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Abstract

We focus on the chiral Lagrangian couplings describing radiative corrections to
weak semi-leptonic decays and relate them to the decay amplitude of a lepton, com-
puted by Braaten and Li at one loop in the Standard Model. For this purpose, we
follow a two-step procedure. A first matching, from the Standard Model to Fermi
theory, yields a relevant set of counterterms. The latter are related to chiral couplings
thanks to a second matching, from Fermi theory to the chiral Lagrangian, which is
performed using the spurion method. We show that the chiral couplings of phys-
ical relevance obey integral representations in a closed form, expressed in terms of
QCD chiral correlators and vertex functions. We deduce exact relations among the
couplings, as well as numerical estimates which go beyond the usual log(MZ/Mρ)
approximation.
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1 Introduction

An accurate evaluation of radiative corrections in Kl3 decays is crucial for a precise de-
termination of Vus. In this context, it is necessary to control whether experimental data
on K+

l3 and K0
l3 data are consistent [1]. Several new experiments have studied K de-

cays. Results on the K+
l3 mode were released very recently by the E865 [2] and ISTRA [3]

collaborations and results on the K0
l3 mode were presented by the NA48 [4], KTev [5]

and KLOE [6] collaborations. This has stimulated renewed interest in the theoretical
determination of radiative corrections in such processes [7, 8].

This subject has a long history [9]. Within the Standard Model, a conspicuous feature
of radiative corrections to semi-leptonic decays is their enhancement by a large logarithm
log(MZ/µ) with µ ≃ 1 GeV, which was pointed out by Sirlin [10, 11]. In this paper,
we will focus on the remaining (unenhanced) corrections and will discuss a method for
determining them. The proper theoretical framework to discuss semi-leptonic decays of
kaons (as well as those of π’s or η’s) is the chiral effective Lagrangian formalism [12, 13, 14]
(see the book [15] for a review of applications). The discussion of radiative corrections
requires extensions of the original setting which were performed successively by Urech [16]
and then by Knecht et al. [17]. At this stage, the effective Lagrangian includes not only
the pseudo-Goldstone bosons, but also the photon and the light leptons as dynamical
degrees of freedom. In other words, this Lagrangian describes the whole Standard Model
at low energies. High-energy dynamics has been integrated out into local (contact) terms,
parameterised by a set of low-energy constants (LEC’s).

In this paper, we will consider the set of LEC’s Xi introduced in ref. [17] to deal
with virtual leptons and discuss their physical interpretation. In particular, we will show
that they satisfy simple integral representations in terms of QCD Green functions in the
chiral limit. These results extend those obtained in the case of the Urech LEC’s Ki for
virtual photons [18], which were themselves generalisations of the well-known sum rule
by Das et al. [19]. These integral representations provide practical means of estimating
the LEC’s Xi numerically, once the chiral Green functions are approximated by simple,
large-Nc motivated, models. But our analysis goes beyond these numerical results, since
we will derive some non-trivial relations among the LEC’sXi and with the electromagnetic
coupling K12. This will allow us to clarify completely a related issue, the dependence of
K12 on short-distance renormalisation conditions, observed in [18] and further discussed
in [20]. We start from a result of Braaten and Li (denoted BL in the following) [21], who
computed the amplitude for a lepton4 decaying into a massless quark, a massless antiquark,
and a neutrino at one loop in the Standard Model. This computation completed earlier
results obtained by Sirlin [11].

We will follow a two-step matching procedure which can be sketched as:

Standard Model - Fermi theory -Effective Lagrangian
4The authors of ref. [21] were chiefly interested in the case of the τ lepton. However, their result is

general and it will be applied to the light leptons e and µ here.
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This two-step procedure will allow us to determine the implications of BL’s calculation
for the effective Lagrangian. It turns out to be particularly convenient to introduce Fermi
theory as an intermediate stage, in order to integrate out the high-energy dynamics of the
Standard Model in a transparent way. In addition, at this intermediate stage, we can rely
on a Pauli-Villars regularisation (applied to the photon propagator) to tame divergences.
This regularisation scheme offers the attractive feature of remaining in four dimensions,
and thus avoids the well-known difficulties of dimensional regularisation when defining γ5.
This will prove particularly useful when we deal with chiral QCD correlators.

The plan of the paper is as follows. We begin by reconsidering the one-loop calculation
of radiative corrections to the semi-leptonic decay of a light lepton in Fermi theory. The
ultraviolet divergences are removed through a set of counterterms. Matching the one-loop
amplitude in the Standard Model and in Fermi theory yields constraints on the values
of the latter. Then, we re-express the counterterms in Fermi theory to introduce spurion
sources instead of the electric and weak charge matrices. Using this new form, we perform
the second matching step and identify counterterms in Fermi theory and LEC’s in the
chiral Lagrangian. This identification involves also chiral two- and three-point Green
functions. Finally, integral relations are derived, which are exploited to obtain analytical
relations among chiral LEC’s and numerical estimates based on large-Nc models for the
relevant chiral correlators.

2 One-loop matching of Fermi theory and the Standard

Model revisited

2.1 Tree-level amplitude

Following ref. [21], we consider the amplitude T (p, q, p′, q′) for the semi-leptonic weak
decay of a lepton into massless quark, antiquark and neutrino

l(p) → ū(q) + d(q′) + ν(p′) . (1)

The usual kinematical variables are introduced

s = (p− q)2, t = (p− p′)2, u = (p − q′)2, s+ t+ u = M2
l . (2)

BL have computed the one-loop amplitude T (p, q, p′, q′) in the Standard Model, and
we intend to perform the same work in Fermi theory in the presence of electromagnetic
interactions (see fig. 1). The relevant part of the interaction Lagrangian is

LFermi = −4GFVud√
2

{

lLγ
λνL × dLγλuL + h.c.

}

, (3)

At leading order, we consider the diagram in fig. 1, which gives the following results for
the amplitude

T0 = −GFVud√
2

ūν(p′)γλ(1 − γ5)ul(p) ūd(q
′)γλ(1 − γ5)vu(q) , (4)
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l(p)
ν(p′)

W−

d(q′)

ū(q)

l(p)
ν(p′)

d(q′)

ū(q)

Figure 1: Tree-level diagram for the semi-leptonic decay of a lepton into a massless quark,
antiquark and neutrino in the Standard Model (left) and in Fermi theory (right).

and for the decay rate

Γ0 =
G2

FM
5
l

192π3
NcV

2
ud . (5)

At this order, Fermi theory and the Standard Model yield identical results.

2.2 One-loop electromagnetic corrections in Fermi theory

Let us turn to the one-loop corrections to this result. In the Standard Model, the decay
rate Γ receives contributions from exchanges of virtual photons, weak gauge and Higgs
bosons [10, 21]. Infrared divergences occur, but they are cancelled once we add the decay
rate for real-photon emission l → ū+ d+ ν + γ. In Fermi theory, the one-loop corrections
which involve two weak vertices are negligibly small and we only have to consider dia-
grams which involve the exchange of a photon between two charged fermion lines. This
contribution contains infrared divergences, which will be cancelled by the decay rate for
real-photon emission. At this order, the expression of the latter is identical to that in
the Standard Model. In addition, starting at two loops (i.e. at order O(ααs) ) there
appears QCD corrections to the decay amplitude. One can use Fermi theory whenever
the momentum transferred by the virtual W boson is much smaller than its mass. One
must also require that this momentum is sufficiently large as compared to 1 GeV such
that perturbative QCD makes sense. For the moment, let us ignore these corrections. In
sec. 3.5.2 we will discuss how to take them into account in an approximate way.

