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VOLATILITY ESTIMATORS FOR DISCRETELY SAMPLED LEVY
PROCESSES

By Yacine Aı̈t-Sahalia1 and Jean Jacod2

Princeton University and Université de Paris-6

This paper provides rate-efficient estimators of the volatility parameter in the presence of
Lévy jumps.

1. Introduction. In this paper, we continue the study started in [2], about the estimation of

parameters when one observes a Lévy process X at n regularly spaced times ∆n, 2∆n, . . . , n∆n, with

∆n going to 0 as n → ∞. In our earlier paper, we were concerned with the asymptotic behavior of

the Fisher information, with the objective of establishing a benchmark for what efficient estimators

are able to achieve in that context. Now, we wish to exhibit estimators which both achieve that rate

and can be explicitly computed.

We want to estimate a positive parameter σ, which we call volatility, in the model

(1) Xt = σWt + Yt,

where W is a standard Wiener process or, more generally, a symmetric stable process of index β,

and the process Y is another Lévy process without Wiener part and with jumps “dominated” in a

sense we make precise below by those of W . Allowing for jumps is of great interest in mathematical

finance, in the diverse contexts of option pricing, testing for the presence of jumps in asset prices,

interest rate modelling, risk management, optimal portfolio choice, stochastic volatility modelling or

for the purpose of better describing asset returns data (see the references cited in [2]).

1Supported in part by NSF Grant SES-0350772.
2Supported in part by the CNRS.
AMS 2000 subject classifications. Primary 62F12, 62M05; secondary 60H10, 60J60.
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Our aim is to construct estimators for σ which behave under the model (1) “as well as” under the

model

(2) Xt = σWt,

asymptotically as ∆n → 0 and n→ ∞. This is in line with the results of [2], in which we proved that

property for the Fisher information. In other words, we want to be able to estimate the volatility

parameter σ at the same rate when Y, a jump perturbation of W, is present as when it is not. In some

applications, Y may represent frictions that are due to the mechanics of the trading process, or in

the case of compound Poisson jumps it may represent the infrequent arrival of relevant information

related to the asset. Given that both W and Y contribute to the overall observed noise in X, it is

not a priori obvious that it should be possible to estimate σ equally well (at least in the rate sense)

with and without Y. Beyond the robustness to misspecification risk that such a result affords, it also

for instance paves the way for risk management or option hedging that is able to target the “W risk”

(continuous when β = 2) separately from the “Y risk” (discontinuous).

We distinguish between a parametric case, where the law of Y is known, and a semiparametric case,

where it is not. We show that, in the parametric case, one can find estimators which are asymptotically

efficient in the Cramer–Rao sense, meaning that the asymptotic estimation variance is equivalent as

n→ ∞ to the inverse of the Fisher information for the model (2) without the perturbation Y . This

is possible when the law of Y is completely known. In the semiparametric case, where that law is

unknown, obtaining asymptotically efficient estimators requires ∆n to go fast enough to 0; but we

can then exhibit estimators that are efficient uniformly when the law of Y stays in a set sufficiently

separated from the law of W . And in general we can exhibit a large class of estimators which are

consistent and achieve a specified rate (although not the efficient rate).

A distinctive feature of the present paper is that we construct estimators which are as simple as

possible to implement. For example, in the parametric situation where the law of Y is known, one can

in principle compute the MLE, which is of course efficient. In practice, this is hardly feasible, as the

likelihood function derived from the convolution of the densities of W and Y will in most situations

not be available in closed form. So we provide a number of other – much simpler – estimators which

are not as good (in the sense of not reaching the Cramer-Rao lower bound in general) but not too

bad either (in the sense of achieving the efficient rate of convergence).
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The paper is organized as follows. In Section 2, we specify our estimating setting. Section 3 is

devoted to estimating equations: the estimators we propose all fall in that class and we state a general

result which covers them all. Sections 4 and 5 are devoted to the parametric and semiparametric

cases respectively. Some examples are developed in Section 6, 7, 8 and 9, where we consider specific

types of estimating equations such as the empirical characteristic function , power variations and

power variations with truncation.

2. The setting. With X0 = 0, we observe n i.i.d. increments from the Lévy process (1),

(3) χn
i = Xi∆n −X(i−1)∆n

.

W is a symmetric stable process of index β ∈ (0, 2], characterized by

(4) E(eiuWt) = e−t|u|β/2

so that, when β = 2, W is a standard Wiener process. The parameter to be estimated is σ, and we

will single out two situations concerning the parameter space Θ: either Θ = (0,∞), or Θ is a compact

subset of (0,∞).

The law of Y (as a process) is entirely specified by the law G∆ of the variable Y∆ for any given

∆ > 0. We write G = G1, and we recall that the characteristic function of G∆ is given by the

Lévy-Khintchine formula

(5) E(eivY∆) = exp ∆

(
ivb− cv2

2
+

∫
F (dx)

(
eivx − 1 − ivx1{|x|≤1}

))

where (b, c, F ) is the “characteristic triple” of G (or, of Y ): b ∈ R is the drift of Y, and c ≥ 0 the

local variance of the continuous part of Y, and F is the Lévy jump measure of Y , which satisfies
∫ (

1 ∧ x2
)
F (dx) <∞. We will denote by Pσ,G the law of the process X.

We make Y “dominated” by W in the following sense: G belongs to the class Gβ, defined as

follows. Let first Φ be the class of all increasing and bounded functions φ : (0, 1] → R+ having

limx↓0 φ(x) = 0. Then we set

G(φ, α) = the set of all infinitely divisible distributions with c = 0 and, for all x ∈ (0, 1],(6)

then




xαF ([−x, x]c) ≤ φ(x) if α < 2

x2F ([−x, x]c) ≤ φ(x) and
∫
{|y|≤x} |y|2F (dy) ≤ φ(x) if α = 2,
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(7) G′(φ, α) = {G ∈ G(φ, α), G is symmetrical about 0},

(8) Gα = ∪φ∈Φ G(φ, α), G′
α = ∪φ∈Φ G′(φ, α),

and we have

(9)




α ∈ (0, 2] ⇒ Gα = {G is infinitely divisible, c = 0, limx↓0 xαF ([−x, x]c) = 0}
α = 2 ⇒ G2 = {G is infinitely divisible, c = 0} .

Now we recall some results from [2]. The variable W1 admits a C∞ density hβ , which is differen-

tiable in the state variable (the derivative is denoted by h′β). Then we set

(10) h̆β(w) = hβ(w) + wh′β(w), h̃β(w) =
h̆β(w)2

hβ(w)
, hβ(w) =

wh′β(w)

hβ(w)
, I(β) =

∫
h̃β(w)dw,

so in fact I(β) is the Fisher information when we estimate σ on the basis of the single observation

σW1 and for the parameter value σ = 1. The functions h̆β and h̃β and hβ are also C∞, and satisfy

for some constant cβ:

(11)




β < 2 ⇒ hβ(w) + |h̆β(w)| + |h̃β(x)| ≤ cβ

1+|w|1+β , |hβ(w)| ≤ cβ ,

β = 2 ⇒ h̆β(w) = (1 − w2)hβ(w), h̃β(x) = (1 − w2)2 hβ(w), hβ(w) = −w2,

and of course h2(w) = e−w2/2/
√

2π, so in particular I(β) = 2.

If we have a single observation X∆ there is a (finite) Fisher information for estimating σ, which

we denote by I∆(σ,G). With n observed increments the corresponding Fisher information becomes

(12) In,∆n(σ,G) = nI∆n(σ,G).

The main result of [2], as far as the parameter σ is concerned, is summarized in the following:

Theorem 1. a) If G ∈ Gβ we have as ∆ → 0:

(13) I∆(σ,G) → 1

σ2
I(β).

b) For any φ ∈ Φ we have as ∆ → 0:

(14) sup
G∈G(φ,β)

∣∣∣∣I∆(σ,G) − I(β)

σ2

∣∣∣∣→ 0.
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c) For each n let Gn be the standard symmetric stable law of index αn, with αn a sequence strictly

increasing to β. Then for any sequence ∆n → 0 such that (β − αn) log ∆n → 0 (i.e. the rate at which

∆n → 0 is slow enough), the sequence of numbers I∆n(σ,Gn) converges to a limit which is strictly

less than I(β)/σ2.

Part (a) of the above theorem and (12) hint towards the existence of estimators σ̂n such that
√
n (σ̂n − σ) converges to a centered Gaussian variable with variance σ2/I(β) under Pσ,G, when

G ∈ Gβ is known: this is the parametric situation, and we will propose such estimators in Section 4

below. In the semiparametric situation where G is unknown, (c) suggests that we cannot achieve the

same rate, unless, as given in (b), we know that G is in the class G(φ, α) for some α < β and some

function φ ∈ Φ.

As a matter of fact, we can do slightly better. If φ(x) = ζ > 0 for all x, we can still define G(φ, α)

by (6), although φ no longer belongs to Φ. We denote such a class by G(ζ, α), that is we introduce

the notation (we do not need to distinguish α < 2 and α = 2 here):

(15)
G(ζ, α) = the set of all infinitely divisible distributions with c = 0 and, for all x ∈ (0, 1],

then xαF ([−x, x]c) ≤ ζ,

(16) G ′
(ζ, α) = {G ∈ G(ζ, α), G is symmetrical about 0},

(17) Gα = ∪ζ>0 G(ζ, α), G′
α = ∪ζ>0 G′

(ζ, α).

The connection with the previous classes is as follows:

(18) G(φ, α) ⊂ G(φ(1), α), Gα ⊂ Gα ⊂ ∩α′>αGα′ , G2 = G2.

For example, G0 is the class of all G’s for which Y is a pure drift (Yt = bt), whereas G0 is the class

of all G’s for which Y is a compound Poisson process plus a drift. Also, any stable process Y with

index α < 2 belongs to Gα, but not to Gα.

3. About estimating equations. The practical estimators we will propose for σ are all ob-

tained by setting an estimating equation (also known as a generalized moment condition) to zero.
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We prove here a general result about the asymptotic properties of such estimators, which will be

used several times below. Similar general results for estimating equations are of course known (see

various forms in [5], [6] and [7]), but we adapt them here to our setting with assumptions (by no

means minimal) that are sufficient in our context.

