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Abstract

We consider the computational problem of the Near Neighbor Search
(NNS) in nonmetric spaces. Nonmetric spaces are the generalization of
the metric spaces because they do not require the triangular inequality
assumption. Nonmetric spaces are important because many similarity
measures (between images, proteins, etc) do not verify the triangular in-
equality.

We show the nonmetric situation calls for different evaluation criteri-
ons of NNS algorithms. As a first attempt, to our knowledge, to perform
general nonmetric NNS, we introduce such evaluation criterions. The in-
sights provided by those criterions lead us to introduce a new category of
search structures, called densitrees, that extend the classical metric tree
algorithm for the nonmetric NNS.

Against well established datasets, our preliminary empirical results
lead us to a counter-intuitive conclusion: the triangular inequality has
only a secondary contribution on the efficiency metric NNS. Additionally,
the densitrees, although very naively implemented, performs reasonably
well both in metric and nonmetric situations.

1 Introduction

A Near Neighbor Search (NNS) consists of finding points similar to a given query
point within a given dataset. Performing fast NNS is critical for many appli-
cations: pattern recognition or statistical learning [13], multimedia information
retrieval, protein database search, audio and video compression.

Historically, the methods used to perform search operation were leveraging
the structure of the data, often numerical or alphabetical. In such a simple case
where a total order exist between the data points, NNS are performed in loga-
rithmic time of the size of dataset (see [9]). Traditional databases, structured
around the notion of relational algebra, deal with the notion of exact structured
search. Language like SQL emphasizes the combination of explicit total order-
ing criterions. This approach has the clear advantage of being computationally
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very efficient. Nevertheless, the main drawback of the structured search lies in
the tight bound of the method itself to a certain type data. This bound between
the search method and the data structure raises two issues:

• How do we deal with data that does not fit a relational representation?
For example, proteins are encoded sequences of variable length of amino
acids.

• How do we deal with data when structured search criterions cannot express
the desired similarity? For example, images (of identical dimensions) can
be represented as fixed length real vectors, but dimension-wise similarity
criterion will lead to a poor notion of similarity.

Those issues have led to a more general and unifying approach of NNS
problem: searching in a dataset for the closest points to a given query point
according to a similarity function. Although this paper focuses on the nonmetric
NNS, we will first introduce the metric NNS that has been the subject to a much
more extensive literature (see [6] for a review).

Definition 1 (Metric function and metric space) Let E be a set. A func-
tion d : E2 → R+ is said to be a metric over E if d verifies the separa-
tion assumption ∀(x, y) ∈ E2, d(x, y) = 0 ⇔ x = y, the symmetry assump-
tion ∀(x, y) ∈ E2, d(x, y) = d(y, x) and the triangular inequality ∀(x, y, z) ∈
E3, d(x, y) + d(y, z) ≤ d(x, z). A couple (E, d) is called a metric space if d is a
metric over E.

Intuitively, if a dataset contains points drawn from a metric space, then those
assumptions ensure that the distance d has a behavior somewhat similar to the
simple geometric euclidian distance. In the following, let E be the dataspace,
X be the dataset with a cardinal n = |X| and d : E2 → R+ a metric.

The NNS literature is mainly devoted to algorithms performing (exactly
or approximated) those two types of neighbor queries: range queries and near
neighbors queries. The range query is the selection within X of all points
included in a ball of center q the query point and of a given radius r, Bd(q, r) =
{x ∈ X|d(q, x) ≤ r}. The near neighbors query is the selection within X of
the k nearest points of the query point q such as Nd(q, k) = {x1, . . . , xk|∀x ∈
X, d(q, x) < d(q, xk) ⇒ ∃j, x = xj}. Because of the size of the dataset, the
analysis of the computational costs of such algorithms can take many factors
into account such as raw CPU, I/O and memory [7]. Nevertheless, the most
classical cost criterion consists simply of counting the number of calls to the
metric function to achieve the query [6].

In order to achieve better performance than the naive exhaustive search, the
metric NNS algorithms relies on the metric space assumptions. The strongest of
the three assumptions (see Definition 1), is the triangular inequality. Intuitively
the classical metric NNS algorithms, like the metric tree [21, 19, 7], makes an
intensive use of the triangular inequality to prune the search in order to achieve
a sub-linear computational cost (in term of number of call to the similarity
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function). The two other assumptions are weaker: as described in [6], simple
yet general methods exists to adapt any metric NNS algorithm if the two other
assumptions are removed.