Therefore, we focus on O(e2) corrections to eq. (4) in Fermi theory caused by the
exchange of a virtual photon. The Lagrangian which encodes the interactions of the

3



Q2Q3 Q0Q2 Q0Q3

Figure 2: One-loop electromagnetic corrections to the semi-leptonic decay of a lepton in
Fermi Theory. Diagrams corresponding to wave-function renormalisation and proportional
to Q2

i (i = 0, 2, 3) are not shown.

photon field with the charged leptons and quarks is given by

Lγ = −1

4
FµνFµν − 1

2ξ
(∂µFν)2 +

1

2
M2

γF
µFµ +

l̄(i ∂/ −eQ0 F/ −Ml)l + ν̄L(i ∂/)νL +
∑

q=u,d

q̄(i ∂/ −eQq F/)q . (6)

A small photon massMγ is introduced in order to control infrared divergences. In addition,
we use the Pauli-Villars regularisation method to treat ultraviolet divergences. From the
point of view of the chiral expansion the terms in eq. (6) have chiral order p2 provided
that counting rules are adopted

Fµ ∼ O(p0) l, νL, q ∼ O(p
1

2 ) e, Ml, Mγ ∼ O(p) . (7)

In this paper, we will restrict ourselves to the Feynman gauge ξ = 1. Following BL’s
convention, we denote the charges of the lepton, the quark and the antiquark Q0, Q2 and
Q3 respectively. The physical values of these charges are

Q0 = −1, Q2 = −1

3
, Q3 = −2

3
. (8)

Now, we determine the various contributions due to a virtual photon exchange, labeled in
terms of these charges and shown in fig. 2.

2.2.1 Contributions Q2
0 and Q2

2 +Q2
3

These contributions are given by the wave-function renormalisation. Including contribu-
tions up to one loop, the lepton propagator has the following form

Gl
F (p) =

i

p/ −Ml + Σl(p)
(9)
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with

Σl(p) = −Q2
0e

2
∫ −id4k

(2π)4
γµ(p/ + k/ +Ml)γµ

(k2 −M2
γ )Λ((k + p)2 −M2

l )
. (10)

The denominator (k2 −M2
γ )Λ stems from the photon propagator, regularised à la Pauli-

Villars
1

(k2 −M2
γ )Λ

=
−Λ2

(k2 −M2
γ )(k2 − Λ2)

. (11)

The wave function renormalisation of the lepton requires to expand the lepton propagator
around the mass-shell p2 = M2

l

Gl
F (p) ≃ i

(1 +K l
F )(p/ −Ml − δMl)

. (12)

A standard calculation gives

K l
F =

−Q2
0e

2

16π2

(

−div + 2 log
Ml

µ0
− 4 log

Mγ

Ml

− 9

2

)

δMl =
−Q2

0e
2

16π2
Ml

(

3 div − 6 log
Ml

µ0
+

3

2

)

, (13)

with the (regularised) divergent piece

div = log
Λ2

µ2
0

. (14)

and µ0 denotes the renormalisation scale in Fermi Theory. Applying the LSZ reduction
formula (e.g. [22]) yields the correction of order e2Q2

0 induced by the one-loop lepton
propagator of the form (12)

T00 = T0

(

−1

2
KF

l

)

= T0 ×
Q2

0α

8π

(

−div + 2 log
Ml

µ0
− 4 log

Mγ

Ml

− 9

2

)

. (15)

Quark propagators are treated on the same footing apart from the fact that these
fermions are assumed to be massless. In this case, one finds the wave-function renormali-
sation factor to be

Kq
F =

−Q2
qe

2

16π2

(

−div + 2 log
Mγ

µ0

)

(16)

and the corresponding contribution to the decay amplitude reads

Tqq = T0 × (Q2
2 +Q2

3)
α

8π

(

−div + 2 log
Mγ

µ0

)

. (17)

These yield the following corrections to the decay rate

Γii = Γ0
α

2π

[

Q2
0

(

−1

2
div + log

Ml

µ0
− 2 log

Mγ

Ml

− 9

4

)

+ (Q2
2 +Q2

3)

(

−1

2
div + log

Mγ

µ0

)]

(18)
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2.2.2 Contribution Q2Q3

Here one considers the graph with one photon line joining the anti-quark u to the quark
d (left-hand diagram in fig. 2). The amplitude has the form

T23 = −GFVud√
2

ūν(p
′)γλ(1 − γ5)ul(p)H

λ
23(q, q

′) , (19)

where Hλ
23 is given by

Hλ
23(q, q

′) = Q2Q3 e
2 ūd(q

′)γµγσγλγργµ(1 − γ5)vu(q)

∫ −id4k

(2π)4
(k − q)ρ(k + q′)σ

D
, (20)

with the denominator
D = (k2 −M2

γ )Λ(k + q′)2(k − q)2 . (21)

Let us introduce the following notation for the various integrals

∫ −id4k

(2π)4
1

D
= H(t) ,

∫ −id4k

(2π)4
kµ

D
= H0(t)(qµ − q′µ) ,

∫ −id4k

(2π)4
kµkν

D
= H2(t) gµν +H3(t)(qµqν + q′µq

′
ν) +H4(t)(qµq

′
ν + qνq

′
µ) . (22)

These integrals can be explicitly computed, yielding

H(t) =
1

16π2

(

1

t
log

t

M2
γ

log
t+M2

γ

M2
γ

+
1

t
dilog

t+M2
γ

M2
γ

)

,

H0(t) =
1

16π2

(

−1

t
+

1

t
log

t

M2
γ

)

,

H2(t) =
1

16π2

(

1

4
div − 1

4
log

t

µ2
0

+
3

8

)

,

H4(t) =
1

16π2

(

− 1

2t

)

. (23)

We note that H2(t) is the only integral which diverges as Λ → ∞. Simplifying the Dirac
structure leads to an amplitude proportional to the leading order one,

T23 = T0 × (−Q2Q3) e
2[4H2 + 2t(−H + 2H0 +H4)] . (24)

We keep only the terms which do not vanish when Mγ → 0, and we obtain the decay
width

Γ23 = Γ0 ×Q2Q3
α

2π

[

−div + log
M2

l

µ2
0

+ 4 log2 Mγ

Ml
+

43

3
log

Mγ

Ml
+

859

72
− π2

3

]

. (25)
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2.2.3 Contributions Q0Q2 and Q0Q3

Here we considers the diagrams with one photon line joining the lepton line to one of the
quark lines. The contribution proportional to Q0Q2 (middle diagram in fig. 2) is given by

T02 = −GFVud√
2

Q0Q2e
2
∫ −id4k

(2π)4
1

Dl
×

ūd(q
′)γα(k/ + q′/ )γλ(1 − γ5)vu(q) ūν(p′)γλ(1 − γ5)[k/ + p/ +Ml]γαul(p) , (26)

with
Dl = (k2 −M2

γ )Λ((k + p)2 −M2
l )(k + q′)2 . (27)

As in the previous case, we introduce the various Feynman integrals

∫ −id4k

(2π)4
1

Dl
= I(u) ,

∫ −id4k

(2π)4
kµ

Dl
= I0(u)pµ + I1(u)q

′
µ ,

∫ −id4k

(2π)4
kµkν

Dl

= I2(u)gµν + I3(u)pµpν + I4(u)(pµq
′
ν + pνq

′
µ) + I5(u)q

′
µq

′
ν . (28)

which can be computed easily

I(u) =
1

16π2

−1

M2
l − u

[

(

log
Mγ

Ml

− log xu

)2

+ dilog(xu) +
π2

4

]

,

I0(u) =
1

16π2

(

−1

u

)

log xu ,

I1(u) =
1

16π2

1

M2
l − u

[

−2 log
Mγ

Ml
− 1 +

(

1 +
M2

l

u

)

log xu

]

,

I2(u) =
1

16π2

(

1

4

)

[

div − log
M2

l

µ2
0

+
M2

l − u

u
log xu +

3

2

]

,

I3(u) =
1

16π2

(

−1

2

)

[

1

u
+
M2

l − u

u2
log xu

]

,

I4(u) =
1

16π2

(

1

2

)

[

1

u
+
M2

l

u2
log xu

]

. (29)

with

xu =
M2

l − u

M2
l

. (30)

All these integrals are convergent as Λ → ∞ except I2. Coming back to the amplitude,
we simplify the Dirac algebra and end up with the following structure

T02 = −GF√
2
Q0Q2e

2

{

ūd(q
′)γν(1 − γ5)vu(q) ūν(p′)γµ(1 − γ5)ul(p)

