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A NEW PROOF OF JAMES’ SUP THEOREM

MARIANNE MORILLON

Abstract. We provide a new proof of James’ sup theorem for (non
necessarily separable) Banach spaces. One of the ingredients is the fol-
lowing generalization of a theorem of Hagler and Johnson ([5]) : “If

a normed space E does not contain any asymptotically isometric copy

of ℓ
1(N), then every bounded sequence of E

′ has a normalized block se-

quence pointwise converging to 0”.
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2 M. MORILLON

1. Preliminaries

1.1. Introduction. Given a normed space E, we denote by ΓE its closed
unit ball, by E′ the continuous dual of E (endowed with its dual norm), and
by E′′ the second continuous dual of E. Say that the normed space E is
onto-reflexive if the canonical mapping jE : E → E′′ is onto. Say that E
is J-reflexive (James-reflexive) if ΓE does not contain any sequence (an)n∈N

satisfying

inf
n∈N

distance(span{ai : i < n}, conv{ai : i ≥ n}) > 0

Say that E is sup-reflexive if every f ∈ E′ attains its upper bound on
ΓE. It is known that, with the Axiom of Choice, for a given Banach space
the following notions are equivalent : onto-reflexivity, weak compactness
of the closed unit ball, J-reflexivity, sup-reflexivity, Eberlein-Smulyan prop-
erty (“Every bounded sequence has a weakly convergent subsequence”) . . .
Both implications “J-reflexivity ⇒ onto-reflexivity” and “sup-reflexivity ⇒
J-reflexivity” are due to James ; the first implication has a recent short
proof (see [14]), but classical proofs of the “reflexivity” of sup-reflexive Ba-
nach spaces (James’ sup theorem) are rather intricate (see [9], [10], [16]).
There exist simpler proofs of this theorem under some restrictions : for ex-
ample, there is a short proof, relying on Simons’ inequality, that separable
sup-reflexive Banach spaces are onto-reflexive (see [4]). In this paper, we
provide a new proof of James’ sup theorem.

1.2. Presentation of the results. We work in Zermelo-Fraenkel set-theory
without choice ZF, and expressly mention the two (weak) forms of the Ax-
iom of Choice (AC) that are used in our proofs, namely : the axiom of
Hahn-Banach (HB) and the axiom of Dependent Choices (DC) (see Sec-
tion 5).

Given a real vector space E and a sequence (xn)n∈N of E, a sequence
(bn)n∈N of E is a block sequence of (xn)n if there exists a sequence (Fn)n∈N

of pairwise disjoint finite subsets of N and a sequence (λi)i∈N of real numbers
such that for every n ∈ N, bn =

∑

i∈Fn
λixi ; if for each n ∈ N,

∑

i∈Fn
|λi| =

1, the block sequence (bn)n∈N is said to be normalized ; if, in addition, for
every i ∈ ∪n∈NFn, λi ≥ 0, say that the block sequence is convex : thus,
every infinite subsequence is a convex block sequence. The sequence (Fn)n
is called a sequence of supports of the block sequence (bn)n. Say that a
topological space is sequentially compact if every sequence of this space has
an infinite subsequence which converges. Say that a subset C of a topological
vector space E is block compact if every sequence of C has a normalized block
sequence (bn)n∈N which converges in E (hence the normalized block sequence

( b2n−b2n+1

2 )n∈N converges to 0). Say that C is convex block compact if every
sequence of C has a convex block sequence which converges in E.

Using Simons’ inequality, we begin by proving in ZF+HB that every
sup-reflexive normed space with a *weak convex block compact dual ball is
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J-reflexive (Corollary 2-1 of Section 2.1) ; in particular, this yields a new
proof (indeed in ZF) of the J-reflexivity of sup-reflexive separable normed
spaces (Corollary 2-2). Then, in Section 2.2, using Simons’ inequality and
Rosenthal’s ℓ1-theorem, we prove the following “generalization” :

Theorem 1 (HB). Given a sup-reflexive normed space E, if ΓE′ is *weak
block compact, then E is J-reflexive.

We then prove (Section 3) :

Theorem 2 (DC). If a normed space E does not contain any asymptotically
isometric copy of ℓ1(N), then, ΓE′ is *weak block compact.

