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ON GENERALIZED SOBOLEV ALGEBRAS AND THEIR
APPLICATIONS

SEVERINE BERNARD AND SILVERE P. NUIRO

In the last two decades, many algebras of generalized func-
tions have been constructed, particularly the so-called gener-
alized Sobolev algebras. Our goal is to study the latter and
some of their main properties. In this framework, we pose
and solve a nonlinear degenerated Dirichlet problem with ir-
regular data such as Dirac generalized functions.

Key words : nonlinear degenerate Dirichlet problem, generalized solu-
tion, Sobolev algebra, non positive solution.
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1. Introduction

A theoretical study of most of the well-known algebras of generalized func-
tions has pointed out two fundamental structures. The first one is the alge-
braic structure of a solid factor ring C of generalized numbers. The second
one is the topological structure defined by a family P of seminorms, on
a locally convex linear space F, which is also an algebra. These algebras
have been denoted by A(C,E,P) and one speaks of (C, E,P)-algebras of
generalized objects. The definition covers most of the well-known algebras
of generalized functions, as for example, the Colombeau simplified algebra
[3], Goursat algebras [13] and asymptotic algebras [4]. On the other hand,
special choices for E/, P and C also allow the introduction of some new al-
gebras. One of them is the so-called Egorov extended algebra, because of
the similarity with the Egorov [5] algebra of generalized functions. We have
been interested in working within the framework of the so-called generalized
Sobolev algebras based on the classical Sobolev spaces. As F is a differential
algebra, the main interest of these algebras is to give a framework which is
well suitable to solve many non linear differential problems with irregular
data. The method is based on the extension of a mapping from (E7,P1) into
(E2,P3) to a mapping from A(Cy, E1,P1) into A(Ca, Eo2,P2). This method
has been introduced, in the framework of asymptotic algebras, by A. Delcroix
and D. Scarpalezos [4], and used, in the framework of (C, E, P)-algebras, to
solve a non linear Dirichlet problem [12] and a non linear Neumann problem
[11], both with irregular data by J.-A. Marti and S. P. Nuiro. In this paper,
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2 S. BERNARD AND S.P. NUIRO

our goal is to lift up the generalized Sobolev algebras, by giving more clear
definitions of all the statements and general results in this framework, in
order to work more easily with these algebras. We introduce the first ex-
ample of ordered generalized Sobolev algebras, which allows us to pose and
eventually solve an obstacle problem with irregular data. We also point out
some sufficient properties for the existence of an embedding of some space
into a generalized Sobolev algebra. In the framework of generalized Sobolev
algebra, we are able to solve a non linear degenerated Dirichlet problem [12]
with weaker assumptions.

Consider © an open bounded domain of R? (d € IN*) with a lipschitz
continuous boundary 02, we can state this formal problem :

—A®(u)+u=f in Q,
(P) { u=g on O0f,

where f and g are non smooth functions defined on Q and 92 respectively, ®
an increasing real-valued differentiable function defined on IR so that @' is a
continuous bounded function that can vanish on a finite set of discrete points
of R. This is a quasilinear diffusion type problem, with non homogeneous
Dirichlet condition on the boundary. One can remark that the formal second
order differential operator £ = —div (®'(.)V,) + I is a degenerated one,
because @' can vanish. Thus, (P) is a Dirichlet nonlinear elliptic degenerated
problem. In order to solve this problem, we introduce an auxiliary problem
by using an artificial viscosity regularization depending on a parameter &.

2. Special types of generalized algebras

2.1. Definitions. Let us, first, state that IK is IR or €, and T = (1), where
I. =1 for all . The generalized algebras constructed from F, a normed K-
algebra, are particular case of (C, E,P)-algebras [10], [12], [11], [13].

Consider a subring A of the ring IK!%" so that T € A, and which, as a
ring, is solid (with compatible lattice structure) in the following sense :

Definition 1. A is said to be solid if from (s:). € A and |t.| < |se| for each
e €]0,1] it follows that (t:). € A.
We also consider an ideal I4 of A which is solid as well, and so that
(1) V(re), € Ia, lin%)r6 = 0.
E—

Then, we introduce the factor ring C = A/I4, which is called a ring of
generalized numbers.