7



× 4[I2(u)gµν + pµpν(I0(u) + I3(u)) + q′µpν(I(u) + I0(u) + I1(u) + I4(u))]

+ ūd(q
′)γλ(1 − γ5)vu(q) ūν(p′)γµγλ(1 + γ5)ul(p)

× (−2Ml)[I0(u)pµ + (I(u) + I1(u))q
′
µ]

}

. (31)

The graph which gives the contribution proportional to Q0Q3 is similar (right-hand dia-
gram in fig. 2), but it involves the functions Ii(s) instead of Ii(u). In this case, the result
reads

T03 = −GF√
2
Q0Q3 e

2

{

ūd(q
′)γλ(1 − γ5)vu(q) ūν(p′)γλ(1 − γ5)ul(p)

× 4[4 I2(s) + p2(I0(s) + I3(s)) + p.q(I(s) + I0(s) + I1(s) + 2I4(s))]

+ ūd(q
′)γλ(1 − γ5)vu(q) ūν(p′)γλγ

µ(1 + γ5)ul(p)

× (−2Ml)[I0(s)pµ + (I(s) + I1(s))qµ]

}

. (32)

One notices that the divergent piece in T02 and in T03 is proportional to the leading-order
amplitude T0.

The resulting one-loop corrections to the decay rate are

Γ02 = Γ0Q0Q2
α

2π

[

div − log
M2

l

µ2
0

− 2 log2 Mγ

Ml
− 17

3
log

Mγ

Ml
− 5

6
π2 − 1

8

]

. (33)

Γ03 = Γ0Q0Q3
α

2π

[

4 div − 4 log
M2

l

µ2
0

− 2 log2 Mγ

Ml
− 19

3
log

Mγ

Ml
− 5

6
π2 +

47

72

]

.

This completes the calculation of the electromagnetic corrections at order e2 to the
decay amplitude (1) in Fermi theory. The result is ultraviolet divergent as well as infrared
divergent. The latter divergence disappears upon adding to the decay rate the one involv-
ing a real photon, Γ(l → ū+ d+ ν + γ) (its explicit expression can be found in ref. [21]).
Ultraviolet divergences can be absorbed into local counterterms which we discuss in the
next section.

2.3 Counterterms and matching

The previous calculations show that the one-loop ultraviolet divergences in the decay am-
plitude T (p, q, p′, q′) are proportional to the leading-order amplitude T0(p, q, p

′, q′). Thus,
we may remove the divergences simply by adding a set of four counterterms proportional

8



to the original Fermi Lagrangian

LCT = −4GFVud√
2

e2
{

lLγ
λνL × dLγλuL + h.c.

}

×
[

g00Q
2
0 + g23(Q2 +Q3)

2 + g02Q0Q2 + g03(−Q0Q3)
]

. (34)

We will recast some terms into a more standard form soon. At this stage however, we just
want to match the computation in the Fermi theory with that in the Standard Model.
The decay amplitude can be made finite by imposing the following relations among bare
and renormalised couplings in the Lagrangian (34)

g00 =
1

16π2

(

1

2
log

Λ2

µ2
0

)

+ gr
00(µ0) ,

g23 =
1

16π2

(

1

2
log

Λ2

µ2
0

)

+ gr
23(µ0) ,

g02 =
1

16π2

(

− log
Λ2

µ2
0

)

+ gr
02(µ0) ,

g03 =
1

16π2

(

4 log
Λ2

µ2
0

)

+ gr
03(µ0) , (35)

which leads to the renormalised one-loop correction to the decay rate in Fermi theory

ΓFermi = e2Γ0

{

1

16π2

[

6(1 +Q) log
µ0

Ml
+Q

(

7

4
+

3

4
Q

)

+
27

2
− 2π2

]

(36)

+ 2gr
00(µ0) + 2gr

23(µ0) + (1 −Q)gr
02(µ0) − (1 +Q)gr

03(µ0)

}

,

where the tree-level decay rate Γ0 is given by eq. (5). The rate ΓFermi in eq. (36) also
includes the process with a real photon in the final state and, as a consequence, there is
no infrared divergence any more. In this expression, we have restricted the values of the
electric charges (which were arbitrary up to now) to their physical values for Q0 and the
sum Q2 +Q3 = Q0, but we have left arbitrary the difference

Q = Q2 −Q3 . (37)

One must then equate this expression for the decay rate to the Standard Model one,
which reads according to ref. [21]

ΓSM =
ᾱ2M5

l

384πs4WM4
W

{

1 − 2
ΠW (0)

M2
W

+
α

2π

[

3[1 −Q0(Q2 −Q3)] log
MZ

Ml

+
[ 7

s4W
− 4

s2W

]

log cW +
6

s2W
− 1

2
+
[89

24
− π2

]

Q2
0

− 43

24
(Q2

2 +Q2
3) +

29

6
Q0Q2 +

237

36
Q0Q3 −

61

12
Q2Q3

]}

(38)
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where ᾱ is the running QED coupling constant, cW and sW denote the cosine and sine of
the Weinberg angle and ΠW (0) is the W -propagator correction, renormalised on the mass
shell and evaluated at zero momentum. This expression is valid provided that electric
charge conservation holds, i.e. Q0 = Q2 +Q3. The cancellation of ultraviolet divergences
imposes that Q2

0 = 1, while the difference Q2 −Q3 may be kept as a free parameter.

Before matching the expressions (36) and (38), we must express the combination of
Standard Model parameters ᾱ/(s2WM2

W ) in terms of the Fermi coupling GF . This relation
is obtained by matching the expressions for the muon lifetime (Q0 = Q2 = −1 and Q3 = 0)
in both theories [21], including radiative corrections at one loop. Doing so provides the
relation between the running QED coupling and the Fermi constant

ᾱ√
2s2WM2

W

=
GF

π

[

1 +
ΠW (0)

M2
W

+
α

2s2Wπ

(

log cW

(

2 − 7

2s2W

)

− 3

)]

. (39)

Replacing in eq. (38) we can re-express BL’s result in terms of GF ,

ΓSM = Γ0

{

1 +
α

4π

[

6(1 +Q) log
MZ

Ml

+Q

(

7

4
+

3

4
Q

)

+
27

2
− 2π2

]}

. (40)

Since Q need not be set to its physical value, matching eq. (40) with eq. (36) generates
two independent equations for the counterterm coupling constants

gr
02(µ0) + gr

03(µ0) =
1

16π2

[

−6 log
MZ

µ0

]

,

gr
00(µ0) + gr

23(µ0) + gr
02(µ0) = 0 . (41)

This ends the first matching step.

3 Matching Fermi theory and the chiral Lagrangian at one

loop

The second matching step proceeds in a rather different way from the first one. We
will consider the effective chiral Lagrangian in which spurion sources are introduced for
the purpose of classifying the independent terms. The trick will be to define correlators
associated with these sources and to compute them in the two different effective theories.