In the other hand, the metric assumptions (in particular the triangular in-
equality) do not hold in the nonmetric NNS case. In order to distinguish from
the usual metric notation, let (E, s) be the general (nonmetric) space consid-
ered in the following. The similarity function s : E2 → R+ simply reflects the
notion of point proximity (the smaller s(p, q) the closer the points p and q).
Let us motivate the need for a nonmetric NNS. Many similarity criterions (the
well-known Smith-Waterman distance [20] between sequences for example, or
various distances between images [14]), although being widely used do not verify
the the triangular inequality1. The need for efficient NNS algorithms is such
nonmetric cases is often even stronger than in the metric case because of the
tremendous costs such similarity functions compared to the low computational
cost of the norms ‖.‖2 or ‖.‖∞ that are very common in metric spaces [16].

The paper is organized as follow. The Section 2 introduces our evaluation
framework for the nonmetric NNS. This framework is compared to the classical
evaluation framework used in the metric NNS. The Section 3 introduces a new
data structure called densitree (contraction of “density tree”) that performs
approximate nonmetric NNS. Densitrees along other methods are empirically
evaluated in Section 4 against well established datasets.

2 Nonmetric NNS framework

To our knowledge, no general approach2 have been proposed so far for the non-
metric case. In our opinion, the main reason of this situation is the most imme-
diate consequence of the nonmetric assumptions: there is no “hard” assumption
that could be used to ensure any guaranteed search pruning. Therefore the only
“exact” algorithm that performs queries in nonmetric space is the naive exhaus-
tive search algorithm. Therefore the discussion in the following is narrowed by
necessity to the approximate nonmetric NNS algorithms.

We will first discuss in Section 2.1 how the nonmetric NNS algorithm can
be evaluated. This discussion shows the weaknesses of the classical evaluation
approach for approximate metric NNS algorithms and introduces a more specific
evaluation criterion for the nonmetric situation. The insights provided by this
framework lead us to introduce the notion of a generic nonmetric NNS algorithm
in Section 2.2, that, in turn, leads us to refine our evaluation criterion in the
Section 2.3. Based on this refined criterion, this section ends with the discussion
in Section 2.4 of the termination criterion of a generic nonmetric NNS algorithm.

1Various relaxations of the triangular inequality have been proposed (see [6] for more
details). Nevertheless those relaxations are far too restrictive to cover functions such as the
Smith-Waterman distance.

2To our knowledge, the nonmetric NNS problem has been studied once by Zhang and
Srihari [25] (2002), but restricted to a particular nonmetric similarity function. Additionally,
contrary to the opinions presented in this paper, we will show in Section 4 that a classical
metric NNS algorithm can be well suited to the nonmetric case.
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2.1 Approximate queries in nonmetric space

As discussed here above, the query methods in the nonmetric situation are either
naive or approximate. The most commonly used approximation criterion in the
NNS literature is the geometric approximation3: the algorithm ensures that the
distance from the query point to the returned point is smaller than 1 + ε times
the distance of the query point its nearest neighbor (see [16, 10, 5] as recent
examples).

Nevertheless, as pointed out in [4], such geometric criterion suffers from
intrinsic instabilities as the dimension increase. As a simple example to illus-
trate this point, let us a consider points uniformly drawn from the unit cube in
Rk. When the dimension k tends to infinity, the normalized random distance
between points AV G[d/

√
k] tends to a constant. Strong empirical evidence

of this phenomenon can also be found in the NNS literature. For example
the recent benchmark [16] shows that taking ε = 0.1 leads to more than 50%
CPU costs saving on non-approximate methods by simply sampling the initial
datasets. Additionally, the values provided by nonmetric similarity functions
(Smith-Waterman [20] being a typical example) have little meaning in them-
selves. The only purpose of those similarity functions is to provide a ranking
criterion, i.e. to indicate if a pair of points can be considered as closer than
another pair. Considering this, one would expect that the NNS algorithm exe-
cution and its associated performance, at least in nonmetric case, to be invariant
against monotone transformations4, i.e. the substitution of φ(s) to the similar-
ity function s (φ : R+ → R+ being an arbitrary increasing function) should have
no impact on the algorithm. All those elements call for a rank-based rather than
geometric-based approximation criterion for the nonmetric NNS problem.