Recall that we want to estimate a parameter σ > 0. At stage n we observe pn i.i.d. random variables

χn
i and introduce two auxiliary variables Sn > 0 and Qn ∈ R. Under the associated probability

measure Pn,σ we suppose that the families (Sn, Qn) and (χn
i : 1 ≤ i ≤ pn) are independent, and of

course pn → ∞. Let us introduce the following conditions:

Assumption 1 (A1). If σn → σ > 0 then Sn → σ in Pn,σn–probability.

Assumption 2 (A2). If σn → σ > 0 then the sequence (Qn | Pn,σn) is tight.

Next we consider two families (fn,s,q)s>0 and (Hn,s)s>0,q∈R of functions on R and (0,∞) re-

spectively, to be specified later but with adequate integrability and smoothness properties, and we

associate the estimating function

(19) Un,s,q(u) =
1

pn

pn∑

i=1

(fn,s,q(χ
n
i ) −Hn,s(u)) .

In this exactly-identified context, we set

(20) σ̂n(s, q) =





the u > 0 with Un,s,q(u) = 0 which is closest to s if it exists

1 otherwise

(if Un,s,q = 0 has two closest solutions at equal distance of s, we select the smallest one). We also set

(21) Fn,s,q(σ) = En,σ(fn,s,q(χ
n
i )), F (2)

n,s,q(σ) = En,σ(fn,s,q(χ
n
i )2).

Note in particular that we are not assuming that the estimating equation is correctly centered: correct

centering would requiring using Fn,s,q instead of Hn,s. Hn,s may be equal to Fn,s,q, but can also be

just an approximation to it (in which case we will talk about “approximate centering”) that may for

instance be valid as n → ∞. Incorrect centering leads to estimators that are asymptotically biased,

although that effect can be mitigated as n → ∞ if Hn,s approximates Fn,s,q (see Assumption (B5)

below).

Let us now list a series of assumptions on the previous functions:
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Assumption 3 (B1). We have supn≥1, s>0, q∈R ‖fn,s,q‖4/pn <∞, where ‖f‖ is the sup–norm.

Assumption 4 (B2). Hn,s is continuously differentiable.

Assumption 5 (B3). For all s > 0 there is a differentiable function F s on (0,∞), such that whenever

sn → s then Hn,,sn and H ′
n,sn

converge locally uniformly to F s and F
′
s respectively.

Assumption 6 (B4). F
′
s(s) 6= 0 for all s > 0.

Assumption 7 (B5). F
(2)
n,sn,qn(un) converges to a limit F (2)(u) for any two sequences un and sn

converging to the same limit u > 0 and any bounded sequence qn.

Assumption 8 (B6). There is a sequence wn → +∞ such that supn wn|Fn,sn,qn(un)−Hn,sn(un))| <
∞ for any two sequences un and sn converging to the same limit u > 0 and any bounded sequence qn.

Then we have the following:

Theorem 2. Assume (A1), (A2) and (B1)–(B6).

a) The sequence ((wn
∧√

pn)(σ̂n(Sn, Qn) − σn)) is tight under Pn,σ, uniformly in n and in σ in

any compact subset of (0,∞).

b) If wn/
√
pn → ∞, then the sequence (

√
pn (σ̂n(Sn, Qn) − σn)) converges in law under Pn,σ,

uniformly in σ in any compact subset of (0,∞), towards the centered normal distribution with variance

Ξ2(σ) :=
(
F (2)(σ) − F σ(σ)2

)
/F

′
σ(σ)2.

We devote the remainder of this section to proving this theorem. First, we state a lemma which

gathers some classical limit theorems on i.i.d. triangular arrays. For each n let (ζn
i : i = 1, . . . , qn) be

real–valued and i.i.d. random variables, possibly defined on different probability spaces (Ωn,Fn,Pn)

when n varies. Then:

Lemma 1. Assume that ζn
i is square–integrable, and set γn = En(ζn

i ) and Γn = En((ζn
i )2) − γ2

n. If

pn → ∞ and Γn/pn → 0, we have

(22)
1

pn

pn∑

i=1

ζn
i − γn

L2(Pn)−→ 0.

Furthermore if Γn → Γ for some limit Γ > 0 and if E(|ζn
i |4)/pn → 0, we have

(23)
√
pn

(
1

pn

pn∑

i=1

ζn
i − γn

)
L(Pn)−→ N (0,Γ).
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In the next three lemmas we suppose that σn → σ > 0, and we write Pn = Pn,σn .

Lemma 2. Let sn → σ and let qn be a bounded sequence.

a) The sequence
(
(wn

∧√
pn) Un,sn,qn(σn) | Pn

)
is tight.

b) If wn/
√
pn → ∞ then

√
pn Un,sn,qn(σn)

L(Pn)−→ N (0, F (2)(σ) − F σ(σ)2).

Proof. We have Un,sn,qn(σn) = 1
pn

∑pn

i=1 ζ
n
i , where for each n the ζn

i ’s are i.i.d. with mean and variance

given by

γn = Fn,sn,qn(σn) −Hn,sn(σn), Γn = F (2)
n,sn,qn

(σn) − Fn,sn,qn(σn)2,

and further |ζn
i | ≤ αn for numbers αn satisfying α4

n/pn → 0 by (B1). Now (B6) yields that γn → 0,

hence (B3) yields Fn,sn,qn(σn) → F σ(σ). On the other hand, (B5) implies F
(2)
n,sn,qn(σn) → F (2)(σ).

Therefore it follows from (23) that

(24)
√
pn (Un,sn,qn(σn) − γa)

L(Pn)−→ N (0, F (2)(σ) − F σ(σ)2),

and since supn wn|γn| <∞ by (B6), we readily get the two results.

Lemma 3. a) The sequence ((wn
∧√

pn) Un,Sn,Qn(σn) | Pn) is tight.

b) If wn/
√
pn → ∞, the sequence (

√
pn Un,Sn,Qn(σn) | Pn) converges in law towards the centered

normal distribution with variance F (2)(σ) − F σ(σ)2.

Proof. a) Let V (n, s, q) = (wn
∧√

pn)Un,,s,q(σn). The previous lemma implies that as soon as the

deterministic sequence sn converges to σ, we have for all B > 0:

(25) lim
A→∞

sup
n≥1

uA,B(n, sn) = 0, where uA,B(n, s) = sup
|q|≤B

Pn(|V (n, s, q)| > A).

If the sequence (V (n, Sn, Qn) | Pn) is not tight, there exists an infinite sequence nk such that

Pnk
(|V (nk, Snk

, Qnk
)| > A) ≥ 1/A for some A > 0 and, up to taking a further subsequence still

denoted by nk we can assume by (A1) that Snk
→ σ pointwise. Since (Sn, Qn) is independent of the

family (V (n, s, q); s > 0, q ∈ R), we get

Pnk
(|V (nk, Snk

, Qnk
)| > A) ≤ Pnk

(|Qnk
| > B) + Enk

(uA,B(nk, Snk
))).
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Then (25) and Lebesgue’s Theorem imply that

lim sup
k

Pnk
(|V (nk, Snk

, Qnk
)| > A) ≤ sup

n
Pn(|Qn| > B)

for all B > 0 and, in view of (A2), we deduce that lim supk Pnk
(|V (nk, Snk

, Qnk
)| > A) = 0: this

contradicts the definition of the sequence nk, and we have the result.

b) Let us denote by V a variable with law ν = N (0, F (2)(σ) − F σ(σ)). Let νn,s,q be the law of

V (n, s, q) :=
√
pn Un,s,q(σn). The claim amounts to proving that, for all bounded continuous functions

g, we have

(26) En (g(V (n, Sn, Qn))) → E(g(V )).

For this, it is enough to prove that from any subsequence one can extract a further subsequence along

which (26) holds. So, in view of (A1) and (A2) it is no restriction to assume that in fact (Sn, Qn)

converges in law to (σ,Q) for some variable Q.

In fact, due to the independence of (Sn, Qn) and (W ′(n, s, q) : s > 0, q ∈ R), we can replace the

pair (Sn, Qn) in the left side of (26) by any other pair (S′
n, Q

′
n) having the same law than (Sn, Qn)

and still independent of (W ′(n, s, q) : s > 0, q ∈ R). Therefore, using the Skorokhod representation

theorem, we can indeed assume that (Sn, Qn) converges pointwise to (σ,Q). Then

En (g(V (n, Sn, Qn))) = En

(∫
νn,Sn,Qn(dx)g(x))

)
.

Since Sn → σ and Qn → Q, one deduces from Lemma 2–(b) that the sequence
∫
νn,Sn,Qn(dx)g(x)

converges pointwise to
∫
ν(dx)g(x) = E(g(V )), and it is bounded by ‖g‖, so Lebesgue’s Theorem

yields (26).

Lemma 4. The sequence σ̂n converges in Pn–probability to σ.

Proof. Exactly as in the previous proof, without loss of generality we can assume that the pair

(Sn, Qn) converges pointwise to (σ,Q) with Q a suitable random variable.

Lemma 3 implies that Un,Sn,Qn(σn) → 0 in probability (recall that both wn and pn go to infinity).

Observe that

Un,Sn,Qn(u) − Un,Sn,Qn(σn) = Hn,Sn(σn) −Hn,Sn(u),
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which by (B3) converges (pointwise) locally uniformly in u towards H(u) := F σ(σ) − F σ(u). Hence

Un,Sn,Qn(u) also converges locally uniformly in u towards H(u), in Pn–probability. But by (B4) the

function H is null at σ and is either strictly decreasing or strictly increasing in a neighborhood of σ:

then the definition (20) of σ̂n(Sn, Qn) immediately gives the result.

Finally, we prove Theorem 2:

Proof of Theorem 2. As usual, to get the local uniformity in σ for the tightness in (a) or the con-

vergence in (b), it is enough to obtain the tightness (resp. convergence) under Pn = Pn,σn for any

sequence σn → σ > 0. Let us write for simplicity σ̂n = σ̂n(Sn, Qn) and Un = Un,Sn,Qn.

By (B2), Un is continuously differentiable. We deduce from Lemma 4 the existence of sets An

with Pn(An) → 1, such that on An we have U ′
n(σ̂n) = 0, and thus Taylor’s formula yields a random

variable Tn taking its values between σn and σ̂n, and such that

(27) Un(σn) = −(σ̂n − σn)U ′
n(Tn) on the set An.

Observe that U ′
n(Tn) = −H ′

n,Sn
(Tn),. Since both Sn and Tn converge in probability to σ, (B3)

implies that U ′
n(Tn) → −F ′

σ(σ) in probability. Since F
′
σ(σ) 6= 0 by (B4), all the results of our

theorem are now easily deduced from (27) and Lemma 3.