Definition 2. Let F be a normed algebra. We shall call N-generalized algebra
all factor algebra

A(C,E) = Ha(E) /11, (E),
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where
Ha(B) = {(ue): € BV / (||uclp)- € AT}
and

1, (E) = {(ue): € B/ (fuc]p)- € 11},
when || - ||g is the norm on E, AT = {(r.)e € A / Ve >0, r. € Ry} and
IT ={(re): € 14 / Ye > 0, r. € Ry}. Its ring of generalized numbers is
defined as the ring

Ha (K) /Z;, (K) = C = A/I4.

Remark 1. We remark that the notation is A(C, E) instead of A(C,E,P)
since the family P is reduced to one single element. The algebra A(C, E) is
also a vector space on the field IK.

Example 1. With

Iy = {r = (rs)c € RO |Vk e N*, |rs|=0 <€k>}
and

A= {r —(r). e R Tk ez, |r.]=0 (sk)} ,
we obtain a polynomial growth type N-generalized algebra.
Example 2. We take

Iy = {7" = (r.). e RI%U |34 €]0,1], Ve €]0,e0], 7= O} ,

and A = ROV, With such A and Ia, we obtain another N-generalized
algebra.

Example 3. When E is a Sobolev algebra (that is, for exzample, on the
form WMHLP(Q) N W™(Q), with m €]0, +oo, p € [1, +oo[ and Q an open
subset of R (d € IN*)), respectively a Banach algebra, we will speak about
generalized Sobolev algebra, respectively generalized Banach algebra, instead
of N-generalized algebra.

2.2. Embeddings and weak equalities. In the following paragraph, we
are going to show a way to embed E into A(C, E).

Proposition 1. The mapping ig defined on E, by :
Vue E, ip(u) =cl(ul),,
is linear and one-to-one from E into A(C, E).

Proof. For every u € I/, we have : (||lul.| ). = [|u||g I. Furthermore, as
|ul| ; € K and T € A, there exists A € IN so that

Ve, uelly < M,
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and obviously AI € A™. As a consequence of the solid property which implies
that (u.), € Ha (E), we have ig(u) € A(C, E). It can easily be proved that
ig is linear and one-to-one.

Definition 3. The mapping iy from E into A(C, E), defined in proposition
1, will be the so-called trivial embedding of E into A(C, E).

We can also embed some topological vector space into A(C, E). Let (G, T)

be a Hausdorff topological vector space so that there exists a continuous
linear mapping j from (E, ||.||z) into (G, T).

Definition 4. T € G and U = cl (u.), € A(C, E) are (G, T)-associated if
j(us) =T in (G,T) ase — 0.

It will be denoted by U X T.

Remark 2. This definition does not depend on the chosen representative of
U. Indeed, let (e.). € I, (E). Therefore, lir% lle<|| z = 0, which means that
E—

e — 0in (E,|.]|g) as € — 0. Consequently, we have j(e;) — 0 in (G,T)
as e — 0.

Definition 5. Assume that U = cl (u.).,V = cl (ve). € A(C,E). We shall
say that U and V are (G, T )-weakly equals if

w-v)y%<o.
a7
It will be denoted by U ~ V.

Proposition 2. Assume that for every T € G, there exists (u:). € Ha (E),
so that

j(ue) =T in (G, T), ase — 0.
Then, there exists, at least, an embedding i from (G, T ) into the N-generalized
algebra A(C,E). Furthermore, if, for all v € E, there exists (u.), € Ha (E),
so that (uz —v), € I1, (E), then

, . GT .
(2) Vue E, (igoj)(u) = ip(u).
Proof. For every T' € G, there exists (u.). € Ha (E), so that

j(ue) = Tin (G,7T) ase — 0.
Let us state ig(T) = ¢l (u:).. The mapping ig from G into A(C,E) is
obviously linear. Let us prove that ig is one-to-one. If ig(T) = 0in A(C, E)
then

iq(T) =cl(e), for (ec). € Ir, (E).

We have e — 0 in (E, ||.|| ;) which implies that j (e.) — 0 in (G, 7T ), when-
ever ¢ — 0. This leads to T'= 0 in G, because (G,7) is a Hausdorff space.
The second property is obvious.
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Remark 3. If there exists another such embedding iy, from (G, T) into the

N-generalized algebra A(C, E) then
G, T .
VT € G, ig(T) = ig(T).