Here, say that E contains an asymptotically isometric copy of ℓ1(N) if there
exists a sequence (an)n∈N of ΓE and some sequence (δn)n∈N of ]0, 1[ converg-
ing to 1 satisfying the following inequality for every finite sequence (λi)0≤i≤n

of R :

∑

0≤i≤n

δi|λi| ≤

∥

∥

∥

∥

∥

∥

∑

0≤i≤n

λiai

∥

∥

∥

∥

∥

∥

Theorem 2 generalizes a result due to Hagler and Johnson ([5], 1977), where
the normed space contains no isomorphic copy of ℓ1(N).

We finally prove (Section 4) :

Theorem 3 (HB). A sup-reflexive normed space does not contain any
asymptotically isometric copy of ℓ1(N).

This result is a straightforward generalization of a short theorem due to
James (see [8, Theorem 2 p. 209]).

Thus we get the following new proof of James’ sup theorem :

Corollary 1 (HB+DC). Every sup-reflexive normed space is J-reflexive.

Proof. Let E be a sup-reflexive normed space. According to Theorem 3, the
space E does not contain any asymptotically isometric copy of ℓ1(N) ; so,
with Theorem 2, ΓE′ is *weak block compact ; whence, by Theorem 1, E is
J-reflexive. �

1.3. Questions. Given a normed space E, obviously,

ΓE′ *weak sequentially compact ⇒

ΓE′ *weak convex block compact ⇒ ΓE′ *weak block compact

The first implication is not reversible in ZFC since there exists a Banach
space E such that ΓE′ endowed with the *weak topology is convex block
compact and not sequentially compact (see [6]) : notice that the construction
of the space built there depends on a well-order on R.

Question 1. Does there exist in ZF a Banach space E such that ΓE′ is
*weak convex block compact and not *weak sequentially compact ?
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Question 2. Does there exist (in ZF or ZFC) a Banach space E such that
ΓE′ is *weak block compact and not *weak convex block compact ?

Question 3. According to a theorem of Valdivia (see [18]) for locally con-
vex spaces, who refers to Bourgain and Diestel (see [2]) for Banach spaces,
themselves referring to Bourgain-Fremlin-Talagrand (see [3]), DC implies
that “the dual ball of a normed space not containing any isomorphic copy
of ℓ1(N) is *weak convex block compact”. Does this result persist (in ZF
or ZFC) for normed spaces which do not contain asymptotically isometric
copies of ℓ1(N) ?

2. Spaces with a *weak block compact dual ball

2.1. Spaces with a *weak convex block compact dual ball.

Theorem (Simons’ inequality [17]). Let S be a set and (xn)n∈N be a
bounded sequence of ℓ∞(S). Denote by Λ the set of sequences (λn)n∈N ∈
[0, 1]N satisfying

∑

n∈N
λn = 1. Assume that for every (λn)n∈N ∈ Λ, the

infinite convex combination
∑

n∈N
λnxn attains its upper bound on S. Then,

inf{sup
S

∑

n∈N

λnxn : (λn)n∈N ∈ Λ} ≤ sup
S

lim sup
n∈N

xn

Notice that the proof given in [17] (see also [13]) is choiceless : use convex
combinations with finite supports and rational coefficients.

Given a normed space E, and some real number ϑ > 0, say that a sequence
(an)n∈N of E is a ϑ-sequence if infn∈N d(span{ai : i < n}, conv{ai : i ≥
n}) ≥ ϑ. Given a ϑ-sequence (an)n∈N of ΓE, and denoting by V the vector
space span({an : n ∈ N}), there is a sequence (fn)n∈N of ΓV ′ satisfying
fn(ai) = 0 if i < n and fn(ai) ≥ ϑ if n ≤ i : in this case, say that (an, fn)n∈N

is a ϑ-triangular sequence of E. Using HB (or rather its “multiple form”, see

Section 5), there exists a sequence (f̃n)n∈N of ΓE′ such that each f̃n extends
fn : in this case, say that (an, fn)n∈N is an extended triangular sequence of
E. Thus, a normed space E is J-reflexive if and only if it has no ϑ-triangular
sequence for any ϑ > 0.

Lemma 1. Given a sup-reflexive space E, some ϑ > 0, and some extended
ϑ-triangular sequence (an, fn)n∈N of E, no convex block sequence of (fn)n∈N

pointwise converges.

