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DISTRIBUTION OF RESONANCES FOR OPEN QUANTUM MAPS

STÉPHANE NONNENMACHER AND MACIEJ ZWORSKI

1. Introduction

1.1. Statement of the results. In this note we analyze simple models of classical chaotic
open systems and of their quantizations. They provide a numerical confirmation of the
fractal Weyl law for the density of quantum resonances of such systems. The exponent in
that law is related to the dimension of the classical repeller of the system. In a simplified
model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal
Weyl law. Our model is similar to models recently studied in atomic and mesoscopic
physics (see §2.4 below). Before stating the main result we remark that in this paper we
use mathematicians’ notation h for what the physicists call ~. That is partly to stress that
our h is a small parameter in asymptotic analysis, not necessarily interpreted as the Planck
constant.

Theorem 1. There exist families of symplectic relations, B̃ ⊂ T2 × T2, and of their

(subunitary) quantization, B̃h ∈ L(CN), N = (2πh)−1, such that

#
{
λ ∈ Spec(B̃h) : |λ| ≥ r

}
= c(r) h−ν + o(h−ν) ,

r > 0 , h = hk = (2πDk)−1 → 0, k →∞ ,

ν = dim
(
Γ−(B̃) ∩W+(B̃)

)
, c(r) = (2π)−νχ[0,r0(B̃)](r) , 0 < r0(B̃) < 1 ,

where the integer parameter D > 1 depends on B̃. The set Γ−(B̃) ⊂ T2 is the forward

trapped set of B̃ and W+(B̃) is the unstable manifold of B̃ at any point of Γ−(B̃).

In the model discussed in detail we took D = 3. The asymptotics are actually much more
precise and include uniform angular distribution (see Prop. 6.5). The resonances lie on a
lattice (see Fig. 1) and some of this structure is also seen in numerically computed more

generic situations (see Fig. 6). Each symplectic relation B̃ (or “multivalued symplectic
map”) is defined together with the probabilities, for any point, to be mapped to each of its

images: B̃ thus represents a certain stochastic process. The quantizations B̃h quantize the
relations together with their densities in the precise sense given in §4.4.

In the models used in Theorem 1 we can compute the conductance and the shot noise
power (or the closely related Fano factor) — see §2.4.3 and references given there for physics
background and §7 for precise definitions.
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Theorem 2. For models considered in Theorem 1, the openings consist in two “leads” of
equal widths, therefore carrying the same number M(h) ∼ h−1 of scattering channels (see
§7.1 for a detailed description). Then, the quantum conductance between the two leads
(2.17) satisfies

(1.1) g(h) =
1

2
M(h)

(
1 + o(1)

)
, h = hk → 0 .

The Fano factor (2.18) is given by

(1.2) F (h) =
11

80

M(h)ν

g(h)

(
1 + o(1)

)
, h = hk → 0 ,

where the exponent ν is the same as in Theorem 1.

The theorem should be interpreted as follows. In (1.1) we see that for a model of
scattering through a chaotic cavity, approximately one half of the scattering channels get
transmitted from one lead to the other, the other half being reflected back (this is natural
and well known). Asymptotics in (1.2) are more interesting. We see that the fractal
Weyl law, h−ν , appears in the expression for the Fano factor. In the interpretation of the
Fano factor in terms of “shot noise” (see §2.4.3), 11/80 gives the average “shot noise” per
“nonclassical transmission channel”. This number is close to the random matrix theory
prediction for this quantity, namely 1/8 [26, 55]. In fact, had (1.2) come from a physical
experiment rather than an asymptotic computation, it would be regarded as being in a
very good agreement with random matrix theory1.

Much of the paper is devoted to rigorous definitions of the objects appearing in the
statements of the two theorems. In this section we give some general indications, with
detailed references to previous works appearing below.

We consider the two-torus T2 = [0, 1) × [0, 1) as our classical phase (with coordinates
ρ = (q, p)). Classical observables are functions on T2 and classical dynamics is given in
terms of relations, B ⊂ T2 × T2, which are unions of truncated graphs of symplectic (area
preserving) maps T2 → T2. An example is given by the baker’s relation

(1.3) (ρ′; ρ) = (q′, p′; q, p) ∈ B ⇐⇒
{
q′ = 3q , p′ = p/3 , 0 ≤ q ≤ 1/3
q′ = 3q − 2 , p′ = (p+ 2)/3 , 2/3 ≤ q < 1 .

This is a “rectangular horseshoe” modeling a Poincaré map of a chaotic open system: some
points (here { ρ : 1/3 < q < 2/3 }) are thrown out “to infinity” at each iteration.

For relations such as B we can define the incoming and outgoing tails (see (2.4) for the
definition in the case of flows):

ρ ∈ Γ− ⇔ ∃{ρj}∞j=0 , ρ0 = ρ , (ρj ; ρj−1) ∈ B , j > 0 ,

ρ ∈ Γ+ ⇔ ∃{ρj}0j=−∞ , ρ0 = ρ , (ρj ; ρj−1) ∈ B , j ≤ 0 .

1We are grateful to Yan Fyodorov for this amusing comment.
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In the example (1.3), Γ− = C × [0, 1), Γ+ = [0, 1)×C, where C is the usual 1
3
−Cantor set.

We also define the trapped set K = Γ+ ∩Γ− and, at points of K, the stable and unstable
manifolds, W±. In the case of the above baker’s relation,

1

2
dimK = dim Γ+ ∩W− = dim Γ− ∩W+ =

log 2

log 3
,

but for general (possibly multivalued) relations these equalities do not hold.

A quantization (in the sense made rigorous in §4.5) of B is given by

(1.4) Bh = F∗
N



FN/3 0 0
0 0 0
0 0 FN/3


 , h = (2πN)−1 , 3|N ,

where FM is the discrete Fourier transform on CM .

N = 3k r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8

k = 1 5 5 5 5 5 4 3 3
k = 2 14 14 10 9 8 8 7 6
k = 3 32 26 23 19 16 16 14 5
k = 4 63 53 45 40 33 33 30 6
k = 5 124 103 85 78 71 65 63 11
k = 6 237 196 161 150 142 131 128 12

Table 1. Number of eigenvalues of Bh in the regions { |λ| > r }, for 2πh =
1/N , N given by powers of 3.

Table 2 shows the analogies between the eigenvalues of this subunitary quantum map
and the resonances of a Schrödinger operator for a scattering situation (see §2.1).

For Bh given by (1.4) we are unable to prove the fractal Weyl law presented in the
last line of Table 2, but numerical results in §5 strongly support its validity. A striking
illustration is given by tripling N , in which case the number of eigenvalues approximately
doubles, in agreement with the fractal Weyl law — see Table 1.

The family of subunitary quantum maps in the main theorem is obtained by simplifying
Bh, and is described explicitly in (6.2). It is a quantization of a more complicated multival-
ued relation for which Γ+ = T2, Γ− = C × [0, 1), and Γ− ∩W+ ≃ C — see Proposition 6.1.
Theorem 1 follows from the more precise Proposition 6.4.

1.2. Organization of the paper. In §2 we present related results from recent mathe-
matical, numerical, and physics literature. In particular, in §2.4.3 we give the physical
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Figure 1. The illustration of Theorem 1: on the left, eigenvalues λ ∈
Spec(B̃h) for (2πh)−1 = N = 310 (circles) and for N = 315 (crosses). The

four circles correspond to radii 1, |λ+|, |λ+λ−|
1
2 |, |λ−|, where λ± are given in

Proposition 6.5. The critical radius in the statement of the theorem is here
r0(B̃) = |λ+λ−|

1
2 (dotted line). On the right, we plot the phase (horizontal)

and modulus (vertical, log scale) of these eigenvalues. The eigenvalues ap-

pear with high, varying, multiplicities which peak on the circle |λ| = r0(B̃),
but the angular distribution is asymptotically uniform.

motivation for the objects appearing in Theorem 2 above. §3 is devoted to the review of
classical dynamics used in our models, stressing the dynamics of open baker’s relations.

In §4 we first review the quantization of tori. We assume the knowledge of semiclas-
sical quantization in T ∗Rn (pseudodifferential operators) but otherwise the presentation
is self contained. The definitions of Lagrangian states associated to smooth and singular
Lagrangian submanifolds is based on the ideas of Guillemin, Hörmander, Melrose, and
Uhlmann in microlocal analysis but, partly due to technical differences, we give direct
proofs of the properties we need in this paper. These properties are used to analyze the
quantizations of the baker’s relation coming from the work of Balazs, Voros, Saraceno and
Vallejos.

In §5 we present numerical results for the (usual) quantization of the open baker’s re-

lation and in §6 we discuss the toy model B̃h, with two different interpretations. That
section contains the proof of Theorem 1. Finally in §7 we give precise definitions of objects
appearing in Theorem 2 and in a lengthy computation we give its proof.
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2. Motivation and background

In this section we discuss motivating topics in mathematics and theoretical physics, and
survey related results.

2.1. Schrödinger operators. The original motivation comes from the study of resonances
in potential scattering. The simplest case is given by considering the following quantum
Hamiltonian:

(2.1) H = −h2∆ + V (q) , V ∈ C∞c (Rn; R) .

By assuming that the potential vanishes near infinity and that it is infinitely differentiable,
we eliminate the need for technical assumptions — see [22], and [52] for more general
settings, in the analytic and C∞ categories respectively. For instance, as noted in [49,
(c.32)-(c.33)] the theory of [22] applies to arbitrary homogeneous polynomial potentials at
non-degenerate energy levels.

Before discussing open systems we recall the well known results for closed systems, ob-
tained for instance by considering H above on a bounded domain Ω ⊂ Rn and imposing
a self-adjoint boundary condition at ∂Ω (Dirichlet or Neumann). Then the spectrum,
Spec(H), of H is discrete and, at a non-degenerate energy level E its density is described
by the celebrated Weyl law:

(2.2) # {Spec(H) ∩ [E − δ, E + δ] } =
1

(2πh)n

∫ ∫

|p2+V (q)−E|<δ

dq dp+O(h1−n) ,

see [14, 25] and references given there. We note that this implies a precise upper bound

(2.3) # {Spec(H) ∩ [E − Ch,E + Ch] } = O(h1−n) ,

which can be improved further by making assumptions on the classical flow of the Hamil-
tonian ξ2 + V (x) on Ω, see [14, 25].

For open systems, with the simplest example given by the Hamiltonian in (2.1), real eigen-
values are replaced by complex resonances. The simplest definition (easily made rigorous
in the case (2.1)) comes from considering the meromorphic continuation of the resolvent.
Defining the Green’s function G(z, q′, q) for Im z > 0 through

(z −H)−1u(q′) =

∫

Rn

G(z, q′, q) u(q) dq , u ∈ C∞c (Rn) ,
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h→ 0 N = (2πh)−1 →∞

χ exp
(
− it(−h2∆ + V )/h

)
χ , t ≥ 0 , Bt

h, t = 0, 1, · · ·

χ a cut-off to an interaction region Bh a subunitary matrix

e−itz/h, z a resonance of H = −h2∆ + V λt, λ an eigenvalue of Bh ∈ L(CN)

z ∈ [E − h,E + h]− i[0, γh] 1 ≥ |λ| > r > 0

#{z ∈ [E − h,E + h]− i[0, γh]} ≃ C(γ) h−µE #{λ, |λ| > r} ≃ C(r)Nν

Table 2. Analogies between Schrödinger propagators and open quantum maps.

then G(z, q′, q) admits a meromorphic continuation in z across the real axis. Its poles for
Im z < 0 (which do not depend on (q′, q)) are the quantum resonances of H .

Counting of resonances is affected by the dynamical structure of the scatterer much more
dramatically than counting of eigenvalues of closed systems. Since we are now counting
points in the complex plane we need to make geometric choices dictated by dynamical and
physical considerations. Here we consider scatterers and energies exhibiting a hyperbolic
classical flow, and regions in the lower half-plane which lie at a distance proportional to
h from the real axis. This choice is motivated as follows. Quantum mechanics interprets
a resonance at z = E − iγ in terms of a metastable state, which decays proportionally to
exp(−tγ/h). Hence for γ ≫ h the decay is so rapid that the state is invisible. On the
other hand, for many chaotic scatterers there are no resonances with γ ≪ h. One class for
which this is known rigorously consists in the Laplacian on co-compact quotients Hn/Γ,
H = −h2∆Hn/Γ, when the dimension of the limit set satisfies δ(Γ) < (n−1)/2. This follows
from the work of Patterson and Sullivan — see the discussion below and [37].

After a complex deformation (see [52] and references given there) the long living quantum
states should semiclassically concentrate on the set of phase space points which do not
escape to infinity, that is on the trapped set KE defined as follows: let ΞH be the Hamilton
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vector field of the Hamiltonian H(q, p) = p2/2 + V (q):

ΞH =
n∑

j=1

2pj∂qj
− ∂qj

V (q)∂pj
.

Then

KE
def
= Γ+(E) ∩ Γ−(E) ,

Γ±(E)
def
= {ρ ∈ ΣE : exp tΞH(ρ) 6→ ∞ , ∓t→∞} .

(2.4)

Suppose that the flow generated by ΞH is hyperbolic near KE′ for E ′ close to a non-
degenerate energy E. That means that the field ΞH does not vanish on the energy surfaces
ΣE′ = {p2 + V (q) = E ′} ⊂ T ∗Rn for E ′ ≈ E, and that for ρ ∈ ΣE′ near KE′,

TρΣE′ = R ΞH(ρ)⊕ E+(ρ)⊕ E−(ρ) ,

ΣE′ ∋ ρ 7−→ E±(ρ) ⊂ TρΣE′ is continuous,

d(exp tΞH)(E±(ρ)) = E±(exp tΞH(ρ)) ,

‖d(exp tΞH)(X)‖ ≤ Ce±λt‖X‖ , for all X ∈ E±(ρ), ∓t ≥ 0.

(2.5)

Weaker assumptions are possible — see [49, §5] and [52, §7].

Typically, the set KE has a fractal structure and in the semiclassical estimates the
Minkowski dimension naturally appears:

dimKE = 2n− 1− sup
{
c : lim sup

ǫ→0
ǫ−c vol{ρ ∈ ΣE : dist(KE, ρ) < ǫ} <∞

}
.

We say that KE is of pure dimension if the supremum is attained. For simplicity of the
presentation we assume that this is the case.

Under these assumptions the estimate (2.3) has an analogue for chaotic open systems
[52]. For C0 > 0 there exists C1 such that

(2.6) #
{

Res(H) ∩ { z : |z − E| < C0h }
}
≤ C1h

−µE , dimKE = 2µE + 1 .

We notice that for a closed system the trapped set is the entire energy surface, so that
in that case µE = n − 1, hence (2.6) is consistent with (2.3). In this note we use open
quantum maps to provide the first evidence that this precise estimate is optimal.

We should also mention that, as was already stressed in the work of Sjöstrand [49], the
estimates involving the dimension are only reasonable when the flow is strictly hyperbolic.
In the case of more complicated flows the estimates should be stated in terms of properties
of escape or Lyapunov functions associated to the flow – see [49],[52]. For expository reasons
the estimates involving the dimension are however most persuasive.
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Figure 2. A three bump potential exhibiting hyperbolic dynamics in a
range of energies.

2.2. Survey of related results. The first indication that fractal dimensions enter into
counting laws for quantum resonances of chaotic open systems appears in a result of
Sjöstrand [49]:

#
{

Res(H) ∩ { z : |z −E| < δ , Im z > −γ }
}
≤ C1δ

(
h

γ

)−n

γ−
1
2
m̃ ,

Ch ≤ γ ≤ 1/C , max(h
1
2 , h/γ) ≤ δ ≤ 2/C ,

(2.7)

where m̃ is any number greater than the dimension of the trapped set in the shell H−1(E−
1/C2, E + 1/C2). In a homogeneous situation, such as for instance obstacle scattering, the
dimension of KE , 2µE + 1, is independent of E, so that m̃ > 2(µE + 1).

The improvement in [52] quoted in (2.6) lies in providing a bound for the number of
resonances in a smaller region D(E,Ch) = { z ∈ C : |z −E| < Ch }. Heuristic arguments
suggesting that the estimate (2.7) should be optimal were given in [31] and [32].

Another class of Hamiltonians with chaotic classical flows and fractal trapped sets is
given by Laplacians on convex co-compact quotients, H/Γ. Here Γ is a discrete subgroup
of isometries of the hyperbolic plane H, such that

• All elements γ ∈ Γ are hyperbolic, which means that their action on H can be
represented as

α ◦ γ ◦ α−1(x, y) = eℓ(γ)(x, y) , (x, y) ∈ H ≃ R+ × R , α ∈ Aut(H) .(2.8)

• If π : H→ H/Γ, and Λ(Γ) ⊂ ∂H is the limit set of Γ, that is the set of limit points
of {γ(z) : γ ∈ Γ}, z ∈ H, then π(convex hull Λ(Γ)) is compact.
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An example is shown in Fig. 3. The trapped set is determined by Λ(Γ): trapped trajectories
are given by geodesics connecting two points of Λ(Γ) at infinity, and

dimKE = 2δΓ + 1 , δΓ = dim Λ(Γ) .

The limit set is always of pure dimension, which coincides with its Hausdorff dimension.

A nice feature of this model is the exact correspondence between the resonances of

H = h2(−∆H/Γ − 1/4) ,

and the zeros of the Selberg zeta function, ZΓ(s)2:

z ∈ Res(H) ⇐⇒ ZΓ(s) = 0 , z = h2(s(1− s)− 1/4) , Re s ≤ δΓ ,(2.9)

where the multiplicities of zeros and resonances agree. The Selberg zeta function is defined
by the analytic continuation of

ZΓ(s) =
∏

{γ}

∏

k≥0

(
1− e−(s+k) ℓ(γ)

)
, Re s > δΓ ,

where {γ} denotes a conjugacy class of a primitive element γ ∈ Γ (an element which is
not a power of another element), and we take a product over distinct primitive conjugacy
classes (each of which corresponds to a primitive closed orbit). The length ℓ(γ) of the
corresponding closed orbit appears in (2.8). The exact analogue of (2.6) is given by

Figure 3. An example of H2/Γ where Γ is generated by compositions of
reflections in three discs.

(2.10) # { s : ZΓ(s) = 0 , Re s > −C0 , r < Im s < r + C1 } ≤ C2 r
δΓ ,

which is a consequence of an estimate established by Guillopé-Lin-Zworski [20] in a more
general setting of convex co-compact Schottky groups in any dimension,

(2.11) |ZΓ(s)| ≤ CK eCK |s|δΓ , Re s ≥ −K , for any K.

This improved earlier estimates of [57], the proof of which was largely based on [49].

2We refer to [40] for this and a general treatment. The term 1

4
in the definition of the Hamiltonian H

comes from requiring that the bottom of the spectrum of H is 0, so that Green’s function (H − λ2)−1 is
meromorphic in λ ∈ C
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In the (non-quantum) context of rational maps on the complex plane, similar results were
obtained concerning the zeros of associated zeta functions [11, 53]. Take f a uniformly
expanding rational map on C (for instance z 7→ z2 + c, c < −2), and call fn its n-fold
composition. The zeta function associated with this map is given by

(2.12) Z(s) = exp


−

∞∑

n=1

n−1
∑

fn(z)=z

|(fn)′(z)|−s|
1− |(fn)′(z)|−1


 .

Then the number or resonances in a strip is also given by a law of the type (2.10), where
δΓ is replaced by the dimension of the Julia set:

J =
⋃

n≥1

{z : fn(z) = z} .

Note that this set is also made of “trapped orbits”.

2.3. Survey of numerical results. The first model investigated numerically was perhaps
the hardest to give definitive results. Lin [30, 31] studied the semiclassical Schrödinger
Hamiltonian (2.1) with the potential given in Fig. 2. The semiclassical resonances were
computed using the method of complex scaling and were counted in boxes of type [E −
δ, E+ δ]− i[0, h] with δ fixed. The purpose was to verify optimality of Sjöstrand’s estimate
(2.7) with these parameters. The results were encouraging but not conclusive. Since for
small values of h the method of [30] required the use of large matrices to discretize the
Hamiltonians, the range of h’s was rather limited.