Example 4. Let j be the canonical embedding of <L°°(Q),H.HLO<,(Q)) in

(H™2(Q),0 (H2(Q),H§())), where o (H2(Q), H3(2)) denotes the weak
topology on H-2(Q)). We will say that T € H2(Q) and U = cl(u.): €
A(C, L>®(Q)) are H=2())-associated if

jlus) — T in (H_Z(Q),O' (H_Z(Q),HOQ(Q))) , as e — 0,

and we will denote U 2 T. Moreover, we will say that U,V € A(C,L>*(Q))
are H=2()-weakly equals if U — V 20 and we will denote U % V.

2.3. Mapping on N-generalized algebra. The idea of extension of map-
ping has been introduced by A. Delcroix and D. Scarpalezos [4], in the
framework of asymptotic algebras. But it is, in fact, a particular case of
definition of mapping on A(C, E)-algebras.

If § = (0.), is a family of mappings from a normed algebra (E,|.||5)
into a normed algebra (F,|.|), one can view # as a mapping from the N-
generalized algebra A(C, E) into the N-generalized algebra A(D, F'), where
we have set C = A/I4 and D = B/Ig when A,I4, B and Ip are as in §2.1.
One remarks that the extension theorem of A. Delcroix and D. Scarpalezos
[4] deals with the case where 6 = (0)

.
Theorem 1. Let E and F be two normed algebras and (0:): a family of
applications of E in F. We assume that
1) ACBand I4 C Ip,
2) there exists a family of polynomial functions (V.). of one variable with
coefficients in Ay so that

Ve>0, Ve e B, [0-(2)|r < Ve(llz]£),

3) there emists two families of polynomial functions (1), and (¥2). of
one variable with coefficients in Ay so that W2(0) = 0 for all € > 0,
and

Ve >0, V2,6 € B, [|0c(z +€) — 0=(2) | r < V(llz] )2 (€] ).

Then there exists an application © : A(C,E) —A(D, F), which associates
cl(0:(x))e with cl(ze)e.

Proof. First, let (z-) be in H4(F) and let us show that (6-(x.))- is in
Hp(F). We have (||zc||g)e in A+ so (Ve(||ze||E))e is also in A4, since (¥.).
has coefficients in A;. Thus (||f:(x:)||F)s) belongs to Ay C By, due to
(1) and (2), which implies what we want. Then, let (i;). be in Z;,(E) and
let us show that (6-(x. + ic) — 0-(x.)) is in Zy,(F). Since (|lz¢||g). and
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(|lic||)e are respectively in A, and I7[ then (\Il;(HJUEHE))8 and (V2(||ic | g))-
are respectively in Ay and I} | since, for i € {1,2}, (V%). has coefficients in
Ay Then, (W (||lzell2)P2(llic ]| ))e is in I3, Thus (|0 (ze +ic) — 0= (ze) | p)e

belongs to I} C I}, due to (1) and (3), which implies the required result.
As a consequence, we obtain the following result.

Proposition 3. Assume that A C B and 14 C Ip. If (0:): is a family of
continuous linear mappings from a normed algebra E into a normed algebra

F, then (6:)c also defines a mapping © from A(C, E) into A(D, F).

Example 5. Let Q be an open subset of R and E = H' () N L™ (Q)
with [lullp = [lull ooy + llull 1) The canonical embedding i : u — u
1s continuous as well as linear from the Banach algebra E into the Banach
algebra L™= (2). Obuviously, the mapping i verifies all the assumptions of the
previous proposition; this is why we can define its extension I as a mapping

from A(C, E) into A(C,L> (Q)).
In the same way, one can prove that :

Proposition 4. Assume that (6:). is a family of mappings from a normed
algebra E into the topological field (IK,|.|), so that

e there exists a family of polynomial functions (V.)e of one variable with
coefficients in Ay so that

Ve>0, Vo€ E, |0:(2)] < Ve([z]p),

e there exists two families of polynomial functions (V1) and (¥2). of
one variable with coefficients in Ay so that W2(0) = 0 for all € > 0,
and

Ve >0, Vo, € B, [0(x +€) — 0c(2)| < Vo(l|lz] ) P2(I€] p).

Then there exists an application © : A(C, E) — C, which associates cl(6(xz))e
with cl(x)e.

Remark 4. If 0 is a continuous linear mapping from a normed algebra
(E,|l.llg) into the topological field (IK,|.|), then 6 also defines a mapping,
denoted by ©, from A(C, E) into the factor ring C = A/14.

