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Composition and exponential of compactly
supported generalized integral kernel operators

S.Bernard * J.-F.Colombeau I A.Delcroix *

Abstract

We extend the theory of distributional kernel operators to a framework
of generalized functions, in which they are replaced by integral kernel
operators. Moreover, in contrast to the distributional case, we show that
these generalized integral operators can be composed unrestrictedly. This
leads to the definition of the exponential of a subclass of such operators.

Keywords: Integral operators, nonlinear generalized functions, integral trans-
forms, kernel.
AMS subject classification: 45P05, 47G10, 46F30, 46F05, 46F12.

1 Introduction

The theory of nonlinear generalized functions [E, E, E, E, B], which appears
as a natural extension of the theory of distributions, seems to be a suitable
framework to overcome the limitations of the classical theory of unbounded
operators.

Following a first approach done by D. Scarpalezos in , we introduced in
[EI] a natural concept of integral kernel operators in this setting. In addition,
we showed that these operators are characterized by their kernel. Our approach
has some relationship with the one of [E], but is less restrictive and uses other
technics of proofs. Let us quote that classical operators with smooth or dis-
tributional kernel can be canonically extended in the framework of generalized
functions, through the sheaf embeddings of C*°(-) or D'(-) into G(:), the sheaf
of spaces of generalized functions. This shows that our theory is a natural
extension of the classical one.

After recalling briefly the mathematical framework, we focus on the case of
generalized integral operators with compactly supported kernel. We show that
such operators can be composed unrestrictedly and that their composition is
still a generalized integral operator with a kernel having a compact support.
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This allows to consider their iterate composition and the question of sum-
mation of series of such operators naturally arise. It has been solved for the
exponential, with additional assumptions on the growth of the kernel with re-
spect to the scaling parameter, in view of applications to theoretical physics.

Let us mention that the question of composition of generalized integral kernel
operators has been investigated in more general cases in [, namely for integral
operators with properly supported kernel and with kernel in the algebra G-,
constructed from H°. In this last case, the exponential of generalized integral
kernel operators can also be defined with the above mentioned assumptions on
the kernel.

2 Generalized integral operators

2.1 The sheaf of nonlinear generalized functions

In this section, we recall briefly some elements of the theory of generalized
numbers and functions. We refer the reader to [E, E, , E, @, @, @] for more
details.

Let C°°(-) be the sheaf of complex valued smooth functions on R? (d € N)
endowed with the usual topology of uniform convergence of all the derivatives
on compact sets. For every open set Q of R?, this topology can be described by
the family of semi norms (pKJ('))K@Q,leN with pr1(f) = sup,cg, o<l |0 f (z)],
for all f in C*°(Q) (the notation K & € means that the set K is a compact set
included in ).

Set, with £ (Q) = C™ (Q)(OJ],

Er (@) = {(f.) €E()|VK €Q, VIEN, 3geN, pii(f-) =0 (%) asz — 0},
I ={(fo)eE@Q)IVK e, VieN, VpeN, pg(f:) =0(?) ase - 0}.

The functor Ep @ Q@ — En (Q) (resp. T : Q — () defines a sheaf of
subalgebras of the sheaf & (-) (resp. a sheaf of ideals of the sheaf Ear (-)) [[L1].

Definition 1 The sheaf of factor algebras G () = Enr () /Z (+) is called the sheaf
of Colombeau type algebras.

The sheaf G turns to be a sheaf of differential algebras and a sheaf of modules
on the factor ring C = X (C) /N (C) with

X (K) = {(r) e KO [3geN, r.[ =0 (e71) ase -0},
N (K) = {(Ts) eKOU|VpeN, |r.| =0 (") assHO},
where K =C or K=R.

Notation 2 For (f:) € Em (), CL(f:) will denote its class in G (Q).



As G is a sheaf, the notion of support of a section f € G (2) (2 open subset of
R?) makes sense. Thus the support of a generalized function f € G (Q2), denoted
by supp f, is the complement in §2 of the largest open subset of {2 where f is null.
We denote by G () the subset of elements of G (2) with compact supports. In
particular, such compactly supported generalized functions have the following
property: Every f € Go has a representative (f:) € En () such that each f.
has the same compact support. We say that such a representative has a global
compact support.

2.2 Definitions and first properties

Let X (resp. Y) be an open subset of R™ (resp. R™). We denote by Gps(X xY)
the set of generalized functions g of G(X xY") properly supported in the following
sense:

V O1 C X relatively compact open subset, (1)
AK; @€Y [/ suppgnN (01 XY) C 01 x Ko.

The set Gps(X % Y) is clearly a subalgebra of G(X x Y).

Proposition 3 [/ For g in Gps(X xY), there exists G € G(X) such that, for
all relatively compact open subset Oy of X,

Glo, = CI <(z - /K o) dy) Ol)

where (g:) is a representative of g and Ko € Y is such that suppgN (01 xY) C
01 X KQ.