A different point of view was taken by Lu-Sridhar-Zworski [32] where resonances for
the three discs scatterer in the plane were computed using the semiclassical zeta function
of Eckhardt-Cvitanović, Gaspard, and others (see for instance [12, 18, 56] and references
therein). The zeta function is computed using the cycle expansion method loosely based
on the Ruelle theory of dynamical zeta functions. Although it is not rigorously known if
the resonances computed by this method approximate resonances of the Dirichlet Lapla-
cian in the exterior of the discs, or even if the semiclassical zeta function has an analytic
continuation, proceeding this way is widely accepted in the physics literature. Resonances
z = h2 k2 were counted in regions

(2.13) { k ∈ C : 1 ≤ Re k ≤ r , Im k ≥ −γ } , r →∞ ,

which under semiclassical rescaling correspond to counting in [1/2, 2]− i[0, γh/2], h → 0.
Let us denote the number of resonances (zeros of the semiclassical zeta function) in (2.13)
by N(r, γ). The fractal Weyl law corresponds to the claim that for γ large enough,

(2.14) N(r, γ) ∼ C(γ)rµ , r →∞ ,

where 2µ+ 1 is the dimension of the trapped set in the three dimensional energy shell (for
such homogeneous problems, all energy shells are equivalent). In [32] the prediction (2.14)
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Figure 4. A sample of results of [30]: the plot on the left shows resonances
for the potential of Fig. 2 (h = 0.017). On the right is the log-log plot of the
number of resonances vs. h; ⊳ denote numerical data, ∗ the density predicted
by the fractal Weyl law, and ◦ the least square interpolants.

was tested by linear fitting of logN(r, γ) as a function of log r:

logN(r, γ) = α(γ) log r +O(1) .

We found that the coefficient α(γ) was independent of γ for γ large enough, and that it
agreed with µ. The counting was done for three different equilateral disc configurations,
parametrized by ρ = R/a where a is the radius of each disc, and R the distance between
them. We also noticed that if γρ is the classical rate of decay for the ρ configuration, then

αρ(xγρ/2)

µρ

is essentially independent of ρ for 1 < x < 1.5. This corresponds to a numerical observation
that for each ρ the distribution of resonance widths (imaginary parts) peaks near γ = γρ/2.

Encouraged by the results of [32], the cycle method was used in [20] to count the zeros
of the Selberg zeta function for the quotient depicted in Fig. 3, but the results were not
definitive. For the dynamical zeta function (2.12) with f(z) = z2+c, c < −2, the resonances
were computed by Strain-Zworski [53], using a different method based on the theory of the
transfer operator on Hilbert spaces of holomorphic functions introduced in [20]. The zeros
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were counted in a region of the same type as in (2.13),

{s : Re s > −K , 0 ≤ Im s ≤ r} ,
where real parts and imaginary parts exchange their meaning due to different conventions3.
By reaching very high values of r we saw a very good agreement of the log-log fit with the
fractal Weyl, with µ given by the dimension of the Julia set.

In the model considered in this paper we can verify the optimality of the fractal Weyl
law on much smaller scales. That could not be seen in the other approaches.

2.4. Related models in physics. The behaviour of quantum open systems has been re-
cently investigated in situations where the classical dynamics has chaotic features. The
physical motivation can originate from nuclear or atomic physics (study the lifetime sta-
tistics of metastable states, possibly leading to ionization), mesoscopic physics (study the
conductance, conductance fluctuations, shot noise in quantum dots or quantum wires),
and from waveguides (optical wave propagation in an optical fiber with some dissipation,
microwave propagation in an open microwave cavity).

2.4.1. Kicked rotator with absorbing boundaries. In [3], [7] a kicked rotator with absorb-
tion was used to model the process of ionization. The classical kicked rotator is Chirikov’s
standard map on the cylinder, which is a paradigmatic model for transitions from reg-
ular to chaotic motion [9]. Quantizing the map on L2(T1) results in a unitary opera-
tor U , a first instance of quantum map. To model the ionization process which takes
place at some threshold momentum pion, the authors truncate the map U to the subspace
Hion = span { |pj〉 : |pj | ≤ pion }: a particle reaching that threshold is ionized, or equiva-
lently “escapes to infinity”. Here the discrete values pj = 2πhj are the eigenvalues of the
momentum operator on L2(T1); the space Hion is thus of dimension N ≈ pion/πh. This
projection leads to a open quantum map, namely the subunitary propagator Uion = ΠionU ,
where Πion is the orthogonal projector on Hion. For the parameters used by [3], the classical
dynamics is diffusive, meaning that a particle starting from p = 0 will need many kicks to
reach the ionization threshold.

The matrix Uion was numerically diagonalized for various values of h with pion fixed,
and the distribution of the N level widths γi = −2 ln |λi|, λi ∈ Spec(Uion) was found
approximately independent of h, such that the number of resonances

n(N, γ) = #{γi ≤ γ}
scales like C(γ)N in this case. In subsequent works [46, 58, 17], this distribution was shown
to correspond to an ensemble of random subunitary random matrices, more precisely the
ensemble formed by the [αN ]× [αN ] upper-left corner (0 < α < 1 fixed) of a large N ×N

3Although frustrating, the different conventions of semiclassical, obstacle, and hyperbolic scattering
show how the same phenomenon appears in historically different fields.
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matrix drawn in the Circular Unitary Ensemble (that is, the set U(N) equipped with Haar
measure).

2.4.2. Quasi-bound states in an open quantum map. Recently, Schomerus and Tworzyd lo
[48] have performed a similar study for the quantized kicked rotator on the torus (obtained
from the map of the former section by periodizing the momentum variable). They also
“opened” the map by assuming that particles reaching a certain position window q ∈ L
“escape to infinity”. The quantum projector associated with these “escape window” is
denoted by ΠL, so that the remaining subunitary quantum map reads Uop = (I − ΠL)U .
The main difference with the case studied in the previous section lies in the strongly chaotic
motion (as opposed to diffusive), due to a different choice of parameters. The map has a
positive Lyapunov exponent λ, and a typical trajectory will escape after a few kicks: the
average “dwell time”, called τD, is of order unity.

The eigenmodes associated with eigenvalues bounded away from zero are called “quasi-
bound states” , as opposed to the “instantaneous decay modes” associated with very small
eigenvalues. The authors provide numerical and heuristic evidence that, in the semiclassical
limit, the number of quasi-bound states grows like Neff = N1−1/(λτD). This shows that
most eigenvalues of Uop are very close to zero, while only a small fraction Neff/N remains
bounded away from zero. The authors also plot the distribution of the ∼ Neff quasi-bound
eigenvalues: again, it resembles the spectrum of a random subunitary matrix obtained by
keeping the upper-right corner block of size Neff of a [τDNeff ]-dimensional random unitary
matrix.

The quantized baker’s relation we will study in §5–6 will be of similar nature. For the
map (4.37), the fractal dimension ν given in (3.6) can be shown to be close to the formula
1− 1/(λτD), in the limit when the dwell time τD is large compared to unity (limit of small
opening).

2.4.3. Conductance through an open chaotic cavity. The “scattering approach to semiclas-
sical quantization” [4, 15, 41, 39], consists in quantizing the return map on a Poincaré
surface of section of the Hamiltonian system under study. Within this approach, the scat-
tering matrix of the open system can be expressed as a “multiple-scattering expansion” in
terms of the quantized return map.

Using that framework, Beenakker et al. [55] study the quantum kicked rotator defined
in the previous section, in order to understand the fluctuations of conductance through
a quantum dot. The evolution inside the closed dot is represented by the same unitary
matrix U as in last subsection, and its opening L is split into two intervals, L2 and L1,
which represent the two “leads” bringing in and taking out the charge carriers from the
dot. The orthogonal projector corresponding to these openings reads ΠL = ΠL1

⊕ΠL2
. The
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conductance can then be analyzed from the scattering matrix of the dot:

S̃(ϑ) = ΠL

∑

n≥0

(
eiϑU(1−ΠL)

)n
eiϑU ΠL(2.15)

= ΠL{e−iϑ − U(1− ΠL)}−1UΠL .(2.16)

Here ϑ ∈ [0, 2π) is called the quasi-energy. In terms of this parameter, the “physical half-

plane” corresponds to Imϑ > 0: the matrix S̃(ϑ) has no singularity in this region. On the
opposite, the resonances analyzed in the previous section, which are the poles of S̃(ϑ), are
situated in the region Imϑ < 0.

While S̃(ϑ) is unitary, its subblock,

t
def
= ΠL2

S̃(ϑ)ΠL1
,

describes the transmission from the lead L1 to the lead L2. The dimensionless conductance
(which depends on ϑ) is given by the Landauer-Büttiker formula

(2.17) G = tr(tt∗) .

The eigenvalues of tt∗ (called “transmission eigenvalues”) can be either close to 1 (cor-
responding to a total transmission), or close to 0 (corresponding to a total reflection),
or inbetween. The last case corresponds to genuinely quantum transmission eigenmodes,
which are partly transmitted, partly reflected, due to interference phenomena inside the
dot. The “quantum shot noise” is due to these intermediate transmission eigenvalues. A
simple measure of that noise is given by the Fano factor [6]

(2.18) F = tr(tt∗(1− tt∗))/tr tt∗ .
Using similar arguments as in the former section, the authors show that the number of
intermediate transmission eigenvalues also scales like Neff , and thereby estimate the Fano
factor, by assuming that these eigenvalues are distributed according to the prediction of
random matrix theory.

In §7 we will analytically compute both the conductance and the Fano factor in the case

of the open quantum relation B̃h.

3. Classical dynamics

3.1. Symplectic geometry on tori. We consider the simplest class of compact symplectic
manifolds, the tori,

T2n def
= R2n/Z2n ≃ (I× I)n , ω =

n∑

ℓ=1

dqℓ ∧ dpℓ , (q, p) ∈ T2n .

Here and in what follows, we identify the interval I = [0, 1) with the circle T1 = R/Z.
A Lagrangian (submanifold) Λ ⊂ T2n is a n dimensional embedded submanifold of T2n
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such that ω|Λ = 0. We recall the following well known fact (see for instance [24, Theorem
21.3.2]):

Proposition 3.1. Suppose that Λ ⊂ T2n is a Lagrangian submanifold, and that (q0, p0) ∈ Λ.
Then, after a possible permutation of indices, there exists k, 0 ≤ k ≤ n, and a splitting of
coordinates:

q = (q′, q′′) , p = (p′, p′′) , q′ = (q1, · · · qk) , p′′ = (pk+1, · · · , pn) ,

such that

Λ ∋ (q, p) 7−→ (q′′, p′) ∈ In−k × Ik

is bijective from a neighbourhood V of (q0, p0) to a neighbourhood W of (q′′0 , p
′
0). Conse-

quently there exists a function, S = S(q′′, p′) defined on W , such that Λ ∩ V is generated
by the function S, that is,

Λ ∩ V =
{(

dp′S(q′′, p′), q′′; p′,−dq′′S(q′′, p′)
)
, (q′′, p′) ∈W

}
.

In this paper we will also consider singular Lagrangian manifolds obtained by taking
finite unions of Lagrangians with piecewise smooth boundaries.

3.2. Symplectic relations.

3.2.1. Symplectic maps. A symplectic (or “canonical”) diffeomorphism on the torus T2n is
a diffeomorphism κ : T2n → T2n which leaves invariant the symplectic form on T2n:
κ∗ω = ω. An equivalent characterization of such a map is through its graph Γ, which is the
2n-dimensional embedded submanifold of T2n × T2n, defined as

Γκ =
{

(ρ′; ρ) : ρ = (q, p) ∈ T2n, ρ′ = κ(ρ)
}
.

Using the identification In = Rn/Zn, we setup the reflection map In ∋ p 7→ −p ∈ In, and
define the twisted graph [24, §25.2]

(3.1) Γ′
κ = {(q′, q; p′,−p) : (q′, p′; q, p) ∈ Γκ} ⊂ T4n .

Then the diffeomorphism κ is symplectic iff Γ′
κ is a Lagrangian submanifold of T4n (equipped

with the symplectic form
∑n

j=1 dq
′
j ∧ dp′j + dqj ∧ dpj). For this reason, we will sometimes

denote Γ′
κ by Λκ.

The definition of the twisted graph is clearly dependent on the choice of the splitting of
variables (q, p), which will be related to a choice of polarization in the quantization process.

More generally, one can consider invertible maps on T2n which are smooth and symplectic
except on a negligible set of singularities (say, discontinuities on a hypersurface). The
twisted graph of such a map is then a singular Lagrangian submanifold of T4n.
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Example. The usual “baker’s map” is the following piecewise-linear transformation κ on
T2:

κ(q, p)
def
=

{
(2q, p/2) if 0 ≤ q < 1/2

(2q − 1, p/2 + 1/2) if 1/2 ≤ q < 1 .

The twisted graph of κ:

Λκ
def
=
{

(q′, q; p′,−p) : (q, p) ∈ T2, (q′, p′) = κ(q, p)
}

is a singular Lagrangian submanifold of T4. It can be decomposed into Λκ = Λ0 ∪Λ1, with
the components

Λj =

{
(2q − j, q; p+ j

2
,−p) : j/2 ≤ q < j/2 + 1/2, p ∈ I

}

= { (2q − j, q; p′,−2p′ + j) : j/2 ≤ q, p′ < j/2 + 1/2 } .
Each Λj is locally Lagrangian in T4 and, as a manifold with corners, it is diffeomorphic to
a 2-dimensional square.

3.2.2. Multivalued symplectic maps. A canonical (or symplectic) relation is an arbitrary
subset Γ ⊂ T2n × T2n, such that

Γ′ = { (q′, q; p′,−p) : (q′, p′; q, p) ∈ Γ }
is a Lagrangian submanifold of T4n.

We are interested in symplectic relations coming from multivalued symplectic maps. A
multivalued map is the union of finitely many components κj, where κj is a canonical
diffeomorphism κj between an open subset Sj with piecewise smooth boundary of T2n and
its image S ′

j = κj(Sj) ∈ T2n. A priori, the sets Sj (respectively S ′
j) can overlap, and their

union can be a proper subset of T2n.

Each map κj is associated to its graph

Γj = { (κj(ρ); ρ) : ρ ∈ Sj } ,
and the symplectic relation can now be defined through its graph

Γ =
⋃

j

Γj ,

or equivalently its twisted graph Γ′ (defined from Γ as in (3.1)). The latter is a singular
Lagrangian in T4n.

The inverse relation can be defined by

Γ−1 def
= { (ρ; ρ′) : (ρ′; ρ) ∈ Γ } =

⋃

j

{
(κ−1

j (ρ); ρ) : ρ ∈ S ′
j

}
,
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and the composition of two relations by

Γ̃ ◦ Γ
def
=
{

(ρ′′; ρ) ∈ T4n : ∃ ρ′ ∈ T2n , (ρ′; ρ) ∈ Γ and (ρ′′; ρ′) ∈ Γ̃
}
.

Following [24, Theorem 21.2.4], we note that Γ̃ ◦ Γ will be a (locally) smooth symplectic

relation if Γ̃× Γ ⊂ T4n × T4n intersects

{(ρ′′, ρ′, ρ′, ρ) : ρ′′, ρ, ρ′ ∈ T2n} ⊂ T4n × T4n

cleanly, that is the intersections of tangent spaces are the tangent spaces of intersections.

We can then iterate a relation Γ, defining a multivalued dynamical system {Γn : n ∈ Z}
on T2n. In §3.4 we will give a stochastic interpretation to this system.

3.3. Open baker’s relation. The dynamics we will consider takes place on the 2-torus
phase space,

T2 = { ρ = (q, p) : q, p ∈ I } .
On this phase space, we define two vertical strips Sj (j = 1, 2) from the data of four real
numbers D1, D2 > 1 and ℓ1, ℓ2 ≥ 0:

(3.2) Sj = { (q, p) : q ∈ Ij , p ∈ I } , with Ij =
( ℓj
Dj

,
ℓj + 1

Dj

)
j = 1, 2.

The strips are assumed to be disjoint, which is the case if we impose the conditions:

ℓ1 + 1

D1
≤ ℓ2
D2

and
ℓ2 + 1

D2
≤ 1 .

The corresponding baker’s relation is made of two components Bj, j = 1, 2 associated with
linear symplectic maps defined on the two strips:

(3.3) Bj =

{
(ρ′; ρ) : (q′, p′) =

(
Djq − ℓj ,

p+ ℓj
Dj

)
, ρ = (q, p) ∈ Sj

}
.

The baker’s relation is defined as the graph B = B1 ∪ B2. One clearly notices that each
component map is a hyperbolic diffeomorphism, with positive stretching exponent logD1

(resp. logD2). At all points where the map is defined, the unstable (stable) direction is
the horizontal (vertical) one.

Since the two strips are disjoint, each point ρ ∈ T2 has at most one image. In the
notations of Proposition 3.1 (taking q′′ = q, q′ = q′), each Lagrangian component B′

j can
be generated by the function

(3.4) Sj(q, p
′) = Dj

(
q − ℓj

Dj

)(
p′ − ℓj

Dj

)
defined on the square { (q, p′) ∈ Ij × Ij } .

Let
πL , πR : T2 × T2 −→ T2

be the projections on the left and right factors respectively. From the definition (3.3), the
set πR(B) = S1 ∪S2 is made of points on ρ ∈ T2 which have an image through the relation
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B. Hence, a point ρ 6∈ πR(B) is said to escape from the torus at time 1. Similarly, a point
ρ 6∈ πL(B) = πR(B−1) is said to escape from T2 at time −1. This “escape” is the reason
why we call this relation an “open” relation: the system is not “closed” because it sends
particles “to infinity”, both in the future and in the past.

We define

(3.5) Γ±
def
=

∞⋂

n=1

πR

(
B∓n

)

the set of points which do never escape from T2 in the past, respectively in the future. One
checks that these subsets have the form

Γ− = C × I , Γ+ = I× C ,
where C ⊂ I is a “cookie-cutter set” in the sense of [16]: if we consider the two contracting
maps on I

fj(q) =
q + ℓj
Dj

, q ∈ I ,

this closed set is defined as

C =
⋃

n∈N

{ q ∈ I : fj1 ◦ · · · ◦ fjn
(q) = q for some sequence jm ∈ {1, 2} } .

The Hausdorff dimension of C (which is equal to its Minkowski and box-counting dimen-
sions) is given by the unique 0 < ν < 1 solving

(3.6) D−ν
1 +D−ν

2 = 1 .

The trapped set (or set of nonwandering points) is defined as the set of points which never
escape from T:

K = Γ+ ∩ Γ− = C × C , dimK = 2ν .

The baker’s relation is a hyperbolic invertible map on the set K, which is a “fractal repeller”.
This relation is a model of Smale’s horseshoe mechanism.

The simplest case consists in considering a symmetric baker’s relation, with D1 = D2 =
D, ℓ = ℓ1 = D − ℓ2 − 1:

ℓ

D
< q <

ℓ + 1

D
=⇒ (q′, p′) =

(
Dq − ℓ, p+ ℓ

D

)

ℓ

D
< 1− q < ℓ + 1

D
=⇒ (q′, p′) =

(
D(q − 1) + ℓ+ 1,

p− ℓ− 1

D
+ 1

)
.

(3.7)

Now C ⊂ I is a symmetric 1/D−Cantor set, of dimension ν = log 2/logD. Notice that if
we take D = 2, ℓ1 = 0, ℓ2 = 1, we obtain the usual (closed) baker’s map described in the
example of Section 3.1, for which the trapped set (= T2) has dimension 2.
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For such a symmetric baker’s relation, the analog of the fractal exponent of (2.6) is:

µE ←→ ν =
log 2

logD
.

3.4. Weighted symplectic relations. To give a multivalued map Γ a physical meaning,
we assign Markovian weights Pj(ρ) to the different “jumps”, ρ 7→ κj(ρ). The associated
dynamical system is then stochastic, each point ρ having finitely many images with well-
prescribed transition probabilities Pj(ρ). The sum of all the probabilities from ρ must

satisfy 0 ≤ P (ρ)
def
=
∑

j Pj(ρ) ≤ 1, so that (1− P (ρ)) is the probability that ρ “escapes to
infinity”.

The weights associated with the inverse relation Γ−1 are the same: each point ρ′ jumps
back to κ−1

j (ρ′) with probability P ′
j(ρ

′) = Pj(κ
−1
j (ρ′)). Hence, the weights must also satisfy

1 ≤∑j P
′
j(ρ

′) ≤ 1.

Such a weighted relation (in geometric optics one would speak of a “ray-splitting” map)
induces a discrete-time evolution of “mass distributions”, which is in general dissipative:
the full mass decrease at each step, the system “expelling” part of the mass “to infinity”.