With this general result in hand, we now turn to our specific situation: estimating σ in the presence

of the Lévy process Y, first when the law of Y is known and second when it is not.

4. Estimation of σ in the parametric case. In this section, we study the estimation of σ

when the law of Y, i.e., the measure G ∈ Gβ , is known. We will construct a class of estimating

equations for σ, with χn
i given by (3).

4.1. Construction of the estimators. In the sequel the number β ∈ (0, 2] is fixed and does not

usually appear explicitly in our notation. A constant which depends only on β and on another

parameter γ is denoted by Cγ , and it may change from line to line. If G ∈ Gα with α ≤ β, and with
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the associated process Y , we set

(28) b′(G,α) =





b−
∫
{|x|≤1} xF (dx) if α < 1

b if α ≥ 1,

Z∆(α) := ∆−1/β
(
Y∆ − b′(G,α)∆

)

and we let G′
∆,α denote the law of Z∆(α). Then we define the “modified increments” (recall (3)):

(29) χ′n
i (G) = ∆−1/β

n (χn
i − b′(G,β)∆n).

Next, for any α ∈ (0, 2] and any φ ∈ Φ we set for x ∈ (0, 1):

(30) φα(x) =





φ(x)
1−α if α < 1

φ(x) + φ(x)√
log(1/x)

+ φ
(
1 ∧ e−

√
log(1/x)

)
if α = 1

φ(x) + φ(
√

x)
α−1 + φ(1)

α−1 x
α−1

2 if α > 1.

This defines an increasing function φα : (0, 1] → R+ having φ ≤ φα and φα(x) → 0 as x→ 0.

Next, if G ∈ Gα for some α ≤ β, and u > 0 and v ≥ 0 and z ∈ R and if k is a bounded function,

we set

(31) ΨG,∆,α,k(u, v, z) =

∫
hβ(x)dx

∫
G′

∆,α(dw) k(ux+ vw + z).

Finally, we introduce the “tail function”

(32) ψ(u) = P(|W1| > 1/u) = 2

∫ ∞

1/u
hβ(x)dx

for u > 0 (this depends on β): it is C∞, strictly increasing from 0 to 1, with non-vanishing first

derivative. So its reciprocal function ψ−1, from (0, 1) into (0,∞), is also C∞ and strictly increasing.

Recall that we work here under the assumption that G ∈ Gβ is known, and so in particular we

know b′(G,β); we also have G ∈ G(φ, β) for some φ ∈ Φ. We need first a preliminary estimator,

which is constructed as follows. We choose an arbitrary sequence mn of integers satisfying

(33) mn ↑ ∞,
mn

n
→ 0

and, recalling (29) and (32), we set

(34) Vn(G) =
1

mn

mn∑

i=1

1{|χ′n
i (G)|>1}, Sn(G) =





ψ−1(Vn(G)) if 0 < Vn(G) < 1

1 otherwise.
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To form an estimating equation for the construction of the final estimator of σ, we choose a

function k satisfying

(35) sup
x

|k(x)|
1 + |x|γ <∞, I(k) :=

∫
h̆β(x)k(x)dx 6= 0,

where the number γ satisfies

(36) γ ≥ 0, β ≤ 2 ⇒ γ <
β

2
.

Then we set

(37) kn(x) =





k(x) if k is bounded

k(x) 1{|k(x)|≤νn} otherwise,

where νn be an increasing sequence of numbers satisfying

(38) νn → ∞, ν2
n φβ(∆1/β

n ) → 0,
ν4

n

n
→ 0,

and where φβ is associated with φ (a function such that G ∈ G(φ, β)) by (30). Then, with the

notation pn = n−mn, and since each kn is bounded, we can define the following estimation functions

(for u > 0):

(39) Un,G,φ,k(u) =
1

pn

n∑

i=mn+1

kn

(
χ′n

i (G)

Sn(G)

)
− ΨG,∆n,β,kn

(
u

Sn(G)
,

1

Sn(G)
, 0

)
.

Finally the estimators for σ are:

(40) σ̂n(G,φ, k) =





the u > 0 with Un,G,φ,k(u) = 0 which is closest to Sn(G) if it exists

1 otherwise.

As the notation suggests, this estimator depend on G and on k in an obvious way, and it depends

on φ through the choice for kn made in (38). It also depends on β, but we leave this dependency

implicit to avoid cluttering the notation.

4.2. Asymptotic distribution in the parametric case. With the function k as in (35), the following

defines two finite numbers:

(41) J(k) = E(k(W1)
2) − (E(k(W1)))

2, Σ2(k) =
J(k)

I(k)2
.
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Theorem 3. Let φ ∈ Φ, and let k be a function satisfying (35) for some γ having (36). Suppose also

that ∆n → 0.

a) The sequence
√
n (σ̂n(G,φ, k)− σ) converges in law to N(0, σ2Σ2(k)), under Pσ,G, uniformly in

G ∈ G(φ, β) and in σ ∈ [ε, 1/ε] for any ε > 0.

b) We have Σ2(k) ≥ 1/I(β), and this inequality is an equality if we choose k = hβ.

Now we give a number of comments and examples.

Remark 1. In light of (41), it is of course possible / advisable to select the function k to minimize

Σ2(k). The choice k = hβ is indeed possible: by (11) the function k = hβ satisfies (35) with γ = 0

(resp. γ = 2) if β < 2 (resp. β = 2). Such a choice gives asymptotically efficient estimators, in the

strong sense that they behave asymptotically like the efficient estimators for the model Xt = σWt (with

no perturbing term Y ).

Remark 2. To put these estimators in use we would need to numerically compute the function

ΨG,∆,β,k(u, v, 0), for a single value of v (either 1 or 1/Sn(G)), and all values of u (in principle).

Except in special situations (see for instance Section 6), there is no closed form for this function,

and we have to resort to numerical integration or to Monte–Carlo techniques. For this it is of course

helpful to have a closed form for k (or rather for the truncated kn). In general, this is not the case for

the function k = hβ (the optimal choice), unless β = 2.

Remark 3. As an example of function k, we can take k(x) = |x|r, for some r > 0 when β = 2 and

r ∈ (0, β/2) otherwise (when β = 2 and r = 2 this is the optimal choice since h2(x) = −x2): the

function ΨG,∆n,β,kn is still not explicit, but it is easily approximated by Monte–Carlo techniques, at

last when Yt can be simulated, or it may be available in closed form for some common distributions of

Y . We will do that in some detail in Section 7. In any event, the limiting variance is easy to compute

from (41).

Remark 4. Another possibility is to use the empirical characteristic function of the sampled incre-

ments, which leads to an closed form expression for ΨG,∆n,β,kn. This will be done in Section 6.

4.3. Some preliminaries. Here we gather some results from [2], and also about the functions of

(31), which will be used to obtain the previous theorem and for further results as well. First we recall

Lemma 2 of [2]: for any φ ∈ Φ, and with the notation (30), we have for ∆ ≤ 1 and α ≤ β and K ≥ 0
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and some constant C = Cα depending on α only,

(42) G ∈ G(φ, α), |g(x)| ≤ K(1 ∧ |x|) =⇒ E(|g(Z∆(α)|) ≤ CK∆
2(β−α)
β(2+α)φα(∆

2+β
β(2+α) ).

In fact the proof of this result also works when φ(x) = ζ for all x (with φα substituted with a

constant), thus giving

(43) G ∈ G(ζ, α), |g(x)| ≤ K(1 ∧ |x|) =⇒ E(|g(Z∆(α)|) ≤ CKζ∆
2(β−α)
β(2+α) .

This is not enough for our purposes, at least in the semiparametric situation, and we will need

also the next lemma about symmetrical measures:

Lemma 5. If ∆ ≤ 1 and α ≤ β and K ≥ 0, we have for some constant C depending on α only:

(44) G ∈ G′
(ζ, α), |g(x)| ≤ K(1 ∧ |x|2) =⇒ E(|g(Z∆(α)|) ≤ CKζ∆

β−α
β .

Proof. It is similar to the proof of Lemma 2 of [2]. Taking η > 0, we set Y ′′
t =

∑
s≤t ∆Ys1{|∆Ys|>η} and

Y ′ = Y −Y ′′ and if G ∈ G ′
(ζ, α) then Y is symmetrical and thus we have (47) of the afore–mentioned

proof (with φα substituted with a constant proportional to ζ), that is

E(|Y ′
∆|2) ≤ Cζ∆η2−α

for a constant C depending on α only. We also have Z∆(α) = ∆−1/βY∆, hence |g(Zδ(α))| ≤
K∆−2/β|Y ′

∆|2 on the set {Y ′′
∆ = 0}, whose probability is smaller than Cζ∆/ηα. Since |g| ≤ K,

we deduce

E(|g(Z∆(α))|) ≤ CKζ
(
∆η−α + ∆1−2/βη2−α

)
.

Then take η = ∆1/β to obtain the result.

Next, as soon as the function k satisfies the first half of (35) with some γ ≥ 0 which has γ < β

whenever β < 2, we set for u > 0 and z ∈ R:

(45) Ψk(u, z) =

∫
hβ(x)k(ux+ z) dx =

1

u

∫
hβ

(x
u

)
k(x+ z) dx =

1

u

∫
hβ

(
x− z

u

)
k(x) dx.

(so Ψk(u, z) = ΨG,∆,α,k(u, 0, z), which depends neither on G, nor on ∆, nor on α).
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Lemma 6. a) Let k satisfy the first half of (35) with some γ ≥ 0 which has γ < β whenever β < 2.

Then Ψk is C∞ on (0,∞) ×R. If further γ > 0 and ν ∈ (0,∞) and kν(x) = k(x)1{|k(x)|≤ν}, then for

all K > 0 there exists MK,k such that

|z| ≤ K, ν ≥MK,k =⇒(46)

∣∣∣∣
∂j+l

∂uj ∂zl
Ψk(u, z) −

∂j+l

∂uj ∂zl
Ψkν (u, z)

∣∣∣∣ ≤




Cj,l,k,K uβ−j ν1−(l+β)/γ if β < 2

Cj,l,k,K uj+l+γ−1 e−ν1/γ/u if β = 2.

b) If k is bounded, then for all η ∈ (0, 1) we have

(47) η ≤ u ≤ 1/η =⇒
∣∣∣∣
∂j+l

∂uj ∂zl
Ψk(u, z)

∣∣∣∣ ≤ Cl,j,η ‖k‖.