2.4. An example of ordered generalized Sobolev algebra. Consider
A and 14 as in §2.1, the Sobolev algebra L (), endowed with its usual
topology, with © an open bounded subset of IR?. Thus, we can consider the
algebra A(C, L (Q2)). It is easy to prove, by means of theorem 1, that the
mapping
p:L*(Q) — L>®(Q)
u — ut =sup{u,0} =L(u+|u])
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can be extended as a mapping P from A(C, L* (f2)) into itself, defined by :
WU = d(u.). € AC,L* (), PU) = dp(u.)).,
due to the following relation :
vr,s€R, |(r4s)T —rt| <.
We are now able to state the following result:

Proposition 5. The generalized Sobolev algebra A(C,L>* (2)) is partially
ordered by the following binary relation :

VU,V € AC,L®(Q), U<V < P U —V)=0.
Proof. Obviously, the relation < is reflexive, then we have to prove, for
U,V,W € A(C, L™ (), that :
(3) U<V andV<U = U=V;
(4) U<VandV<W = U<ZW.
We state U = cl(ug)e, V = cl(ve). and W = cl(we)e.
Proof of property (3) : If U < V and V' < U then, there exists (¢.), and

€
(o), in Iy, (L™ (Q)) so that (ue —vo)" = . and (v: — u)t = 9. As,
Ue — Vg = (ua - Ua)+ - (Ua - ua)+ = Qe — e,
it follows that (ue. —v:). = (e — ¥e). € 1, (L (2)), whence U = V.
Proof of property (4) : f U <V and V < W then we have

(e =0 liey), € Ta - (02 = 09", € T

By means of the solid property, we deduce, from the following inequality :
[ (ue — w5)+HL°®(Q) < [|(ue — UE)+HL°°(Q) +[|(ve = w5)+HL°°(Q) g

that ((ue —w.)")_ € Iz, (L (Q)), which yields P(U — W) = 0, that is to
say U < W.

Proposition 6. For all u,v € L*>® (), we have ig(u) < ig(v) if, and only
if, u < wvin L>®(Q), that is uw < v almost everywhere in Q.

Proof. If ig(u) < ip(v) then P (ip(u) —ip(v)) = 0. Consequently, there
exists (¢2). , (ec)e € Zr, (L= (R)) so that (u —v +e.)" = ¢, since we have
ue — Ve = u — v + e, for all e. Taking into account that

e —0 and e.—0 inL>®(Q),ase—0,
it may be seen that (v —v+e.)t = . = 0 a.e. in Q, whence (u—v)" =
0 a.e. in ), since one can easily prove that
(u—v+e)t = (u—v)" inL>®(Q) ,ase—0.

It means that u <wv a.e. in Q.
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Conversely, if u < v a.e. in Q then (u — v)T = 0 a.e. in Q. By definition
of P and 1o, this leads to ig(u) < ig(v).

1
Proposition 7. Let u € L™ (Q) and U € A(C,L*>® (). IfU R (here

LY() is endowed with its usual topology) and U < 0 then u < 0 a.e. in Q.
. L'(Q)

Proof. We set U = cl(u:).. Since U ~  wu then, as e goes to 0,
ue — u in L (Q), which gives ul — u™ in L' (), by means of the Lebesgue
dominated convergence theorem. Since U < 0 then P (U) = 0. Conse-
quently, there exists a sequence of functions (¢.). € Iy, (L™ (2)) so that
ul = . for all €. Taking into account that

£

we =0 inL>®(Q) , ase — 0,

we find that ul = ¢. — 0 a.e. in Q, whence u™ = 0 a.e. in €, which
implies © < 0 a.e. in §.

3. Solution of the nonlinear degenerate Dirichlet problem

After having solved the auxiliary problem by using an artificial viscosity
regularization depending on a parameter €, we solve our main problem (P)
(see section 1), in a generalized Sobolev algebra with the classical equality
and with the weak one defined in example 4. Then we perform a little
qualitative study of the solution.

3.1. The regularized Dirichlet problem. Let us set
1
Vi= {(7’8)8 € AT /Ve>0, r. €]0,1]; lim e =0 ; <—> € A+}.
£— Te c

Assume that V} # () and then, for all (7). in V1, set . = ® + r.Id. This
section consists in proving the following proposition :

Proposition 8. If f € L°(Q) and g € L>(0N) then there exists one, and
only one, function w € H'(Q) N L>(Q) solution of the reqularized problem

—AP, (u) +u=f in Q,
(Pe) { u=g on 0N.