More precisely, we assume that the symplectic relation Γ ⊂ T2n × T2n comes with a
nonnegative measure (density) µ on Γ, which for any χα ∈ C∞(T2n, [0, 1]), α = L,R,
satisfies

πα∗(π
∗
LχL π

∗
RχR µ) = gχLχR

α

ωn

n!
, gχLχR

α ∈ C∞(T2n) , 0 ≤ gχLχR
α ≤ 1 ,(3.8)

where πL, πR : Γ → T2n are projections on left and right factors respectively, and ω is
the symplectic form on T2n. The condition (3.8) implies that πα|Γ is a local bijection,
which forces Γ to be a piecewise smooth union of graphs of symplectic transformations, as
defined in §3.2.2. When Γ is singular, that is a union of smooth symplectic relations with
boundaries, we demand that

gχLχR
α ∈ C∞(T2n) if supp(π∗

LχL π
∗
RχR) ∩ ∂Γ = ∅ ,

where ∂Γ is the union of the boundaries of the smooth components.

The reason for introducing the density µ is to have a quantity independent of the choice
of coordinates on Γ. On T2n, an obvious intrinsic measure is given by the symplectic form,
hence gχLχR

α are well defined. Building an atlas of the manifold Γ we can use these functions
to describe µ in local coordinates.

We denote a weighted relation by

(Γ, µ) .

As explained above, one can invert such a relation, as well as compose them.

If (ρ′; ρ) ∈ Γ \ ∂Γ, the probability of a transition from ρ to ρ′ = κj1(ρ) is obtained by
letting χR (resp. χL) be supported in a sufficiently small neighbourhood of ρ (resp. of ρ′),
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with χR(ρ) = 1, χL(ρ′) = 1. This probability is then given by

(3.9) Pj1(ρ) = gχL χR

R (ρ) = gχL χR

L (ρ′) = P ′
j1(ρ

′) .

Examples. The simplest example is given by a graph of a symplectic transformation κ :
T2n → T2n in which case the density µ is obtained by taking µ = π∗

L(ωn/n!) = π∗
R(ωn/n!),

where the equality follows from κ∗ω = ω. A slightly more complicated example is given by
taking a union of two non-intersecting graphs Γj of κj, j = 1, 2, and putting

µ = (πR|Γ1
)∗(g1 ω

n/n!) + (πR|Γ2
)∗(g2 ω

n/n!) ,

where gj ∈ C∞(T2n; [0, 1]) satisfy g1 + g2 ≤ 1 and g1 ◦ κ−1
1 + g2 ◦ κ−1

2 ≤ 1. In this case,
gj(ρ) = Pj(ρ).

In the case of an open baker B defined in §3.3, for instance the symmetric baker relation
(3.7) with D = 3, ℓ = 0, a natural µ comes from pulling back the Liouville measure ω to
each component Bj given in (3.3). One obtains

(3.10) πR∗ µ = 1lI1∪I2(q) dq dp , πL∗ µ = 1lI1∪I2(p
′) dq′ dp′ .

These equations fully determine the density µ on B.
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Left pushforward for the baker relation
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Same for the multivalued baker relation

Figure 5. Plots of g1 1
L (ρ′) = g1 1

L (p′) for the densities µ on the symmetric
baker relation (3.7) (D = 3, ℓ = 0) and µ̃ on the multivalued baker relation
(3.11).
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A more interesting example, which will be relevant in §6, is given by the following
multivalued generalization of the symmetric baker (D = 3, ℓ = 0):

B̃ =

2⋃

ℓ=0

(
B + (0, ℓ/3; 0, 0)

)
=

2⋃

k=1

2⋃

j=0

B̃kj , where

B̃kj =

{(
3q,

p+ j

3
; q, p

)
: q ∈ Ik, p ∈ I

}
, I1 = (0, 1/3), I2 = (2/3, 1) .

(3.11)

Each point ρ ∈ S1 ∪ S2 = (I1 ∪ I2) × I has 3 images, and each point ρ′ ∈ T2 has two
preimages.

The following density on B̃ will arise in the quantum model studied in §6. We define it

explicitely on each component B̃kj, using the coordinate frame (q, p) ∈ Sk:

µ̃|B̃1j
=

sin2(πp)

9 sin2(π(p+ j)/3)
1lI1(q) dq dp ,

µ̃|B̃2j
=

sin2(πp)

9 sin2(π(p+ j − 2)/3)
1lI2(q) dq dp , j = 0, 1, 2 .

(3.12)

The functions on the right hand sides are the probabilities Pj(ρ). The right pushforward
reads

πR∗ µ̃ =

(
1

9

2∑

j=0

sin2 πp

sin2 π(p/3 + j/3)

)
1lI1∪I2(q) dq dp = 1lI1∪I2(q) dq dp .

Here we used the fact4 that
∑D−1

j=0 sin2(Dx)/ sin2(x + jπ/D) = D2, with D = 3 and

x = πp/3. This right pushforward is identical to that of (3.10): in both cases, any point
ρ ∈ (S1 ∪ S2) has an empty escape probability, 1− P (ρ) = 0.

On the opposite, the left pushforward is given by

πL∗ µ̃ =
sin2 3πp′

9

(
1

sin2 πp′
+

1

sin2 π(p′ − 2/3)

)
dq′ dp′ .

Almost any point ρ′ ∈ T2 has a nonzero escape probability through B̃−1. This left push-
forward is very different from that of µ (see Fig. 5).

4. Quantized maps and relations

Before giving the definition of the quantized baker’s relation, we need to define the
quantum Hilbert space corresponding to T2, as well as the algebra of quantum observables.

4The value of the sum at x = 0 is equal to D2, and the sum is invariant under translation x 7→ x+kπ/D.
Fejér’s formula for the Cesàro mean of the Fourier series shows that the sum is a trigonometric polynomial
of degree D − 1 in x, hence it is constant.
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4.1. Quantized tori. The quantization of tori T2n = R2n/Z2n has a long tradition in
mathematical physics [21, 13, 5]. It can be considered as a special case of the Berezin-
Toeplitz quantization of compact symplectic Kähler manifolds — see [27] and references
given there. Here we will give a self-contained presentation of the simplest case from the
point of view of pseudodifferential operators.

We first recall from [14] the quantization of functions f ∈ C∞b (T ∗Rn),

C∞b (T ∗Rn)
def
= {f ∈ C∞(T ∗Rn) : ∀α, β ∈ Nn, sup

(q,p)∈T ∗Rn

|∂α
q ∂

β
p f(q, p)| <∞} .

To any f ∈ S(T ∗Rn) we associate its h-Weyl quantization, that is the operator fw(q, hD)
acting as follows on ψ ∈ S(Rn):

(4.1) [fw(q, hD)ψ](q)
def
=

1

(2πh)n

∫ ∫
f
(q + r

2
, p
)
e

i
h
〈q−r,p〉 ψ(r) dr dp .

This operator clearly has the mapping properties

fw(q, hD) : S(Rn) −→ S(Rn) , fw(q, hD) : S ′(Rn) −→ S ′(Rn) .

It can be shown [14, Lemma 7.8] that f 7→ fw(q, hD) can be extended to any f ∈ C∞b (T ∗Rn),
and that the resulting operator has the same mapping properties. Furthermore, fw(q, hD)
is a bounded operator on L2(Rn).

We now introduce quantum spaces associated with the torus T2n. For that aim, we fix
our notations for the Fourier transform on S ′(Rn):

Fhψ(p)
def
=

1

(2πh)n/2

∫
ψ(q) e−

i
h
〈q,p〉 dq , F∗

h = F−1
h ,

and as usual in quantum mechanics, Fhψ(p) is the “momentum representation” of the state
ψ. The quantum spaces of the torus are indexed by a pair of Bloch angles (θp, θq) ∈ In×In.
Given any such pair, the quantum space is made of distributions ψ ∈ S ′(Rn) which are
both quasiperiodic in position and momentum:

(4.2) ψ(q + ℓ) = e2πi〈θp,ℓ〉ψ(q) , Fhψ(p+ ℓ) = e2πi〈θq ,ℓ〉Fhψ(p) .

For simplicity of presentation, we will put (θq, θp) = (0, 0) in the rest of this section. In
numerical computations (corresponding to n = 1), we will sometimes choose the angles
(1/2, 1/2) for which specific maps have better symmetry properties. Let us denote by Hn

h

the space of distributions satisfying (4.2) with θ = (0, 0). We have the following elementary

Lemma 4.1. Hn
h 6= {0} if and only if h = (2πN)−1 for some positive integer N , in which

case dimHn
h = Nn and

(4.3) Hn
h = span

{
1√
Nn

∑

ℓ∈Zn

δ(q − ℓ− j/N) : j ∈ (Z/NZ)n

}
.
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The distributions elements of this basis will be denoted by

(4.4) |Qj〉 , Qj =
j

N
∈ In is the position on which that state is microlocalized.

One can check that for such value a of h, the Fourier transform Fh maps Hn
h to itself. In

the above basis, it is represented by the discrete Fourier transform

(4.5) (FN)j,j′ =
e−2iπ〈j,j′〉/N

Nn/2
, j, j′ ∈ (Z/NZ)n .

It is also easy check the following

Lemma 4.2. Suppose that f ∈ C∞b (Rn × Rn) satisfies f(q + ℓ, p + m) = f(q, p) for any
ℓ,m ∈ Zn. Then the operator fw(q, hD) maps Hn

h to itself.

Identifying a function f ∈ C∞(T2n) with a periodic function on R2n, we will write Oph(f)
for the restriction of fw(q, hD) on Hn

h,

C∞(T2n) ∋ f 7−→ Oph(f) ∈ L(Hn
h) .

We remark that Oph(1) = Id. The vector space Hn
h can be equipped with a natural Hilbert

structure.

Lemma 4.3. There exists a unique (up to a multiplicative constant) Hilbert structure on
Hn

h for which all Oph(f) : Hn
h → Hn

h with f ∈ C∞(T2n; R) are self-adjoint.

One can choose the constant such that the basis in (4.3) is orthonormal. This implies
that the Fourier transform on Hn

h (represented by the unitary matrix (4.5)) is unitary.

Proof. Let 〈•, •〉0 be the inner product for which the basis in (4.3) is orthonormal. We
write the operator fw(q, hD) on Hn

h explicitely in that basis using the Fourier expansion of
its symbol:

f(q, p) =
∑

ℓ,m∈Zn

f̂(ℓ,m) e2πi(〈ℓ,q〉+〈m,p〉) .

For that let Lℓ,m(q, p) = 〈ℓ, q〉+ 〈m, p〉, so that

fw(q, hD) =
∑

ℓ,m∈Zn

f̂(ℓ,m) exp(2πiLw
ℓ,m(q, hD)) .

Applying this operator to the distributions (4.4), we get

exp
(
2πiLw

ℓ,m(q, hD)
)
|Qj〉 = exp

(πi
N

(2〈j, ℓ〉 − 〈m, ℓ〉)
)
|Qj−m〉 ,

and consequently,

fw(q, hD) |Qj〉 =
∑

m∈Zn/(NZ)n

Fmj |Qm〉 ,

Fmj =
∑

ℓ,r∈Zn

f̂(ℓ, j −m− rN)(−1)〈r,ℓ〉 exp
(πi
N
〈j +m, ℓ〉

)
.
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Since

F̄jm =
∑

ℓ,r∈Zn

ˆ̄f(−ℓ, j −m + rN)(−1)〈r,ℓ〉 exp
(
− πi

N
〈j +m, ℓ〉

)

=
∑

ℓ,r∈Zn

ˆ̄f(ℓ, j −m− rN)(−1)〈r,ℓ〉 exp
(πi
N
〈j +m, ℓ〉

)
,

we see that for real f , f = f̄ , Fjm = F̄mj . This means that fw(q, hD) is self-adjoint for
the inner product 〈•, •〉0. We also see that the map f 7→ (Fjm)j,m∈(Z/NZ)n is onto, from
C∞(T2n; R) to the space of Hermitian matrices.

Any other metric on Hn
h could be written as 〈u, v〉 = 〈Bu, v〉0 = 〈u,Bv〉0. If 〈fwu, v〉 =

〈u, fwv〉 for all f ’s, then Bfw = fwB for all f ’s, and hence for all Hermitian matrices.
That shows that B = c Id, as claimed. �

This choice of normalization 〈•, •〉0 can be obtained in a natural way, if we use the
following periodization operator to construct Hn

h from S(Rn) [5]:

Lemma 4.4. For any h = (2πN)−1, the periodization operator PT2n : S(Rn)→Hn
h defined

below is surjective:

(4.6) ∀ψ ∈ S(Rn), [PT2n ψ](Qj)
def
=

1

Nn/2

∑

ν∈Zn

ψ(Qj − ν) , j ∈ (Z/NZ)n .

In the rest of this article we will always assume that h = (2πN)−1 for some N ∈ N, so
the semiclassical limit corresponds to N → ∞. The scalar product on Hn

h will be 〈•, •〉0.
From now on we will omit the subscript 0, and also often use Dirac’s notation 〈•|•〉 for
this product. For instance, the j-th component of a state ψ ∈ Hn

h in the basis (4.4) will
be denoted by ψ(Qj) = 〈Qj|ψ〉. The Hilbert norm associated with 〈•, •〉 will simply be
written ‖ • ‖.

4.2. Lagrangian states. We want to characterize the semiclassical localization in phase
space of sequences of states of the form ψ = {ψh ∈ Hn

h}h→0. In general we will assume that
each element of this sequence is normalized, ‖ψh‖ = 1, but all definitions can be extended
to sequences such that the norms satisfy ‖ψh‖ ≍ hk as h→ 0, for some fixed K ∈ R.

The localization of this sequence is first characterized through its microsupport, or wave
front set, which is the following subset of T2n:

(4.7) WFh(ψ) = ∁
{
ρ ∈ T2n : ∃ f ∈ C∞(T2n) , f(ρ) 6= 0 , ‖Oph(f)ψh‖ = O(h∞)

}
,

where ∁ stands for the set theoretical complement. It is not hard to show [42, Proposi-
tion IV-8′] that this definition is equivalent to the following: ρ 6∈ WFh(ψ) if and only if
there exists a neighbourhood Wρ of ρ such that, for any f ∈ C∞(T2n) supported in Wρ,
‖Oph(f)ψh‖ = O(h∞). This yields the following
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Lemma 4.5. For any function f ∈ C∞(T2n) with f ≡ 0 in an open neighbourhood of
WFh(ψ), we have ‖Oph(f)ψh‖ = O(h∞). As a consequence, the microsupport of a sequence
ψ = {ψh}, ‖ψh‖ ≍ hK, cannot be empty.

Proof. The (compact) support of f can be covered by finitely many Wρi
, and using a

partition of unity associated with these sets we can decompose it as f =
∑

i fi, with
supp(fi) ⊂Wρi

. We get the result by linearity, and using the second definition of WFh(ψ).
�

We also make the following observation:

Lemma 4.6. Take ψ = {ψh ∈ Hn
h}h→0, ‖ψh‖ ≍ hK. Considering ψh as a Nn-component

vector in the basis (4.3), we define ψ̄h as the vector with complex conjugate components.
Then

WFh(ψ̄) = {(q,−p) : (q, p) ∈WFh(ψ)} .

Proof. The definition (4.1) of Weyl’s quantization gives, for any function f ∈ C∞(T2n),

Oph(f) ψ̄ = fw(q, hD) ψ̄ = f̄w(q,−hD)ψ .

The lemma follows from the definition 4.7. �

Now let Λ ⊂ T2n be a union of Lagrangian submanifolds of T2n with piecewise smooth
boundaries.

Definition 4.7. A sequence of states ψ = {ψh ∈ Hn
h} is a Lagrangian state associated to

Λ, which we denote by ψ ∈ I(Λ), if for any M ∈ N and any sequence of functions,

fj ∈ C∞(T2n) , 1 ≤ j ≤M , fj|Λ = 0 ,

we have

(4.8) ‖Oph(fM) ◦ · · · ◦Oph(f1)ψh‖ = O(hM) ‖ψh‖ .
From the definition (4.7) of the microsupport, we obtain that, if ψ = {ψh ∈ Hn

h} satisfies
‖ψh‖ = O(hK) for some fixed K, then

(4.9) ψ ∈ I(Λ) =⇒ WFh(ψ) ⊂ Λ .

Indeed, suppose that ρ 6∈ Λ. Then there exists f ∈ C∞(T2n) such that f |Λ = 0 and f ≡ 1 in
a neighbourhood of ρ. We can also find a ∈ C∞(T2n) such that f = 1 on a neighbourhood of
the support of a, and a(ρ) 6= 0. The symbol calculus (see [14, Chapter 7]) shows that for any
M , Oph(a) Oph(f)M = Oph(a) +OM(h∞). On the other hand ‖Oph(f)Mψh‖ = O(hM+K),
and as M is arbitrary, ‖Oph(a)ψh‖ = O(h∞), which in view of definition 4.7 gives (4.9).

We stress that the opposite implication in (4.9) is not true in general. To see that
consider Λ = {(0, p) : p ∈ I}. Let ψh ∈ H1

h be the “torus coherent state at the origin”:

ψh(Qj) =
( 2

N

)1/4 ∑

r∈Z

exp{−πN(Qj − r)2} , j = 0, . . . , N − 1 .
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Then one can check that ‖ψh‖ h→0−−→ 1, that WFh(ψ) = { (0, 0) } ⊂ Λ. On the other hand,

‖Oph

(
sin(2πq)

)
ψh‖ ∼ π

√
2h ,

which shows that ψh /∈ I(Λ).

In the physics literature, Lagrangian states are usually called WKB states, and are intro-
duced as Ansätze for eigenstates of integrable systems, using Bohr-Sommerfeld quantization
formulae [28]. For instance, in the case n = 1, if Λ is generated by the function S ∈ C∞(I):

(4.10) ΛS = { (q,−S ′(q)), q ∈ I } ,
then for any function a(q) ∈ C∞(I), the state ψh ∈ H1

h defined as

(4.11) ψh(Qj) =
a(Qj)√
N

exp(−2iπNS(Qj)) , j = 0, . . . , N − 1 ,

is in I(ΛS). In the next proposition, we generalize this construction to any dimension.

Proposition 4.8. Let Λ ⊂ T2n be an embedded Lagrangian manifold. Then for any ρ0 ∈ Λ
there exist Lagrangian states ψ ∈ I(Λ), such that ρ0 ∈WFh(ψ).

Proof. We take ρ0 = (q0, p0) ∈ Λ, and assume that there exists a neighbourhood V of ρ0,
and a function S ∈ C∞(π(V )) (where π(q, p) = q), such that Λ ∩ V = {(q;−dqS(q)) , q ∈
π(V )}. This is a particular case of Proposition 3.1. The general case of a generating
function S(q′′, p′) can be transformed to that of S = S(q) using the symplectic rotation
(q′, p′) 7→ (−p′, q′). On the quantum mechanical side, this rotation is performed through
a partial Fourier transform in the variable q′. Our construction below can be transposed
to this general case through this Fourier transform (which acts covariantly on the Weyl
quantization).

We also assume that the neighbourhood V is contained in the interior of I2n, and we
identify π(V ) with a subset of In. We first construct a Lagrangian state in L2(Rn):

(4.12) uh(q) = a(q) e−
i
h

S(q) ,

with a symbol a ∈ C∞(Rn) compactly supported inside π(V ), and such that a(q0) 6= 0.
This state admits the norm ‖uh‖L2 = ‖a‖L2. For any f ∈ C∞(T2n), we apply the operator
fw(q, hD) to that state. Although we could do it directly using (4.1), we prefer to reduce
the problem to the case of S = 0 by conjugation with the unitary multiplication operator

(4.13) v(q) 7−→ [e
i
h

Sw(q)v](q) = e
i
h

S(q)v(q) ,

where we can assume that S ∈ C∞b (Rn). We then apply the operator

Gw(q, hD)
def
= e

i
h

Sw(q) fw(q, hD) e−
i
h

Sw(q) ,
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to the function a(q). The symbol calculus shows that G(q, p) admits an h-expansion,
with principal symbol g(q, p) = f(q, p + dqS(q)): if f vanishes on Λ, then g vanishes on
{(q, 0) : q ∈ π(V )}. We get

[fw(q, hD) uh](q) = e−
i
h

Sw(q)Gw(q, hD) a(q) = e−
i
h

Sw(q) gw(q, hD) a(q) +O(h) ,

The explicit integral

[gw(q, hD) a](q) =
1

(2πh)n

∫ ∫
g
(q + r

2
, p
)
a(r) e

i
h
〈q−r,p〉 dr dp

can be evaluated through the stationary phase method. The derivative of the phase vanishes
at r = q, p = 0, so the integral admits the following expansion [23, §7.7] for q ∈ π(V ):

(4.14) [gw(q, hD) a](q) = L0(g a)(q) + hL1(g a)(q) +O(h2) .