Proof. (a) If l ∈ N , the jth derivative of u 7→ (−1)lh
(l)
β (x/u)/ul+1 takes the form hl,j(x/u)/u

j+l+1

for a function hl,j satisfying

(48) |hl,j(x)| ≤




Cj,l/(1 + |x|1+l+β) if β < 2

Cj,l(1 + |x|2j+2l) e−x2/2 if β = 2.

In particular the estimate for β < 2 above also holds for β = 2, and further hl,j is differentiable and,

for all β ∈ (0, 2],

(49) |h′l,j(x)| ≤
Cj,l

1 + |x|2+l+β
.

Therefore we easily deduce from (45) that Ψk is C∞, with (by differentiating l times the last term

in (45), then j times the analogue of the third term with h
(l)
β instead of hβ):

(50)
∂j+l

∂uj ∂zl
Ψk(u, z) =

1

uj+l+1

∫
hl,j(x/u) k(x+ z) dx =

1

uj+l

∫
hl,j(x) k(ux+ z) dx.

In particular, for some εk > 0 depending on the function k, we have

∣∣∣∣
∂j+l

∂uj ∂zl
Ψk(u, z) −

∂j+l

∂uj ∂zl
Ψkν (u, z)

∣∣∣∣ ≤
1

uj+l+1

∫ ∣∣k(x+ z) − kν(x+ z)
∣∣hl,j(x/u) dx

≤ Ck

uj+l+1

∫

{1+|x+z|γ>νεk}
(1 + |x+ z|γ) hl,j(x/u) dx.

Then a simple computation, using (48), gives us (46).

(b) When k is bounded, (48) and (50) immediately yield (47).
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Finally we give estimates for the difference ΨG,∆,α,k and Ψk.

Lemma 7. If kis a bounded function, ΨG,∆,α,k(u, v, z) is C∞ in (u, z), and for any η ∈ (0, 1) we have

(51) η ≤ u ≤ 1/η =⇒
∣∣∣∣
∂j+l

∂uj ∂zl
ΨG,∆,α,k(u, v, z)

∣∣∣∣ ≤ Cl,j,η
‖k‖

1 + |z|l+β
.

Moreover, for all η ∈ (0, 1) we have the following, for all ∆ ≤ 1 and z ∈ R and u ∈ [η, 1/η] and

v ∈ (0, 1/η]:

(i) If G ∈ G(φ, α) (resp. G ∈ G(ζ, α)), then with φα given by (30) (resp. φα ≡ ζ):

(52)

∣∣∣∣
∂j

∂uj
ΨG,∆,α,k(u, v, z) −

∂j

∂uj
Ψk(u, 0)

∣∣∣∣ ≤ Cj,η ‖k‖
(
|z| + ∆

2(β−α)
β(2+α)φα(∆

2+β
β(2+α) )

)
,

(ii) If G ∈ G ′
(ζ, α), then

(53)

∣∣∣∣
∂j

∂uj
ΨG,∆,α,k(u, v, z) −

∂j

∂uj
Ψk(u, 0)

∣∣∣∣ ≤ Cj,η ‖k‖
(
|z| + ζ∆

β−α
β

)
,

Proof. Observe that ΨG,∆,α,k(u, v, z) =
∫
G′

∆,α(dw) Ψk(u, vw + z). Then by (47), ΨG,∆,α,k is C∞ in

(u, z), with

(54)
∂j+l

∂uj ∂zl
ΨG,∆,α,k(u, v, z) =

∫
G′

∆,α(dw)
∂j+l

∂uj ∂zl
Ψk(u, vw + z),

and for any η ∈ (0, 1) we have (51).

Next we prove (i). (49) yields

(55) |y| ≤ 1 =⇒ |h0,j(x+ y) − h0,j(x)| ≤ Cj,m
|y|

1 + |x|2+β
.

Recalling (50) and (54), we have

(56)
∂j

∂uj
ΨG,∆,α,k(u, v, z) −

∂j

∂uj
Ψk(u, z) =

∫
G′

∆,α(dw) g(w),

where

g(w) =
∂j

∂uj
Ψk(u, vw + z) − ∂j

∂uj
Ψk(u, z)

=
1

uj

∫
h0,j(x) (k(ux+ vw + z) − k(ux+ z)) dx

=
1

uj

∫ (
h0,j

(
x− vw

u

)
− h0,j(x)

)
k(ux+ z) dx ,
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for u, v, z, j fixed. Let η ∈ (0, 1), and suppose that η ≤ u ≤ 1/η and that v ≤ 1/η. If |w| ≤ 1 (55)

obviously yields |g(w)| ≤ Cj,η ‖k‖ |w|, whereas (47) yields |g(w)| ≤ Cj,η ‖k‖ always: so we have

|g(w)| ≤ Cj,η ‖k‖(|w|∧ 1), and in view of (56) we readily deduce from (42) if G ∈ G(φ, α) and (43)

if G ∈ G(ζ, α) (then φα ≡ ζ), then

(57)

∣∣∣∣
∂j

∂uj
ΨG,∆,α,k(u, v, z) −

∂j

∂uj
Ψk(u, z)

∣∣∣∣ ≤ Cj,η ‖k‖ ∆
2(β−α)
β(2+α)φα(∆

2+β
β(2+α) ).

Moreover (47) yields
∣∣∣ ∂j

∂uj Ψk(u, z) − ∂j

∂uj Ψk(u, 0)
∣∣∣ ≤ Cj,η ‖k‖ |z|, so putting all these together gives

(52).

Finally we prove (ii). The function h0,j is C∞ and all its derivatives satisfy the estimates (48), and

in particular H(x) = supy∈[x−1/η2,x+1/η2] |h′′0,j(y)| is integrable, as well as h′0,j . Now we have

(58) |w| ≤ 1 ⇒
∣∣∣h0,j

(
x− vw

u

)
− h0,j(x) − h′0,j(x)

vw

u

∣∣∣ ≤ Cj,ηw
2H(x)

as soon as v < 1/η and η ≤ u ≤ 1/η. Therefore we can write g = g1 + g2, where

g1(w) =
vw

uj+1
1{|w|≤1}

∫
h′0,j(x)k(ux + z)dx,

g2(w) = g(w)1{|w|>1} + +1{|w|≤1}

∫ (
h0,j

(
x− vw

u

)
− h0,j(x) − h′0,j(x)

vw

u

)
k(ux+ z)dx.

On the one hand, if G ∈ G ′
(ζ, α) then G′

∆,α is symmetrical about 0, hence
∫
g1(w)G′

∆,α(dw) = 0

because g2 is bounded and odd. On the other hand, (58) plus the integrability of H and the fact that

|g(w)| ≤ Cj,η‖k‖ yield |g2(w)| ≤ Cj,η‖k‖(w2
∧

1). Hence, using Lemma 5 we get instead of (57) that

(59)

∣∣∣∣
∂j

∂uj
ΨG,∆,α,k(u, v, z) −

∂j

∂uj
Ψk(u, z)

∣∣∣∣ ≤ Cj,η ‖k‖ ζ∆
β−α

β ,

and we conclude (53) as previously.

4.4. Proof of Theorem 3. We start by proving (b). With the notation H = h̆β/hβ , we observe

that in addition to (41), we have

I(k) = E(k(W1)H(W1)), I(β) = E(H(W1)
2).

An integration by parts yields E(H(W1)) = 0, so J(k) = E(k′(W1)
2) and I(k) = E(k′(W1)H(W1))

if k′(x) = k(x) − E(k(W1)). The desired inequality, which is I(k)2 ≤ J(k)I(β), follows from the

Cauchy–Schwarz inequality. If k = hβ we also have k = 1 + H, so this inequality is obviously an

equality.
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For (a), and since pn ∼ n, we apply Theorem 2–(b) with χn
i given by (3) and thus Pn,σ = Pσ,G.

The first step consists in proving (A1) for Sn = Sn(G). This amounts to the following lemma, where

σn → σ > 0 and Pn = Pσn,G:

Lemma 8. The sequence Sn converges to σ in probability.

Proof. By (42) the variables Zn
∆n

(β) associated with the law Gn converge in law to 0 (because

φβ(x) → as x→ 0). The variables χ′n
i , which equal σnW1 + Zn

∆n
(β) in law, converge in law to σW1.

Hence γn := Pn(|χ′n
i | > 1) → ψ(σ). If ζn

i = 1{|χ′n
i |>1}, (22) applied with qn = mn yields Vn

Pσ,G−→ ψ(σ).

Since ψ−1 is C∞ and strictly monotone, the result readily follows.

Next we set Qn = 0, so (A2) is satisfied, and

fn,s,q(x) = kn

(
∆

−1/β
n (x− b′(G,β)∆n))

s

)
, Hn,s(u) = ΨG,∆n,β,kn

(
u

s
,
1

s
, 0

)
.

Upon comparing (39) and (40) with (19) and (20), we see that σ̂n(G,φ, k) = σ̂n(Sn, Qn). Therefore

it remains to prove (B1)–(B6) with a sequence wn satisfying wn/
√
pn → ∞, and that

(60) Ξ2σ) = σ2J(k)/I(k)2.

Observe that under Pσ,G the variables χn
i have the same law as σW1 + Z∆n(β). Then (21) gives

Fn,s,q(σ) = Hn,s(σ). It follows that (B6) holds with wn arbitrarily large, while (B2) follows from (54).

If k is bounded, hence kn = k, we have ‖fn,s‖ ≤ ‖k‖ and (B1) is obvious; further, (52) with α = β

and kr yields

j = 0, 1, r = 1, 2, η ≤ u ≤ 1
η , v ≤ 1

η =⇒∣∣∣ ∂j

∂uj ΨG,∆n,β,kr(u, v, 0) − ∂j

∂uj Ψkr(u, 0)
∣∣∣ ≤ Cη,kφβ(∆

1/β
n ),

which gives (B3) with F s(u) = Ψk(u/s, 0) and (B5) with F (2)(u) = Ψk2(1, 0). On the other hand

when k is unbounded we have ‖fn,s‖ ≤ νn and thus (B1) follows from (38); further, νn → ∞ and we

can combine (52) with (46) to get for all n large enough:

j = 0, 1, r = 1, 2, η ≤ u ≤ 1
η , v ≤ 1

η =⇒
∣∣∣ ∂j

∂uj ΨG,∆n,β,kr
n
(u, v, 0) − ∂j

∂uj Ψkr(u, 0)
∣∣∣ ≤




Cη,k

(
νr

nφβ(∆
1/β
n ) + 1

ν
β/rγ−1
n

)
if β < 2

Cη,k

(
νr

nφ2(∆
1/2
n ) + e−ην

1/rγ
n

)
if β = 2.