3.1 Chiral Lagrangian with dynamical photons and leptons

Coupling QCD to electromagnetism breaks chiral symmetry explicitly because the quark
charge matrix Q is not proportional to the unit matrix. Coupling to the weak interaction
generates an additional breaking induced by the weak charge matrix QW . We will apply
the chiral expansion to the three lightest quarks such that these matrices are

Q =







2
3 0 0
0 −1

3 0
0 0 −1

3






, QW = −2

√
2







0 Vud Vus

0 0 0
0 0 0






. (42)
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The neutral current part of the weak interaction will not be considered here. At the
level of the effective Lagrangian, the symmetry breaking induced by Q and QW can be
accounted for and treated perturbatively by using the spurion formalism. The treatment
is analogous to the case of the symmetry breaking caused by the quark mass matrix M.
In that case, one replaces the physical mass matrix by a pair of sources s(x), p(x) to which
one ascribes a transformation rule under the chiral group [13, 14]

s(x) + ip(x) → gR [s(x) + ip(x)] g†L , (43)

where (gL, gR) is a group element. In the same manner, one replaces the electric charge
matrix Q by two spurion sources qL(x), qR(x) [16] and the weak charge matrix QW by
one spurion source qW (x) [17]. The part of the Lagrangian accounting for the coupling of
the light quarks to the photon and to a lepton pair is then written as

Lspurions
QCD+Fermi = −eFλ(ψLqLγ

λψL + ψRqRγ
λψR)

− 4GF√
2

(

lLγλνL ψLqWγλψL + νLγλlL ψLq
†
W γλψL

)

, (44)

where ψ collects the u, d, s quark fields. Chiral invariance is satisfied provided the spurion
sources are assumed to transform as

qR(x) → gR qR(x) g†R, qL(x) → gL qL(x) g†L, qW (x) → gL qW (x) g†L . (45)

It is also convenient to endow the spurions with the chiral order

qL, qR, qW ∼ O(p0) . (46)

Having defined the transformations of the spurion fields, one can build the most general
effective Lagrangian satisfying chiral symmetry with pseudo-Goldstone bosons, photon
and light leptons as dynamical fields. This Lagrangian provides a complete low-energy
description of the Standard Model. We deal with massless quarks, which means that we
take the chiral limit mu = md = ms = 0 (in the following, QCD in this limit will be called
“chiral QCD” for concision).

The pseudo-Goldstone mesons (π, K, η) are included into a unitary matrix U = u2

and a so-called “building block” uµ (see e.g. [23])

uµ = iu†DµUu
†, DµU = ∂µU − irµU + iUlµ , (47)

where lµ, rµ contain not only vector and axial-vector sources for the corresponding QCD
currents, but also the photon, the light leptons and the spurion sources,

lµ = vµ − aµ − eqLFµ +GF [qW lLγµνL + q
†
W νLγµlL] ,

rµ = vµ + aµ − eqRFµ . (48)

Chiral “building blocks” may be constructed from the spurion fields

QR ≡ u†qRu, QL ≡ uqLu
†, QW ≡ uqWu† , (49)
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and also
Qµ

R ≡ u†DµqRu, Qµ
L ≡ uDµqLu

† . (50)

The covariant derivatives for the spurions are defined as [16]

DµqR ≡ ∂µqR − i[rµ,qR], DµqL ≡ ∂µqL − i[lµ,qL] . (51)

In ref. [16], the independent terms that contain one pair of spurions qL, qR and that
contribute up to O(p4) were classified. One of these terms will play a special role in our
discussion, namely

L(12)
Urech = −ie2F 2

0K12〈uµ([Qµ
L,QL] − [Qµ

R,QR])〉 . (52)

Knecht et al. [17] listed the O(p4) elements of the chiral Lagrangian that involve a light
lepton pair and are associated with semi-leptonic decays. They obtained seven independent
terms, once the following constraint was implemented

qLqW =
2

3
qW , qW qL = −1

3
qW . (53)

Since we want to discuss the physical interpretation of the associated LEC’s Xi, it is
convenient to consider a somewhat more general situation and relax the constraint (53).
This leads to an extended chiral Lagrangian which contains two additional terms. The
associated LEC’s will be called X̂1, X̂2. The remaining terms and the associated LEC’s
are identical to the case considered in ref. [17], except for the LEC’s X6 and X7 which
have different values in the two settings and which will be labelled X̂6, X̂7 in our case.
The extended Lagrangian reads

Lleptons = e2
∑

l

{

F 2
0GF

[

X1 l̄LγµνL〈uµ{QR,QW }〉 + X̂1l̄LγµνL〈uµ{QL,QW }〉

+X2l̄LγµνL〈uµ[QR,QW ]〉 + X̂2l̄LγµνL〈uµ[QL,QW ]〉

+X3Ml l̄RνL〈QRQW 〉

+ iX4 l̄LγµνL〈Qµ
LQW 〉 + iX5 l̄LγµνL〈Qµ

RQW 〉 + h.c.
]

+ X̂6l̄(i ∂/ +e F/)l + X̂7Ml l̄l
}

. (54)

An additional possible term of the form Ml l̄RνL〈qLqW 〉 is of no practical relevance and
will be ignored. The original LEC’s X6 and X7 are easy to relate to the new set of LEC’s
X̂i

X6 = X̂6 +
4

3
X̂1 + 4X̂2 ,

X7 = X̂7 −
4

3
X̂1 − 4X̂2 . (55)

These relations allow us to disentangle the strong-interaction content of X6 and X7, cor-
responding to X̂1 and X̂2, and the electroweak contributions encoded in X̂6 and X̂7.
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Finally, let us make two remarks. Firstly, one can verify that the Lagrangian terms
listed in (54) do have chiral order p4 if one uses the counting rules (7) and (46). Secondly,
eq. (54) obviously does not exhaust the possible terms of order p4 involving light lepton
pairs: they include only those connected with charged currents. Terms related with neutral
currents are disregarded here (for some examples, see e.g. [24]).

3.2 Spurion correlators

We have included electric and weak charge spurion sources in the Lagrangian. Therefore,
in addition to the usual vector, axial-vector. . . sources, the generating functional depends
on qL(x), qR(x), qW (x). We can define generalised Green functions by taking derivatives
of the generating functional with respect to these sources, and eventually with respect to
the usual sources, in order to compute matrix elements between physical states. This idea
was used in ref. [18] to generate a set of sum rules obeyed by the LEC’s Ki [16]. It can be
extended to the present situation without difficulty, and we define a set of three matrix
elements of three operators, obtained by taking one functional derivative with respect to
an electric charge spurion and one derivative with respect to a weak charge spurion.

More specifically, we introduce the charge spurions qV (x) and qA(x) as

qL(x) =
1

2
(qV (x) − qA(x)), qR(x) =

1

2
(qV (x) + qA(x)) . (56)

and the correlators

i

∫

d4x eirx〈l(p)ν̄(q)|δ
2W (qL,qR,qW )

δqRb(x)δqW c(0)
|0〉 ≡ δbcGRW (p, q, r) . (57)

and

∫

d4x 〈l(p)ν̄(q)|δ
2W (qV ,qA,qW )

δqV b(x)δqW c(0)
|πa(r)〉 ≡ ifabcFV W (p, q, r) + dabcDV W (p, q, r)

∫

d4x 〈l(p)ν̄(q)|δ
2W (qV ,qA,qW )

δqAb(x)δqW c(0)
|πa(r)〉 ≡ ifabcFAW (p, q, r) + dabcDAW (p, q, r) .(58)

where fabc and dabc denote the standard antisymmetric and symmetric functions defined
through the commutation and anticommutation of Gell-Mann matrices. Once the func-
tional derivatives have been taken, we set all sources to zero (including the charge spuri-
ons).

In the following, we will compute these generalised correlators in two different ways:
firstly from the chiral Lagrangian, leading to expressions in terms of low-energy coupling
constants, and secondly from the QCD and Fermi Lagrangians, yielding the correlators in
terms of the counterterms in Fermi theory. This approach allows one to generate repre-
sentations of the chiral coupling constants in terms of pure QCD correlation functions in a
rather straightforward way, with a clear identification of the short-distance contributions
from the Standard Model.
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3.3 Correlators from the chiral Lagrangian at one loop

Let us start with the chiral Lagrangian. The spurion correlators receive tree-level contribu-
tions from O(p4) LEC’s, and one-loop contributions with O(p2) vertices. Let us illustrate
this in the case of GRW (p, q, r). The tree contribution involves X3 and X5

Gtree
RW (p, q, r) =

1

2
e2GFF

2
0

[

MlX3ūl(p)
1 − γ5

2
vν(q) −X5ul(p)γµ

1 − γ5

2
vν(q)rµ

]

. (59)

The one-loop contribution has the following expression

Gloop
RW = −e

2Q0GFF
2
0

4

∫ −iddk

(2π)d

[

(k + r)σ(k + r)λ

(k + r)2
− gσλ

]

(60)

1

(k2 −M2
γ )((k − p)2 −M2

l )
ūl(p)γσ(p/ − k/ +Ml)γλ

1 − γ5

2
vν(q) .