Here each function Lj(g a) is obtained by applying a certain differential operator (in (r, p))
on the function g((q + r)/2, p) a(r), taking the output at the point (r = p, p = 0). The
first term is simply L0(g a)(q) = g(q, 0) a(q). For q outside π(V ), the nonstationary phase
estimates show that

(4.15) fw(q, hD) uh(q) = O
(( h

h+ dist(q, π(V ))

)∞)
.

If f(ρ0) 6= 0, then L0(g a) is nonzero in a neighbourhood W of q0, and we obtain

(4.16) ‖fw(q, hD) uh‖L2(Rn) = ‖gw(q, hD) a‖L2(Rn) +O(h) ≥ ‖L0(g a)‖L2(W ) +O(h) .

The left hand side is thus bounded from below by a positive constant.

On the opposite, if f vanishes on Λ, then at each point q ∈ π(V ) we get L0(g a)(q) = 0,
which implies that ‖fw(q, hD) uh‖L2(Rn) = O(h). The same procedure can be iterated to
show that

(4.17) ‖fw
M(q, hD) ◦ · · · ◦ fw

1 (q, hD)uh‖L2(Rn) = O(hM)

for any family of functions fi ∈ C∞(T2n) vanishing on Λ.

We can now carry over these estimates onto the state ψh = PT2n uh ∈ Hn
h, where PT2n

is the periodizing operator (4.6). Since a(q) was supported inside π(V ) ⊂ In, this state
admits the following representation, which generalizes (4.10):

(4.18) ψh(Qj) =
a(Qj)

Nn/2
exp(−2iπNS(Qj)) , j ∈ (Z/NZ)n .

The norm of this state is therefore the sum

‖ψh‖2 = N−n
∑

j∈(Z/NZ)n

|a(Qj)|2 =

∫
dq |a(q)|2 +O(h∞) ,
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where we used the smoothness of a(q). Considering the functions fi appearing in (4.17),
the state

(4.19) u
(M)
h (q)

def
= h−M [fw

M ◦ · · · ◦ fw
1 uh](q) ,

is not compactly supported, but it is small for q 6∈ π(V ), as in (4.15). As a result, its
projection on Hn

h satisfies

h−M Oph(fM) ◦ · · · ◦Oph(f1)ψh(Qj) = PT2n u
(M)
h (Qj)

=
u

(M)
h (Qj)

Nn/2
+O(h∞), j ∈ (Z/NZ)n .

(4.20)

This immediately implies that

‖Oph(fM) ◦ · · · ◦Oph(f1)ψh‖ = hM‖PT2n u
(M)
h ‖ = hM‖u(M)

h ‖L2(Rn) +O(h∞) = O(hM) .

On the other hand, if f(ρ0) 6= 0, one easily dedeuces from (4.16) that

‖Oph(f)ψh‖ = ‖fw(q, hD) uh‖L2(Rn) +O(h∞) ≥ C +O(h), C > 0 .

These estimates show that the family ψ ∈ I(Λ), and that ρ0 ∈WFh(ψ). �

Remark 4.1. The definition of I(Λ) mimicks the Hörmander-Melrose definition of La-
grangian distributions [24, Definition 25.1.1] (see [1] for an adaptation to the standard
semiclassical setting). The requirement that Λ is Lagrangian reflects the uncertainty prin-
ciple, in the following sense. A Lagrangian submanifold is the lowest dimensional subman-
ifold for which the conclusion of Proposition 4.8 holds, that is, for any ρ ∈ Λ, there exists
a state ψ satisfying ψ ∈ I(Λ) and ρ ∈WFh(ψ).

Indeed, let Λ be an embedded submanifold of T2n. Let us assume that ψ ∈ I(Λ), so (4.8)
must hold for any family of functions fj |Λ = 0. From the identity

i

h
[Oph(fi),Oph(fj)] = Oph({fi, fj}) +O(h) .

we see that ‖Oph({fi, fj})ψh‖ = O(h). As in the proof of (4.9), we can show that if
{fi, fj}(ρ) 6= 0 for some ρ ∈ Λ, then ρ 6∈ WFh(ψ). Hence, if we want the conclusion of
Proposition 4.8 to hold for Λ, then this submanifold must satisfy

∀fi, fj ∈ C∞(T2n), fi|Λ , fj|Λ = 0 =⇒ {fi, fj}|Λ = 0 .

This property means that Λ is co-isotropic, and must be of dimension ≥ n. Lagrangian
manifolds are co-isotropic manifolds of minimal dimension.



DISTRIBUTION OF RESONANCES FOR OPEN QUANTUM MAPS 29

4.2.1. Singular Lagrangian states. We now give an example where Λ is a union of La-
grangians with piecewise smooth boundaries (we called such Λ a singular Lagrangian).
Let ΛS be given by (4.10) and ψh by (4.11). Let us truncate ψh to some proper subin-
terval [Q,Q′] ⊂ I, that is, replace the symbol a(q) by the discontinuous function ã(q) =

a(q)1l[Q,Q′](q). That gives a state ψ̃h ∈ H1
h. One could expect ψ̃h to be a Lagrangian state

in I(ΛS) (as is ψh), or rather in I(Λ̃S), where

Λ̃S
def
= ΛS ∩ ([Q,Q′]× I) .

This is not the case: one needs to include in the Lagrangian the singularity set

Λsing = {(Q, p) : p ∈ I} ∪ {(Q′, p) : p ∈ I} ,
which is the “periodized” conormal bundle of the boundary ∂Λ̃S. We will indeed prove
that ψ̃h ∈ I(Λ̃S ∪ Λsing), which can be considered as a semiclassical, discrete analogue of
singular Lagrangian distributions of Guillemin-Uhlmann [19] and Melrose-Uhlmann [34].
We have the following

Lemma 4.9. Let us truncate the state (4.18) to a hypercube H ⊂ In, H =
∏n

ℓ=1[αℓ, βℓ]:

(4.21) ψ̃h(Qj) =
a(Qj) 1lH(Qj)

Nn/2
exp(−2iπNS(Qj)) , j ∈ (Z/NZ)n .

Then ψ̃h is associated with the singular Lagrangian Λ̃S∪Λsing, where Λ̃S = {(q,−dqS(q)) , q ∈
H} and

(4.22) Λsing =

n⋃

ℓ=1

({
(q, p) : qℓ = αℓ, pℓ ∈ I, qm ∈ [αm, βm], pm = −dqm

S(q), m 6= ℓ
}

∪
{

(q, p) : qℓ = βℓ, pℓ ∈ I, qm ∈ [αm, βm], pm = −dqm
S(q), m 6= ℓ

})
.

Remark. It would be tempting to generalize the lemma by replacing the hypercube H by
an arbitrary set S with smooth boundaries. However, if n = 2, S ≡ 0, a ≡ 1, and ∂S does
not contain a segment with rational slopes then

WFh(ψ̃h) = (S × {0}) ∪ (∂S × I2) .

The second component being 3-dimensional, this set is certainly not contained in a finite
union of Lagrangians.

Proof. As in the proof of Proposition 4.8, we can, by conjugation with the operator (4.13),
reduce the proof to the case S = 0. We first consider states defined on Rn, localized on the
hypercube H ⊂ Rn:

uh(q) = 1lH(q) a(q) , a ∈ C∞(Rn) .

We use the following
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Lemma 4.10. Let Λ̃0 = H × {0} and Λsing be as in Lemma 4.9. The ideal J of periodic

functions vanishing on the singular Lagrangian Λ̃0 ∪ Λsing is (infinitely) generated by

gj(p, q)
def
= sin

(
π(qj − αj)

)
sin
(
π(qj − βj)

)
sin(πpj) ,

gij(q, p)
def
= sin(πpi) sin(πpj) i 6= j , 1 ≤ i, j ≤ n ,

φj(q, p) = φ(qj , p1, · · · , pj−1, pj+1, · · · , pn) , where φ(qj, •) ≡ 0, αj ≤ qj ≤ βj,

ψ(q) , where ψ ∈ C∞(In) vanishes on H.

Proof. We only give the proof for the following model (n = 2), which contains all the basic
ingredients of the general case. Let us study the ideal of functions vanishing on

(4.23) ({q1 = p2 = 0} ∪ {q2 = p1 = 0} ∪ {p1 = p2 = 0}) ∩ {q1 ≥ 0 , q2 ≥ 0} .
The functions vanishing on the first factor in the intersection are generated by q1p1 , q2p2,
and p1p2. Writing an arbitrary function F (q, p) as

F (q1, q2, p1, p2) = F0(p1, p2) + q1F1(q1, q2, p2) + q2F2(q1, q2, p1)+

+ q1p1F11(q1, q2, p1, p2) + q2p2F22(q1, q2, p1, p2) ,

we need to find conditions for q1F1(q1, q2, p2) and q2F2(q1, q2, p1) to vanish on (4.23). We
treat the first function by expanding it as

F1(q1, q2, p2) = F10(q1, q2) + p2F12(q1, p2) + q2p2F122(q1, q2, p2) .

This forces F10(q1, q2) to vanish identically in {q1, q2 ≥ 0} and F12(q1, p2) to vanish identi-
cally in {q1 ≥ 0}.

The function F2(q1, q2, p1) is treated identically. Hence the functions vanishing on (4.23)
are generated by q1p1, q2p2, p1p2, and all the smooth fuctions ψ(q1, q2), φ1(q1, p2), φ2(q2, p1)
vanishing on {q1, q2 ≥ 0}. The transposition to the torus setting gives the lemma for that
case. The general case can be proven similarly. �

This lemma means that any F ∈ J can be decomposed as

F =
∑

j 6=i

fij gij +
∑

j

(fjj gj + fj φj + ψ) ,

where the functions f• are smooth and either periodic or antiperiodic in each variable, so
that f•g• are periodic in all variables.

The action of each term (f g)w(q, hD) on uh(q) can be written

(fg)w uh = ((f a)w ◦ gw + hL(fJ , a, gJ)) 1lH ,

where L(f, a, g) is a pseudodifferential operator of norm O(1). Therefore, we are reduced
to study the action of the generators gw(q, hD), g = gij , gj , φj, ψ, on the characteristic
function 1lH(q).

We first note that ψ 1lH = φw
j 1lH ≡ 0, so there is nothing to prove in this case.
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For each j ∈ { 1, . . . , n }, the generators gj, contain a factor sin(πpj). Up to an error
O(h), we first quantize this factor and apply it to 1lH :

sin(πhDj)1lH(q) =
1

2i

(
1lH(qj + πh, q′)− 1lH(qj − πh, q′)

) def
= bj(q) .

The function bj(q) is supported in the strips Sj = { |qj − αj | ≤ πh } ∪ { |qj − βj | ≤ πh },
where it takes values ±1. We now apply the remaining factors of gj. This amounts to
multiplying bj(q) by the product sin

(
π(qj − αj)

)
sin
(
π(qj − αj)

)
. This gives a function

taking values O(h). Taking the error into account, we obtain ‖gw
j 1lH‖L2(Rn) = O(h).

In the case of gij, i 6= j, we apply sin(πhDi) to bj(q): the resulting function takes values
±1 on its support Si ∩ Sj , so that ‖gw

ij 1lH‖L2(Rn) = O(h).

We have now proved that ‖Fw uh‖L2(Rn) = O(h) for any F ∈ J . The procedure can be
easily iterated to any finite product of functions Fi ∈ J , yielding an estimate (4.17).

The proof is completed by the periodization argument as in the proof of Proposition 4.8.

The only slight difference lies in the fact that the analogues of the functions u
(M)
h (q) of

(4.19) may now have discontinuities near ∂D, so that ‖PT2n u
(M)
h ‖ − ‖u(M)

h ‖L2(Rn) = O(h)
instead of O(h∞). �

4.3. Quantum relations. Suppose that Λ ⊂ T2n×T2n is a Lagrangian submanifold. The
basic example is given by the twisted graph Γ′

κ of a symplectic diffeomorphism κ on T2n

(see Section 3.2.1):

Γ′
κ =

{
(q′, q; p′,−p) : (q′, p′) = κ(q, p), (q, p) ∈ T2n

}
.

As we noticed in that section, the choice of change of sign depends on the choice of the
splitting of variables (q, p), which is itself related with the choice of a polarization in the
quantization a 7→ Oph(a) [24, §25.2]. This somewhat cumbersome convention is explained
as follows.

Any state v ∈ Hn
h is naturally identified to a linear form fv ∈ (Hn

h)∗ through fv(w) =
〈v, w〉. In our notations5, this scalar product is antilinear in the first component. To make
the identification linear, we choose instead

(4.24) v ∈ Hn
h =⇒ fv(·) = 〈v̄, ·〉 ,

where states v are written as a vectors in the basis (4.3).

Let L(Hn
h) ≃ Hn

h⊗(Hn
h)∗ be the space of linear operators onHn

h. The linear identification
(4.24) of Hn

h with (Hn
h)∗ gives the identification,

(4.25) L(Hn
h) ≃ H2n

h , through (u⊗ v)(w) = u 〈v̄, w〉 , u, v, w ∈ Hn
h .

We observe that the norm on H2n
h is the same as Hilbert-Schmidt norm on L(Hn

h):

(4.26) ‖T‖H2n
h

= (trHn
h
(T ∗T ))

1
2 ,

5This is the physicists’ convention.
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It is related to the operator norm on L(Hn
h) as follows:

(4.27) ‖T‖L(Hn
h
) ≤ ‖T‖H2n

h
≤ Nn/2‖T‖L(Hn

h
) .

In particular, unitary operators have Hilbert-Schmidt norm Nn/2 = (2πh)−n/2.

The identification (4.25) dictates the way an operator of the type A1 ⊗ A2 (with Ai ∈
L(Hn

h)) acts on u⊗ v ∈ H2n
h ≃ L(Hn

h). Indeed, if we take any w ∈ Hn
h, we have

[(A1 ⊗ A2)(u⊗ v)](w) = [A1u⊗A2v](w)

= A1u 〈A2v, w〉
= A1u 〈v̄, A′

2w〉
= [(A1u⊗ v) ◦ A′

2](w) .

Here A′
2 is the transposed of the operator A2, written as a matrix in the basis (4.3). In

the case A1 = Oph(a), A2 = Oph(b) for some real functions a, b ∈ C∞(T2n), one checks

that A′
2 = Oph(b̃), with the same twisted function as in the proof of Lemma 4.6: b̃(q, p) =

b(q,−p). By linearity, for any Ch ∈ H2n
h ≃ L(Hn

h), we have

(4.28) Oph(a⊗ b)Ch = Oph(a) ◦ Ch ◦Oph(b̃) .

The sign change in the tilting Γ ; Γ′ parallels the transformation a(ρ′) b(ρ) ; a(ρ′) b̃(ρ).

We are now in position to quantize a symplectic map, more generally a symplectic relation
Γ as defined in Section 3.2.

Definition 4.11. A semiclassical sequence U = {Uh ∈ H2n
h }h→0 satisfying

(4.29) ‖Uh‖H2n
h
≤ ChK , where K ∈ R is fixed,

is a quantum relation associated with the symplectic relation Γ if U is a Lagrangian state
in I(Γ′), in the sense of Definition 4.7.

Explicitly, for any M ∈ N and any sequence of functions

gj ∈ C∞(T2n × T2n) , gj |Γ′ = 0 , 1 ≤ j ≤M ,

we must have

(4.30) ‖Oph(gM) ◦ · · · ◦Oph(g1)Uh‖H2n
h

= O(hM ) ‖Uh‖H2n
h
.

The assumption that Uh is tempered in the sense of (4.29) (which also implies tempered-
ness in the operator norm) is necessary to assure that composing Uh with residual (O(h∞))
terms produces residual terms. That is a standard assumption in C∞ semiclassical calculi
— see [1, 50], and will be used in the proof of Prop.4.12. The quantum weighted relations
defined in § 4.4 will naturally be tempered, having norms ‖Uh‖H2n

h
= O(h−n/2).

If a function g ∈ C∞(T4n) vanishes on Γ′, then the function g̃ defined as g̃(q′, p′; q, p) =
g(q′, p′; q,−p) vanishes on Γ. The condition gj|Γ′ = 0 can thus be written g̃j|Γ = 0.
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We also note that (4.30) entails a version of Egorov’s theorem. If fL, fR ∈ C∞(T2n)
satisfy

(ρ′, ρ) ∈ Γ =⇒ fL(ρ′) = fR(ρ) ,

then we have

(4.31) ‖Oph(fL)Uh − Uh Oph(fR)‖H2n
h

= O(h) ‖Uh‖H2n
h
.

Indeed, the function f
def
= fL ⊗ 1 − 1 ⊗ fR vanishes on Γ, so that f̃ vanishes on Γ′. We

then simply apply the definition (4.30) with g1 = f̃ and use (4.28). When Γ is a graph of
a symplectic transformation, fR is the pullback of fL, and we get a statement similar with
the standard Egorov’s theorem.

Remark 4.2. Following Section 4.2, in the case when Γ′ is a Lagrangian with boundaries
projecting on a hypercube, it is useful to include in the definition sequences U in the (larger)
space I(Γ′ ∪ Λsing); the quantum baker’s relation we define in next section will belong to
such an enlarged space.

Through the identification (4.25), Uh is an operator on Hn
h. We now show that this

operator “classically transports” the microsupport of a sequence w = {wh ∈ Hn
h }.

Proposition 4.12. Take U = {Uh ∈ H2n
h ≃ L(Hn

h) } a quantum relation U ∈ I(Γ′). Then
for any sequence w = {wh ∈ Hn

h }, ‖wh‖ ≍ 1, the microsupport of the image sequence
U(w) = {Uh(wh) } satisfies:

WFh(U(w)) ⊂ Γ
(

WFh(w)
)

=
{
ρ′ ∈ T2n : ∃ ρ ∈WFh(w) , (ρ′, ρ) ∈ Γ

}
.

Proof. Assume that ρ′0 6∈ Γ(WFh(w)), which means that Γ−1(ρ′0) 6⊂ WFh(w). Then there
exists a function f ∈ C∞(T2n) with f ≡ 1 near ρ′0 but with supp(f) sufficiently small so
that Γ−1(supp(f)) ⋐ ∁ WFh(w). Consequently, there exists a function g ∈ C∞(T2n) with
g ≡ 1 near WFh(w) but g ≡ 0 on Γ−1(supp(f)). The function f ⊗ g̃ ∈ C∞(T4n) then
automatically satisfies f ⊗ g̃|Γ′ = 0.

Our aim is to show that ρ′0 6∈ WFh(U(w)). For this, we introduce one further function
a ∈ C∞(T2n) such that a(ρ′0) > 0 and f ≡ 1 on supp(a). As in the proof of (4.9) we see
that for any M ∈ N, Oph(a) Oph(f)M = Oph(a) +O(h∞). Hence

‖Oph(a)Uhwh‖ = ‖Oph(a) Oph(f)M Uhwh‖+O(h∞)

= ‖Oph(a) Oph(f)M Uh Oph(g)M wh‖
+ ‖Oph(a) Oph(f)M Uh (1−Oph(g)M)wh‖+O(h∞)

To bound the second term on the right hand side, we notice that the function (1 − gM)
vanishes near WFh(w), so from Lemma 4.5 we get ‖(1−Oph(g)M)wh‖ = O(h∞); from the
temperedness of Uh, the second term is thus residual.

The first term on the right hand side is estimated using the identity

Oph(f)M Uh Oph(g)M = Oph(f ⊗ g̃)M Uh .
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Because f⊗g̃ vanishes on Γ′, the Hilbert-Schmidt norm of that operator is O(hM+K), where
K comes from the temperedness of Uh, (4.29). Using (4.27), we thus get ‖Oph(a)Uh wh‖ =
O(hM+K) for an arbitrary M ∈ N, which shows that ρ′0 6∈WFh(U(w)). �

4.4. Quantized weighted relations. In Section 3.4 we equipped symplectic relations
Γ with weights µ. In order to associate to the weighted relation (Γ, µ) a sequence of
operators Uh ∈ H2n

h , we need to elaborate on Definition 4.11, thereby defining a subfamily
I(Γ′, µ) ( I(Γ′).

In the standard microlocal context [24, Section 25.1], a Lagrangian state ψ ∈ I(Λ) has
a well defined amplitude, or symbol, which is a section of the Maslov half density bundle
over the Lagrangian submanifold — see [24, Theorem 25.1.9]. The local aspects of this
procedure have recently been adapted to the semiclassical case [1], and a similar approach
can be used in the case of T4n.

Although one could characterize the operators quantizing (Γ, µ) in terms of their symbols
(grossly speaking, the absolute square of the symbol should equal the weight µ), we won’t
do it here, in order to avoid technical issues involved in the description of the symbol map.
Instead, in the definition below we use bilinear expressions in Uh, which allows us to avoid
introducing symbols.