Then, in view of (38) and 2γ < β when β < 2, we again deduce (B3) with Fs(u) = Ψk(u/s, 0) and

(B5) with F (2)(u) = Ψk2(1, 0).
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Since h0,1 = −h̆β , we deduce that F
′
σ(σ) = Ψ′

k(1, 0)/σ = −I(k)/σ (recall (50) and the second part

of (35)), hence (B4) holds. We also have F σ(σ) = Ψk(1, 0) = E(k(W1)) and F (2)(σ) = E(k(W1)
2),

hence J(k) = F (2)(σ) − Fσ(σ)2 and (60) follows.

5. Estimation of σ in the semiparametric case. Perhaps more realistic than the situation

of Theorem 3 is the case where we want to estimate σ, but the measure G is unknown, although we

know that it belongs to the class Gβ . This is a semiparametric situation: parametric as far as σWt

is concerned, but nonparametric as far as Yt is concerned. Because G is unknown, the estimating

equations in this case must be based on the law of W alone. The challenge is then to achieve rate

efficiency despite the lack of information about G.

5.1. Construction of the estimators. As said before, we cannot hope for estimators σ̂n that behave

nicely for all G ∈ Gβ at once. Therefore we suppose that G is unknown, but is known to belong to

G(ζ, α) for some α < β and some ζ > 0: we refer to this as Case 1. We also consider a more restrictive

situation, called Case 2, for which G is known to belong to the set G′
(ζ, α).

The construction looks pretty much like the previous one, except that besides our preliminary

estimator for σ we need to produce an estimator Bn for the drift b′(G,α) in order to remove it. In

Case 2, since we know that b′(G,α) = 0 we just set

(61) Bn = 0.

In Case 1 we set mn = [δn] for some arbitrary δ ∈ (0, 1/2) ([x] denotes the integer part of x), so that

mn ∼ δn. Then we pick a C∞ and strictly increasing and odd function θ, with bounded derivative

and θ(0) = 0 and θ(±∞) = ±1 (for example θ(x) = 2
π arctan(x) ), and set for u ∈ R

(62) Rn(u) =
1

mn

mn∑

i=1

θ(∆−1/β
n (χn

i − u)).

Since u 7→ Rn(u) is continuous and decreases strictly from +1 to −1 as u goes from −∞ to +∞, we

can set

(63) Bn = inf(u : Rn(u) = 0) (= the only root of Rn(.) = 0 ).

Next we construct our preliminary estimator for σ. In Case 1, and with mn as above, we set

qn = mn and pn = n − 2mn. In Case 2, we choose a sequence mn satisfying (33) and then we set
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qn = 0 and pn = n−mn. Then in both cases we set

(64) Vn =
1

mn

qn+mn∑

i=qn+1

1{|∆−1/β
n (χn

i −Bn)|>1}

and

(65) Sn =





ψ−1(Vn) if 0 < Vn < 1

1 otherwise.

To form estimating equations for σ, we choose a function k satisfying (35) with γ = 0 (that is, k

is bounded and I(k) 6= 0). With Ψk given by (45) we define the estimating functions (for u > 0)

(66) Un(u) =
1

pn

n∑

i=qn+mn+1

k

(
∆

−1/β
n (χn

i −Bn)

Sn

)
− Ψk

(
u

Sn
, 0

)
,

and the final estimators

(67) σ̂n(k) =





the u with Un(u) = 0 which is closest to Sn if it exists

1 otherwise.

Note that, unlike the centering ΨG,∆n,β,kn

(
u

Sn(G) ,
1

Sn(G) , 0
)

utilized in the parametric case (recall

(39)), the centering we now use, based on Ψk

(
u

Sn
, 0
)

in (66) does not involve the measure G. Indeed,

these estimators depend explicitly on β and k, but on nothing else, and in particular not on G.

Observe that they are much easier to compute than the estimator of the parametric case. This is

particularly true when k(x) = cos(wx) for some w > 0, since then Ψk(u, 0) = e−wβuβ/2 is invertible

in u, and we will detail this example in the next section, but it is also true in general: first because

they depend only on the function Ψk(u, .) which is much simpler than the function ΨG,∆,β,k accruing

in the estimation in the parametric case, second because as a rule u 7→ Ψk(u, 0) is at least “locally

invertible” around u = 1.

The estimators (66) have formally the same expression in both Case 1 and Case 2, but the prelim-

inary estimators Bn and Sn disagree for the two cases and also pn ∼ (1− 2δ)n in Case 1 and pn ∼ n

in Case 2, a difference which is important for the asymptotic variance of the estimators. So we will

write “the Case 1 version” or “the Case 2 version” of the estimator.
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5.2. Asymptotic distribution in the semiparametric case. Recall the notation I(k) and J(k) and

Σ2(k) of (35) and (41), and let us add some other:

(68) ρ(α, β) =
2(β − α)

β(2 + α)
, ρ′(α, β) =

β − α

β
.

Observe that ρ(α, β) < ρ′(α, β) always.

Theorem 4. Let α ∈ (0, β) and ζ > 0, and k be a bounded function with I(k) 6= 0, and ε ∈ (0, 1).

Take the Case 1 version of the estimators.

a) If

(69) sup
n

n∆2ρ(α,β)
n → 0,

the sequence
√
n (σ̂n(k) − σ) converges in law to N(0, σ2Σ2(k)/(1 − 2δ)) under Pσ,G, uniformly in

n ≥ 1 and in σ ∈ [ε, 1/ε] and in G ∈ G(ζ, α).

b) In general, the variables (
√
n
∧

∆
−ρ(α,β)
n )(σ̂n(k)−σ) are tight under Pσ,G, uniformly in σ ∈ [ε, 1/ε]

and in G ∈ G(ζ, α) and n.

Theorem 5. Let α ∈ (0, β) and ζ > 0, and k be a bounded function with I(k) 6= 0, and ε ∈ (0, 1).

Take the Case 2 version of the estimators.

a) If

(70) sup
n

n∆2ρ′(α,β)
n → 0,

the sequence
√
n (σ̂n(k) − σ) converges in law to N(0, σ2Σ2(k)) under Pσ,G, uniformly in n ≥ 1 and

in σ ∈ [ε, 1/ε] and in G ∈ G′
(ζ, α).

b) In general, the variables (
√
n
∧

∆
−ρ′(α,β)
n )(σ̂n(k) − σ) are tight under Pσ,G, uniformly in σ ∈

[ε, 1/ε] and in G ∈ G ′
(ζ, α) and n.

The optimal choice of the function k has been discussed after Theorem 3: when β < 2, we have

asymptotic efficiency in the situation of the second theorem above, provided we take k = hβ, and

despite the fact that we are in a semiparametric setting. When β = 2 the choice k = hβ, that is

k(x) = −x2, is not permitted in the above theorem, but with k(x) = −x21{|x|≤A} one achieves an

asymptotic variance which approaches the optimal variance when A goes to infinity: see Section 7.

Also, some other comments are in order here:
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Remark 5. When α increases, then ρ(α, β) and ρ′(α, β) decrease, so (69) and (70) are more difficult

to obtain and the “rate” in (b) of the two theorems above gets worse, as it should be.

Remark 6. In connection with what precedes, one should mention that when (69) fails the actual

rate of convergence (that is, a sequence δn such that the law of δn((σ̂n(k) − σ) converges to a non–

degenerate limit, or at least admits among its weak limiting measures a non–degenerate one) is not

only unknown, but actually depends on the true underlying (unknown) measure G and in particular

on the minimal index α′ such that G ∈ Gα′ (we know that α′ ≤ α, but the inequality could be strict).

In other words, the rate could be for example
√
n for a particular G, even without (69).

Remark 7. However we will see in the examples below (see Section 9 in particular) that (70) is

necessary for having convergence to a centered distribution with rate
√
n and also that the rate in (b)

of Theorem 5 is sharp, if we want to have a result which holds uniformly in G ∈ G′
(ζ, α). We do not

know whether (69) or the rate in (b) are optimal for Theorem 4.

Remark 8. Of course it might exist other – thoroughly different – estimators behaving better than the

σ̂n(k)’s, and perhaps having a better rate than in (b) of these theorems (the rate cannot be improved

in (a), of course). We think this doubtful, however.

Remark 9. The most interesting situation is when we have asymptotic efficiency (this happens when

G is symmetrical), or at least “rate–efficiency” (that is of order
√
n). We have this under (69) or

(70), which mean that ∆n goes to 0 fast enough. Of course having ∆n = o(1/n) is of no practical use.

When ∆n = 1/n, then rate–efficiency is satisfied as soon as α ≤ 2β/(4 + β) for the first theorem and

α ≤ β/2 for the second one. If Y is a compound Poisson process with drift, rate efficiency holds as

soon as n∆2
n is bounded, whatever β ∈ (0, 2] is (take α = 0).

Remark 10. When we do not know that G is symmetrical we cannot achieve asymptotic efficiency

even under (69). However the asymptotic variances in the two theorems above are the same, up to

the factor 1 − 2δ: hence by choosing δ small one can approach asymptotic efficiency as much as one

wants to.

5.3. Proof of Theorems 4 and 5. As above, we refer to Theorem 4 as to Case 1, and to Theorem

5 as to Case 2. The proof goes through several steps.
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1) We fix α ∈ (0, β) and ζ > 0. The sequence ∆n is fixed, and we set

(71) ρ =





ρ(α, β) in Case 1

ρ′(α, β) in Case 2,

λn =
√
n
∧ 1

∆ρ
n
.

In order to get tightness or convergence, “uniform” in σ and in G is the relevant class, it is of course

enough to take a sequence σn → σ > 0 and a sequence Gn in G(ζ, α) (resp. G ′
(ζ, α)), and to prove

the tightness or convergence in law of the normalized estimation errors σ̂n − σn, under the measures

Pn = Pσn,Gn . Below we fix the sequences σn and Gn.

Finally, we denote by Zn := Zn
∆n

(α) the variable associated with the measure Gn by (28), and we

set b′n = ∆
1−1/β
n b′(Gn, α), which vanishes in Case 2.