Notation 4 With a slight abuse, we shall denote G = [ g(-,y)dy or G (1) =
J9(1,y)dy.

Definition 5 Let H be in G,s(X xY). We call generalized integral operator
the map R
H: GY) — gA(X)
fooo= H()=[H(y)f(y)dy.

We say that H is the kernel of the generalized integral operator H.

This map is well defined, due to proposition E since the application g =
H(1,-2)f (-2) isin Gps(X x Y), for all f € G(Y'). Moreover, it is linear.

Remark 6 Any H € G(X xXY) compactly supported satisfies (ﬂ) and H is well
defined. Moreover, a straightforward calculation shows that the image of H s
included in Go(X). Furthermore, the definition of H does not need to refer to
proposition E in this case. Indeed, if H is in Go(X xY') with supp H C K1 X K»
(K1 €X, Ky €Y) and f in G(Y), we have

A = ci ( — [ ) dy)

Ko



where (H.) (resp. (fc)) is any representative of H (resp. f).

Remark 7 If H is in G(X X Y) without hypothesis on the support, we can
define a map H : Go(Y) — G(X) in the same way, since for all f in Go(Y),
the function H(-1,-2)f(-2) is in Gps(X xY'). In this case, the generalized integral
operator could also be defined globally since f has a representative with a global
compact support, as quoted above.

This case leads us to make the link between the classical theory of integral
operators acting on D(Y) and the generalized one. Indeed, if h belongs to
D'(X xY) and 1 is the classical operator of kernel h, then the following diagram
is commutative: R

DY) & D(X)
lo lis

D)
Ge(Y) =" G(X),
where o (resp. ig, i) is the usual embedding of D(Y") into G (Y) (resp. D' (X)
into G(X) , D'(X xY) into G(X x Y)). This shows that our theory extends
“canonically” the classical one. We refer to for more details on the re-

lationship with classical cases and to [ﬂ, @] for the definition of the sheaves
embeddings of D () and D’'(-) into G(-).

Remark 8 The map™ : G,s(X xY) —=L(G(Y),G(X)) is a linear map of C-
modules. Moreover, H is continuous for the sharp topologies

Conversely, the third author showed in /ﬂ/ that any continuous linear map from
Ge(Y) to G(X), satisfying appropriate growth hypothesis with respect to the
regqularizing parameter €, can be written as a generalized integral kernel operator.

The following result shows that the map™, defined in remark , is injective.

Theorem 9 /ﬂ, B/ Characterization of generalized integral operators by their
kernel: One has H = 0 if and only of H = 0.

2.3 Composition of generalized integral operators

For this topic, we only consider in this paper generalized integral operators with
compactly supported kernel.

Theorem 10 For H in Go(X xZ) and K in Go(ExY), HoK : G(Y) — Ga(X)
is a generalized integral operator whose kernel L is an element of Go(X X Y)
defined globally by L(-1,-2) = [5 H(-1,£)K(E,-2)dE.

Moreover, there exists Ky (resp. Ko , K3) a compact set of X (resp. 2 ,Y)
such that the support of H (resp. K) is contained in the interior of K1 X K»
(resp. Ko x K3). In this case, the support of L is contained in K; X Ks.



Proof. For all fin G(Y), K (f) is well defined and belongs to G¢(Z), according
to remark E This allows the definition of the composition HoK. Let us verify
now the assertion concerning the support of L. Since H (resp. K)isin Go(X x =)
(resp. Go(ExY)), we can find K7 (resp. Ko , K3) satisfying the second assertion
of the theorem. Then,

L(1,2) = . H(-1,§)K(E,2) A€

is a well defined generalized function, according to the theory of integration of
generalized functions on compact sets [f, fJl. Denote by (H.) (resp. (K.)) a
representative of H (resp. K) and set O; = X \ K1, O3 = Y \ K3. The map
L.(-1,2) = fK2 H.(1,8)K(,2) d€ is a representative of L. For U € X and
V € Y such that U x V C O; x Oz, we have either U C O1 or V C O3. We
shall suppose, for example, that U C O;. For (z,y) € U x V, we have

|Le(z,y)| = ‘ . H.(z,§)K-(&,y)dé| < Vol(K2)pux ks (He)Praxv,o (Ke),

where Vol(K3) denotes the volume of Ky. Therefore

PUxvy0 (Le) < Vol(K2)pux ks (He)Praxvy0 (Ke). (2)

As (Hs\Ol XE) isin I(Ol XE) and UNKy C O xZ, it follows that pUxKg,O(Ha) =
O (™) as e — 0, for all m € N. Moreover, (K.) is in Ey (E xY). Thus,
relation (f) implies that pyxv,0 (Le) = O (¢™) as € — 0, for all m € N. Finally,
(L.) satisfies the null estimate of order 0 for all compact sets included in Oy x
O3. Using theorem 1.2.3 of [E], we can conclude, without estimates on the
derivatives, that Lo, x0, = 0. Therefore, the support of L is contained in K x
K3. From this, a straightforward verification, using once more the integration
on compact sets of generalized functions, shows that Ho K = L. m

Repeted applications of theorem |1( show the following;:

Corollary 11 For H in Go(X?2) and all n > 2, the composition n times of H

18 a well defined operator H™ with image in Go(X). Moreover, Hmadmits as
kernel L,, € Go(X?) defined by

Lyp(-1,2) = /anl H(-1,6)H(&,8) - H(Ep—1,2)d&dés - - - d&p—.