Proof. Seeking a contradiction, assume that some convex block sequence
(bn)n∈N pointwise converges to some f . Without loss of generality, we may
assume that the sequence of supports (Fn)n∈N satisfies F0 < F1 < · · · <
Fn < . . . . Observe that for every n ∈ N, f(an) = 0. Then denoting

by hn the mapping bn−f
2 , and by dn the last element of Fn, the sequence

(adn
, hn)n∈N is ϑ

2 -triangular. Using Simons’ inequality and the assumption
of sup-reflexivity of E, there exists some finite convex combination g :=
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∑

n∈F λnhn of (hn)n∈N such that supΓE
g ≤ ϑ

4 ; but for any integer N >

maxF , g(aN ) =
∑

i∈F λihi(aN ) ≥ ϑ
2 : contradiction ! �

Corollary 2. Let E be a sup-reflexive normed space.

(1) If ΓE′ is *weak convex block compact, then E has no extended trian-
gular sequence, in which case, with HB, E is J-reflexive.

(2) If E is separable, then E is J-reflexive.

Proof. Point 1. reformulates Lemma 1. For Point 2 : if E is separable,
its dual ball, which is homeomorphic with a closed subset of [−1, 1]N, is
*weak sequentially compact ; so with Point 1, E has no extended triangular
sequence. Besides the “multiple” version of HB is provable in ZF for sepa-
rable normed spaces, hence E has no triangular sequences either, whence it
is J-reflexive. �

Remark 1. Using Valdivia’s theorem (see Question 3), it follows from DC
that Sup-reflexive spaces not containing isomorphic copies of ℓ1(N) do not
have extended triangular sequences.

2.2. Spaces with *weak block compact dual ball. Say that a bounded
sequence (fn)n∈N of a normed space E is equivalent to the canonical basis
of ℓ1(N) if there exists some real number M > 0 satisfying M

∑

n∈N
|λn| ≤

∥

∥

∑

n∈N
λnfn

∥

∥ for every (λn)n ∈ ℓ1(N) : if in addition, ∀n ∈ N ‖fn‖ ≤ 1, say

that (fn)n∈N is M -equivalent to the canonical basis of ℓ1(N).

Theorem (Rosenthal’s ℓ1-theorem). Given a set X and a bounded se-
quence (fn)n∈N of ℓ∞(X), there exists a subsequence of (fn)n∈N which point-
wise converges, or there exists a subsequence which is equivalent to the
canonical basis of ℓ1(N).

Rosenthal’s Theorem is a choiceless consequence (see Kechris, [11, p.135-
136]) of the following choiceless result (see for example Avigad, [1], 1996) :

Theorem (Cohen, Ehrenfeucht, Galvin (1967)). Every open subset of
[N]N (the set of infinite subsets of N endowed with the product topology) is
Ramsey.

Proof of Theorem 1. Seeking a contradiction, assume that some sup-reflexive
normed space E is not J-reflexive, though ΓE′ is *weak block compact. Non
J-reflexivity of E yields some ϑ-triangular sequence (an, fn)n∈N with ϑ > 0.

Using HB, extend each fn to some f̃n ∈ ΓE′ . Then, with Lemma 1, no
infinite subsequence of (f̃n)n∈N pointwise converges, so, using Rosenthal’s

ℓ1-theorem, there exists some infinite subsequence (f̃n)n∈A and some M > 0

such that the bounded sequence (f̃n)n∈A is M -equivalent to the canonical

basis of ℓ1(N). Now, by *weak block compactness of ΓE′, (f̃n)n∈A has a
normalized block sequence (bn)n∈N *weakly converging to 0. Using Simons’
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inequality, there exists some finite convex combination g :=
∑

i∈F λibi of

(bn)n∈N such that ‖g‖ = supΓE
g ≤ M

2 ; but, since the block sequence (bn)n∈N

is normalized, it is also M -equivalent to the canonical basis of ℓ1(N), hence
‖g‖ ≥ M

∑

i∈F |λi| = M : the contradiction ! �

3. Extension of a theorem by Hagler and Johnson

Notation 1 ([5]). If (bn)n∈N is a normalized block sequence of a sequence
(xn)n∈N of a real vector space, we write (bn)n ≺ (xn)n.
Given a set X, for every bounded sequence (fn)n∈N of ℓ∞(X), and every
subset K of X, let

δK(fn)n := sup
K

lim sup fn

εK(fn)n := inf{δK(hn)n : (hn)n ≺ (fn)n}

Remark 2. If for every n ∈ N, fn[K] = fn[−K], then δK(fn)n = 0 if and
only if (fn)n pointwise converges to 0 on K. Observe that if for some n0 ∈ N,
(hn)n≥n0

is a normalized block sequence of (fn)n, then δK(hn) ≤ δK(fn) and
εK(fn)n ≤ εK(hn).