2) Let Qn = λnB
′
n, where B′

n = (∆
−1/β
n Bn − b′n). We want to prove that the sequence Qn satisfies

(A2). This is obvious in Case 2 because Qn = 0. So we suppose that we are in Case 1. Let us introduce

some notation: with j = 1, 2 and θ′ being the derivative of θ, we put

(72) Γj(σ) = E(θ(σW1)
j), Γ′

1(σ) = E(θ′(σW1))

(Γ′
1 is of course the derivative of Γ1).

Observe that B′
n is the only root of Rn(.) = 0, where

Rn(u) = Rn(∆1/β
n (u+ b′n)) =

1

mn

mn∑

i=1

ζn
i (u), with ζn

i (u) = θ(∆−1/β
n χn

i − u− b′n).

The ζn
i (u)’s for i ≥ 1 are i.i.d. with the same law (under Pn) than the variable θ(σnW1 + Zn − u)

(we have used here the scaling property of W ).

The functions γn,j(u) = En((ζn
i (u)j), for j ∈ N , are C∞ and bounded as well as their derivatives,

uniformly in u and n, and we can interchange derivation and expectation. So we can apply (43) to

the functions gn,j,p(w) =
∫
hβ(x)(∂pθj/∂up)(σnx + w − u) − (∂pθj/∂up)(σnx − u)) dx, to get for

p, j ∈ N :

(73)

∣∣∣∣
∂p

∂up
γn,j(u) − Γj,p(σn, u)

∣∣∣∣ ≤ Cp,jζ∆
ρ
n, where Γjp(v, u) = (−1)p

∫
∂pθj

∂up
(vx− u)hβ(x)dx.

In particular Γj,0(σ, 0) = Γj(σ) for j = 1, 2 and Γ1,1(σn, 0) = Γ′
1(σ) with the notation (72).

Now, Rn also is C∞, bounded as well as all its derivatives, uniformly in n, u and ω. So an

application of Lemma 1 and the continuity of the functions Γj,p readily yield

(74)
∂p

∂up
Rn(u) → Γ1,p(σ, u) locally uniformly in u, in Pn–probability,
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(75) ηn :=
√
mn (Rn(0) − γn,1(0))

L(Pn)−→ N (0,Γ2(σ) − Γ1(σ)2)).

The properties of θ imply that u 7→ Γ1,0(σ, .) decreases strictly and vanishes at 0; since by con-

struction Rn(B′
n) = 0, we deduce from (74) for p = 0 that B′

n
Pn−→ 0. Another application of (74)

yields that R′
n(B′′

n)
Pn−→ Γ′

1(σ) for any sequence B′′
n of random variable going to 0 in Pn–probability.

Since Rn(B′
n) = 0 we have

(76) R′
n(B′′

n) B′
n = −Rn(0) = − ηn√

mn
− γn,1(0)

for some random variable B′′
n satisfying |B′′

n| ≤ |B′
n|. Moreover Γ1,0(0) = 0, due to the fact that θ is

odd, hence |γn,1(0)| ≤ Cζ∆ρ
n by (73). Since R′

n(B′′
n)

Pn−→ Γ′
1(σ) 6= 0, we deduce that Qn = λnB

′
n

satisfies (A2) from (75) (recall mn ∼ δn here and (71)).

3) Now we proceed to proving the consistency of the preliminary estimators Sn. In Case 2 the

variables Vn and Sn are the variables Vn(Gn) and Sn(Gn) of (29) and (34) (they do not depend on

Gn in fact), so the result follows from Lemma 8. In Case 1, set

Vn(v) =
1

mn

qn+mn∑

i=qn+1

1{|∆−1/β
n (χn

i −v)|>1}, δn(v) = Pn(|∆−1/β
n (χn

i − v)| > 1).

Then (22) yields

(77) Vn(vn) − δn(vn)
Pn−→ 0.

However, ∆
−1/β
n (ξn

i − vn) has the same distribution as σnW1 + Zn + b′n − ∆
−1/β
n vn, which by (42)

converges in law to σW1 as soon as b′n −∆
−1/β
n vn → 0. Since Bn and (Vn(v) : v ∈ R) are independent

and B′
n = ∆

−1/β
n Bn − b′n

Pn−→ 0 because Qn = λnB
′
n satisfies (A2) and λn → ∞, we deduce from

(77) that Vn = Vn(Bn)
Pn−→ ψ(σ). Then the consistency is proved like in the end of Lemma 8.

4) At this stage we will apply Theorem 2, with the variables (Sn, Qn) as above and the i.i.d.

variables (χn
qn+mn+i : 1 ≤ i ≤ pn). Observe that with the notation (20) and (67), we have σ̂′n(k) =

σ̂n(Sn, Qn). We have shown (A1) and (A2) in the two previous steps. Set

fn,s,q(x) = k

(
∆

−1/β
n x− b′n − q/λn

s

)
, Hn,s(u) = Ψk

(u
s
, 0
)
.
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Then (21) gives for r = 1, 2:

Fn,s,q(u) = ΨGn,∆n,α,k

(
u

s
,
1

s
,− q

sλn

)
, F (2)

n,s,q(u) = ΨGn,∆n,α,k2

(
u

s
,
1

s
,− q

sλn

)
.

Let us check (B1)–(B6). Since k is bounded, (B1) is obvious, whereas (B2) follows from Lemma

6. Next, if we set F s(u) = Ψk(u/s, 0) and F (2)(u) = Ψk2(1, 0), Lemma 7 yields for j = 0, 1 and

η ∈ (0, 1) and s, u ∈ [η, 1/η] and |q| ≤ 1/η:

∣∣∣∣
∂j

∂uj
Hn,s(u) −

∂j

∂uj
F s(u)

∣∣∣∣ ≤ Ck,ηζ∆
ρ
n,

∣∣∣F (2)
n,s,q(u) − F (2)

s (u)
∣∣∣ ≤ Ck,η

(
ζ∆ρ

n +
1

λn

)
,

|Fn,s,q(u) −Hn,s(u)| ≤ Ck,η

(
ζ∆ρ

n +
1

λn

)
.

These give (B3) and (B5), and also (B6) with wn = λn. Finally (B4) holds because F
′
s(s) =

ψ′
k(1, 0)/s = −I(k)/s, and (60) holds here as well as in the previous section.

We can thus apply Theorem 2: the sequence λn(σ̂n − σn) is tight under Pn in all cases, and this

gives the two claims (b). Under (69) or (70) we have λn/
√
n → ∞, hence λn

√
pn → ∞ as well, so

√
pn (σ̂n − σn) converges in law under Pn to a centered Gaussian variable with variance

Ξ2(σ) =
F (2)(σ) − F σ(σ)2

F σ(σ)2
,

which in view of F σ(σ)2 = J(k)/σ2 equals σ2Σ2(k): since pn ∼ (1 − 2δ)n in Case 1 and pn ∼ n in

Case 2, we obtain the two claims (a).

6. Example: The empirical characteristic function. We now turn to specific estimators.

To each specification of an admissible function k (in the sense of satisfying the assumptions of the

above results), corresponds an estimator for σ. For instance, one way of estimating a parameter for

i.i.d. variables Xj is to use the empirical characteristic function, that is
∑

j∈J exp(iwXj) for some

given w (or several w’s at once) and where J is the index set. If the Xj ’s are symmetrical, one should

in fact look at the real part only, that is
∑

j∈J cos(wXj). Other estimators based on the empirical

characteristic function in related contexts are given by e.g., [9], [3], [4], Chapter 4 in [11] and [10].

In the parametric situation, at stage n the variable Xj is χ′n
j (G) and J = {mn + 1, . . . , n}. Those

variables are “almost” symmetrical (the leading term W coming in them is symmetrical). So we



26 YACINE AIT-SAHALIA AND JEAN JACOD

consider for any given w > 0 the variable

(78) Vn(w) =
1

pn

n∑

i=mn+1

cos

(
wχ′n

i (G)

Sn(G)

)
,

where Sn(G) is the preliminary estimator. In other words, if we take k(x) = cos(wx) (a bounded

function, so kn = k in (37)), the estimating function of (39) is

(79) Un,G,β,k(u) = Vn(w) − ΨG,∆n,β,k

(
u

Sn(G)
,

1

Sn(G)
, 0

)
.

Furthermore, this class of functions k is one for which the function ΨG,∆,β,k is explicit, at least

when the exponent in the Lévy–Khintchine formula for Y is explicitly known. More precisely, let us

write ρ(u) for the exponent in (5), and recall that E(exp iuYt) = exp tρ(u). Then obviously when

g(x) = eiwx we have

ΨG,∆,β,g(u, v, 0) = exp

(
−w

βuβ

2
+ ∆ρ(wv∆−1/β) − iwvb′(G,α)∆1−1/α

)
.

Taking the real part, and using (28) and the fact that G ∈ Gβ, we see that for k(x) = cos(wx) we

have

(80) ΨG,∆,β,k(u, v, 0) = eA∆(u,v) cos(B∆(u, v)),

where

(81) A∆(u, v) = −w
βuβ

2
+

∫
F (dx)

(
cos(wv∆1−1/βx) − 1

)
,

(82) B∆(u, v) =





∫
F (dx) sin(wv∆1−1/βx), if β < 1

∫
F (dx)

(
sin(wv∆1−1/βx) − wv∆1−1/βx1{|x|≤1}

)
if β ≥ 1.

So we can inject these formulas directly into (79).

As for the asymptotic variance in Theorem 3, it is even simpler. Indeed, we have here

(83) Ψk(u, 0) = e−wβuβ/2.

Therefore I(k) = −Ψ′
k(1, 0) = β wβ e−wβ/2/2 > 0 and J(k) = 1

2 (Ψk(2, 0) + 1) − ψk(1, 0)
2 =

1
2

(
1 + e−(2w)β/2

)
− e−wβ

, and thus

(84) Σ2(k) = 2
1 + e−(2w)β/2 − 2e−wβ

β2 w2β e−wβ
.
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When β < 2, it turns out that the minimal variance is achieved for some value w = wβ ∈ (0,∞),

whereas Σ2(k) tends to ∞ when w goes either to 0 or to ∞. In contrast, when β = 2 the variance

Σ2(k) goes to 1/2 as w → 0: recall once more that 1/2 is the efficient variance in that case.

For the semiparametric situation, things are even simpler. The estimating function of (66) becomes

(85) Un,G,β,k(u) = Vn(w) − Ψk

(
u

Sn
, 0

)
,

provided in (78) we sum over i ∈ {qn +mn + 1, . . . , n}. Moreover u 7→ Ψk(u, 0) is invertible, so the

estimator σ̂n(k) takes the simple explicit form

(86) σ̂n(k) = Sn
21/β

w


− log


 1

pn

n∑

i=qn+mn+1

cos

(
w∆

−1/β
n (χn

i −Bn)

Sn

)




1/β

if the argument of the logarithm is positive (otherwise, put for example σ̂n(k) = 1).