Following the discussion here above, we now introduce the notion of accu-
racy as a rank-based evaluation criterion of nonmetric NNS algorithms. To our
knowledge, we are not aware of previous use of such a criterion for the purpose
of NNS. Formally, let (E, s) be the considered nonmetric space. Let B̃(q, r)
(resp. Ñ (q, k)) be the approximate result provided by a given NNS algorithm
to the range query B(q, r) (to the near-neighbor query N (q, k)).

Definition 2 (Accuracy of a NNS query) For a given near-neighbor query
(q, k), we define the accuracy of the result returned by an arbitrary NNS algo-
rithm with

v(Ñ (q, k)) =
|Ñ (q, k)

⋂N (q, k)|
|N (q, k)| =

1
k

∣∣∣Ñ (q, k)
⋂
N (q, k)

∣∣∣

The accuracy value can be interpreted as the ratio of correct query points
(true positive) returned by the algorithm for the near-neighbor query (q, k).

3This criterion has been declined in various ways such as the effective distance error defined

as E = 1
|X|

P
x∈X

� bd
d∗ − 1

�
[3, 11]. Although, the declinations of the geometric may be

expressed in many different ways, they all share the fact than they rely intrinsically on the
absolute distance values between the points.

4Indeed both range and near-neighbor queries are invariant against monotone transforma-
tion of the similarity function.
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Assuming that the algorithm does not return more than k neighbor to a such a
query, the range of accuracy value is the interval [0, 1], zero being a total wrong
answer, one being the exact answer. Note that the accuracy as presently defined
answers to the issues discussed here above. In particular, it is clear that the
accuracy is invariant to monotone transformation of the similarity function. The
accuracy is straightforward to transpose in the range query case; nevertheless,
since the range query does not constrain the returned number of points, the
false positive ratio (dual of the accuracy interpreted a true positive ratio) would
be required to evaluate the answer quality. In the following, in particular in the
experiments presented in Section 4, we will focus on the near-neighbor queries
that are easier to interpret.

Although being very simple and invariant to monotone similarity transfor-
mation, the accuracy is not entirely satisfying as a quality criterion. Indeed,
the accuracy is not sensitive to the quality of the incorrect points. Intuitively,
returning very close but incorrect neighbors will not lead to a higher accuracy
than returning very distant neighbors. This issue will be solved in Section 2.3,
but for the sake of simplicity we will first introduce a generic nonmetric NNS
algorithm template.

2.2 Generic nonmetric NNS algorithm template

We introduce here a generic NNS algorithm template. Indeed, the nonmetric
NNS problem is conceptually a simpler problem than its correspondent metric
one because of the lack of assumptions. The purpose of this template is to
outline the key aspects of nonmetric NNS.

Intuitively, any nonmetric NNS algorithm A relies on a particular data struc-
ture that contains X the dataset. When performing a query with A, one can
distinguish two parts in X: the set of explored points (the similarity between
any of those points and the query has been computed) and the set of unexplored
points. Based on the similarity values associated to the set of explored points,
the algorithm A chooses which point is explored next. Some data structure G
usually restraints the set of candidate points. In other words, all unexplored
points are not necessary candidates to be explored next. Notice that, here, the
term “exploration” refers to process of choosing the next point to be compared
to the query point based on the information previously acquired.

More formally, let G = (V, E) be an oriented graph, ¹K be a ranking function
and r ∈ V be a root vertex. As detailed in the pseudo-code of the Algorithm 1,
the tuple (G,¹K, r) is a generic representation of the algorithm A. The set V
(respectively E ⊂ V × V ) represents the vertices (respectively the edges) of the
graph G5. For any subset C ⊂ V , we refer to N (C) as the “neighbors” of C,
formally defined by

N (C) = {y ∈ V |(x, y) ∈ E and x ∈ C}
5We adopt the notation V for the vertices to be more consistent with the graph literature,

but please note that here V = X.
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Let K be a set of pairs {x, s} where x ∈ X is a point and s ∈ R+ is a similarity
value. The set K is an abstraction of the set of explored points. The sign ¹K
refers to the relation order induced by A on the set C of candidate points for
exploration. The vertex r represents the “root” of the algorithm A, i.e. the
point that will be compared first to the query. Using those notations, left us
now provide the detail of the general representation of the algorithm A with the
following pseudo-code.