Given a metric space (X, d), for every x ∈ X and every real number r > 0
we denote by B(x, r) the open ball {y ∈ X : d(x, y) < r}.

Lemma 2 (quantifier permuting). Let (K,d) be a precompact metric
space, λ ∈ R

∗
+, and (fn)n∈N be a sequence of λ-Lipschitz real mappings on

K. If δK(fn)n ≤ 1 then, for every ε ∈ R
∗
+, there exists N ∈ N satisfying

∀n ≥ N supKfn ≤ 1 + ε.

Proof. Let η ∈]0, ε[. Given some x ∈ K, there exists some finite subset
Fx of N satisfying ∀n ∈ N\Fx fn(x) < 1 + η ; thus, denoting by ρ the
positive number ε−η

λ
, for every n ∈ N\Fx, for every y ∈ B(x, ρ), fn(y) <

1 + ε. Now the precompact set K is contained in a finite union of the
form

⋃

1≤i≤N B(xk, ρ). Let F be the finite set
⋃

1≤k≤n Fxk
. Then, for every

y ∈ K, given k ∈ {1..n} such that d(xk, y) < ρ, for every i ∈ N\F , fi(y) <
fi(xk) + λρ ≤ 1 + η + (ε − η) = 1 + ε. �

Lemma 3 ([5, proof of Theorem 1]). Given a set X and a bounded sequence
(fn)n∈N of ℓ∞(X), there exists a normalized block sequence (bn)n∈N of (fn)n
such that εX(bn)n = δX(bn)n.

Proof. Diagonalization. Choose some normalized block sequence (h0
n)n∈N

of (fn)n such that δX(h0
n)n ≤ εX(fn)n + 1

20 , and then, for every i ∈ N,

inductively choose some normalized block sequence (hi+1
n )n∈N of (hi

n)n such
that δX(hi+1

n )n ≤ εX(hi
n)n + 1

2i+1 . For every n ∈ N, let bn := hn
n : then

(bn)n ≺ (fn)n ; moreover, given a normalized block sequence (kn)n∈N of
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(bn)n, for every i ∈ N, δX(bn)n ≤ δX(hi+1
n )n ≤ εX(hi

n)n + 1
2i+1 ≤ δX(kn)n +

1
2i+1 whence δX(bn)n ≤ εX(bn)n. �

Lemma 3 is valid in ZF : no choice is needed here since block can be built
with rational coefficients.

Notation 2. For every integer n ∈ N, we denote by Sn the set {0, 1}n

of finite sequences of {0, 1} with length n ; let S be the set of all finite
sequences of {0, 1}. Given an infinite subset A of N, we denote by i 7→ iA
the increasing mapping from N onto A.

Say that a family (Aσ)σ∈S of infinite subsets of N is a tree (of subsets of
N) if for every σ ∈ S, Aσ⌢0 and Aσ⌢1 are disjoint subsets of Aσ.

Proof of Theorem 2. We essentially follow the proof of Hagler and Johnson,
extending it with the help of Lemma 2. Assuming that E is a normed
space, and that (gn)n∈N is a bounded sequence of E′ without any nor-
malized block sequence pointwise converging to 0, we are to show that
E contains an asymptotically isometric copy of ℓ1(N). Using Lemma 3,
the sequence (gn)n∈N has a normalized block sequence (fn)n∈N satisfying
εΓE

(fn)n = δΓE
(fn)n > 0. Dividing each fn by εΓE

(fn)n, we may assume
that εΓE

(fn)n = δΓE
(fn)n = 1. Let (un)n∈N be a sequence of ]0, 1/3[ de-

creasing to 0 ; for every n ∈ N, let εn := un

2n and let δn := 1 − εn ; thus
(εn)n∈N also decreases to 0. Using DC, we will build a tree (Aσ)σ∈S rooted
at A∅ := N, and a sequence (ωn)n≥1 of ΓE satisfying for every n ≥ 1,
σ = (α1, . . . , αn) ∈ Sn, and i ∈ Aσ,