7. Example: Power and truncated power functions. Another natural choice for the func-

tion k is a power function, that is k(x) = |x|r, for some r > 0 when β = 2 and r ∈ (0, β/2)

otherwise (when β = 2 this is – in principle – optimal for r = 2). In general, the function ΨG,∆n,β,kn

is not explicit but can be numerically approximated via Monte–Carlo procedures for example. We

can also compute the limiting variance: with the notation mr = E(|W1|r) we get I(k) = −rmr and

J(k) = m2r −m2
r , hence

(87) Σ2(k) =
m2r −m2

r

r2m2
r

.

When β = 2 we have a closed expression for mr (see (95) below), and not surprisingly Σ2(k) achieves

its minimum, equal to 1/2, at r = 2: recall that 1/2 is the “efficient” variance in that case. When

β < 2 we have no explicit expression for these moments. However, Σ2(k) goes to ∞ when r increases

to β/2, and we conjecture that Σ2(k) is monotone increasing in r (this property holds at least when

β = 1); so one should take r as small as possible, although r = 0 is of course excluded.

In the semiparametric setting, the previous choice is not admissible, since k has to be bounded.

So we must “truncate” the argument, by using the following function k = kγ :

(88) kγ(x) = |x|r1{|x|≤γ}
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for some constant γ. The function Ψkγ (u, 0) = urE(|W1|r1{|W1|≤γ/u}) is invertible from a neighbor-

hood I of u = 1 onto some interval I ′, and we write Ψ−1
hγ

(v) for the inverse function at v ∈ I ′. Then

if Bn and Sn are the preliminary estimators, and if

(89) Vn(γ) =
1

pn∆
r/β
n

n∑

i=mn+1

|χn
i −Bn|r1{|χn

i |≤γ∆1/β},

the estimator σ̂n(kγ) is defined by

(90) σ̂n(kγ) = Sn Ψ−1
kγ

(
Vn(γSn)

Sr
n

)

if the argument of Ψ−1
kγ

above is in I ′, and σ̂n(kγ) = 1 (for example) otherwise. This is almost as

explicit as (86) is. Since kγ is even we again have J(kγ) = 0, whereas

(91) Σ2(kγ) =
Mγ,2r −M2

γ,r

(rMγ,r − 2hβ(γ)γr+1)2
, where Mγ,s = E(|W1|r1{|W1|≤γ}).

We can then try to minimize this variance, by appropriately choosing the two constants γ > 0 and

r > 0.

One could also use kγn , the rth power truncated at some level γn > 0 depending on n: our general

results do not apply, but similar results, with possibly other rates, should obviously apply. In fact, in

the next section we work out completely this kind of truncated power functions in a particular case,

to check that it is best (for the rate of convergence at least) to take a constant level γn = γ, as it is

implicitly proposed in the method previously developed.

8. Example: Brownian motion plus Gaussian compound Poisson process. In this sec-

tion, we present a fully worked out example, where W is Brownian motion and Y is a compound

Poisson process with Gaussian jumps, say N(0, η), and intensity of jumps given by some λ > 0. [1]

and [8] studied the estimation of the parameters of this model, using a variety of methods.

As usual, we are interested in estimating the parameter σ given the increments χn
i of Xt = σWt+Yt

(see (3)). We consider a number of estimating equations for this model, based on the power or

truncated power variations

(92) Vn(c, κ) =
1

pn∆
r/2
n

n∑

i=mn+1

|χn
i |r1{|χn

i |≤τ(∆n)},

for r ∈ (0, 2]. Here τ(∆) is the truncation rate, taken to be of the form τ(∆) = c∆1/2+κ with c a

constant and κ ∈ (−1/2,∞).
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Note that Vn above is exactly Vn(γ) of (89) with γ = ∆
−1/2
n τ(∆n) (here Y is symmetrical, so

Bn = 0). The associated estimator is then given by

(93) σ̂n = Sn H
−1
∆n

(
Vn(cSn, κ)

Sr
n

)

where H−1
∆ is the local inverse around 1 of the function H∆(u) = E(|uW∆|r1{|uW∆|≤τ(∆)}).

When c = ∞ we get the (non truncated) rth power variation. If c <∞ and κ = 0 this corresponds

to taking k = kc, as given by (88): we essentially eliminate from the sum above the increments in

which Y jumps. When κ > 0 we eliminate more increments, and fewer when κ < 0.

The expected values of the powers without truncation are given by

(94) E(|X∆|r) =

+∞∑

j=0

2r/2

√
πj!

Γ

(
1 + r

2

)
e−λ∆ (λ∆)j

(
σ2∆ + jη

)r/2
,

(95) E(|σW∆|r) =
2r/2

√
π

Γ

(
1 + r

2

)
σr∆r/2

With truncation at rate τ(∆), we get

E
(
|X∆|r1{|X∆|≤τ(∆)}

)
(96)

= e−λ∆
+∞∑

j=0

2r/2

√
πj!

(
Γ

(
1 + r

2

)
− Γ

(
1 + r

2
,

τ(∆)2

2 (σ2∆ + jη)

))
(λ∆)j

(
σ2∆ + jη

)r/2

where Γ(a, ·) denotes the incomplete Gamma function of order a, and

(97) E
(
|σW∆|r1{|σW∆|≤τ(∆)}

)
=

2r/2

√
π

(
Γ

(
1 + r

2

)
− Γ

(
1 + r

2
,
τ(∆)2

2σ2∆

))
σr∆r/2.

When r = 2, we have Γ (3/2) =
√
π/2 and Γ

(
3
2 , x
)

= e−x√x +
√
π Φ(

√
2x) where Φ denotes the

cdf of the N(0, 1) law. Similarly simpler expressions are also obtained in the case where r = 1, since

Γ (1) = 1 and Γ (1, x) = e−x.

As described above, in the semiparametric case where the distribution of Y is not known to the

statistician, we propose to use an approximate centering based on computing these expectations

assuming that X = σW only (i.e., as if there were no jumps) and we will study the behavior of this

estimator when Y is in fact a compound Poisson process. The effect of the misspecification error is to

bias the resulting estimator of σ. But, at the leading order in ∆, the expected values of the moments
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functions computed without jumps coincide with those computed under the correct specification.

Indeed, for X from (1), we have

E (|X∆|r) = E (|σW∆|r) + o(∆r/2)

E
(
|X∆|1{|X∆|≤τ(∆)}

)
= E

(
|σW∆|1{|σW∆|≤τ(∆)}

)
+ o(∆r/2),

with the second result following from

(98) Γ(a, x) =





Γ(a) + xa
(
− 1

a + x
1+a +O(x2)

)
near 0

e−xx−1+a
(
1 + a−1

x +O(x−2)
)

near + ∞.

As a result, the bias of the estimator of σ based on approximate centering will vanish asymptotically

in ∆ and we will have a result of the form

√
n∆v1

n (σ̂n − σ̄n) → N (0, v0)

where

σ̄n = σ + b0∆
b1
n + o(∆b1

n )

with b1 > 0. (If b1 = 0 for some choice of (r, κ, c) then the parameter σ is not identified by an

estimating function based on that combination.) Also, v1 = 0 corresponds to a rate of convergence

of the estimator of n1/2, and any value v1 > 0 corresponds to a slower than n1/2 rate of convergence.

We also note that when b1 > 0 the rate of convergence and asymptotic variance of the semipara-

metric estimator of σ are identical at the leading order in ∆n to the expressions one would obtain

in the fully parametric, correctly specified, case where centering of the estimating equation is done

with either (94) or (96) as appropriate, instead of the approximate centering using (95) or (97).

Centering using the latter is of course the only feasible estimator in the semiparametric case where

the distribution of Y is unknown.

In what follows, we use the explicitness of this model to fully characterize the asymptotic dis-

tribution of the semiparametric estimator of σ, i.e., (b0, b1, v0, v1) as functions of (r, κ, c) and the

parameters of the model (σ, λ, η).

8.1. Power variations without truncation. In that situation, we have for the asymptotic variance:

• When 0 < r < 1, we have v1 = 0 and v0 = 1
r2

(√
π

Γ( 1
2
+r)

Γ( 1+r
2 )

2 − 1

)
.
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• When r = 1, we have v1 = 0 and v0 = 1
2

(
(π − 2) σ2 + πλη

)
.

• When 1 < r < 2, we have v1 = r − 1 and v0 =
√

πσ2−2rληr

r2

Γ( 1
2
+r)

Γ( 1+r
2 )

2 .

As for the bias, when 0 < r < 2 we have b1 = 1 − r/2 and b0 = σ1−rληr/2

r .

Remark 11. The estimator based on power variations converges (not taking the bias into consider-

ation) at rate n1/2 only when r ≤ 1. When r > 1 the mixture of jumps and volatility slows down the

rate of convergence (v1 > 0). When r = 2, the parameter σ is simply not identified, as is obvious from

the fact that E(X2
∆) = (σ2 + λη)∆. This is also apparent here from the fact that b1 ↓ 0 as r ↑ 2, so

the bias no longer vanishes asymptotically. And the bias even worsens the rate, of course.

Remark 12. When r < 1, the asymptotic variance v0 is identical to the expression obtained without

jumps, as was the case when the log-likelihood score was used as an estimating equation. When r = 1,

the rate of convergence remains n1/2, but v0 is larger in the presence of jumps.

8.2. Power variations with ∆1/2 truncation. If we truncate the increments according to τ(∆) =

c∆1/2, then v1 = 0 for all values of r ∈ (0, 2] and

v0 =

2rσ4+2r

(√
π
(
Γ
(

1
2 + r

)
− Γ

(
1
2 + r, c2

2σ2

))
−
(
Γ
(

1+r
2

)
− Γ

(
1+r
2 , c2

2σ2

))2
)

(√
2c1+r exp

(
− c2

2σ2

)
− 2r/2rσ1+r

(
Γ
(

1+r
2

)
− Γ

(
1+r
2 , c2

2σ2

)))2

As for the bias, we have b1 = 1 and

b0 =
σλ
(
Γ
(

1+r
2

)
− Γ

(
1+r
2 , c2

2σ2

))

(
Γ
(

1+r
2

)
− Γ

(
1+r
2 , c2

2σ2

))
− 2

(
Γ
(

3+r
2

)
− Γ

(
3+r
2 , c2

2σ2

)) .