Proof. This proof goes in three steps.
1)Maximum'’s principle
We are going to prove that if u € H(Q) is a solution of this problem then

m<u<Ma.e. in Q,
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with m = min{inf f , infg} and M = max{sup f , supg}, which means
Q o9 Q 1)

that u belongs to L>(Q).
Indeed, for such a u, we have, for all v in H} ()

/V@a(u)Vvdw—i-/uvdx:/fvda:,
Q Q Q

where dx denotes the Lebesgue measure on 2. Let us consider the function
v =(P(u) — ®(M))" then v is in HI(), so

/ (V(®.(u) — Bo(M))+)2de + / (@2 () — B (M) dr =
Q

Q

o,
/Q F(®(u) — ®.(M))*de,

since ®.(M) is a constant. Consequently,

H((I)a(u) - Cbe(M))ﬂﬁ{l(Q) = /(f - M)((be(u) - @a(M))+dx
0 Q
— /Q(u — M) (®:(u) — ®.(M)) " dx.

By definition of M, the first integral is negative and, since the functions I'd
and ®. are increasing, the second one is non negative. Then

||(‘1>€(u) - (I)s(M))JrH?{(}(Q) < Oa

that is ®.(u) < & (M) a.e. in Q, which implies the first part of the required
result, since ®. is an increasing function. For the second part, we use a
similar method by taking v = (®.(u) — ®.(m))".

2)Existence of a solution in H'(£2)
This result is obtained by using the Schauder’s fixed point theorem related
to a weakly sequentially continuous mapping from a reflexive and separable
Banach space into itself. Let us consider wo € H'(£2) the unique solution of
the following linear Dirichlet problem :

—Awo = 0in Q,
wg = g on Of.

Then a solution of the regularized problem is of the form wy 4+ w, with
w € HY(Q) and for all v in H}(£), one has

/q)é(wo—}—w)Vonvdx—}—/ @é(wo—}—w)VwVvdx—}—/ (wo+w)vdz :/fvdx.
Q Q Q Q
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Consequently, for all h € HZ(Q), let us look for wy, in H}(2) so that, for all
vin H}(S)

i

/ {i);(wo + h)Vwp Vv + wpv ¢ dx
Q

= {fv — woU — i)é(wo + h)VwOVv} dux,
Q

where @, is defined by
) d(m)+r.x ifx<m
O (x) =4 P(x)+rex ifz€lm, M|
O(M)+rx if x> M.

The existence and uniqueness of wg and wy, are ensured by the Lax-Milgram’s
theorem. Moreover, for the test-function v = wy, we get

/{(i)é(wo—l—h)\thP—i-]wh\Q}dm:/fwhdx
Q Q

— / {(i);(wo + h)VwoVwy, — wowh} dz.
Q

Meanwhile,

[ {8ttwo+ wIwn 4w do > e [ {i9wn + fun} do
Q Q

AﬂwméamWMmeW%@

and
— / {(i);(wo + h)VwoVwy, + wowh} dz
Q

< COQ)A + re + (|9 o ) llwoll @ 1wl )
<CQ)(2+ H‘I’/HLw(R))HWOHHl(Q)HwhHHg(Q)a
where C'(Q2) denotes a constant depending on Q. Thus,

1
lwnl 30) < T—C(Q) £ ooy + 2+ [|9]] oo ) lJwol i1y -

€
Noticing that |lwo| g1(q) depends only on g and © and not on ¢, we obtain

c(Q,f,9)
T

that [Jwh || 1) < , which implies that the closed ball B(0, R.) of

3
center 0 and radius R, = C(fii’if’g) of the separable Hilbert space H}(Q) is
stable by the application

II : H{(Q) — HiQ)

h = wy.
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Now we have to prove that for all sequence (hy,), of B(0,R.) converging
weakly to h, when n tends to 400, the sequence (II(hy,)), converges weakly
to II(h). Let us consider such a sequence (hy,),. Since (II(hy,))y is bounded,
we can extract a subsequence, still denoted by (II(hy,))n, so that

(hy) = x in Hy(%).

As the imbedding of HE(Q) into L?(Q) is compact, after another extraction,
we have
(h,) — xin L?(Q),
{ h, — hin L?(Q) and a.e. in €.

Since ®. is a bounded and piecewise continuous function and, using the
Lebesgue dominated convergence theorem, we have also

®’ (wo + hy) — PL(wo + h) in L*(Q).