Definition 4.13. Let (Γ, µ) be a weighted piecewise smooth relation as defined in §3.4
and let U ∈ I(Γ′ ∪ Λsing), in the sense of Definition 4.11 and Remark 4.2. For any χα ∈
C∞(T2n; [0, 1]), α = L, R, we define

UχLχR

def
= Oph(χL) Uh Oph(χR) .

We say that U quantizes the weighted relation (Γ, µ) if for all χL, χR with sufficiently small
supports satisfying supp(χL ⊗ χR) ∩ Λ′

sing = ∅,
UχLχR

U∗
χLχR

= Oph(gχLχR

L ) +O(h)

U∗
χLχR

UχLχR
= Oph(gχLχR

R ) +O(h) ,
(4.32)

where gχLχR
α are the functions given in (3.8), and the remainder is O(h) in the norm of

operators on Hn
h. We then write

U = {Uh } ∈ I(Γ′ ∪ Λsing, µ) .

The conditions on the smallness of supports of χα guarantee that the operators appearing
on the left in (4.32) are of the form Oph(f), f ∈ C∞(T2n). That follows from the fact that
Γ is locally a graph — see §3.4.

If Γ is the graph of a symplectic diffeomorphism κ and µ = π∗
L(ωn/n!) = π∗

R(ωn/n!), then
Uh is unitary to leading order:

U∗
hUh = I + Ch , UhU

∗
h = I +Dh , ‖Ch‖L(Hn

h
) = O(h), ‖Dh‖L(Hn

h
) = O(h) .
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For h small, (I +Ch)−
1
2 , (I +Dh)−

1
2 exist, therefore a possibility to make the quantization

strictly unitary is to replace Uh by Uh(I + Ch)−
1
2 or (I +Dh)−

1
2Uh.

The condition (4.32) can be interpreted as follows. Suppose that ψ ∈ Hn
h, ‖ψ‖ = 1, is

microlocalized at a single “regular” point ρ0:

WFh(ψ) = {ρ0} ⊂ T2n \ πR(Λ′
sing) ,

and Γ(ρ0) = ∪J
j=1ρ

′
j, ρ

′
j = κj(ρ0). Then,

Uhψ =

J∑

j=1

ψj +O(h∞) ,

‖ψj‖2 = Pj(ρ0) +O(h) , WFh(ψj) ⊂
{
ρ′j
}
.

From Lemma 4.5, if Pj(ρ0) 6= 0 then WFh(ψj) =
{
ρ′j
}

. A similar statement holds for U∗
h .

Indeed, if for each j = 0, · · · , J we take χj ∈ C∞(T2n; [0, 1]) supported in a small neigh-
bourhood of ρ0, resp. ρ′j , and equal to 1 near that point, (3.9) shows that g

χjχ0

R (ρ0) = Pj(ρ0).
On the other hand, Proposition 4.12 gives

Uhψ = Uh Oph(χ0)ψ +O(h∞) =
J∑

j=1

Uχjχ0
ψ +O(h∞) ,

WFh(Uχjχ0
ψ) ⊂

{
ρ′j
}
.

(4.33)

If we take ψj
def
= Uχjχ0

ψ then

‖ψj‖2 = 〈U∗
χjχ0

Uχjχ0
ψ, ψ〉 = 〈Oph(g

χjχ0

R )ψ, ψ〉+O(h) = Pj(ρ0) +O(h) .

Example. We now consider a special case of Uh of the form

(4.34) 〈Qj |Uh|Qk〉 = N−n/2a(Qj , Qk) exp
(
2πiNS(Qj , Qk)

)
,

where a, S ∈ C∞(T2n×T2n) and the generating function S(q′, q) satisfies the non-generacy
condition det(∂2

q′ qS) 6= 0 near the support of a(q′, q). Using Definition 4.11 we see that Uh

is associated to the graph ΓS of the symplectic transformation (q,−∂qS) 7→ (q′, ∂q′S). To
be more precise,

(4.35) Uh ∈ I(Γ′
S, µS) , µS

def
= |a(q′, q)|2 dq′ dq ,

where we used the coordinates (q′, q) on ΓS. Projecting this measure on the left and right
tori, we get:

πL∗ µS =
( ∑

q′: p=−∂qS(q′,q)

|a(q′, q)|2 | det(∂2
q′ qS)|−1

)
dq dp ,

πR∗ µS =
( ∑

q : p′=∂q′S(q′,q)

|a(q′, q)|2 | det(∂2
q′ qS)|−1

)
dq′ dp′ .

(4.36)
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The above sums are always finite. This example will be used to analyze the quantum
baker’s relations studied in the next sections.

4.5. Quantized baker’s relation. We explicitly construct quantum relations Bh ∈ L(H1
h)

associated with the “open baker’s maps” described in Section 3.3. For simplicity, we will
assume that the coefficients Dj and ℓj are integers. Besides, we will only consider the
subsequence of Planck’s constants of the form h = (2πN)−1 such that N/D1 = M1 ∈ N
and N/D2 = M2 ∈ N (that is, the lowest common multiple of (D1, D2) divides N).

Restricting ourselves to this subsequence, we define the quantization of the baker’s re-
lation (3.3) as the following operators (written as N × N matrices in the bases (4.3)):

(4.37) Bh
def
= F∗

N ◦




0 0 0 0 0
0 FM1

0 0 0
0 0 0 FM2

0
0 0 0 0 0


 = B1,h +B2,h.

The numbers of columns in successive blocks are respectively given by

ℓ1M1 , M1 , ℓ2M2 − (ℓ1 + 1)M1 , M2 , (D2 − ℓ2 − 1)M2 ,

and FM is the discrete Fourier transform given in (4.5). These matrices obviously generalize
the unitary matrices associated with the closed baker’s map [2]. Similar matrices can be
constructed for any value of Bloch angles θ [45]. Although we restrict our presentation to
the periodic boundary conditions θ = (0, 0), our numerical computations (see next section)
are performed for the antiperiodic case θ = (1/2, 1/2), because that choice preserves the
parity symmetry of the classical relations (5.1,5.2) at the quantum level [43].

We now check that the matrices (4.37) satisfy the Definition 4.13 if we select the appro-
priate Lagrangian surface on T4, namely by adjoining a singularity set Λsing to the twisted
graph B′ (see Remark 4.2), and equip B with the density µ described in (3.10). By lin-
earity, we can separately consider the two blocks Bj,h. Let us study the left block B1,h.
Since the classical relation B1 is generated by the function S1(q, p′) of (3.4), it is natural to
express the operator B1,h in the mixed representation (p′, q), that is by a matrix from the
basis { |Qj〉 } to the basis { |Pk〉 }. Since the change of basis matrix, (|Pk〉〈Qj|)j,k=0,...,N−1,
equals FN , the operator A1,h defined as the matrix

(〈Qk|A1,h|Qj〉)j,k=0,...,N−1
def
= (〈Pk|B1,h|Qj〉)j,k=0,...,N−1 = FN ◦B1,h

is given by the Fourier block FM1
at the same position as in (4.37), and zeros everywhere

else.

The following lemma reduces finding the (weighted) Lagrangian relation associated to
B1,h to finding the (weighted) Lagrangian associated to A1,h. We denote by F the following
transformation of T2n: F (q, p) = (p,−q). It means, we rotate by −π/2 around the origin
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in each plane (qi, pi). We denote by FL the transformation of T4n acting through F on the
left coordinates (q′, p′) and leaving the right coordinates unchanged.

Lemma 4.14. Suppose that Uh ∈ L(Hn
h) ≃ H2n

h and that Vh
def
= FN ◦ Uh. Then, for any

(possibly singular) Lagrangian C′ ∈ T4n,

Uh ∈ I(C′) ⇐⇒ Vh ∈ I(D′) ,

where

D′ = FL(C′) , equivalently D = FL(C) = {(p′,−q′; q, p) : (q′, p′; q, p) ∈ C} .
Furthermore,

Uh ∈ I(C′, µ) ⇐⇒ Vh ∈ I(D′, ν) , with ν = FL∗ µ .

Proof. The transformation C → D results from a general composition formula which can be
proved by mimicking the semiclassical proof in [1]. Here it follows from the the covariance
properties of Weyl quantization with respect to the Fourier transform: for any a ∈ C∞(T2n),

(4.38) F−1
h Oph(a) ◦ Fh = Oph(a ◦ F ) .

As a result, for any f ∈ C∞(T4n),

Oph(f)(Fh ◦ Uh) = Fh ◦Oph(f ◦ FL)(Uh) .

This identity proves the first assertion.

Using (4.38), we notice that for any χL, χR ∈ C∞(T2n; [0, 1]), the cutoff propagator
VχL χR

satisfies

V ∗
χL χR

VχL χR
= U∗

χL◦F χR
UχL◦F χR

= Oph(gχL◦F χR

R ) +O(h) ,

VχL χR
V ∗

χL χR
= Fh UχL◦F χR

U∗
χL◦F χR

F∗
h = Oph(gχL◦F χR

L ◦ F−1) +O(h) .

Using the pushforward of functions FL∗ f = f ◦F−1
L and the fact that πR ◦FL = πR, we get

gχL◦F χR

R = πR∗(π
∗
L(F−1

L∗ χL) π∗
RχR µ) = πR∗(π

∗
LχL π

∗
RχR FL∗µ)

gχL◦F χR

L ◦ F−1 = πL∗FL∗(π
∗
L(F−1

L∗ χL) π∗
RχR µ) = πL∗(π

∗
LχL π

∗
RχR FL∗µ) .

This proves that Vh is associated with the weight ν = FL∗µ on D′. �

Let us now describe the (weighted) Lagrangian associated with the operator A1,h. The
kernel is localized on the square H = I1 × I1, where I1 = [ℓ1/D1, ℓ1 + 1/D1], and

(4.39) 〈Qk|A1,h|Qj〉 = 〈Pk|B1,h|Qj〉 =

√
D1

N
1lH(Qk, Qj) e

−2iπN S1(Qk ,Qj) .
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The operator A1,h has the same form as in (4.34), with the (obviously nondegenerate)
generating function S = −S1 and symbol a(q′, q) =

√
D1 1lH(q′, q). If we forget (for a

moment) the discontinuities of the symbol, we find that A1,h is associated with the graph

ΓS1
=
{ (
q′,−(D1q − ℓ1); q, (D1q

′ − ℓ1)
)

: q, q′ ∈ I1
}
,

with the density
µS1

= D1 1lH(q′, q) dq′ dq .

From Lemma 4.14, the operator B1,h = F∗
N ◦ A1,h is associated with the graph

F−1
L (ΓS1

) =
{ (

(D1q − ℓ1), q′; q, (D1q
′ − ℓ1)

)
: q, q′ ∈ I1

}
= B1

and the weight

µ1
def
= F−1

L∗ µS1
= D1 1lH(p′, q) dp′ dq ,

which can be expressed as

πR∗ µ1 = 1lI1(q) dq dp , πL∗ µ1 = 1lI1(p
′) dq′ dp′ .

It represents the half part of the weight (3.10).

Let us now take the discontinuities of a(q′, q) into account. Since they occur at the
boundary of the square H , they have the same consequences as in Lemma 4.9. Namely, we
must add to the Lagrangian Γ′

S1
a “singular” Lagrangian, which is the union of 4 pieces,

each piece sitting above a side of H . This Lagrangian should then be rotated through F−1
L

as well.

For instance, the side {q′ ∈ I1, q = ℓ1/D1} leads (after rotation) to the singular La-
grangian

Λsing,1 =

{(
q′ = 0, q =

ℓ1
D1

; p′ , p
)

: p′ ∈ I1 , p ∈ I

}
,

which contains the corresponding side of ∂B′
1. Similar Lagrangians Λsing,i, i = 2, 3, 4,

contain the remaining sides of ∂B′
1.

The same analysis applies to B2,h and hence we have proved the

Proposition 4.15. The sequence of matrices {Bh } given in (4.37) quantizes the clas-
sical baker’s relation B = B1 ∪ B2 of (3.3), in the sense of Definitions 4.11, 4.13, and
Remark 4.2:

Bh ∈ I
(
B′ ∪

8⋃

j=1

Λsing,j, µ

)
,

where the weight µ is given by (3.10).

This quantization of the baker’s relation is very close to the “quantum horseshoe” defined
by Saraceno-Vallejos in [44]. The operator Bh is contracting, and its eigenstates can be seen
as “metastable states”, “decaying states” or “resonances”. This contraction mirrors the
decay of a classical probability density evolved through the open mapB (due to the “escape”
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of particles to infinity). This classical decay can be analyzed in terms of a “conditionally
invariant measure” on T2 [8], which decays according to the classical decay rate γcl =
− log(D−1

1 +D−1
2 ).

5. Numerical results for the baker’s relation

We numerically computed the spectrum of the quantum baker relations in the following
symmetric cases:

the “3-baker”: D1 = D2 = 3, ℓ1 = 0, ℓ2 = 2(5.1)

the “5-baker”: D1 = D2 = 5, ℓ1 = 1, ℓ2 = 3 ,(5.2)

but we will only plot results concerning the first case (the numerical results for the second
case are shown in [38]). These relations have simple trapped sets, which are pure Cantor
sets of dimensions

2d = 2× log 2

logD
.

Besides, these relations enjoy the obvious parity symmetry q → 1 − q, p → 1 − p. The
quantization preserves this symmetry if we choose anti-periodic conditions for the quantum
torus, that is Bloch angles θ1 = (1/2, 1/2): the matrix Bh,θ1

then commutes with the
quantum parity operator Πkl = δk,N−1−l, so we can separately diagonalize the even and
odd parts

Bh,ev = Bh,θ1
◦ 1 + Π

2
, Bh,odd = Bh,θ1

◦ 1− Π

2
,

which are both of rank N/D; they give the full nontrivial spectrum of Bh. We checked
that for both relations, the odd spectrum has the same characteristics as the even one, so
we only analyze the latter.

We compared the spectra of the matrices Bh,ev along geometric sequences {Nk = NoD
k}

or arbitrary sequences. As a first illustration, we show in Fig. 6 the spectrum of the 3-baker
Bh,ev along the geometric sequence N = 81× 3k for k = 1, 2, 3, 4.

In Fig. 7 (left), we plot the number

n(N, r) = #{λ ∈ Spec(Bh,ev) : |λ| ≥ r}
as a function of 0 < r < 1, for the 3-baker and N taken along an arbitrary sequence.
According to the theory, this number should scale as

(5.3) n(N, r) ∼ C(r)N
log 2
log 3

in the limit N →∞. To check this conjecture, we rescaled vertical coordinate of the curves
in Fig. 7 (left) by a factorN−log 2/log 3, and plotted the rescaled curves in Fig. 7 (right). These
rescaled curves are now fairly superposed on each other, which shows that the theoretical
scaling is approximately correct. The special role played by geometric sequences has been
further investigated in [38].
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Figure 6. Even spectrum of the quantum 3-baker’s relation Bh for N/3 =
81, 243, 729, 2187.

Similar results were obtained in [48] for the open kicked rotator (see §2.4.2). The au-
thors noticed that the profile function C(r) for the kicked rotator can be fitted reasonably
well with a prediction of random matrix theory (more precisely, matrices obtained as the
upper-left corner of a random unitary matrix [58]). In our case, the superposition of the
rescaled counting functions on Fig. 7 (right) seems too approximate for us to claim such
an agreement with random matrix theory, although the data are compatible with it.
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Figure 7. On the left, we plot the number n(N, r) of even eigenvalues of
modulus ≥ r of the 3-baker Bh (the numbers in the box are the ranks N/3 of
the desymmetrized matrices). On the right we have rescaled that number by
the factor N−log 2/log 3. Data belonging to the same geometric sequence share
the same color (online) or linewidth.

To check the fractal law (5.3) more precisely, we fix some values for r, and look at
the N -dependence of n(N, r), for N taken either along geometric sequences, or along an
arbitrary sequence (with always 3|N). On Fig. 8, we plot this dependence in logarithmic
scale. For r = 0.5, the points seem to converge to the theoretical scaling law quite nicely as
N →∞, even along an “arbitrary” sequence. For smaller r, the convergence is not yet clear,
especially for r = 0.03. This phenomenon is to be expected: for each N there are exactly
N/3 nonzero even eigenvalues; the above scaling shows that most of them concentrate near
the origin. Therefore, when counting eigenvalues in annuli closer and closer to the origin,
one finally starts to count the “bulk” of the N/3 eigenvalues, departing from (5.3).
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Figure 8. Checking the N -dependence of n(N, r) for various values of r,
along geometric and arbitrary (∗) sequences for N (colors online).

6. A toy model

Let us explicitly compute the matrix elements of the two vertical blocks B1,h, B2,h in
(4.37), for the symmetric example (5.1) of the open 3-baker. Both are matrices N ×N/3,
which we index by 0 ≤ k ≤ N − 1, 0 ≤ l ≤ N/3− 1:

(B1,h)k l =

{
(1− exp(2iπ(k − 3l)/(3N)))−1(1− ωk

3)/N if k 6= 3l,

1 if k = 3l,
,

(B2,h)k l = ω2k
3 (B1,h)k l , where ω3 = e2iπ/3 .

(6.1)

On Fig. 9 (left) we represent the moduli of these matrix elements. The largest matrix
elements are near the “tilted diagonals” k ≈ 3l, and decay as 1/|k − 3l| away from them.
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Figure 9. Matrices B27 (left) and its toy model B̃27 (right) for the quantum
3-baker. The gray scale corresponds to the moduli of the matrix elements,
(white = 0, black= 1).

Being unable to rigorously analyze the spectrum of Bh, we replace this matrix by the
following simplified model:

B̃h = B̃N =
1√
3

[B̃1,h, 0, B̃2,h] ,

(B̃1,h)k l =

{
1 if l = ⌊k/3⌋
0 if l 6= ⌊k/3⌋ , (B̃2,h)k l = ω2k

3 (B̃1,h)k l ,

(6.2)

where ⌊x⌋ denotes the integer part of x. For N = 9, this gives

(6.3) B̃N=9 =
1√
3




1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 ω2

3 0 0
1 0 0 0 0 0 ω3 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 ω2

3 0
0 1 0 0 0 0 0 ω3 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 ω2

3

0 0 1 0 0 0 0 0 ω3




, ω3 = e2πi/3 .
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The model has been obtained “by hand”, by replacing “lower order” terms in the ma-
trix Bh by 0, keeping only nonzero elements on the “tilted diagonals”, and replacing
(1− e2πi(±1)/3)/(N(1− e2iπ±1/(3N))) by 1.

The new matrix B̃h retains some qualitative features of Bh but there is no immediate
connection between their spectra: the “lower order” terms are not small enough for that,

and Bh cannot be considered as a “small perturbation” of B̃h. Still, a comparison of density
plots of both matrices for N = 27 (Fig. 9) gives a visual motivation for the toy model.

The simplicity of the matrices B̃h will allow us to prove (in the case N = 3k, k ∈ N)
the fractal Weyl law which we could numerically observe for Bh (see Section 6.2). It is

interesting to notice that the simplified operator B̃h is in fact not associated with the same
classical relation as Bh:

Proposition 6.1. In the notations of Section 4.2, the quantum relation {B̃h} is associated

with the weighted relation (B̃, µ̃) given by (3.11) and (3.12):

B̃h ∈ I(B̃′ ∪ Λ̃sing, µ̃) ,

where

Λ̃sing =
2⋃

j=0

Λ̃sing,j , Λ̃sing,j =
{ (
q′ = 0, q = j/3 ; p′, p

)
, p′, p ∈ I

}
.

Proof. In place of B̃h we will consider Ãh = FN ◦ B̃h, and apply Lemma 4.14. From the

structure of B̃h, the operator Ãh can obviously be split into Ã1,h + Ã2,h. We will analyze
the first component in detail, the analysis for the second one being similar. The matrix
〈Qk|Ã1,h|Qj〉 is nonzero in the vertical strip I1 × I, with I1 = [0, 1/3):

〈Qk|Ã1,h|Qj〉 =
1lI1(Qj)√

3N

( 2∑

ℓ=0

e−2iπQkℓ
)

exp(−6iπNQkQj) .

Like A1,h (see §4.5), this operator is of the form (4.34), with generating function S(q′, q) =
−S1(q′, q) = −3q′q and discontinuous symbol

a(q′, q) = 1lI1(q)
e−2iπq′

√
3

sin(3πq′)

sin(πq′)
.