In this sector, the ultraviolet divergences will be controlled via dimensional regularisation
(as usual in chiral perturbation theory). We must compute Gloop

RW only up to O(r). This
means that we may expand the integral for small values of the pion momentum r up to
linear order. A further simplification consists in expanding in powers of the lepton massMl

around the limitMl = 0, keepingMγ 6= 0 whenever necessary to avoid infrared divergences.
After performing these expansions, the loop contribution exhibits the following explicit
expression

Gloop
RW (p, q, r) = −e2Q0GFF

2
0

{

Mlūl(p)
1 − γ5

2
vν(q)

[

3

2
divχ +

1

16π2

(

3

4
log

M2
γ

µ2
+

1

8

)]

+ ūl(p)γµ
1 − γ5

2
vν(q)r

µ

[

3

4
divχ +

1

16π2

(

3

8
log

M2
γ

µ2
+

1

16

)]}

, (61)

where the chiral divergence is defined in the customary way

divχ =
µd−4

16π2

{

1

d− 4
− 1

2
(log 4π − γ + 1)

}

. (62)

The complete chiral expression for GRW is obtained by adding tree (59) and one-loop (61)
pieces

Gchir
RW (p, q, r) = Gtree

RW (p, q, r) +Gloop
RW (p, q, r) . (63)

The ultraviolet divergences are absorbed into the LEC’s

Xi = Xr
i (µ) + Ξi

µd−4

16π2

(

1

d− 4
− 1

2
(log 4π − γ + 1)

)

. (64)

This requirement sets the divergence coefficients

Ξ3 = −3 , Ξ5 =
3

2
, (65)
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in agreement with ref. [17]. We proceed in exactly the same way with the other spurion
correlators FV W , DV W , FAW , DAW (the loop contribution to D-terms involve correlators
that vanish by invariance under charge conjugation). These correlators, expanded up to
linear order in the momentum r, have the following expressions at next-to-leading order

F chir
V W (p, q, r) = F chir

V W (p, q, 0) + e2GFF0 ūl(p)γµ
1 − γ5

2
vν(q)rµ

×
[

Xr
2 + X̂r

2 +
1

16π2

(

5

4
log

M2
γ

µ2
+

1

8

)]

,

F chir
AW (p, q, r) = F chir

AW (p, q, 0) + e2GFF0 ūl(p)γµ
1 − γ5

2
vν(q)r

µ

×
[

Xr
2 − X̂r

2 +
1

16π2

(

−1

2
log

M2
γ

µ2

)]

,

Dchir
V W (p, q, r) = e2GFF0 ūl(p)γµ

1 − γ5

2
vν(q)r

µ[X1 + X̂1] ,

Dchir
AW (p, q, r) = e2GFF0 ūl(p)γµ

1 − γ5

2
vν(q)r

µ[X1 − X̂1] . (66)

We have not written the explicit formulas for F chir
V W (p, q, 0) and F chir

AW (p, q, 0). The following
simple relation holds

F chir
V W (p, q, 0) = F chir

AW (p, q, 0) = Gchir
RW (p, q) , (67)

as a result of a soft-pion theorem (see eq. (85) below). The coefficients of the chiral
divergences are

Ξ1 = Ξ̂1 = 0 , Ξ2 = −3

4
, Ξ̂2 = −7

4
, (68)

also in agreement with ref. [17].

3.4 Correlators from QCD + Fermi theory

Here we compute the correlators introduced in sec. 3.2 using the QCD and Fermi La-
grangians. A first (non-local) contribution stems from the terms in these Lagrangians
which are linear in the spurion sources, see eq. (44). A second (local) contribution is due
to the counterterms in Fermi theory that are quadratic in the spurions.

3.4.1 Integral contributions

Let us first consider the contribution to the spurion correlators coming from the La-
grangian eq. (44). Matrix elements of vector and axial-vector currents appear by taking
the functional derivatives defining the spurion correlators. Let us introduce the following
notation for these objects,

i

∫

d4x eikx〈0|V b
σ (x)V c

λ (0) −Ab
σ(x)Ac

λ(0)|0〉 ≡ δbcΠσλ
V V −AA(k) ,

15



∫

d4x eikx〈0|V b
σ (x)V c

λ (0)|πa(r)〉 ≡ dabcΓσλ
V V (k, r) ,

∫

d4x eikx〈0|Ab
σ(x)Ac

λ(0)|πa(r)〉 ≡ dabcΓσλ
AA(k, r) ,

∫

d4x eikx〈0|V b
σ (x)Ac

λ(0)|πa(r)〉 ≡ ifabcΓσλ
V A(k, r) . (69)

The choice between the fabc and the dabc tensor in these equations is dictated by invariance
under charge conjugation. Let us remark that the Pauli-Villars regularisation offers a
very appealing feature here: the operators and matrix elements appearing in eqs. (69)
are not to be defined in an arbitrary number of dimensions, but only in the physical
(four-dimensional) case. The Lagrangian eq. (44) leads to contributions to the spurion
correlators that are integrals involving the QCD Green function and vertex operators
introduced above (69).

Gint
RW (p, q, r) = −e

2Q0GF

4

∫ −id4k

(2π)4
Πσλ

V V −AA(k + r) ×Kσλ(k, p, q) , (70)

with

Kσλ(k, p, q) =
1

(k2 −M2
γ )Λ((k − p)2 −M2

l )
ūl(p)γσ(p/ − k/ +Ml)γλ

1 − γ5

2
vν(q) , (71)

and

F int
V W (p, q, r) =

e2Q0GF

2

∫ −id4k

(2π)4
Γσλ

V A(k, r) ×Kσλ(k, p, q) ,

Dint
V W (p, q, r) = −e

2Q0GF

2

∫ −id4k

(2π)4
Γσλ

V V (k, r) ×Kσλ(k, p, q) ,

F int
AW (p, q, r) =

e2Q0GF

2

∫ −id4k

(2π)4
Γλσ

V A(r − k, r) ×Kσλ(k, p, q) ,

Dint
AW (p, q, r) =

e2Q0GF

2

∫ −id4k

(2π)4
Γσλ

AA(k, r) ×Kσλ(k, p, q) . (72)

The integral in eq. (70) converges when the Pauli-Villars regulator mass Λ is sent to
infinity (there is no ultraviolet divergence), whereas the other integrals would diverge.
The divergences will be removed upon adding the contributions generated from the Fermi
counterterms.

3.4.2 Counterterm contributions

In order to identify the contributions to the spurion correlators arising from the Fermi
counterterms (34), we must first rewrite the Lagrangian in terms of spurion sources. After
some manipulations, we can re-express the counterterms as follows

LCT = −2e2Q2
0g00 l(i ∂/ −eQ0 F/ −Ml)l
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− ie2g23
(

ψL[qL,D
µqL]γµψL + L↔ R

)

(73)

+ e2Q0GF

{

lLγλνL ×
[

g02 ψLγ
λ qWqLψL + g03 ψLγ

λ qLqWψL

]

+ h.c.

}

.

The term proportional to g00 has been written in a more conventional way, which is
equivalent to the formulation in eq. (34) as far as the amplitude T is concerned (we
have applied equations of motion). We have extended the term proportional to g23 to
comply with the transformation laws of the spurions: this extended term contains the
piece proportional to g23 in the original formulation (34), as can be seen from the definition
of the spurion derivative (51). Modulo these transformations, it is simple to check that
setting the spurions to the physical charges qL = qR = Q, qW = QW reproduces the
Lagrangian eq. (34). Up to terms which are physically irrelevant, the translation from
charge labels to spurions is essentially unique.