Algorithm 1 NonMetricQuery(q)
1: K ← {r, s(q, r)}
2: while SomeTerminationConditions do
3: C ← N (K) \ K
4: v ← min¹K C
5: K ← K ∪ {v, s(q, v)}
6: end while
7: Return K

The Algorithm 1 is quite simple. It begins with the exploration of the root
at line 1. The main loop (lines 2-6) consists of finding the set C of candidate
vertices at line 3, of choosing within C the vertex v to be explored next at line 4
and finally to explore v at line 5. The algorithm returns directly K the set of
explored vertices. Note that the constraints induced by the model underlying
the Algorithm 1 are very reasonable ones. This model implies that no similarities
are computed except the ones between the query point and the dataset points
(forbidding the computation of the similarity between two points of the dataset
for example). This model also implies that each allowed similarity computed
once at most. This template, although not providing any actual implementation,
outlines the following aspects of nonmetric NNS:

• Heuristic stopping criterion.

• Accurate exploration is the key of nonmetric NNS.

• No difference between range query and near-neighbor query.

As discussed here above, the only exacts nonmetric NNS algorithm is actu-
ally the exhaustive search through the whole dataset. Therefore, an heuristic
stopping criterion (as expressed line 2 of the Algorithm 1) is required. Since
any NNS algorithm A requires to keep K the set of already encountered ver-
tices (or at least a subset of K associated to the closest points), an algorithm A
can be interrupted at any time, the set K being returned. Intuitively the more
exploration is allowed, the more accurate will be the results extracted from K.
This point will be the object of Section 2.3 because it provides an new insight
on NNS algorithms performance evaluation; but also of the Section 2.4 that
discusses what termination criterion can be used in practice.

This initial remark leads us to the second aspect: an accurate exploration is
the key of nonmetric NNS. Indeed, since the algorithm A has be stopped before
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having actually explored the whole dataset, it is critical, for the accuracy (see
Definition 2) of the results, to explore as fast as possible the nearest points of
the query. Therefore the main issue in nonmetric NNS is not to design elaborate
pruning criterions (as opposed to the metric case), but is to design a ranking ¹K
that will explore as fast as possible to the nearest neighbors of the query. This
point is the main motivation underlying the densitrees introduced in Section 3.

Finally, the nonmetric NNS is conceptually more simple than the metric
NNS. Indeed, the lack of “hard constraints” like triangular inequality implies
that there is no practical difference between a range query and a near-neighbor
query. It is known for the metric case, that there are tight relationships between
the two query types. General methods are available to convert efficiently a range
query into near-neighbor query and vice-versa (see [6] for the detail). But in the
nonmetric situation, the relationships are even stronger. The process described
in Algorithm 1 remains the same independently of the query type; only the
query point matters. In both cases, the result will be a subset of the returned
set K. As a consequence, we have restricted the experiments of the Section 4 to
near-neighbor queries.

2.3 Query accuracy profile

This section introduces the notion of query accuracy profile that is an extension
of the “accuracy” criterion introduced in Section 2.1. As we have seen, the accu-
racy indicates the ratio of correct items returned by a certain algorithm A for a
given query. The Algorithm 1 provides a new insight to the notion of accuracy.
Indeed it becomes clear that the accuracy value is bound to the termination
condition (see line 2) of the Algorithm A. Nevertheless, as discussed previously,
the termination condition is a simple tradeoff, whereas the exploration is the
critical issue of nonmetric NNS. Those elements call for a criterion that could be
used to evaluate the quality of exploration rather than the termination condition.

Intuitively, since the Algorithm 1 can be stopped after each call to the sim-
ilarity function, a corresponding accuracy can also be computed. The query
accuracy profile simply gathers all successive accuracies. More formally, the
query accuracy profile is a function p : #call 7→ accuracy (#call is the number
of calls) where p(k) is equal to the accuracy of the best subset of K (taking the
notations of the Algorithm 1) after the kth call to the similarity function (the
similarity function is called iteratively at line 5 in Algorithm 1). If N is the
result from the exact computation of the query and K the set of encountered
points after the kth call to the similarity function, then p(k) = |K∩N|

|N| .
Since the query accuracy profiles are the core of the empirical results pre-

sented in Section 4, let us now discuss how query accuracy profiles can be
efficiently computed in practice. The main issue is the fact that the profile com-
putation actually requires the exact query result. Therefore, the most simple
solution consists of a two-passes method: first compute the query result using
an exhaustive exploration; second, perform the exploration and record at each
similarity function call the reached accuracy. When correctly implemented, this
method requires 2n similarity calls which is the best asymptotical bound that
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can be achieved here (note that the exact query result is required for the accu-
racy computation). Nevertheless, this method can be easily be improved into a
single-pass method. The detail is given by the pseudo-code of the Algorithm 2
which is a slightly modified version of the Algorithm 1.