Furthermore, for all n > 2, the support of L, is contained in the one of H.

3 Application: exponential of generalized inte-
gral operators

In this section, we define the exponential of generalized integral operators in a
particular case and study some of their properties. We need before to introduce



a convenient subsheaf of G(-). For Q open set of R? (d € N), set
Hin(2) = {(ue) € £(Q) / VK €Q, VI €N, pgi(u:) =O(|Ine|) ase — 0}.
The set H;,, () is a linear subspace of E37(2) (but not a subalgebra). Define

Hln (Q)
Z(9)

Theorem 12 Let H be in G, (X?). Denote by L., the kernel ofﬁ” :G(X) —
Go(X) defined as in corollary and (Ly..) a representative of L,. For all

gln(Q) = and gCln (Q) = gln(Q> N gC(Q)

e € (0,1], the series Y, <, % (by setting L1 = H ) normally converges, for the
usual topology of uniform convergence on compact subsets of X2. Denote by S.
its sum. The net (S.) belongs to Enr(X?). Furthermore, S = CI1(S.) defines a
compactly supported element of Q(XQ) only depending on H.

The well defined operator et =S+1d (where Id is the operator identity) will
be called the exponential of H.

The proof of this theorem can be divided in three parts. The first part
contains the estimates of > -, L;‘f for a particular representative of L,,, given
by a fixed representative of H. The second part deals with the independence of
Cl(S.) with respect to the chosen representative of L, that is of H. The third
part shows that S is compactly supported.

We shall give here mainly the first part of this proof and refer the reader to
[[] for other parts. Let H be in Gon(X?2) and (H.) one of its representative.
According to corollary [[1], we have " = L, : G(X) — Go(X) and L, €
Gc(X?) admits as representative (L, ) with

Lye(1,2) = /anl H.(-1,6)He(&1,&) - He(§p—1,2) d&1d&s - - - d&p_1,

where K is a compact set of X such that the support of H is contained in the
interior of K?2.

For all compact subset of X2 of the form K; x K, (o, 8) € N4 x N and
(z,y) € K1 x Kq, one has

9P L, e / aaH
Ox™ 8y5 6300‘ z,¢

(5 y)d¢

/KpleKm( S )PK x Ko, |5 (He) dE.
It follows that

DKy x Ko, |(,8)] (L2,e) < VOZ(K>p%/2,\(a,g)\(He),

where V' is a compact set of X containing K ,K; and K». By an iterative method,
we show that, for all n > 2,

DK x Ko, (a,8)| (Lne) < VOZ(K)H_1PT\1/2,|(Q,Q)| (He).



€

This last inequality implies that the series ) - L% normally converges, for
the usual topology of uniform convergence of all the derivatives on any compact

subset of X 2. Set
—+o00 L
n,e
Se=D i

n=1
As L, is in Go(X?) and since the convergence is uniform, S. belongs to C>(X?),

for all € € (0,1]. Furthermore, for all compact subset of X? of the form K; x K»
and (a, ) € N? x N9, one has

—+o0
1
Piyx Kol (0,8)](Se) < —IPE K [(a,9)] (Lne)

n=1

= 1 n— 'l
<D S VOUE) " T Pla (o, (He)

< 1 { Vol(K)Py2 (a8 (He) _ 1} .
~ Vol(K)

Since H is in Go 1n(X?), pvz |(a ﬁ)|( O(]lnel|) as € — 0, that is there exists

):
k € N such that Pv2 |(a, ﬁ)| (Lk)

PRy x Ko |(o,)| (Se) < Cee VoI,

where Ck is a constant depending only on K and not on the representative of
H. Consequently, (S:) is in £y/(X?) and we denote by S its class in G(X?).

The independence of S with respect to the representatives is classically
proved by taking two representatives of H, which gives two sums, (S;) and
(Sg), obtained by the process described above, and by estimating the difference
(8! — S2). This uses similar estimates as above. Finally, the assertion concern-
ing the support is proved with similar arguments as the ones of the proof of
theorem

In [f], it is shown that the exponential defined by theorem [IJ inherits the

main expected functional properties.

Proposition 13 If H is in Goi, (X?) then

= PO PO, d .5 o~ .=
Hoel = elfloH ; e*HoetH = elatb)H , for all (a,b) € R*; pr et = HoelH
By applying theorem E concerning the characterization of generalized integral
operators by their kernel, these properties are proved by using the associated
kernels.
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