‖fi↾ span{ω1, . . . , ωn}‖ ≤ 1 + εn and

{

fi(ωn) ≥ 1 − 3un if αn = 1

fi(ωn) ≤ −1 + 3un if αn = 0

Then, with

Pn := {f ∈ E′ : f(ωn) ≥ 1 − 3un and ‖f↾ span{ω1, . . . , ωn}‖ ≤ 1 + εn}

Qn := {f ∈ E′ : f(ωn) ≤ −1 + 3un and ‖f↾ span{ω1, . . . , ωn}‖ ≤ 1 + εn}

it will follow that (Pn, Qn)n≥1 is independent (for every disjoint finite subsets
F,G of N\{0},

⋂

n∈F Pn ∩
⋂

n∈G Qn is non-empty), whence the sequence

(ωn)n≥1 of ΓE is asymptotically isometric to the canonical basis of ℓ1(N) :
indeed, given real numbers λ1, . . . , λn, letting f ∈

⋂

{i:λi>0} Pi∩
⋂

{i:λi<0} Qi,

‖f↾ span{ω1, . . . , ωn}‖

∥

∥

∥

∥

∥

∥

∑

1≤i≤n

λiωi

∥

∥

∥

∥

∥

∥

≥ f
(

∑

1≤i≤n

λiωi

)

≥
(

∑

{i:λi>0}

λi(1 − 3ui) +
∑

{i:λi<0}

λi(−1 + 3ui)
)

≥
∑

1≤i≤n

|λi|(1 − 3ui)
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whence
∥

∥

∥

∑

1≤i≤n λiωi

∥

∥

∥
≥ 1

1+εn

∑

1≤i≤n |λi|(1 − 3ui) ≥
∑

1≤i≤n |λi|
1−3ui

1+εi
,

with the sequence (1−3ui

1+εi
)i∈N of ]0, 1[ converging to 1.

Building ωn+1 and (Aσ)σ∈Sn+1
from (Aσ)σ∈Sn

and (ωi)1≤i≤n. Given, for
every σ ∈ Sn, two infinite disjoint subsets Lσ and Rσ of Aσ , consider the

normalized block sequence (hn
i )i∈N with hn

i := 1
2n

∑

σ∈Sn

fiRσ
−fiLσ

2 . Since
δΓE

(hn
i )i ≥ 1, there is some ωn+1 ∈ ΓE satisfying lim supi hn

i (ωn+1) > δn+1

and in particular, the set J := {i ∈ N : hn
i (ωn+1) > δn+1} is infinite. Since

the closed unit ball K of the finite dimensional space span{ω1, . . . , ωn+1}
is compact and δK(fi)i ≤ δΓE

(fi)i ≤ 1, Lemma 2 implies the existence of
some N0 ∈ N satisfying ∀i ≥ N0 ‖fi↾ span{ω1, . . . , ωn+1}‖ ≤ 1 + εn+1. Let
J ′ := {i ∈ J : i ≥ N0}. Now, given any σ ∈ Sn, for every i ∈ J ′, notice
that, below, iRτ

, iLτ
≥ i ≥ N0 :

fiRσ
(ωn+1) − fiLσ

(ωn+1)

2
= 2nhn

i (ωn+1) −
∑

τ∈Sn,τ 6=σ

fiRτ
(ωn+1) − fiLτ

(ωn+1)

2

≥ 2nδn+1 − (2n − 1)(1 + εn+1)

= 2n(1 − εn+1) − (2n − 1)(1 + εn+1)

= 1 − (2n+1 − 1)εn+1 ≥ 1 − 2n+1εn+1 = 1 − un+1

whence

fiRσ
(ωn+1) ≥ 2(1 − un+1) + fiLσ

(ωn+1)

≥ 2(1 − un+1) − (1 + εn+1)

= 1 − un+1(2 +
1

2n+1
) ≥ 1 − 3un+1

likewise, fiLσ
(ωn+1) ≤ −1 + 3un+1 ; then, let Aσ⌢0 := {iLσ

: i ∈ J ′}, and
Aσ⌢1 := {iRσ

: i ∈ J ′}. �

4. No asymptotically isometric copy of ℓ1(N) in sup-reflexive

spaces

Notice that any asymptotically isometric copy (an)n∈N of ℓ1(N) in a
normed space E is linearly independent (indeed, it is a Schauder sequence
of E).