In this new form, it is an easy task to compute the functional derivatives and deduce
the contributions to the spurion correlators. The following results are obtained

GCT
RW = 0 ,

FCT
V W = e2GFQ0F0ūl(p)γµ

1 − γ5

2
vν(q)r

µ

[

1

4
g02 −

1

4
g03

]

,

DCT
V W = e2GFQ0F0ūl(p)γµ

1 − γ5

2
vν(q)r

µ

[

−1

4
g02 −

1

4
g03

]

,

FCT
AW = e2GFQ0F0ūl(p)γµ

1 − γ5

2
vν(q)r

µ

[

−1

4
g02 +

1

4
g03

]

,

DCT
AW = e2GFQ0F0ūl(p)γµ

1 − γ5

2
vν(q)r

µ

[

+
1

4
g02 +

1

4
g03

]

. (74)

We can now add these contributions to the integral contributions

GFermi
RW (p, q, r) = GCT

RW (p, q, r) +Gint
RW (p, q, r) (75)

and similarly for the other correlators. The result should be finite as Λ → ∞: we verify
this now and show that the integrals can be brought to fairly simple forms.

3.5 Explicit representations of the chiral coupling constants

3.5.1 Integral representations

We can match the two expressions for the spurion correlators: the integral representation
stemming from Fermi theory, such as eq. (75), and the formulae obtained from the chiral
effective Lagrangian, see eq. (63). To do so, let us expand the integral representations
discussed in sec. 3.4.1 for small values of the pion momentum r, and compare the series with
the chiral expansion derived in sec. 3.3. This comparison yields integral representations
for the LEC’s of the chiral Lagrangian, which can be simplified further by displaying the
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kinematical structures and the associated form factors of the correlators involved. Let us
first introduce the correlators related to GRW , DV W and DAW

Πρσ
V V −AA(k) ≡ F 2

0 (kρkσ − k2gρσ)ΠV V −AA(k2) ,

Γρσ
V V (k, r) = iF0ǫ

ρσαβkαrβ ΓV V (k2, k.r) ,

Γρσ
AA(k, r) = iF0ǫ

ρσαβkαrβ ΓAA(k2, k.r) . (76)

In practice, we need Γρσ
V V and Γρσ

AA only up to O(r), and thus it is enough to get the form
factors ΓV V (k2, k.r) and ΓAA(k2, k.r) in the limit where the pion momentum r is set to
zero. We use the simplified notation

lim
r→0

ΓV V (k2, k.r) ≡ ΓV V (k2) , lim
r→0

ΓAA(k2, k.r) ≡ ΓAA(k2) . (77)

Then, in connection with the spurion correlators GRW , DV W and DAW , we can obtain
representations for the four LEC’s X1, X̂1, X3 and X5

X1 = − 3

8

∫ −id4k

(2π)4
1

k2
(ΓV V (k2) − ΓAA(k2)) ,

X̂1 = − 3

8

∫ −id4k

(2π)4
1

k2

(

ΓV V (k2) + ΓAA(k2) − 2

k2 − µ2
1

)

+
3

4
log

µ2
1

M2
Z

,

Xr
3 (µ) = − 3

2

∫ −id4k

(2π)4
1

k2

(

ΠV V −AA(k2) +
µ2

1

k2(k2 − µ2
1)

)

+
1

16π2

(

3

2
log

µ2

µ2
1

− 1

4

)

,

Xr
5 (µ) =

3

4

∫ −id4k

(2π)4
1

k2

(

ΠV V −AA(k2) +
µ2

1

k2(k2 − µ2
1)

)

+
1

16π2

(

−3

4
log

µ2

µ2
1

− 5

8

)

. (78)

These integrals could be rewritten as one-dimensional integrals. In order to derive the
expression of X̂1, we have re-expressed the combination of counterterms gr

02(µ0) + gr
03(µ0)

using the matching conditions eqs. (41). The result involves an explicitly convergent
integral, as can be checked easily using the asymptotic behaviour (see e.g. [25]) of ΓV V (k2),
ΓAA(k2),

ΓV V (k2), ΓAA(k2) ∼ 1

k2
, (79)

still ignoring (for the moment) perturbative QCD corrections. The scale µ0, related to
the renormalisation in Fermi theory, has disappeared, which signals that the original
divergence was correctly cancelled by the counterterm. An arbitrary scale µ1 has been
introduced in the integrand to obtain convergent integrals, but the dependence on µ1

cancels in the final result.

The integrals involved inX1, X2, X5 converge because of the short-distance smoothness
of the difference V V − AA in chiral QCD (see e.g. [26]). In the case of X3 and X5, the
integrands have been recast in a form which is explicitly infrared finite. As in the previous
case, the overall results are independent of the scale µ1 introduced in the integrands.
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Similar sum rules can be written for X2 and X̂2 by focusing on the r-linear piece in
FAW and FV W . The function of interest is the vertex correlator Γσλ

V A(p, r) which involves
two form factors F and G in the chiral limit [18],

Γσλ
V A(p, r) = F0

{

(pσ + 2qσ)qλ

q2
− gσλ + F (p2, q2)P σλ +G(p2, q2)Qσλ

}

, (80)

with q = r − p and

P σλ = qσpλ − (p.q) gσλ, Qσλ = p2qσqλ + q2pσpλ − (p.q) pσqλ − p2q2gσλ . (81)

In order to identify the LEC’s X2 and X̂2 one must expand Γσλ
V A(p, r) in eqs. (72) up to

linear order in the pion momentum r. Let us introduce

f(k2) ≡ F (k2, k2), f1(k
2) ≡ ∂xF (x, k2)|x=k2 , f2(k

2) ≡ ∂yF (k2, y)|y=k2

g(k2) ≡ G(k2, k2), g1(k
2) ≡ ∂xG(x, k2)|x=k2 , g2(k

2) ≡ ∂yG(k2, y)|y=k2 (82)

The correct QCD asymptotic behaviour of Γσλ
V A(k, r) as k → ∞ (see [18]) is reproduced

up to order 1/k2 provided that these functions obey the limits

lim
k2→∞

k4g(k2) = −1, lim
k2→∞

k4f(k2) = const. , lim
k2→∞

k4(f2(k
2) − k2g2(k

2)) = −3

2
. (83)

After some quick algebra, we find the following integral representations for X2 and X̂2

(once again essentially one-dimensional)

Xr
2(µ) = −3

8

∫ −id4k

(2π)4
1

k2

(

ΠV V −AA(k2) +
µ2

1

k2(k2 − µ2
1)

)

+
1

16π2

(

3

8
log

µ2

µ2
1

+
5

16

)

,

X̂r
2(µ) = −3

8

∫ −id4k

(2π)4

[ −1

k2(k2 − µ2
1)

+ f1(k
2) − f2(k

2) + k2 (−g1(k2) + g2(k
2))

]

+
1

16π2

(

−5

4
log

µ2
0

µ2
1

+
7

8
log

µ2

µ2
1

− 1

16

)

− 1

4
gr
02(µ0) +

1

4
gr
03(µ0) . (84)

In order to derive these expressions we have used integration by parts, noting that f1+f2 =
f ′ and g1 + g2 = g′, as well as the soft-pion theorem [27]

Γσλ
V A(k, 0) =

1

F0
Πσλ

V V −AA(k) . (85)

which implies that

ΠV V −AA(k2) =
1

k2
− f(k2) + k2g(k2) . (86)

Let us remark that this soft-pion theorem, in combination with eq. (67), implies that the
O(r0) pieces in FAW and FV W yield exactly the same sum rules as GRW . One easily
checks that the integral appearing in the expression of X̂r

2 is convergent whenever the
form factors satisfy the QCD asymptotic constraints eqs. (83). Remarkably, the LEC X2

turns out to depend only on the Green function 〈V V − AA〉. As in eq. (78), a scale µ1
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was introduced but the result is independent of µ1. The result can also be verified to be
independent of the scale µ0 which is a consequence of the fact that the contribution from
the counterterms correctly cancels the original divergence of the integral.

These exact integral representations reveal relationships among the coupling constants
which were not a priori expected

Xr
3 (µ) = 4Xr

2 (µ) − 3

2

1

16π2
,

Xr
5 (µ) = −2Xr

2 (µ) . (87)

Let us emphasise that these relations are absolutely general. In particular, their validity
is completely independent of any particular model for the two- and three-point Green
functions involved in the integral representations.

