su
h that(8) {

−∆Φ(U) + U
2
≃ F in A(C, L∞(Ω)),

Γ(U) = G in A(C, L∞(∂Ω)),with ∆Φ(U) = cl(∆Φ(uε))ε = cl(uε − rε∆uε − fε)ε.Proof. Sin
e cl[−∆Φε(uε)]ε + U = F in A(C, L∞(Ω)), so H−2(Ω)-weaklyequal and Φε = Φ + rεId, it is su�
ient to prove that
Cl(−rε∆uε)ε

2
≃ 0.Let ϕ be in H2

0 (Ω), using Green's formula, one has
∫

Ω
−rε∆uεϕdx = rε

(
∫

Ω
∇uε∇ϕdx−

∫

∂Ω
gεϕdν

)

= rε

(
∫

∂Ω
uε
∂ϕ

∂ν
dν −

∫

Ω
uε∆ϕdx−

∫

∂Ω
gεϕdν

)

= −rε

∫

Ω
uε∆ϕdx.Consequently, using Cau
hy-S
hwartz's inequality, one has

∣

∣

∣

∣

∫

Ω
−rε∆uεϕdx

∣

∣

∣

∣

≤ rε max(‖gε‖L∞(∂Ω), ‖fε‖L∞(Ω))C(Ω) ‖∆ϕ‖L2(Ω) .The assumption (7) implies that
lim
ε→0

∫

Ω
−rε∆uεϕdx = 0.Remark 5. This theorem leads us to noti
e that we 
an have a Dira
 general-ized fun
tion in the se
ond member of the problem. Indeed, a representativeof a Dira
 generalized fun
tion 
an be : ∀x ∈ IRd, δε(x) = ε−dϕ

(

ε−1x
),where ϕ is a 
ompa
tly supported fun
tion de�ned on IRd. The hypothesis(7) is satis�ed with: ∀q ∈ IN, rε = εd+q, and, for example, we take A and

IA as in example 1.



GENERALIZED SOBOLEV ALGEBRAS AND APPLICATIONS 153.4. Non positive solutions. In this se
tion, we prove that the solution isnon positive, in a sense to be de�ned, when the data is. We start by de�ningwhat non positive means here.De�nition 6. An element U ∈ A(C,H1(Ω) ∩ L∞(Ω)) is said to be nonpositive if and only if the 
orresponding element I (U), of the generalizedSobolev algebra A(C, L∞(Ω)), is non positive.In this de�nition, I denotes the extension of the 
anoni
al embedding of
H1(Ω) ∩ L∞(Ω)) into L∞(Ω), introdu
ed in example 5. This mapping is anembedding of A(C,H1(Ω) ∩ L∞(Ω)) into A(C, L∞(Ω)).Proposition 9. With the assumptions of theorem 3, if the generalized fun
-tions F= cl(fε)ε ∈ A(C, L∞(Ω)) and G= cl(gε)ε ∈ A(C, L∞(∂Ω)) are nonpositive, then U = Θ(F ,G) = cl(θε(fε, gε))ε ∈ A(C,H1(Ω) ∩ L∞(Ω)), thesolution to our main problem, is non positive.Proof. Using the hypothesis on F , G and the results of se
tion 2.4, one
an 
laim that ea
h data admits a non positive representative. And then itsu�
es to show that U = Θ(F ,G) = cl(θε(fε, gε))ε admits a non positiverepresentative, sin
e a non positive representative of U is also one for I (U).Let fε and gε be the non positive representatives of F and G, and uε =
θε(fε, gε). Using the maximum's prin
iple as in the proof of proposition 8with

Mε = max{sup
Ω
fε , sup

∂Ω
gε} = 0,we obtain that uε ≤ 0 a.e. Ω, and for all ε.Remark 6. In fa
t, we solved the following obsta
le problem:For F= cl(fε)ε ∈ A(C, L∞(Ω)) and G= cl(gε)ε ∈ A(C, L∞(∂Ω)) nonpositive, �nd U ∈ A(C,H1(Ω) ∩ L∞(Ω)) so that(9) 





−∆Φ(U) + U
2
≃ F in A(C, L∞(Ω)),

Γ(U) = G in A(C, L∞(∂Ω)),
U ≤ 0 in A(C, L∞(Ω)),whi
h is a generalized version of this one:Find u : Ω 7→ IR so that







−∆Φ (u) + u = f in Ω,
u = g on ∂Ω,
u ≤ 0 on Ω,where f and g are non positive given fun
tions.
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