Forgetting about discontinuities, Ã1,h is therefore associated with the graph

Γ̃S1
= { (q′, p′ = −3q; q , p = −3q′), : q′ ∈ I, q ∈ I1 } ,

and the weight

µS1
= |a(q′, q)|2 dq′ dq = 1lI1(q)

sin2(3πq′)

3 sin2(πq′)
dq′ dq .
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After applying the transformation of Lemma 4.14, this leads to the graph

F−1
L (Γ̃S1

) = { (q′ = 3q, q ; p′, p = 3p′), : q ∈ I1, p′ ∈ I } =
2⋃

j=0

B̃1j ,

and the weight

F−1
L∗ µS1

= 1lI1(q)
sin2(3πp′)

3 sin2(πp′)
dp′ dq .

Through the change of variable (q, p′) 7→ (q, p), we see that this is the weight (3.12) on the

component B̃1.

The discontinuities of a(q′, q) only occur along the two segments {(q′ ∈ I, q = 0)},
{(q′ ∈ I, q = 1/3)}: they generate the singular Lagrangian

Dsing,j =

{(
q′ = 0, q =

j

3
; p′ ∈ I, p ∈ I

)}
, j = 0, 1 ,

which transforms under F−1
L into the components Λ̃sing,0, Λ̃sing,1.

Similarly, the second part of the matrix, B̃2,h, is associated to the twisted graph B̃′
2 with

weight µ̃|B̃2
and the two singular components Λ̃sing,2, Λ̃sing,0. �

As explained in Section 3.4, the graph B̃ can be obtained by adjoining to each point
(ρ′; ρ) ∈ B the points (ρ′ + (0, 1/3); ρ) and (ρ′ + (0, 2/3); ρ). This “aliasing” is due to the

diffraction created by the sharp cutoff in the matrix B̃h, as opposed to the “smooth” decay of

coefficients in Bh. Both these relations share the same forward trapped set Γ̃− = Γ− = C×I

(see §3.3), but the backwards trapped set of B̃ is easily shown to be Γ̃+ = T2, which

drastically differs from Γ+. This asymmetry between Γ̃− and Γ̃+ reflects the fact that,

unlike B, the relation B̃ is not time reversal symmetric.

The fact that B̃h is not associated with the relation B should not bother us too much
though. In the next section, we will give a more “formal” construction of the matrix B̃h, in
the case where N is a power of 3 (this construction will also hold for any symmetric D-baker,
for N a power of D). We will show that this matrix naturally appears as the quantization
of the open 3-baker relation B, if one substitutes the discrete Fourier transform (4.5) by
the Walsh Fourier transform.

6.1. Walsh quantization of the baker’s relation. The Walsh model of harmonic anal-
ysis has been originally devoted to fast signal processing [29]. It has been used recently in
mathematics to obtain simpler (and provable) versions of statements of the usual harmonic
analysis — see [36] for an application in scattering theory and for pointers to the recent
literature. The major advantage of Walsh harmonic analysis is the possibility to completely
localize a wavepacket both in position and momentum: for our problem, this has the effect
of avoiding diffraction problems due to the discontinuities of the map, which spoil the usual
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semiclassics [45]. Closer to our context, Meenakshisundaram and Lakshminarayan recently
used the Hadamard Fourier transform (which is related with the Walsh transform we give
below) to analyze the multifractal structure of some eigenstates of the (unitary) quantum
2-baker Bh [33].

6.1.1. The quantum torus as a system of quantum Dits. We first fix the coefficient D ∈ N
(D ≥ 2) of the symmetric baker’s relation (3.7), and will consider in this section only the
inverse Planck’s constants of the form N = Dk for some k ∈ N. In this case, integers
j ∈ ZDk = {0, . . . , Dk − 1} are in one-to-one correspondence with the words ǫ = ǫ1ǫ2 · · · ǫk
made of symbols (or “Dits”) ǫℓ ∈ ZD:

(6.4) ZDk ∋ j =
k∑

ℓ=1

ǫℓD
k−ℓ .

The natural order for j ∈ ZDk corresponds to the lexicographic order for the symbolic words
{ǫ ∈ (ZD)k}. This way, each position eigenstate |Qj〉 of the basis (4.3) (the computational
basis in the quantum computing framework) can be associated with the unique symbolic
sequence ǫ1ǫ2 · · · ǫk which gives its Dnary expansion

(6.5) Qj =
j

N
= 0 · ǫ1ǫ2 · · · ǫk .

Let us denote the canonical basis of CD by {e0, e1, . . . , eD−1}. Then, each |Qj〉 can be
written as

(6.6) |Qj〉 = eǫ1 ⊗ eǫ2 ⊗ · · · ⊗ eǫk
.

Following [47], we denote each |Qj〉 by |ǫ〉 = |ǫ1ǫ2 · · · ǫk〉 to emphasize the above tensor
product decomposition. This way, the quantum space H1

h is naturally identified with the
tensor product of k spaces CD:

H1
h = (CD)1 ⊗ (CD)2 ⊗ · · · ⊗ (CD)k .

In the quantum computating framework, each space (CD)ℓ is interpreted as a “quantum
Dit”, or “ quDit” [35]; viewed in our toral phase space, the quDit (CD)ℓ is associated with
the scale D−ℓ in the position variable, so (CD)1 is called the “most significant quDit”.

6.1.2. Walsh Fourier transform. The discrete Fourier transform of (4.5) (with n = 1, N =
Dk) is the Fourier transform (in the sense of abstract harmonic analysis) on the group ZDk .

More explicitly, each row of FDk corresponds to the character j′ 7→ exp
(
− 2iπjj′/Dk

)
of

ZDk :

(6.7) (FDk)jj′ = D−k/2 exp
(
− 2iπ

jj′

Dk

)
= D−k/2

k∏

ℓ=1

exp
(
− 2iπ

ǫℓ(jj
′)

Dℓ

)
,
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Using (6.4), we can easily express each ǫm(jj′) in terms of the symbols of j and j′:

ǫm(jj′) =
∑

ℓ+ℓ′=k+m

ǫℓ(j) ǫℓ′(j
′) .

The simpler Walsh Fourier transform is the Fourier transform on the group (ZD)k. It can
be defined by keeping only the first factor on the right hand side of (6.7): one obtains the
matrix

(6.8) (Wk)jj′ = D−k/2 exp
(
− 2iπ

ǫ1(jj′)

D

)
=

k∏

ℓ=1

D−1/2 ω
−ǫℓ(j)ǫk+1−ℓ(j

′)
D , ωD = e2iπ/D .

Using the identification H1
h ≃ (CD)⊗k, this definition can be recast as follows.

Lemma 6.2. The Walsh Fourier transform Wk acts simply on tensor product states:

Wk(v1 ⊗ · · · ⊗ vk) = FDvk ⊗ · · · ⊗ FDv1 , vℓ ∈ CD, ℓ = 1, . . . , k .

Here FD = W1 is the discrete Fourier transform on CD. As a result, Wk is a unitary
tranformation on H1

h.

Proof. By linearity, we only need to consider the case where each vℓ is a basis state eǫℓ
. We

then apply the definition (6.8):

Wk(eǫ1 ⊗ · · · ⊗ eǫk
) =

∑

ǫ′∈(ZD)k

( k∏

ℓ=1

D−1/2 ω
−ǫ′

k+1−ℓ
ǫℓ

D

)
eǫ′1
⊗ · · · ⊗ eǫ′

k

=

k⊗

ℓ=1



∑

ǫ′
ℓ
∈ZD

D−1/2 ω
−ǫ′

ℓ
ǫk+1−ℓ

D eǫ′
ℓ




=
k⊗

ℓ=1

FD eǫk+1−ℓ
.

Since Wk is the combination of the unitary operator FD ⊗ · · · ⊗ FD with a (unitary)
permutation of the quDits, it is unitary. �

As opposed to the discrete Fourier transform, the Walsh Fourier transform does not
entangle the different quDits: a tensor product state is sent to another tensor product
state.

Example. To illustrate this simple lemma we take D = 2, and consider the following
2k × 2k matrix

(6.9) A2k =
1√
2

[A0,2k , A1,2k ] , (Aj,2k)0≤n≤2k−1, 0≤m≤2k−1−1 =

{
(−1)jn , m = ⌊n/2⌋
0 , m 6= ⌊n/2⌋ .
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For instance when k = 2 we get

A22 =
1√
2




1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1


 .

This sequence of matrices has been obtained as the “extreme” possibility among a family
of different quantizations of the (closed) 2-baker’s map [47]6. In a different context, this
(unitary) matrix belongs to the family of transfer matrices associated with the de Bruijn
graph with 2k vertices [54].

The transformation A2k acts as follows on tensor product states

v1 ⊗ · · · ⊗ vk 7−→ v2 ⊗ · · · ⊗ vk ⊗ F2v1 .

From this and the identity (F2)
2 = I we see that (A2k)k = F⊗k

2 . Since F 2
2 = Id2, the matrix

A2k is periodic:

(6.10) (A2k)2k = Id2k .

The simple action of A2k on tensor products shows that this matrix can be easily expressed
in terms of the Walsh Fourier transform (for D = 2):

(6.11) A2k = Wk

(
Wk−1 0

0 Wk−1

)
,

where the 2× 2 block structure corresponds to the most significant qubit:
(
Wk−1 0

0 Wk−1

)
(v1 ⊗ · · · ⊗ vk) = v1 ⊗Wk−1(v2 ⊗ · · · ⊗ vk) .

The left (right) block contains the indices {j < N/2} ({j ≥ N/2}), so the expression (6.11)
exactly parallels the one defining the Balazs-Voros quantum baker [2]. Compared to this
“usual” quantum baker, A2k is thus obtained by replacing the discrete Fourier matrices
F2k , F2k−1 by their Walsh analogues Wk, Wk−1.

The matrix A2k is unitary and, as we will see in the next section, our toy model B̃h for
the quantum open 3-baker (see Eq. (6.2)) is its subunitary analogue.

6.2. Resonances for the Walsh quantization of the open baker relation. We now
set D = 3 to concentrate on the open 3-baker (5.1). By analogy with the example in last
section, we modify the quantization (4.37,6.1), in the case N = 3k, by replacing the discrete
Fourier matrices by their Walsh analogues. The resulting operator exactly coincides with
the toy model (6.2) introduced in the beginning of this section:

6We thank M. Saraceno for pointing out this interpretation to us, as well as the equation (6.10).
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Lemma 6.3. In the case N = 3k, the matrix B̃h defined in (6.2) can be rewritten in terms
of the Walsh Fourier transforms as follows:

B̃h = W ∗
k



Wk−1 0 0

0 0 0
0 0 Wk−1


 .

Proof. The matrix

Vk
def
=




Wk−1 0 0

0 0 0
0 0 Wk−1



 ,

acts on the computational basis as:

Vk(eǫ1 ⊗ · · · ⊗ eǫk
) =

{
eǫ1 ⊗Wk−1(eǫ2 ⊗ · · · ⊗ eǫk

) , ǫ1 6= 1

0 , ǫ1 = 1 .

Hence

(6.12) W ∗
kVk(eǫ1 ⊗ · · · ⊗ eǫk

) =

{
eǫ2 ⊗ · · · ⊗ eǫk

⊗ F∗
3eǫ1 , ǫ1 6= 1

0 , ǫ1 = 1 .

Since

F∗
3 e0 =

1√
3

(e0 + e1 + e2) , F∗
3e2 =

1√
3

(e0 + ω2
3 e1 + ω3 e2) ,

it follows that the matrix (6.12) is identical with B̃h of (6.2). �

As a byproduct of the above proof, if we define the “truncated” inverse Fourier matrix

(6.13) F̃ ∗
3

def
=

1√
3




1 0 1
1 0 ω2

3

1 0 ω3


 ,

the toy model B̃h acts as follows on tensor products:

(6.14) B̃h(v1 ⊗ · · · ⊗ vk) = v2 ⊗ v3 ⊗ · · · ⊗ F̃ ∗
3 v1 .

This form is particularly nice to compute the spectrum of B̃h. We start by computing the

spectrum of its power (B̃h)k, which is enough to obtain the radial distribution of resonances
(that is, the distribution of resonance widths).

Proposition 6.4. Let λ±, |λ−| < |λ+|, be the eigenvalues of the matrix

Ω3 =
1√
3

(
1 1
1 ω3

)
.



50 S. NONNENMACHER AND M. ZWORSKI

The non-zero eigenvalues of (B̃h)k (for N = (2πh)−1 = 3k) are given by λk−p
+ λp

−, 0 ≤
p ≤ k, each occurring with multiplicity

(
k
p

)
. From this we get the radial distribution of the

eigenvalues of B̃h:

∀ r ∈ [0, 1],
1

2k
#
{

Spec(B̃h) \D(0, r)
}

k→∞−−−→ C(r) ,

C(r) =

{
1 , r < | det Ω3|

1
2

0 , r > | det Ω3|
1
2 ,

(6.15)

which shows that the nontrivial resonances accumulate near the circle of radius r0(B̃) =

| det Ω3|
1
2 .

This proposition gives Theorem 1, where B̃ is the baker’s relation described in Propo-

sition 6.1, B̃h the matrices (6.2), and Planck’s constants are taken along the sequence
{hk = (2π × 3k)−1, k ∈ N}.

Proof. From the expression (6.14), we see that

(B̃h)k(v1 ⊗ · · · ⊗ vk) = F̃ ∗
3 v1 ⊗ · · · ⊗ F̃ ∗

3 vk .

That means that (B̃h)k = (F̃ ∗
3 )⊗k, so one eigenbasis is obtained by taking the tensor

products of eigenstates of F̃ ∗
3 , and the eigenvalues of (B̃h)k are the corresponding products

of eigenvalues of F̃ ∗
3 . The nonzero eigenvalues λ+, λ− of F̃ ∗

3 are the eigenvalues of Ω3, so the
first part of the proposition follows. To prove the second part, notice that each eigenvalue

λk−p
+ λp

− of B̃k
h corresponds to an eigenvalue (possibly in the generalized sense) of modulus

|λ1−p/k
+ λ

p/k
− | of B̃h. Therefore, we are able to count eigenvalues of B̃h (with multiplicities)

in a given annulus.

Let H(t) denote the Heaviside function, H(t) = 0 for t < 0, and H(t) = 1 otherwise.
Then, for any 0 < r < 1,

#
{

Spec(B̃h) \D(0, r)
}

=
k∑

p=0

H(|λ+|1−p/k|λ−|p/k − r)
(
k

p

)

=

k∑

p=0

H(−p/k + 1/2 + ρ)

(
k

p

)
, ρ =

log(|λ−λ+|
1
2/r)

log(|λ+|/|λ−|)
.

Using Stirling’s formula, one easily gets in the limit k →∞:

1

2k

k∑

p=0

H(−p/k + 1/2 + ρ)

(
k

p

)
∼
√

2k

π

∫ ρ

−∞
e−2kx2

dx→ H(ρ) .

This expression shows that the distribution of resonances is semiclassically dominated by
the degrees |p− k/2| = O(k1/2), and proves the second part of the proposition. �
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The explicit eigenvalues are λ± = 1+i
√

3
4
√

3
±
√

11−i3
√

3
24

, with approximate values

λ+ ≈ 0.8390 + i0.0942, |λ+| ≈ 0.8443, λ− ≈ −0.5504 + i4058, |λ−| ≈ 0.6838 .

The geometric mean of their moduli is |λ−λ+|1/2 =
√
| det Ω3| = 3−1/4. On Figure 1 we

plot the circles with radii |λ+|, |λ−| and |λ−λ+|1/2, together with the spectrum of B̃h.

We need to analyze the spectrum of B̃h more precisely to show that distribution of
resonances is asymptotically uniform with respect to the angular variable.

Proposition 6.5. Let h = (2π3k)−1. As a set, the nontrivial spectrum of B̃h is given by

{λ+} ∪ {λ−} ∪
⋃

ωk=1

{ωλ1−p/k
+ λ

p/k
− : 1 ≤ p ≤ k − 1} .

For each p 6= 0, k, the k eigenvalues asymptotically have the same degeneracy 1
k

(
k
p

)
, which

shows that their distribution is uniform in the angular variable. Therefore, for any contin-
uous function f ∈ C(D(0, 1)) we have (counting degeneracies in the LHS):

1

2k

∑

06=λ∈Spec(B̃h)

f(λ)
k→∞−−−→

∫ 2π

0

f(|λ−λ+|
1
2 , θ)

dθ

2π
.

Proof. To classify the nontrivial spectrum of B̃h, we will use the eigenvectors v± of F̃ ∗
3

associated with the eigenvalues λ±. Call

{η = η1η2 · · · ηk : ηℓ ∈ {±} } ≃ (Z2)k

the set of binary sequences of length k. The number of symbols ηℓ = − in the sequence
η is called the degree of η. The cyclic shift τ acts on these sequences as τ(η1 · · · ηk) =
η2 · · · ηkη1 . The shift allows us to partition (Z2)k into periodic orbits, each orbit O ={

η, τ(η), . . . , τ ℓO−1(η)
}

being of (primitive) period ℓO = ℓη. Since τk = id, the primitive
period must divide k. We call deg(O) the common degree of the elements of O and observe
that

(6.16) k | ℓO deg(O) .

To each sequence η we associate the state |η〉 def
= vη1

⊗vη2
⊗· · ·⊗vηk

, which is obviously an

eigenstate of (B̃h)k, with eigenvalue λ
k−deg(η)
+ λ

deg(η)
− . These 2k states form an independent

family, which span the nontrivial eigenspaces of B̃h. This operator acts very simply on
these states:

∀η ∈ (Z2)k, B̃h|η〉 = λη1
|τ(η)〉 .

Hence, for any orbitO, B̃h leaves invariant the ℓO-dimensional subspace VO
def
= span { |η〉 , η ∈ O } .

To compute the spectrum of B̃h|VO
we first observe that it is contained in the set of k-th
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roots of λ
k−deg(O)
+ λ

deg(O)
− , which in view of (6.16) is equal to

SO
def
=
{
ωj

ℓO
λ

1−deg(O)/k
+ λ

deg(O)/k
− , j = 0, . . . , ℓO − 1

}
.

We claim that Spec(B̃h|VO
) = SO (clearly with no degeneracies). In fact, let ΩO : VO → VO

be defined by ΩO|τ ℓ(η)〉 = ω−ℓ
ℓO
|τ ℓ(η)〉, for a choice of η ∈ O. This operator is invertible

on VO. By a verification on basis elements,

B̃h|VO
◦ ΩO = ωℓO ΩO ◦ B̃h|VO

,

and hence if λ ∈ Spec(B̃h|VO
) then ωj

ℓO
λ ∈ Spec(B̃h|VO

) for any j.

Since O 6= O′ =⇒ VO ∩VO′ = { 0 }, enumerating the orbits decomposition of (Z2)k yields

the full nontrivial spectrum of B̃h, with degeneracies.

The degree p = 0 corresponds to the unique orbit O = {η = + + · · ·+ }, so the eigen-
value λ+ is nondegenerate. Similarly, the degree p = k leads to the simple eigenvalue
λ−.

For any degree 1 ≤ p ≤ k − 1, call g = gcd(k, p). The sequences of degree p will take
all possible periods ℓη = k/ℓ, where ℓ ∈ N, ℓ|g. We show below that, in the semiclassical
limit, the huge majority of the sequences of any degree p 6= 0, k have primitive period k.

Lemma 6.6. There exists C > 0, K > 0 s.t., for any k ≥ K and any degree 1 ≤ p ≤ k−1,

#
{

η ∈ (Z2)
k : deg(η) = p , ℓη < k

}

# {η ∈ (Z2)k : deg(η) = p } ≤ C
log k

k
.

Proof. We still use g = gcd(k, p).

If g = 1, then all orbits of degree p are of primitive period k.

If g > 1, there exists ℓ > 1, ℓ|g. For any P prime divisor of ℓ, any sequence of primitive
period ℓη = k/ℓ is also of (nonnecessarily primitive) period k/P . Any sequence of degree p
and (nonnecessarily primitive) period k/P can be seen as the P repetitions of a sequence of
k/P bits, among which p/P take the value (−). Therefore, the number of such sequences

is exactly
(

k/P
p/P

)
. As a consequence, we have

(6.17)
#
{

η ∈ (Z2)
k : deg(η) = p , ℓη < k

}

# {η ∈ (Z2)k : deg(η) = p } ≤
∑

P prime, P |g

(
k/P
p/P

)
(

k
p

) .