3.5.2 The case of X6

Among the LEC’s which are physically relevant, X6 plays a special role. According to
eq. (55), X6 can be expressed in terms of X̂1 and X̂2, which were discussed above, and X̂6.
By construction, X̂6 has no strong-interaction content: it can be determined by computing
the lepton wave-function renormalisation factor KF in chiral perturbation theory and iden-
tifying it with our calculation in Fermi Theory in sec.2.2.1. The regularisation schemes are
different: the former employs dimensional regularisation and chiral MS renormalisation,
whereas the latter relies on Pauli-Villars regularisation. We get the relation

X̂6(µ0) = −2 gr
00(µ0) +

3

2

1

16π2
. (88)

The resulting expression for X6 involves a combination of counterterms, −2g00 −g02 +g03,
which is not determined by the matching conditions (41). This implies that physical
quantities must involve X6 together with one additional, electromagnetic, LEC. It is not
difficult to see that this LEC must be K12. We will see that the physically relevant
combination is

Xphys
6 (µ) ≡ Xr

6 (µ) − 4Kr
12(µ) = 4 (X̂r

2 (µ) −Kr
12(µ)) + X̂r

6 (µ) +
4

3
X̂r

1(µ) . (89)

The LEC K12 was shown to satisfy an integral representation in terms of the vertex
function Γσλ

V A(k, r) that we have introduced above [18]. Using the present notation and
regularisation scheme, one can derive the explicit representation

Kr
12(µ) = −3

8

∫ −id4k

(2π)4

[ −1

k2(k2 − µ2
1)

+ f1(k
2) − f2(k

2) + k2 (−g1(k2) + g2(k
2))

]

+
1

16π2

(

−1

4
log

µ2
0

µ2
1

− 1

8
log

µ2

µ2
1

− 5

16

)

+
1

2
gr
23(µ0) (90)

where integration by parts was used to simplify the formula.
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Let us now consider the difference X̂2 − Kr
12 . Using the integral expressions (90)

and (84), one observes that all terms cancel except for the counterterms

X̂r
2(µ) −Kr

12(µ) = −1

4
gr
02(µ0) +

1

4
gr
03(µ0) −

1

2
gr
23(µ0) +

1

16π2

(

− log
µ2

0

µ2
+

1

4

)

. (91)

Inserting this result into Xphys
6 and setting µ0 = µ, one realises that the resulting combi-

nation of counterterms is indeed determined from the matching conditions (41)

− gr
02(µ) + gr

03(µ) − 2gr
00(µ) − 2gr

23(µ) =
1

16π2

(

−6 log
MZ

µ

)

. (92)

One ends up with the following simple representation of Xphys
6

Xr
6(µ) − 4Kr

12(µ) = −1

2

∫ −id4k

(2π)4
1

k2

(

ΓV V (k2) + ΓAA(k2) − 2

k2 − µ2
1

)

+
1

16π2

[

−8 log
MZ

µ1
+ 3 log

µ2

µ2
1

+
5

2

]

. (93)

One can verify that in the calculations of radiative corrections currently available [17, 7, 28]
X6 andK12 are always involved through the above combination. This contribution, related
to wave-function renormalisation, has the property of being universal, i.e., it appears as a
multiplicative factor

SEW = 1 − 1

2
e2(Xr

6 − 4Kr
12) , (94)

in front of the amplitude independently of the specific process considered. We recover here
the universal logarithmically enhanced logMZ term identified by Sirlin [11], but we also
get an explicit expression for the remaining terms.

Let us now consider the problem of perturbative QCD contributions. The couplings
Xi which are related to the difference V V −AA, clearly, will be essentially unaffected by
these. On the contrary, the combination Xeff

6 is concerned by such corrections. In fact,
if we take into account the correction proportional to αs in the asymptotic behaviour of
ΓV V + ΓAA [10]

(ΓV V (k2) + ΓAA(k2))αs ∼ − 2

π

αs(k
2)

k2
, (95)

in eq. (93) the integral will diverge. This is to be expected since the counterterms pro-
portional to ααs have not been implemented. Inspired by the work of Sirlin [11], one
can rather easily surmount this difficulty. The key point is that the asymptotic behaviour
of ΓV V + ΓAA is expected to set in at a scale µ2 which is much smaller than MZ . As a
consequence, we can rewrite eq. (93), up to very small corrections of order (µ2/MZ)2, in
terms of an integral in euclidian space with a cutoff at MZ

Xr
6 (µ) − 4Kr

12(µ) ≃ 1

32π2

∫ M2
Z

0
dx [ΓV V (−x) + ΓAA(−x)]

+
1

16π2

[

−6 log
MZ

µ
+

5

2

]

. (96)
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In this form, it becomes possible to account for the logarithmic terms in the asymptotic
behaviour of ΓV V + ΓAA without encountering any divergence. We will make use of this
feature in the next section.

At this point, we have discussed all the LEC’s introduced in ref. [17] except for X4 and
X7. Concerning the former, the corresponding term in the chiral Lagrangian involves only
leptons and sources and bears no relevance for physical low-energy processes. The LEC
X7 has a decomposition given by eq. (55). In this expression, the LEC X̂7 parameterises
the electromagnetic contribution to the lepton mass, which is not an observable quantity.

4 Minimal consistent resonance model

4.1 Estimation of the chiral couplings

The previous results can be applied to estimate numerically the chiral coupling constants
which may be of physical relevance. One expects that major contributions in the integrands
should come from light, narrow, resonances, which brings naturally to construct resonance
models for the various form-factors. This idea was put into practice in the case of the
form-factor ΠV V −AA a long time ago by Weinberg [29]. He showed that a minimal model
comprising the π, ρ and a1 resonances could yield reasonable results and satisfy the leading
QCD asymptotic constraints (which determine all the resonance coupling constants in
terms of the masses). In this model ΠV V −AA reads

ΠV V −AA(k2) =
M2

AM
2
V

k2(k2 −M2
V )(k2 −M2

A)
. (97)

This resonance model was applied to the sum rule calculating the π+ − π0 mass differ-
ence [19] and gives a very accurate result. The generalisation of this minimal resonance
model to the form factors F and G was discussed in ref. [18]

F (p2, q2) =
p2 − q2 + 2(M2

A −M2
V )

2(p2 −M2
V )(q2 −M2

A)
, G(p2, q2) =

−q2 + 2M2
A

(p2 −M2
V )(q2 −M2

A)q2
, (98)

and the form factors ΓV V and ΓAA were discussed in ref. [25]

ΓV V (k2, k.r) =
2k2 − 2k.r − cV

2(k2 −M2
V )((r − k)2 −M2

V )
,

ΓAA(k2, k.r) =
2k2 − 2k.r − cA

2(k2 −M2
A)((r − k)2 −M2

A)
(99)

(see also refs. [30, 31] for related work). The values of cV and cA are determined by the
Wess-Zumino-Witten anomalous Lagrangian [32],

cV =
NcM

4
V

4π2F 2
0

, cA =
NcM

4
A

12π2F 2
0

. (100)
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Approximating correlators with rational functions is justified in the large-Nc limit [33].
But it is not really known whether only retaining the very first few poles should yield an
accurate approximation of the actual Green functions. One can think of systematically
improving on the minimal model by including more resonance poles together with more
asymptotic constraints (see e.g. [25]). This interesting possibility is left for future work,
and we stick to the minimal approximation in this paper.

Computing the integrals of sec. 3.5 in the minimal resonance model is straightforward.
If we denote the ratio of the a1 and ρ resonance masses z = M2

A/M
2
V , we obtain for X1,

X̂1 and X3

X1 = −3

8

1

16π2

(

log(z) +
cV z − cA
2M2

V z

)

,

X̂1 =
3

8

1

16π2

(

−2log
M2

Z

M2
V

+ log(z) − cV z + cA
2M2

V z
+ 2

)

,

Xr
3 (µ) =

3

2

1

16π2

(

log
µ2

M2
V

+
log(z)

z − 1
− 1

6

)

. (101)

For Xr
2 and X̂r

2 one gets

Xr
2(µ) =

3

8

1

16π2

(

log
µ2

M2
V

+
log(z)

z − 1
+

5

6

)

,

X̂r
2(µ) =

1

8

1

16π2

(

−10 log
µ2

0

M2
V

+ 7 log
µ2

M2
V

+
3(z + 1) log(z)

(z − 1)2
− 6z

z − 1
+

5

2

)

− 1

4
gr
02(µ0) +

1

4
gr
03(µ0) . (102)

Finally, the physical combination X6 − 4K12 reads

Xr
6(µ) − 4Kr

12(µ) =
1

16π2

(

−8 log
MZ

MV
+ 3 log

µ2

M2
V

+
1

2
log(z) − cV z + cA

4M2
V z

+
7

2

)

. (103)

This expression accounts for the contribution of the light resonances. In the asymptotic
region (k2 > µ2

2 with µ2 ≃ 2 GeV), however, our resonance model becomes inaccurate.
In particular, while it reproduces (by construction) the leading asymptotic behaviour of
ΓV V +ΓAA it does not generate the logarithmic correction proportional to αs (see eq.(95).