Proof of Theorem 3. Assume the existence of some sequence (an)n∈N of ΓE,
asymptotically isometric with the canonical basis of ℓ1(N), witnessed by a
sequence of coefficients (δi)i∈N of ]0, 1] converging to 1. Let V := span{an :
n ∈ N}. For every n ∈ N, consider the linear mapping gn : V → R such
that gn(ai) = −δi if i < n and gn(ai) = δi if n ≤ i ; then, for every
(λi)i∈N ∈ R

(N) (λi = 0 for all but finitely many i’s), |gn(
∑∞

j=0 λjaj)| =

|
∑

j<n −λjδj +
∑

j≥n λjδj | ≤
∑∞

j=0 |λj |δj ≤
∥

∥

∥

∑∞
j=0 λjaj

∥

∥

∥
whence gn is con-

tinuous and ‖gn‖ ≤ 1 ; besides for every integer i ≥ n, gn(ai) = δi, whence
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limi→+∞ gn(ai) = 1 ; so ‖gn‖ = 1. Using HB, for each n ∈ N, extend
gn to some g̃n ∈ SE′. Let W be the vector subspace of elements x ∈ E
such that

(

g̃n(x)
)

n∈N
converges. Then the linear mapping g := limn g̃n is

continuous with norm ≤ 1 on W ; extend it to some element g̃ ∈ ΓE′ .
Now consider some sequence (αi)i∈N of ]0, 1[ such that

∑

i∈N
αi = 1 and

let h :=
∑

k∈N
αkg̃k − g̃. Clearly, ‖h‖ ≤ 2. Besides, for every n ∈ N,

h(an) =
∑

k≤n αkδn −
∑

k>n αkδn + δn = 2δn

∑

k≤n αk, thus limn h(an) = 2.

So ‖h‖ = 2. By sup-reflexivity of E, let u ∈ ΓE such that h(u) = 2. Ob-
serve that g̃(u) = −1, and for every k ∈ N, g̃k(u) = 1 (notice that for
each k, αk 6= 0) ; now u ∈ W and g(u) = limk g̃k(u) = 1, contradicting
g̃(u) = −1 ! �

5. Comments in set-theory without choice ZF

Recall the Axiom of Choice :

(AC). Given a family (Ai)i∈I of non-empty sets, there exists a mapping
f : I → ∪i∈IAi satisfying f(i) ∈ Ai for every i ∈ I.

and the two following weak forms of the Axiom of Choice :

(DC). (Dependent Choices) Given a non-empty set E and a binary
relation R ⊆ E × E satisfying ∀x ∈ E ∃y ∈ E xRy, there exists a sequence
(xn)n∈N of E satisfying ∀n ∈ NxnRxn+1.

(HB). (Hahn-Banach) Given a real vector space E, a sublinear mapping
p : E → R, a vector subspace F of E and a linear mapping f : F → R

satisfying f ≤ p↾ F , there exists a linear mapping f̃ : E → R extending f
and satisfying f̃ ≤ p.

It is known (see [7]) that ZF+DC does not prove HB, that ZF+HB
does not prove DC, and that ZF+HB+DC does not prove AC. The
axiom HB is known to be equivalent to its multiple form (see [7]) : Given a
family (Ei)i∈I of real vector spaces, a family (pi)i∈I of sublinear mappings
pi : Ei → R, a family (Fi)i∈I of vector subspaces Fi ⊆ Ei and a family
(fi)i∈I of linear mappings fi : Fi → R satisfying fi ≤ pi↾ Fi for every i ∈ I,

there exists a family (f̃i)i∈I of linear mappings f̃i : Ei → R extending fi and

satisfying f̃i ≤ pi for every i ∈ I.

Question 4. All notions of reflexivity we reviewed till now (J-reflexivity,
onto-reflexivity, convex-reflexivity, compact-reflexivity, Smulian-reflexivity,
sup-reflexivity, . . . -see [12]-) are equivalent in ZF+DC+HB. Is there some
“classical” notion of reflexivity which is not equivalent to “sup-reflexivity”
in ZF+DC+HB ?

Question 5. In ZF (see Corollary 2 of Section 2.1), separable sup-reflexive
Banach spaces are J-reflexive. More generally, all notions of reflexivity for
separable Banach spaces we reviewed till now are equivalent in ZF either to
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onto-reflexivity or to J-reflexivity, the former being weaker than the latter,
and these two notions being not equivalent since there exists a model of
ZF+DC (see [15]) where the continuous dual of ℓ∞(N) is ℓ1(N) : in such a
model, the (non J-reflexive, separable) Banach space ℓ1(N) is onto-reflexive.
Is there some “classical” notion of reflexivity which, for separable Banach
spaces, is equivalent in ZF, neither to J-reflexivity nor to onto-reflexivity ?
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