We will now estimate each term in the above sum. From the symmetry
(

k
p

)
=
(

k
k−p

)
, we

can assume p ≤ k/2. Expanding the coefficient
(

k
p

)
into

(
k

p

)
=
k(k − 1) · · · (k − p+ 1)

p(p− 1) · · · 1 ,
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we notice that both the numerator and the denominator contain exactly p/P factors which

are multiples of P . Their ratio gives
(

k/P
p/P

)
, while the ratio of the remaining factors is

(
k
p

)
(

k/P
p/P

) =
(k − 1) · · · (k − P + 1)(k − P − 1) · · · (k − p+ 1)

(p− 1) · · · (p− P + 1)(p− P − 1) · · ·1

≥ k − p+ 1

1

≥ k

2
+ 1 .

Here we used the fact that each factor (k −m)/(p−m) > 1, 0 ≤ m ≤ p− 2, and only kept
explicit the last factor. The last inequality comes from p ≤ k/2.

We have obtained a uniform upper bound for each term in the sum of (6.17). By

standard arguments, there exists K, C̃ > 0 s.t. the number of prime factors of any k ≥ K
is ≤ C̃ log k, so the number of terms in the sum is ≤ C̃ log k. As a result, (6.17) is bounded

from above by C̃ log k/(k + 2), which proves the lemma. �

This lemma shows that the orbits of period ℓO < k have a negligible contribution to the
asymptotic density of resonances. We can therefore act as if, for any 1 ≤ p ≤ k−1, each or-

bit of degree p had period k, leading to the k eigenvalues
{
ωj

k λ
1−p/k
+ λ

p/k
− , j = 0, . . . , k − 1

}
.

In the semiclassical limit, these k eigenvalues are uniformly distributed on the circle of

radius |λ1−p/k
+ λ

p/k
− |, and each of them has multiplicity 1

k

(
k
p

)
. This shows that the asymp-

totic resonance distribution is circular-symmetric, with the radial distribution described in
Proposition 6.4. �

Remark 6.1. Several features of the (nontrivial) spectrum of B̃h are very different from
what one expects for a random subunitary matrix of size 2k × 2k: the (logarithms of the)
resonances form a regular lattice, most eigenvalues are highly degenerate, and the radial
density is a delta function at r0(B̃). Actually, the only generic feature seems to be the
global fractal scaling of the Weyl law, and the uniform angular distribution.

Remark 6.2. The radial density of resonances is governed by r0(B̃h) =
√
| det Ω3|, which

seems to depend on the subtelties of the quantization. As an example of this fact, in §7
we will consider the open baker’s map with D = 4, which we call B, obtained by keeping
only the second and third strips. It has Lyapounov exponent log 4, and the Cantor set C
(see §3.3) has dimension ν = log 2/log 4 = 1/2. The open map B′ obtained by removing
the first and third strips has the same characteristics. However, if we Walsh-quantize these

two maps, the spectra of B̃h and B̃′
h are very different. These spectra are obtained from

the eigenvalues of different 2 × 2 blocks of the inverse Fourier matrix F∗
4 . The first map
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leads to the matrix

Ω4 =
1

2

(
i −1
−1 1

)
,

with two nonzero eigenvalues λ± of different moduli, so the spectrum of B̃h will satisfy the
fractal Weyl law, and be concentrated around the circle of radius

r0(B̃) =
√
| det Ω4| = 2−3/4 .

In an opposite way, the second map leads to the singular matrix

Ω′
4 =

1

2

(
1 1
1 1

)
.

The nontrivial spectrum of B̃′
h then reduce to a simple eigenvalue λ+ = 1. In that case,

the Weyl law is singular, corresponding to the profile function C(r) ≡ 0. This qualitative
difference between both spectra cannot be explained from purely classical data.

7. Conductance in the Walsh model

7.1. Quantum transport. In this section, we consider open baker’s relations, for which
the “opening” consists in two disjoint intervals, which are supposed to represent two “leads”
connecting a quantum dot to the outside world. We will prove Theorem 2 in this setting:
(1.1) in §7.2 and (1.2) in §7.3.

The baker’s relations defined in Section 3.3 can all be seen as truncations of invertible
maps on T2. More precisely there exists an invertible baker’s map, κ : T2 → T2, such that
the graph B = B1 ∪ B2 of the open baker’s map is

B = Γκ ∩ { (q, p) : q ∈ I1 ∪ I2 = I, p ∈ I } .
For admissible values of N , one can quantize the closed map κ into a unitary transformation
Uh = Uκ,h on H1

h by straightforwardly generalizing the method of [2, 43]. Multiplying this
unitary operator by the quantum projector ΠI =

∑
Qj∈I |Qj〉〈Qj|, we obtain the quantum

open baker’s map (4.37)

Bh = Uκ,h ΠI .

To obtain an agreement with the notation of Section 2.4.3, we can interpret the set I =
I1 ∪ I2 as the “wall” of the quantum dot, while the complementary interval L = I \ I
represents the “openings” of the dot, perfectly connected with the “leads”. In the previous
sections, we studied the resonances, that is, the eigenvalues of Bh = Uκ,hΠI (or of B̃h when
choosing the Walsh quantization). Now, we want to study the “transport” through the dot,
using the formalism presented in Section 2.4.3. We assume that the opening L splits into
two disjoint “leads” L = L1 ∪ L2, and we study the transmission matrix from lead L1 to
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lead L2 (for simplicity, both leads will have the same width). As presented in Section 2.4.3,
this matrix is obtained by decomposing the scattering matrix

S̃(ϑ) = ΠL

∑

n≥0

(
eiϑ Uh ΠI

)n
eiϑUh ΠL

into 4 blocks, according to the decomposition ΠL = ΠL1
⊕ ΠL2

. The transmission matrix
is defined as the block

(7.1) t(ϑ) =
∑

n≥1

einϑ ΠL2
Uh (ΠI Uh)n−1 ΠL1

def
=
∑

n≥1

einϑ tn .

Because ΠL1
and ΠL2

have the same rank M = N |L1|, t(ϑ) is a square matrix of size M .
According to Landauer’s theory of coherent transport, each eigenvalue Ti(ϑ) of the matrix
t∗(ϑ)t(ϑ) corresponds to a “transmission channel”. The dimensionless conductance of the
system is then given by the sum over these transmission eigenvalues:

g(ϑ) = tr
(
t∗(ϑ)t(ϑ)

)
.

A transmission channel is “classical” if the eigenvalue Ti is very close to unity (perfect
transmission) or close to zero (perfect reflection). The intermediate values correspond to
the “nonclassical channels”, the importance of which is reflected in the noise power

(7.2) P (ϑ) = tr
(
t∗t(ϑ)

(
Id− t∗t(ϑ)

))
, or the Fano factor F (ϑ) =

P (ϑ)

g(ϑ)
.

In general it may be necessary to perform the “ensemble averaging” [55] (averaging over ϑ)
to obtain significant results. However, for the model we will study below, these quantities
will depend very little on ϑ, so this averaging will not be necessary. To alleviate notations
we will supress the dependence in ϑ in the transmission matrix t .

Our model. In the remainder of this section, we will compute the quantities characterizing
the transport through the “dot” when Uh is a Walsh-quantized baker’s map similar to the
operator (6.9), but with D = 4 instead of D = 2. The sequence of values of h consequently
is given by

2πhk = 4−k , k = 1, 2, · · · .
We will choose the two leads L1 = [0, 1/4] and L2 = [3/4, 1]: this way, the projectors ΠLi

and ΠI = Id−ΠL1
− ΠL2

can be represented as tensor products:

ΠL1
= π0 ⊗ Id4 ⊗ · · · ⊗ Id4 ,

ΠL2
= π3 ⊗ Id4 ⊗ · · · ⊗ Id4 ,

ΠI = πI ⊗ Id4 ⊗ · · · ⊗ Id4 ,

where πi = |ei〉 〈ei| is a rank-1 orthogonal projector acting on C4, and we note πI = π1⊕π2.

The “inside” propagator for this model, namely B̃h = UhΠI , is the first among the two
quantum maps constructed in Remark 6.2: its nontrivial spectrum satisfies the fractal Weyl

law with exponent ν = 1
2
, and is concentrated near the radius r0(B̃) = 2−3/4.



56 S. NONNENMACHER AND M. ZWORSKI

The number of scattering channels in each lead is the rank of ΠL1
(equal to that of ΠL2

).
It is given by 1

4
of the total dimension, and we denote it by

(7.3) M(h) =
1

4
(2πh)−1 = 4k−1 , h ∈ {hk} .

The number of channels is “macroscopic”, and each channel is “fully coupled” to the leads.
We are therefore in a very nonperturbative régime, where resonances have no memory at
all of the eigenvalues of the closed (unitary) system.

7.2. Conductance. We will crucially use the fact that all operators under consideration
act nicely on the tensor product structure H1

h = (C4)⊗k, that is, they do not entangle the
quDits. It is then suitable to compute the trace of t∗t in a basis adapted to this tensor
product, and we naturally choose the computational (or position) basis. The conductance
is then given by

tr(t∗t) =
∑

Qj∈L1

〈Qj |t∗t|Qj〉 =

4k−1−1∑

j=0

‖t|Qj〉‖2 .

Let us consider an arbitrary j = ǫ1ǫ2 · · · ǫk with ǫ1 = 0, that is 0 ≤ j ≤ 4k−1 − 1. Using
(7.1) we write

(7.4) t|Qj〉 =
∑

n≥1

einϑ ΠL2
Uh (ΠI Uh)n−1|Qj〉 =

∑

n≥1

einϑ tn|Qj〉 ,

so that

‖t|Qj〉‖2 =
∑

m,n≥0

ei(n−m)ϑ 〈Qj|t∗m tn|Qj〉 .

From now on, we replace the notation |Qj〉, j ∈ [0, 4k−1− 1], by the symbolic notation |ǫ〉,
where the sequence ǫ = 0 ǫ2 · · · ǫk corresponds to j.

To understand the action of tn on |ǫ〉 we notice that ΠI Uh acts on tensor products as

ΠI Uh(v1 ⊗ · · · ⊗ vk) = πIv2 ⊗ · · · ⊗ vk ⊗ F∗
4v1 .

7.2.1. Classical transmission channels. If n < k, we obtain

(7.5) tn|ǫ〉 = π3eǫn+1
⊗ eǫn+2

⊗ · · · ek ⊗ F∗
4 e0 ⊗ F∗

4πIeǫ2 ⊗ · · · ⊗ F∗
4πIeǫn

,

frow which we draw the

Lemma 7.1. Consider a sequence ǫ = 0 ǫ2ǫ3 · · · ǫk, and assume that there exists an index
2 ≤ ℓ ≤ k such that ǫℓ ∈ {0, 3}. Let ℓ0 be the smallest such index. Then

‖t|ǫ〉‖ =

{
0 if ǫℓ0 = 0 ,

1 if ǫℓ0 = 3 .

This shows that |ǫ〉 is a classical transmission channel.
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Proof. For any 1 ≤ n ≤ ℓ0 − 2, ǫn+1 ∈ {1, 2} by assumption. Hence the first quDit on
the right hand side of (7.5) vanishes and tn|ǫ〉 = 0. Furthermore, the state (ΠIUh)ℓ0−1|ǫ〉
admits as first quDit πI eǫℓ0

= 0, so that tn|ǫ〉 = 0 for any n ≥ ℓ0. The only remaining
term in (7.4) is tℓ0−1|ǫ〉:

• if ǫℓ0 = 0, the first quDit of that term is π3eǫℓ0
= 0, so tℓ0−1|ǫ〉 = t|ǫ〉 = 0.

• if ǫℓ = 3, tℓ0−1|ǫ〉 = eǫ3 ⊗ eǫℓ0+1
⊗ · · · ⊗ F∗

4 e0 ⊗ F∗
4 eǫ2 ⊗ · · ·F∗

4 eǫℓ0−1
. Since F∗

4 is
unitary, ‖tℓ0−1|ǫ〉‖ = ‖t|ǫ〉‖ = 1.

�

The total number of the classical channels discussed in Lemma 7.1 is easy to compute:
it is obtained by removing from the set [0, 4k−1 − 1] ≡

{
ǫ2 · · · ǫk ∈ (Z4)

k−1
}

the sequences
ǫ such that ǫℓ ∈ {1, 2} for all 2 ≤ ℓ ≤ k (these will be called “nonclassical sequences”).
The number of the latter is 2k−1, so the number of classical channels is 4k−1−2k−1. Among
them, half are fully reflected, t|ǫ〉 = 0, and half are fully transmitted, ‖t|ǫ〉‖ = 1. Hence
the conductance through these states is

trcl(t
∗t) =

4k−1 − 2k−1

2
.

Remark 7.1. Such classical channels are mentioned in the analysis of [55] for the trans-
mission through an open kicked rotator. They sit in the phase space regions above the lead
L1 which are either sent back to L1, or sent to L2 through the classical dynamics, in a time
smaller than the Ehrenfest time TEhr = logN/(log 4) = k. For our baker’s map B, these
regions are vertical strips of widths 4−ℓ, ℓ = 2, . . . , k which exit to the lead L1 or L2 at time
ℓ. The particularity of the Walsh quantization is the exact full transmission (or reflection)
of these quantum states.

7.2.2. Nonclassical transmission channels. The nonclassical channels are necessarily combi-
nations of the position states |ǫ〉 with ǫℓ ∈ {1, 2} for all 2 ≤ ℓ ≤ k (“nonclassical” sequences
or states). The associated positions 4Qj = 0 · ǫ2ǫ3 · · · ǫk lie close to the Cantor set C, such

that Γ− = C × I is the set of points never escaping through B or B̃ (see Eq. (3.5)).

For such a state |ǫ〉, the term (7.5) vanishes for all n < k, due to the first quDit
πIeǫn+1

= 0. That state therefore accomplishes k “unitary bounces” inside the cavity,
before it starts to decay out of it.

We first consider the terms tk+m|ǫ〉 for 0 ≤ m < k:

tk|ǫ〉 = (e3/2)⊗ F∗
4 eǫ2 ⊗ F∗

4 eǫ3 · · · F∗
4 eǫk

,

tk+m|ǫ〉 = π3F∗
4 eǫm+1

⊗ F∗
4 eǫm+2

· · · F∗
4eǫk
⊗F∗

4 (e3/2)⊗ F∗
4πIF∗

4 eǫ2 · · · F∗
4πIF∗

4 eǫm
.

(7.6)
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Now, in the basis {ei} (we only show nonzero entries),

(7.7) π3F∗
4 =

1

2




1 −i −1 i


 , πIF∗

4 =
1

2




1 i −1 −i
1 −1 1 −1


 ,

which shows that

‖π3F∗
4 ej‖2 =

1

4
, ‖πIF∗

4 ej‖2 =
1

2
, j = 0, · · · , 3 .

Thus,

(7.8) ‖tk+m|ǫ〉‖2 =
1

4× 2m
, 0 ≤ m ≤ k − 1 .

Furthermore, for larger times n = pk +m, p > 1, m ∈ [0, k− 1], the state tn|ǫ〉 is obtained
from (7.6) by inserting the operator (πIF∗

4 )p−1 in front of each quDit eǫℓ
. Since πIF∗

4 has
a spectral radius |λ+| < 1, the norms of these states will decay exponentially, with an
asymptotic rate ∼ |λ+|n as n→∞. This argument gives the following

Lemma 7.2. For any 0 < Θ < 1, there exists C > 0 such that, for any k ≥ 1 and any
nonclassical state |ǫ〉, we have

∑

m>⌊Θk⌋
‖tk+m|ǫ〉‖ ≤ C 2−Θk/2 .

Up to exponentially small errors we now need to compute

‖
⌊Θk⌋∑

m=0

tk+m|ǫ〉‖2 .

The norms (7.8) give the diagonal terms in the expansion of the expression above:

(7.9)

⌊Θk⌋∑

m=0

‖tk+m|ǫ〉‖2 =
1

2
+O(2−Θk) .

In the next lemma we will show that the contribution to the conductance of the nondiagonal
terms is negligible in the semiclassical limit.

Lemma 7.3. Let 0 < Θ ≤ 1/5. There exists C = C(Θ) > 0 such that for any k ≥ 1,

#
{

nonclassical ǫ, ∃m,m′ ∈ [0,Θk], 〈ǫ|t∗k+mtk+m′ |ǫ〉 6= 0
}

# {nonclassical ǫ } ≤ C 2−k/2 .

In other words, in the semiclassical limit, a “generic” nonclassical state |ǫ〉 will satisfy

∀m,m′ ∈ [0,Θk], m 6= m′ =⇒ 〈ǫ|t∗k+mtk+m′ |ǫ〉 = 0 .
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Proof. Take an arbitrary nonclassical state |ǫ〉, and any m,m′ ∈ [0,Θk], m > m′. From
(7.6), the first (k −m) quDits of the states tk+m|ǫ〉 and tk+m′|ǫ〉) are respectively

π3F∗
4eǫm+1

⊗ F∗
4 eǫm+2

⊗ · · · ⊗ F∗
4 eǫk

,

π3F∗
4eǫm′+1

⊗ F∗
4 eǫm′+2

⊗ · · · ⊗ F∗
4 eǫk+m′−m

.

Due to the unitarity of F∗
4 and the fact that the ei form an orthonormal basis of C4, the two

states tk+m|ǫ〉, tk+m′ |ǫ〉 will be orthogonal if the sequences ǫm+2 · · · ǫk and ǫm′+2 · · · ǫk+m′−m

are not equal. Since we took m < Θk, these two sequences are subsequences of length
(k −m− 1) ≥ (1−Θ)k of the sequence ǫ, shifted from one another by (m−m′) steps.

If the two subsequences are equal, then all subsequences

ǫk−(p+1)∆+1 · · · ǫk−p∆ , p = 0, · · · , R ,

∆
def
= (m−m′) , R

def
=
[k −m− 1

∆

]
,

have to be equal to them as well. Hence ǫ contains a subsequence of length (R+1)∆ which
is periodic with period ∆.

Let us count the number of such sequences ǫ. Once we have fixed the ∆ bits ǫk−∆+1 · · · ǫk,
the remaining free bits are ǫ2 · · · ǫk−(R+1)∆. The number #(m,m′) of such sequences is

therefore 2∆ × 2k−(R+1)∆−1. From the definition of R, we get the inequality m ≤ ∆ + k −
(R + 1)∆− 1 < m+ ∆, so #(m,m′) is bounded from above by

#(m,m′) < 22m−m′ ≤ 22Θk .

Taking into account all possible pairs (m,m′), we get

#
{

nonclassical ǫ, ∃m,m′, 0 ≤ m′ < m ≤ Θk, 〈ǫ|t∗k+mtk+m′|ǫ〉 6= 0
}
≤ (Θk)2 22Θk .

Finally, the total number of nonclassical channels is 2k−1, and 2Θ ≤ 2/5. �

Using Lemma 7.2 and Eq. (7.9), a generic nonclassical sequence ǫ will satisfy

‖t|ǫ〉‖2 =
1

2
+O(2−Θk/2) .

For a nongeneric nonclassical sequence ǫ, we use the simple bound ‖t|ǫ〉‖2 ≤ 1. As a result,
we get the following estimate for the “nonclassical conductance”:

(7.10) trnoncl(t
∗t) =

∑

nonclassical
generic

‖t|ǫ〉‖2 +
∑

nonclassical
nongeneric

‖t|ǫ〉‖2 =
2k−1

2

(
1 +O(2−Θk/2)

)
.

Adding this to the “classical conductance”, we get the full conductance

(7.11) g(ϑ) = tr(t∗t(ϑ)) =
4k−1

2
+O(2(1−Θ/2)k) .
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The implied constant is independent of ϑ ∈ [0, 2π) and 0 < Θ ≤ 1/5. The number of
scattering channels in our model is given by M(h) = 4k−1, see (7.3), so we have proved
(1.1) in Theorem 2.

7.3. Noise power. The conductance corresponds to the first moment of the distribution
of transmission eigenvalues. It can not distinguish between a purely classical transport
(Ti ∈ { 0, 1 }) and a quantum one (some Ti take intermediate values). To do so, we need to
compute the second moment of these eigenvalues, that is, the trace

tr((t∗t)2) =
∑

Qj∈L1

‖t∗t|Qj〉‖2 ,

or equivalently the noise power (7.2). As in the previous section, we split the sum on the
right hand side between the classical and nonclassical states |Qj〉 = |ǫ〉.

Lemma 7.1 shows that half the classical states are in the kernel of t∗t, half in the
eigenspace of t∗t associated with the eigenvalue 1 (full transmission). As a consequence,
the trace over the classical states takes the value

trcl((t
∗t)2) =

4k−1 − 2k−1

2
.

Obviously, the classical states are noiseless.