We can estimate the modification in the value of Xeff
6 induced by this effect following

ref. [10] and the discussion in sec. 3.5.2. We content ourselves with an unsophisticated
leading order expression for αs. Then, from eqs. (95) (96) an analytical evaluation for this
correction is obtained

(

Xeff
6

)

αs

≃ 1

4π2β0

[

log

(

log
M2

Z

Λ2
QCD

)

− log

(

log
µ2

2

Λ2
QCD

)]

. (104)

In practice, we will use β0 = 11 − 2
3Nf with Nf = 4 and ΛQCD = 206 MeV which

corresponds to αs(m
2
τ ) = 0.35 and αs(M

2
Z) = 0.124. The numerical value of

(

Xeff
6

)

αs

is
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103X1 103Xr
2 103 Xr

3 103 X̃eff
6 103(Xeff

6 )αs 103Xeff
6

-3.7 3.6 5.00 10.4 3.0 -231.5

Table 1: Numerical values of the physically relevant LEC’s in the minimal resonance model with
µ = MV = 0.77 GeV and M2

A/M
2

V = 2. In the case of Xeff
6

we show separately the resonance
contribution without the large logarithm (column 4), with the large logarithm (column 6) and in
column 5 the perturbative αs correction (see text).

shown in table 1. The table also shows the numerical values of the LEC’s generated by
the minimal resonance model (with z = 2, µ = MV = 0.77 GeV). In the case of Xeff

6 we
observe that the αs correction is sizable but the resonance contribution dominates. Both
contributions have the same sign which is opposite to that of the large logarithm.

4.2 Examples of applications

Let us select a few applications of our results for illustrative purposes. To begin with, let
us evaluate the Marciano-Sirlin constant C1 which appears in the πl2 decay amplitude [34].
Comparing with the one-loop amplitude in chiral perturbation theory, Knecht et al. [17]
have derived the decomposition of C1 in terms of LEC’s and chiral logarithms

C1 = −4π2
[8

3
(Kr

1 +Kr
2) +

20

9
(Kr

5 +Kr
6)

− 4

3
X1 + 4(−Xr

2 +Xr
3) − (X̃r

6 − 4Kr
12)
]

µ=M2
ρ

+
Z

4

(

3 + 2 log
M2

π

M2
ρ

+ log
M2

K

M2
ρ

)

− 1

2
(105)

where (following [7]) X̃r
6 is defined as Xr

6 minus the large logarithm. All the LEC’s
participating in this expression have been estimated on the basis of the consistent minimal
resonance model. The O(p2) LEC Z is given in terms of 〈V V − AA〉 by the Das et al.

sum rule [19], which yields in the minimal resonance model

Z =
3

2

1

16π2

M2
V

F 2
0

z log(z)

z − 1
≃ 0.92 . (106)

The sums K1 + K2 and K5 + K6 have been evaluated through the modeling of a set of
QCD 4-point functions [37]. Combining these results with the estimates presented in this
paper (table 1), we obtain

C1 ≃ −0.93 − 1.63 = −2.56 (107)

where the first contribution comes from the LEC’s Ki and Xi. In our opinion, the un-
certainty on our estimates of these should not exceed 50%, which gives for the error on
C1

∆C1 ≃ 0.5 . (108)
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Our result for C1 lies at the margin of the range guessed in ref. [34], −2.4 ≤ C1 ≤ 2.4.
It can be applied to extract a slightly more precise value of the pion decay constant Fπ.
Starting from eq. (21) of ref. [34],

√
2Fπ = 130.7

(

0.9750

Vud

)

± 0.1 + 0.15C1 MeV (109)

and using an updated value for Vud from ref. [35], we obtain

Fπ = 92.2 ± 0.2 MeV . (110)

As a second application, let us consider the ratio of the form factors arising in K0
l3

and K+
l3 decays. It was noted in ref. [1] that the only unknown input in one-loop chiral

perturbation theory is the LEC X1

fK+π0

+ (0)

fK0π−

+ (0)

∣

∣

∣

ChPT
≡ rth

0+ = 1.022 ± 0.003 − 16παX1 . (111)

Our estimate for X1 induces only very limited changes, giving rth
0+ = 1.023 ± 0.003 which

remains somewhat incompatible with the present experimental determination [2, 4, 5, 6]
rexp
0+ = 1.038 ± 0.007 (see [36] ). Let us stress that the determination of X1 should be

reasonably accurate, since it involves the difference V V −AA in an integral relation with
a rapid convergence.

5 Conclusions

In this paper, we have studied the matching of the Standard Model to the chiral Lagrangian
describing the dynamics of its lightest degrees of freedom at low energies. The high-energy
dynamics of the Standard Model is encoded into the low-energy constants (LEC’s) which
are factors of local counterterms in the chiral Lagrangian. We have focused on the LEC’s
Xi that describe radiative corrections to weak semi-leptonic decays.

To determine the connection between these LEC’s and the Standard Model, we have
followed a two-step procedure. We started from the decay amplitude of a lepton, computed
at one loop in the Standard Model, and we matched it onto the corresponding computation
in Fermi theory. This has allowed us to determine the relevant counterterms in the latter
theory. Then comes the second step of our matching procedure, from Fermi theory to
the chiral effective Lagrangian. Thanks to a set of correlators defined within a spurion
framework, we have related these Fermi counterterms to the chiral LEC’s. This led us
to generate for all the Xi’s of physical relevance an integral representation involving two-
and three-point Green functions of vector and axial-vector currents defined in chiral QCD.
These can be brought into fairly simple forms involving just three form-factors: ΓV V , ΓAA

and ΠV V −AA. Simple but non-trivial relationships among the chiral LEC’s are revealed
by these representations.
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We dwelt on the case of X6, whose representation involves a combination of Fermi
counterterms left undetermined by the first step of our matching procedure. This indi-
cated that this LEC should always appear in physical processes together with another
chiral coupling, namely the electromagnetic LEC K12, and we have derived an integral
representation for the physical combination of the two LEC’s. In practice this universal
term is dominated by Sirlin’s large logarithm. Our approach allows one to identify the
unenhanced terms as well.

Finally, we have estimated the values of the Xi’s by plugging into the integral rep-
resentations a resonance model for the chiral two- and three-point Green functions. We
have investigated the minimal resonance model that satisfies the leading asymptotic QCD
constraints, with poles corresponding to Goldstone boson, vector and axial-vector reso-
nances. Such a model is expected to yield rather accurate results whenever the sum rules
are rapidly converging. In the case of the coupling Xeff

6 , this criterion fails to be satisfied,
and we have accounted for the main correction using perturbative QCD. Table 1 shows
that the resonance contributions are smaller than the large logarithms by approximately
a factor of twenty.

We presented two applications of our results. First, we reexamined the Marciano-
Sirlin constant C1, whose value lies slightly out of the range guessed in ref. [34]. A second
outcome of our analysis concerns Kl3 decays, for which various sets of data exist but are
barely compatible within experimental errors. A good test of consistency consisted in the
ratio of K0

l3 and K+
l3 form factors. Our estimate of X1, based on a resonance model for

the V V −AA correlator, is too small to account for the discrepancy between experimental
data and chiral perturbation theory.
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