Remark 13. Truncating at rate ∆1/2 restores the convergence rate n1/2 for all values of r, (again,

regardless of the bias) and permits identification when r = 2. When 0 < r < 1 (where the rate n1/2

was already achieved without truncation), not truncating can lead to either a smaller or larger value

of v0 than truncating at rate n1/2, depending upon the values of (σ2, c).

Remark 14. The asymptotic variance v0 is identical to its expression when no jumps are present, as

it should be in view of our general results (as said before, this type of truncation leads to the estimators

studied in our general results). In all cases, the bias is smaller than when no truncation is applied.
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8.3. Power variations with slower than ∆1/2 truncation. If we now keep too many increments by

truncating according to τ(∆) = c∆1/2+κ, with −1/2 < κ < 0, then we have for r ∈ (0, 2] :

• When −3/(2 + 4r) < κ < 0, we have v1 = 0 and

v0 =
σ2

r2

(
√
π

Γ
(

1
2 + r

)

Γ
(

1+r
2

)2 − 1

)

• When κ = −3/(2 + 4r), we have v1 = 0 and

v0 =
21/2−rc1+2r√πλσ2−2r

r2 (1 + 2r) η1/2Γ
(

1+r
2

)2 +
σ2

r2

(
√
π

Γ
(

1
2 + r

)

Γ
(

1+r
2

)2 − 1

)

• When −1/2 < κ < −3/(2 + 4r), we have v1 = −κ− 2rκ− 3/2 > 0 and

v0 =
21/2−rc1+2r√πλσ2−2r

r2 (1 + 2r) η1/2Γ
(

1+r
2

)2 .

As for the bias, we have:

• When −1/(2 + 2r) < κ < 0, we have b1 = 1 and b0 = −λσ
r

• When κ = −1/(2 + 2r), we have b1 = 1 and b0 = λσ
(1+r)

(
21/2−r/2c1+r

r
√

ησr Γ( 1+r
2 )

− 1 − 1
r

)

• When −1/2 < κ < −1/(2 + 2r), we have b1 = 3/2 + κ+ rκ > 0 and b0 = 21/2−r/2c1+rλσ1−r

r (1+r)
√

ηΓ( 1+r
2 )

.

Remark 15. When 0 < r < 1, we are automatically in the situation where κ > −3/(2+4r), and hence

keeping more than O(∆
1/2
n ) increments results in the convergence rate n1/2 and the same asymptotic

variance v0 as when keeping all increments (i.e., not truncating at all). When 1 < r < 2, however,

it is possible to restore the convergence rate n1/2 (compared to not truncating) by keeping more than

O(∆
1/2
n ) increments, but still “not too many” of them (−3/(2 + 4r) ≤ κ < 0) beyond that; but even

keeping a larger fraction of the increments (−1/2 < κ < −3/(2+4r)) results in an improvement over

keeping all increments since 3/2 − κ − 2rκ < r − 1 so that the rate of convergence of σ̂n, although

slower than n1/2, is nonetheless faster than n1/2∆
(r−1)/2
n .

Remark 16. The expressions for κ < 0 do not converge to those with O(∆
1/2
n ) truncation as κ ↑ 0

because of the essential singularity of the incomplete Γ function near infinity, given in (98): when

τ(∆) = c∆1/2+κ then Γ((1+r)/2, ·) is evaluated at τ(∆)2/(2σ2∆) = c2∆2κ/(2σ2) and for fixed κ < 0,

terms proportional to exp(−c2∆2κ/(2σ2)) are negligible in the Taylor series in ∆ of v0 and b0. This

is not the case when κ = 0 however.
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Remark 17. As for the bias, keeping “too many” but not all increments (−1/2 < κ < −1/(2 + 2r))

leads to a smaller bias than keeping all increments, since 3/2 + κ+ rκ > 1− r/2, but to a larger bias

than keeping just the right amount since 3/2 + κ+ rκ < 1.

8.4. Power variations with faster than ∆1/2 truncation. Finally, if we keep too few increments by

truncating according to c∆1/2+κ, with κ > 0, then v1 = κ for all values of r ∈ (0, 2] and

v0 =

√
2π (1 + r)2 σ3

2c (1 + 2 r)

As for the bias, we have b1 = 1 and b0 = σλ.

Remark 18. Truncating at a rate faster than ∆1/2 deteriorates the convergence rate of the estimator

from n1/2 to n1/2∆
κ/2
n : while we successfully eliminate the impact of jumps on the estimator, we are

at the same time reducing the effective sample size utilized to compute the estimator, which increases

its asymptotic variance.

Remark 19. The expressions for v0 and b0 for κ > 0 also do not converge to those with O(∆
1/2
n )

truncation as κ ↓ 0 because once again we cannot interchange the order of the limits ∆n → 0 and

κ→ 0.

8.5. Comparison with the general case. Let us compare, in the semiparametric case, the specific

results just obtained with the general results obtained in Theorems 4 and 5. In the present situation

we have G ∈ G ′
0. So these general results assert that if

(99) n∆2
n → 0,

then the estimators σ̂n converge at a rate
√
n, and the limit of the normalized error is Gaussian

without bias; when (99) fails but ∆n → 0 yet, then the sequence ((
√
n
∧

∆−1
n )(σ̂n − σ) is tight.

The estimators (93) converge at rate
√
n when v1 = 0 and n∆2b1

n is bounded (then there is a bias)

or n∆2b1
n → 0 (there is no bias). Otherwise, the sequence (

√
n∆v1

n
∧

∆−b1
n )(σ̂n − σ) is tight. Then:

• Power variation without truncation: we have a rate
√
n only when r ∈ (0, 1] and n∆2−r

n is

bounded. Otherwise the rate is always worse than in our general results: this was expected, of

course.
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• Power variation with ∆1/2 truncation: If n∆2
n → 0 we have rate

√
n with asymptotically

unbiased error. If n∆2
n → a ∈ (0,∞) we have rate

√
n with asymptotically biased error. If

n∆2
n → ∞, then ∆−1

n (σ̂n − σ) converges in probability to the constant b0: this is a bit better

than what we get by applying the general results recalled above. This holds irrespectively of

r ∈ (0, 2] (and also for r > 2 here, as a matter of fact), but of course the asymptotic variance

depends on r, and also on c.

• Power variation with slower than ∆1/2 truncation: The rate is
√
n if −1/(2 + 2r) ≤ κ < 0 and

n∆2
n is bounded, or if −3(2 + 4r) ≤ κ < −1/(2 + 2r) and n∆3+2κ+2rκ

n is bounded. This is worse

than the previous case.

• Power variation with faster than ∆1/2 truncation: The rate is at most
√
n∆κ

n, and always worst

than in the ∆1/2 truncation case.

9. Example: Sum of two stable processes. In this last section we consider the case where Y

is also a symmetric stable process, with index α ∈ (0, β). Then G ∈ G ′
α.

9.1. The empirical characteristic function. First, we can consider estimators based on the em-

pirical characteristic function, that is we consider k(x) = cos(wx) for some w > 0. We have the

parametric estimate σ̂n = σ̂n(G,φ, k) of Theorem 3 (here k is bounded, so φ is indeed irrelevant).

The sequence
√
n (σ̂n − σ) converges in law to N(0, σ2Σ2(k)), where Σ2(k) is given by (84). On

the other hand we have the semiparametric estimators σ̂n(k), which by Theorem 5 behaves as such:

under

(100) n∆
2(β−α)

β
n → 0,

√
n (σ̂n(k)−σ) converges in law to N(0, σ2Σ2(k)). And in general the sequence (

√
n
∧

∆
−β−α

β
n )(σ̂n−σ)

is tight.

In fact, since we are in Case 2 the preliminary estimator Sn = Sn(G) is the same in both cases,

and σ̂n and σ̂n(k) are the solution of Un(u) = 0 and U ′
n(u) = 0 respectively, which are closest to Sn,

and the difference between these two estimating functions is

Un(u) − U ′
n(u) = Ûn(u) := ΨG,∆n,β,k

(
u

Sn
,

1

Sn
, 0

)
− Ψk

(
u

Sn
, 0

)
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(recall (79) and (85)). If we use the explicit forms (80) and (83), we get

Ûn(u) = e−wβuβ/2Sb
n

(
ew

α∆

β−α
β

n /2Snα − 1

)
,

which is equivalent to wα

2σα ∆
β−α

β
n e−wβ/2 as n → ∞ and u → σ (recall that Sn → σ in probability).

Since Ψ′
k(1, 0) = −βe−wb/2 6= 0, we deduce that the difference σ̂n(k)−σ̂n is equivalent (in probability)

to −(wa/2βσα)∆
β−α

β
n . Therefore, in addition to the fact that

√
n (σ̂n(k) − σ) converges in law to

N(0, σ2Σ2(k)) under (100), we get

• If n∆
β−α

β
n → a2 ∈ (0,∞), then

√
n (σ̂n(k) − σ) converges in law to N(−awa/2βσα, σ2Σ2(k)),

• If n∆
β−α

β
n → ∞, then ∆

−β−α
β

n (σ̂n(k) − σ) converges in probability to the constant −wa/2βσα.

We conclude that the results of Theorem 5 are sharp, for the particular estimation functions

k(x) = cos(wx) at least.

9.2. Truncated power functions. We can do a similar analysis for the estimators (90), based on

the truncated power variation Vn(γ) of (89) with Bn = 0 (because Y is symmetrical here). That is,

we consider the truncated power variations at the level ∆
1/β
n . Namely when n∆

2β−α
β

n → ∞, one can

show that, at least when γ is small enough (but it is probably true for all γ > 0), then the sequence

∆
−β−α

β
n (σ̂n − σ) is tight and its limiting distributions include some Dirac masses at non vanishing

constants. So here again the results of Theorem 5 are sharp. But of course, as already said before, this

does not completely rule out the existence of estimators constructed in a different way and behaving

better.

10. Conclusions. We exhibited a class of estimators for the volatility parameter σ in a model

where the driving process Wt is perturbed by another process Yt. These estimators can be designed

in such a way that they are immune to the presence of the perturbation Yt : they are asymptotically

efficient, in the strong sense that they behave asymptotically like the efficient estimators for the

model Xt = σWt with no perturbing term Yt.
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E-mail: jj@ccr.jussieu.fr