The analysis of the nonclassical states is more delicate. According to last section, for
any such state |ǫ〉 we have (for any 0 < Θ < 1)

t|ǫ〉 =

⌊Θk⌋∑

m=0

einϑ tk+m|ǫ〉+O(2−Θk/2) .

We now apply to each state tk+m|ǫ〉, m ≤ Θk, the adjoint operator

(7.12) t∗ =
∑

n≥0

e−inϑ t∗n .

According to (7.6), the state tk+m|ǫ〉 has the form

tk+m|ǫ〉 = e3 ⊗ F∗
4πIw2 ⊗ · · · ⊗ F∗

4πIwk ,

for some explicit set of quDits, wℓ ∈ C4, 2 ≤ ℓ ≤ k (we use the fact that eǫℓ
= πIeǫℓ

for all
ℓ ≥ 2). From the expression

ΠIU
∗
h(v1 ⊗ · · · ⊗ vk) = πIF4vk ⊗ v1 ⊗ · · · ⊗ vk−1 ,

we can write the action of t∗n = ΠL1
U∗

h (ΠIU
∗
h)n−1 ΠL2

on tk+m|ǫ〉. If n < k, then

t∗n tk+m|ǫ〉 = π0πIwk−n+1 ⊗ πIwk−n+2 ⊗ · · · ⊗ πIwk ⊗ e3 ⊗ F∗
4πIw2 ⊗ · · · ⊗ F∗

4πIwk−n

= 0 .

The first non-trivial case of n = k is given by

t∗ktk+m|ǫ〉 = π0F4e3 ⊗ πIw2 ⊗ · · ·πIwk .
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More generally, for any 0 ≤ m′ ≤ k − 1, t∗k+m′tk+m|ǫ〉 =

π0F4πIwk−m′+1 ⊗ πIF4πIwk−m′+2 ⊗ · · ·πIF4πIwk ⊗ πIF4e3 ⊗ πIw2 ⊗ · · ·πIwk−m′ .

As for the case of the operator t, we see that by increasing m′ we increase the number
of quDits on which we apply the operator πIF4. Therefore, for any index m, the norm
of t∗k+m′tk+m|ǫ〉 will decrease exponentially fast while increasing m′. As in Lemma 7.2, we
truncate the expansion (7.12) to the range m′ ≤ Θk, which results in an exponentially
small remainder.

We now need to replace the quDits wℓ by their explicit values, which depend on the
index m. We introduce the following operators on C4:

Pαβ
def
= παF4πβF∗

4 , α, β ∈ {0, I, 3} ,
and calculate the resulting matrices in the canonical basis (empty entries vanish):

P03 =
1

4




1 −i −1 i

 , P0I =

1

4




2 i− 1 0 −i− 1

 ,

PII =
1

4



−i− 1 2 i− 1 0

0 −i− 1 2 i− 1


 , PI3 =

1

4




i 1 −i −1
−1 i 1 −i


 .

(7.13)

The form of
|ψm′,m(ǫ)〉 def

= t∗k+m′tk+m|ǫ〉
depends on the sign of m −m′, and on whether m,m′ = 0 or not (we will generally not
indicate the dependence in ǫ):

• for m′ = m, we have

|ψ0,0〉 = P03e0 ⊗ eǫ2 ⊗ · · · eǫk
,

|ψm,m〉 = P0Ie0 ⊗ PIIeǫ2 ⊗ · · ·PIIeǫm
⊗PI3eǫm+1

⊗ eǫm+2
⊗ · · · eǫk

.

• for m = m′ + ∆, ∆ > 0,

|ψ0,∆〉 = P03eǫ∆+1
⊗ eǫ∆+2

⊗ · · · · · · eǫk
⊗ πIF∗

4 e0 ⊗ πIF∗
4 eǫ2 ⊗ · · ·πIF∗

4eǫ∆

|ψm′,m′+∆〉 = P0Ieǫ∆+1
⊗ PIIeǫ∆+2

⊗ · · ·PIIeǫ∆+m′⊗
⊗PI3eǫ∆+m′+1

⊗ eǫ∆+m′+2
⊗ · · · eǫk

⊗ πIF∗
4 e0 ⊗ πIF∗

4 eǫ2 ⊗ · · ·πIF∗
4 eǫ∆

• for m = m′ + ∆, ∆ < 0,

|ψ|∆|,0〉 = π0F4eǫk−|∆|+1
⊗ πIF4eǫk−|∆|+2

⊗ · · ·πIF4eǫk
⊗ PI3e0 ⊗ eǫ2 ⊗ · · · eǫk−|∆|

,

|ψm+|∆|,m〉 = π0F4eǫk−|∆|+1
⊗ πIF4eǫk−|∆|+2

⊗ · · ·πIF4eǫk
⊗ PIIe0⊗

⊗PIIeǫ2 ⊗ · · · ⊗ PIIeǫm
⊗ PI3eǫm+1

⊗ eǫm+2
⊗ · · · eǫk−|∆|

.
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We notice that each of these states contains subfactors eǫm+2
⊗ · · · ⊗ eǫk

if m ≥ m′, and
eǫm+2

⊗· · ·⊗ eǫk+m−m′ if m < m′. Compared to its position in the tensor product expansion
of |ǫ〉, this subfactor is shifted by m′ −m = −∆ steps.

We now need

Lemma 7.4. Let 0 < Θ < 1/6 and for any pair of indices (m,m′), denote ∆ = m −m′.
There exists C = C(Θ) > 0 such that

#
{

nonclass. ǫ : ∃m1, m
′
1, m2, m

′
2 ∈ [0,Θk], ∆1 6= ∆2, 〈ψm′

1,m1
|ψm′

2,m2
〉 6= 0

}

# {nonclass. ǫ } ≤ C 2−k/C .

In other words, for a generic nonclassical sequence ǫ, any two states

|ψm′
1,m1

(ǫ)〉 , |ψm′
2,m2

(ǫ)〉 ,
with mi, m

′
i ≤ Θk, Θ < 1/6, will be orthogonal to each other if ∆1 6= ∆2.

Proof. Denote M = [Θk] + 2. For any pair m,m′ ≤ Θk, the state |ψm,m′〉 contains the
subfactor ǫ

′ = eǫM
⊗ · · · ⊗ eǫk−M

, shifted by m−m′ from its position in ǫ. The number of
choices for the subfactors ǫ

′ is 2k−2M+1.

Calling δ = ∆1 −∆2, the condition 〈ψm′
1,m1
|ψm′

2,m2
〉 6= 0 implies that ǫ

′ satisfies

eǫM
⊗ · · · ⊗ eǫk−M−δ

= eǫM+δ
⊗ · · · ⊗ eǫk−M

.

The combinatorial problem we face now is essentially the same as in the proof of Lemma 7.3.
The sequence ǫ

′ must contain R repetitions of the subsequence

eǫM
⊗ · · · ⊗ eǫM+δ−1

, R =

[
k − 2M + 1

δ

]
.

The number of such sequences ǫ
′ is bounded from above by 2δ × 2δ (2δ for the periodic

component and 2δ for the “tail” of length k − 2M + 1− Rδ < δ). Since δ ≤ 2M ,

#
{

ǫ
′ : eǫM

⊗ · · · ⊗ eǫk−M−δ
= eǫM+δ

⊗ · · · ⊗ eǫk−M

}

# { ǫ′ } ≤ 26M−k = O(2−k(1−6Θ)) .

Summing over all possible shifts δ ∈ [0, 2M ], produces a factor k in the upper bound.
Taking any C < 1− 6Θ proves the lemma. �

From now on we will assume that ǫ is a generic sequence in the sense of the above lemma.
Namely, if we group the states |ψm+∆,m(ǫ)〉 into

|Ψ∆(ǫ)〉 def
=

∑

0≤m,m′≤Θk
m=m′+∆

|ψm+∆,m(ǫ)〉 ,
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then genericity means that 〈Ψ∆(ǫ)|Ψ∆(ǫ)〉 = 0 for any ∆ 6= ∆′. As a consequence, the
square-norm of t∗t|ǫ〉 is then given by

(7.14) ‖t∗t|ǫ〉‖2 =
∑

|∆|≤Θk

‖Ψ∆(ǫ)‖2 +O(2−Θk/2) .

The remainder comes from the truncation in m, m′, and will be proven in the Remark 7.2,
after we have computed the norms of the states |ψm′,m〉. As we will see, no further simpli-
fication occurs in this expression, meaning that two different states |ψm′,m〉 with the same
∆ will generally interfere with each other.

Our objective is now to compute each square norm on the right hand side of (7.14). We
will naturally use the fact that all states |ψm′,m〉 are tensor products, so that the overlap
between two of them is the product of the overlaps of their tensor factors. Beside the
matrices given in (7.7,7.13) the following ones appear in the expressions for the |ψm′m〉:

(7.15) π0F4 =
1

2




1 1 1 1

 , πIF4 =

1

2




1 −i −1 i
1 −1 1 −1


 .

We split the lengthy, yet straightforward computation according to the value of ∆.

7.3.1. Norm of Ψ0. We have

(7.16) ‖Ψ0‖2 =
∑

m≤Θk

‖ψm,m‖2 + 2
∑

0≤m<n≤Θk

Re〈ψm,m|ψn,n〉 .

The successive diagonal terms take the values

‖ψ0,0‖2 = ‖P03e0‖2 =
1

16
, while for m ≥ 1 ,

‖ψm,m‖2 = ‖P0Ie0‖2
( m∏

ℓ=2

‖PIIeǫℓ
‖2
)
‖PI3eǫm+1

‖2 =
1

4

(3

8

)m−1 1

8
.

The sum over the diagonal terms is therefore

∑

m≤Θk

‖ψm,m‖2 =
1

16
+

1

32

1−
(

3
8

)[Θk]

1− 3
8

=
9

80
+O

(
(3/8)Θk

)
.

The nondiagonal terms are, for any 0 < n ≤ Θk,

〈ψ0,0|ψn,n〉 = 〈P03e0,P0Ie0〉
( n∏

ℓ=2

〈eǫℓ
,PIIeǫℓ

〉
)
〈eǫn+1

,PI3eǫn+1
〉 =

1

8

(1

2

)n−1 1

4
,
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and for 0 < m < n ≤ Θk,

〈ψm,m|ψn,n〉 =

‖P0Ie0‖2
( m∏

ℓ=2

‖PIIeǫℓ
‖2
)
〈PI3eǫm+1

,PIIeǫm+1
〉
( n∏

ℓ=m+2

〈eǫℓ
,PIIeǫℓ

〉
)
〈eǫn+1

,PI3eǫn+1
〉

=
1

4

(3

8

)m−1 1± i
16

(1

2

)n−m−1 1

4
.

The sign is + for ǫm+1 = 1, and − for ǫm+1 = 2. Adding up these contributions, we find
for the second part of (7.16):

2
∑

0≤m<n≤Θk

Re〈ψm,m|ψn,n〉 =
3

20
+O(2−Θk) .

We observe that this contribution is of the same order as the diagonal one. Summing the
diagonal and nondiagonal parts yields

(7.17) ‖Ψ0‖2 =
21

80
+O(2−Θk) .

7.3.2. Norm of Ψ∆ with ∆ > 0. We notice that all states |ψm,m+∆〉, 0 ≤ m ≤ Θk−∆ share
the same ∆ last quDits, which result in a common factor

∆∏

ℓ=1

‖πIF∗
4 eǫℓ
‖2 =

1

2∆

in ‖Ψ∆‖2. To avoid taking this factor into account at all steps, we call |ψ′
m,m+∆〉 the state

obtained by removing these last ∆ quDits from |ψm,m+∆〉, compute the norms and overlaps
of those truncated states, and finally multiply everything by the above factor.

We then compute the square-norm

‖ψ′
0,∆‖2 = ‖P03eǫ∆+1

‖2 =
1

16
.

For all m > 0, the first quDit of |ψ′
m,m+∆〉 is P0Ieǫ∆+1

. By inspecting the expression (7.13),
we see that this quDit vanishes if ǫ∆+1 = 2, so that

(7.18) ‖Ψ∆(ǫ)‖2 =
1

16

1

2∆
, if 1 ≤ ∆ ≤ Θk , ǫ∆+1 = 2 .

In the opposite case ǫ∆+1 = 1, the states |ψ′
m,m+∆〉 are nontrivial: for 0 < m ≤ Θk −∆,

‖ψ′
m,m+∆‖2 = ‖P0Ie1‖2

( m∏

ℓ=2

‖PIIeǫ∆+ℓ
‖2
)
‖PI3eǫ∆+m+1

‖2 =
1

8
(
3

8
)m−1 1

8
.
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Summing the diagonal contributions to ‖Ψ∆‖2, gives

(7.19)

[Θk]−∆∑

m=0

‖ψ′
m,m+∆‖2 =

7

80
+O

(
(3/8)Θk−∆)

)
.

For the nondiagonal contributions we compute

〈ψ′
0,∆|ψ′

m,m+∆〉 = 〈P03e1,P0Ie1〉
( m∏

ℓ=2

〈eǫ∆+ℓ
,PIIeǫ∆+ℓ

〉
)
〈eǫ∆+m+1

,PI3eǫ∆+m+1
〉

=
−1− i

16

1

2m−1

1

4
,

and

〈ψ′
m,m+∆|ψ′

n,n+∆〉 = ‖P0Ie1‖2
( m∏

ℓ=2

‖PIIeǫ∆+ℓ
‖2
)
〈PI3eǫ∆+m+1

,PIIeǫ∆+m+1
〉×

×
( n−m∏

ℓ=2

〈eǫ∆+m+ℓ
,PIIeǫ∆+m+ℓ

〉
)
〈eǫ∆+n+1

,PI3eǫ∆+n+1
〉

=
1

8
(
3

8
)m−1 1± i

16

1

2n−m−1

1

4
.

(the sign ± in the last line depends on ǫ∆+m+1). This gives

2
∑

0≤m<n≤Θk−∆

Re〈ψ′
m,m+∆|ψ′

n,n+∆〉 = − 1

20
+O(2−Θk+∆) .

Adding this to the diagonal terms (7.19), restoring the factor 2−∆, and using (7.18) results
in the following norm:

(7.20) ‖Ψ∆(ǫ)‖2 =
1

2∆

( 3

80
δǫ∆+1=1 +

1

16
δǫ∆+1=2

)
+O(2−Θk) if 1 ≤ ∆ ≤ Θk , ǫ∆+1 = 1 .

Hence the norm of Ψ∆(ǫ) explicitly depends on the sequence ǫ.

7.3.3. Norm of Ψ∆ with ∆ < 0. As in §7.3.2 we notice that all components of Ψ∆ share
the same |∆| first quDits, which lead to the following factor:

(7.21) ‖π0F4eǫk−|∆|+1
‖2
( |∆|∏

ℓ=2

‖πIF4eǫk−|∆|+ℓ
‖2
)

=
1

4

1

2|∆|−1
.

We call ψ′
m+|∆|,m the states with these |∆| quDits removed. They have the norms

‖ψ′
|∆|,0‖2 = ‖PI3e0‖2 =

1

8
, and for m ≥ 1,

‖ψ′
m+|∆|,m‖2 = ‖PIIe0‖2

( m∏

ℓ=2

‖PIIeǫℓ
‖2
)
‖PI3eǫm+1

‖2 =
1

8
(
3

8
)m−1 1

8
,
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and hence,
⌊Θk⌋−|∆|∑

m=0

‖ψ′
m+|∆|,m‖2 =

3

20
+O

(
(3/8)Θk−|∆|) .

The nondiagonal contributions for 0 < n ≤ Θk − |∆| are

〈ψ′
|∆|,0|ψ′

n+|∆|,n〉 = 〈PI3eǫ0,PIIe0〉
( n∏

ℓ=2

〈eǫℓ
,PIIeǫℓ

〉
)
〈eǫn+1

,PI3eǫn+1
〉

=
−1 + i

16

1

2n−1

1

4
,

while for any pair 1 ≤ m < n ≤ Θk − |∆|,
〈ψ′

m+|∆|,m|ψ′
n+|∆|,n〉 =

( m∏

ℓ=1

‖PIIeǫℓ
‖2
)
〈PI3eǫm+1

,PIIeǫm+1
〉
( n−m∏

ℓ=2

〈eǫm+ℓ
,PIIeǫm+ℓ

〉
)
〈eǫn+1

,PI3eǫn+1
〉

=
1

8
(
3

8
)m−1 1± i

16

1

2n−m−1

1

4
.

These contributions sum up to

2
∑

0≤m<n≤Θk−|∆|
Re〈ψ′

m+|∆|,m|ψ′
n+|∆|,n〉 = − 1

20
+O(2−Θk+|∆|) .

Putting together this with the diagonal contributions and restoring the factor (7.21), yields

(7.22) ‖Ψ∆‖2 =
1

20

1

2|∆| +O(2−Θk) , −Θk ≤ ∆ ≤ −1 .

As opposed to the case of ∆ > 0, this norm does not depend on ǫ.

Remark 7.2. In the course of the computations, we have obtained expressions for the
norms of all states |ψm′,m〉, which allow us to estimate the remainder in (7.14). Indeed, the
expressions obtained in the previous subsections are valid for any pair m,m′ < k/2, and in
this case the norms satisfy:

‖ψm′,m(ǫ)‖ ≤ C

(
3

8

)min(m′,m)/2

2−|m′−m|/2 ,

for a constant C > 0 independent of ǫ. Using this we see that for any nonclassical ǫ,

‖t∗t|ǫ〉 −
∑

0≤m′,m≤Θk

|ψm′,m(ǫ)〉‖ = O(2−Θk/2) .

This proves the estimate (7.14) for a generic nonclassical sequence.
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7.3.4. Summing up. We can now sum over all shifts ∆, |∆| ≤ Θk for a given nonclassical
sequence ǫ. The sum over the shifts ∆ ≤ 0 is simple, and independent on the sequence ǫ:

∑

−Θk≤∆≤0

‖Ψ∆(ǫ)‖2 =
25

80
+O(k 2−Θk) .

The sum over the shifts ∆ > 0 is slightly more delicate, since the norm of |Ψ∆(ǫ)〉 depends
on ǫ — see Eqs. (7.18,7.20). However, we notice that if a sequence ǫ is nonclassical and
generic (in the sense of Lemma 7.4), then its “mirror sequence” ǫ, defined by ǫ1 = 0 and

∀ℓ ∈ [2, k], ǫℓ = 1⇐⇒ ǫℓ = 2 , ǫℓ = 2⇐⇒ ǫℓ = 1

is also a nonclassical and generic sequence, different from ǫ. Therefore, we can partition the
set of generic nonclassical sequences into pairs of mirror sequences. The sum of ‖Ψ∆(ǫ)‖2
(∆ > 0) over any pair (ǫ, ǫ) is now independent of the pair:

∀∆ > 0, ‖Ψ∆(ǫ)‖2 + ‖Ψ∆(ǫ)‖2 =
1

2∆

1

10
+O(2−Θk) .

Notice that this contribution is identical (up to the remainder) with ‖Ψ−∆(ǫ)‖2+‖Ψ−∆(ǫ)‖2.
Therefore there is a sort of symmetry around ∆ = 0, which carries the largest contribution.
Summing over positive and negative ∆, we get:

∑

−Θk≤∆≤Θk

‖Ψ∆(ǫ)‖2 + ‖Ψ∆(ǫ)‖2 =
58

80
+O(k 2−Θk) .

This implies that, for any pair (ǫ, ǫ) of generic nonclassical sequences,

‖t∗t|ǫ〉‖2 + ‖t∗t|ǫ〉‖2 =
58

80
+O(2−Θk/2) .

Using Lemma 7.4, we obtain the trace over the nonclassical states:

trnoncl((t
∗t)2) = 2k−2

(58

80
+O(e−Ck) +O(2−Θk/2)

)
.

Substracting this expression from the “nonclassical conductance” (7.10), and calling C̃ =
min(C, 1

2
Θ), we finally obtain the noise power:

(7.23) P = tr(t∗t− (t∗t)2) = trnoncl(t
∗t− (t∗t)2) = 2k−1

(11

80
+O(e−C̃k)

)
.

This proves (1.2) in Theorem 2. As remarked in §1.1, the factor 11/80 is close to the
random-matrix prediction for this quantity, namely 1/8 [26, 55]. This is in contrast with
our remark 6.1 that the semiclassical resonance spectrum of the propagator inside the dot,

B̃h = UhΠI , is quite different from that of a random subunitary matrix. Somehow, the

matrix t, obtained by summing iterates of B̃h, has acquired some “randomness”, as far as
the distribution of its singular values is concerned.
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[23] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol.I–II, Springer Verlag, 1983.



DISTRIBUTION OF RESONANCES FOR OPEN QUANTUM MAPS 69
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