Moreover, for all n in IN and all v in H}(Q), we have
/ {i)é(wo + hy)Vwp, Vo + whnv} dx
Q

= /Q {f” — wWev — ‘i);(wo + hn)VMOVv} dz.

Passing to the limit, as n tends to the infinity, in this previous equality, we
obtain that, for all v in Hg(Q)

i

/ {i)é(wo + h)VxVov + Xv} dx
Q
= / {fv — wov — L (wo + h)VUJon} dz.
Q

Meanwhile, for all h in H}((2), there is one and only one wy, = II(h), so
II(h) = x and the whole sequence (II(h,)), converges weakly to II(h) in
HE (). We can now apply the fixed point theorem and conclude that there
is w in H(Q) so that II(w) = w. Setting u = wy + w, we have u in H(Q)
and, for all v in H{(Q),

/(i);(u)Vqudw—i—/uvdx:/fvdx,
0 Q 0

that is to say that w is solution of

~Ad® (u)+u = finQ,
u = g on 0f.

Using a method similar to the first step, for this problem, we can prove that

m<u<Ma.e. in Q,
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which shows, in fact, that w is solution of the regularized problem and u
belongs to H(Q) N L>(1Q).
Moreover,

lull g o) < llwollz @) + llwll g1@)-
But, by definition of wg, we have [[wo || g1(q) < C(2)||gllr=(00) and we prove
that

1
lwll @) < T—C(Q) £ ooy + 2+ [197]| oo ) l[wol o] 5
€
SO
C(2)

Te

(5) ull 1) < 1o ) + 2+ (197 ]| oo ) 19l oo (060 ] -

3)Uniqueness of the solution in H'(f)
Let u; and ug in H'(Q) be two solutions of the regularized problem, then
for all v belonging to H} (L), one has

/ V(P (ur) — P(uz))Vodx + / (u1 — ug)vdx = 0.
Q Q

Taking v = ®.(u;) — P (u2), we can write that

192 1) = @)y oy + [ (101 = 02) (@) = Be2))do =

But it is the sum of two non negative terms, so both are equal to zero. In
particular, ||®.(u1) — <I>€(u2)||§{&(ﬂ) = 0, that is u; = ug, since ®. is an
injective function.

3.2. Strong solution of the generalized Dirichlet problem. We are
going to apply theorem 1 with E = L®(Q) x L>®(99), F = HY(Q) N L>®(Q)
and
0. : E - F
(f,9) +— 0:(f,9) = ue,

where u, is the solution of problem (P.). Before, we are going to show the
two following lemmas.

Lemma 1. For all (f,g) in E and u. = 6-(f,g) in F, we have
C(Q 12|l oo (r))

£

1(f; 9l -

JuellF <

Proof. This result is an immediate consequence of inequality (5) since
max{|m| , |M|} is less than [|(f, 9)ll& = [|fllLe) + 9]l 90)-
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Lemma 2. For all (f,g), (6,n) in E, uc = 0-(f,g9) in F and ue + v, =
0-(f+ 06,9+ n) in F, we have

C(Q, |2 Lo (w))
Te

Vel < 16, )l -

Proof. By definition of 6., we have
—Ad (uz) +u. = fin Q,
ue = g on Of),
and
—A® (ue+ve)+u.+ve = f+d5inQ,
Us + V. = ¢+ mnon df,
SO
—AXe(ve) + v = §in Q,
ve = mon 0L,
with x. = ®.(ue + ) — P-(ue) which satisfies the same hypothesis as ®. of
section 3.1. Consequently, v is the solution of a similar problem as (P.)
and satisfies an inequality of the same type as (5), that is

C(, Xl (w))

£

100 m) |,

where x = x. — reld. And inequality ||x|[zec(r) < [|®'||fo(r) implies the
required result.

Jvellr <

Theorem 2. If (F,G) belongs to A(C,L>(§2) x L*>(0R)) then there is one,
and only one, generalized function U= cl(u.)., belonging to A(C, H'(2) N
L>(Q)), so that
(6) d[-ADc(ue)le +U = Fin A(C,L>(Q2)),

ru) = G in A(C,L*(09)),
where, by definition, D'(U) = cl(ue o) = cl(ge)e, when G = cl(ge)e.

Proof. We are going to apply theorem 1 with E = L*°(Q) x L*(09)
F=H'(Q)NL*(Q) and
0. : E - F
(fag) = 9€(f7.g):u€,

where wu. is the solution of problem (P.). In order to obtain the required

result, it suffices to use the two previous lemmas and apply theorem 1 with

C(, 12| Lo ()

V(1) = (R)
Te

and ¥l(x) = 1, for all  in R. The fact that ® is bounded, ensures

that (M) is in AT. We set then U= O(F,G) = cl(u.). =

Te

AA(0-(f-,g-))e when F= cl(f.). and G= cl(g.)-.

i

= V()
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3.3. Weak solution of the generalized Dirichlet problem. In this sec-
tion, we define the notion of weak solution by using the weak equality defined
in example 4.

Theorem 3. With the assumptions of theorem 2, if F = cl(fe)e and G =
cl(ge)e are such that

M 3 € Vi Tim e max {lgel e on 1o} = 0.

then there is one, and only one, generalized function U which belongs to

A(C, HY(Q) N L>(Q)) and such that

- { CADUY U A F in AC, L¥(Q)),
TU) = G in AC, L=(09)),

with APU) = cl(AP(ue))e = cl(us — r-Aue — fe)e.

Proof. Since cl[-A®.(u.)]. +U = F in A(C, L>(R)), so H2(2)-weakly
equal and &, = ® + r.Id, it is sufficient to prove that

I

Cl(—r-Au.). 0.

Let ¢ be in H3(Q), using Green’s formula, one has

/—reAusgpdac =7 /VUEVgodm—/ gggodu>
Q Q o0

=7, / ue%dy—/ueAgpdx—/ gegpdy>
an Ov 0 09

=—r. [ uApdr.
Q

Consequently, using Cauchy-Schwartz’s inequality, one has

/ —reAucpdx
Q

The assumption (7) implies that

< remax(||ge [l L a0); 1 fell Lo (2)) C () [[A® | 12 (q) -

lim [ —r.Aucpdx = 0.

e—0 Jo

Remark 5. This theorem leads us to notice that we can have a Dirac general-
1zed function in the second member of the problem. Indeed, a representative
of a Dirac generalized function can be : Yz € R?, 6.(z) = e % (e71z),
where @ is a compactly supported function defined on R?. The hypothesis
(7) is satisfied with: Yq € N, . = €9, and, for ezample, we take A and
14 as in example 1.
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3.4. Non positive solutions. In this section, we prove that the solution is
non positive, in a sense to be defined, when the data is. We start by defining
what non positive means here.

Definition 6. An element U € A(C, H'(Q) N L*°(Q)) is said to be non
positive if and only if the corresponding element I (U), of the generalized
Sobolev algebra A(C,L*>°(Q2)), is non positive.

In this definition, Z denotes the extension of the canonical embedding of
HY(Q) N L*>®(Q)) into L>(Q), introduced in example 5. This mapping is an
embedding of A(C, H(2) N L>(2)) into A(C, L>®()).

Proposition 9. With the assumptions of theorem 3, if the generalized func-
tions F= cl(fe)e € A(C,L>®(Q)) and G= cl(g:)- € A(C,L*(0Q)) are non
positive, then U = O(F,G) = cl(0-(f-,g:))e € A(C,H' () N L=()), the

solution to our main problem, is non positive.

Proof. Using the hypothesis on F, G and the results of section 2.4, one
can claim that each data admits a non positive representative. And then it
suffices to show that U = O(F,G) = cl(0-(fc, 9:)). admits a non positive
representative, since a non positive representative of U is also one for 7 (U).
Let f. and g. be the non positive representatives of 7 and G, and u. =
0c(f-,g:). Using the maximum’s principle as in the proof of proposition 8
with

M. = max{sup f. , supg:} =0,
Q [e]9)

we obtain that u. < 0 a.e. 2, and for all .

Remark 6. In fact, we solved the following obstacle problem:

For F= cl(f.)e € A(C,L*(Q)) and G= cl(g:). € A(C,L>®(0R)) non
positive, find U € A(C, H*(Q) N L>=(Q)) so that

CABU) U 2 F in AC,L™(Q))
(9) TU) = G in AC,L>(09)
U < 0in AC, L>(Q)),

)
)
which is a generalized version of this one:

Find u: Q — IR so that

—A® (u)+u=f in Q,
u=g on O0f,
u<0 on €

where f and g are non positive given functions.
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