Algorithm 2 ProfileQuery(q)
1: K ← {r, s(q, r)}
2: i ← 0
3: L ← {r, s(q, r), i}
4: while N (K) \ K 6= ∅ do
5: C ← N (K) \ K
6: v ← min¹K C
7: K ← K ∪ {v, s(q, v)}
8: i ← i + 1
9: L ← {v, s(q, v), i}

10: end while
11: Return ExtractProfile(L)

Note that the termination condition of the Algorithm 2 is equivalent to “until
there are no more unexplored vertices”. Additionally, a list L gathers the tuples
(v, s(q, v), i) added at each iteration (where i counts the number of previous
calls to the similarity function). The profile is extracted as post-query process
by calling ExtractProfile whose detail is not given here because being quite
straightforward.

2.4 Exploration stopping criterion

The Algorithm 1 refers to an abstract SomeTerminationConditions crite-
rion to stop the exploration and return K. Intuitively, for a given exploration
method, there are two opposing forces for the client of the NNS algorithm CPU
cost vs. result accuracy. In such situation, the most flexible solution is sim-
ply to provide the tradeoff curve u : accuracy 7→ #call to the client and let
him chose the desired level of accuracy. Actually, we have already introduced,
although from a different perspective, such a tradeoff curve through the concept
of “query accuracy profile” in Section 2.3.

A empirical way of constructing the tradeoff curve u is to take a random
sample of points from the dataset, to run the Algorithm 2 with those points
being the queries, and to compute the average query accuracy profile. From such
average query profile, the reverse function (providing the number of similarity
calls based on a chosen accuracy) can easily be computed.

3 Densitrees

As a consequence of the insights on nonmetric NNS this section introduces a
class of particular data structures that we call densitrees. Intuitively, the core
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insight underlying the densitrees is to rely on classifiers to efficiently guide the
exploration process.

The densitrees along with other concepts such as density estimator are de-
fined in Section 3.1. The densitree query algorithm is given in Section 3.2,
followed by the densitree construction algorithm in Section 3.3. This part ends
with an extensive discussion of the density estimator in Section 3.4 that proves
to be a critical component of the densitrees.

3.1 Definition of densitrees

Intuitively, densitrees are a class of decorated trees that hold the points of the
dataset in a way similar to the metric tree [21, 19, 7]. The critical difference
lies in the nature of tree decoration; instead of having one or several real values
reflecting some bounds on the triangular inequality attached to every tree node,
each densitree node is associated to a particular classifier called here a density
estimator6.

A density estimator estimates the number of points contained within a ball
specified by its center and radius. When the query is performed, the densitree
exploration, which starts at the root, follows greedily the paths of greatest
densities. The insights offered by the Algorithm 1 motivates the idea of exploring
the nearest points as fast as possible because it will lead to a better accuracy
for any given query termination condition.

Formally, nodes and leaves in the densitree are treated indifferently. A den-
sitree node is a tuple defined by α = (x, φ̂, αL, αR) where x ∈ X is point, φ̂ is
a density estimator, αL and αR are respectively left and right nodes (that may
be null). By convention, the root node of the densitree is refered as α0. The
density estimator φ̂ is a function φ̂ : E × R→ [0; 1].

In order to clarify the need for density estimator, let us first introduce the
more simple notion of density function. We define the (exact) density function
for a dataset X with

φX(q, r) =
1
|X| |X

⋂
B(q, r)|

The function φX associates the ratio of the dataset contained in the speci-
fied ball. Since X always represents the dataset, in the following, the density
function will be refered as φ for the sake of simplicity. From an exploration per-
spective, the density function φ is obviously the optimal function to guide the
exploration. Nevertheless the density computation in term of call to the simi-
larity function prove to be as expensive as the naive exhaustive search. In this
respect, the density estimators, that can be viewed as efficient approximation
of the density function, are be used instead.

6We speak of densitrees (plural) rather than densitree (singular) because in practice many
variations based on the density estimator definition are possible within the densitrees frame-
work. This point will be the object of the Section 3.4.
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3.2 Queries in densitrees

For the sake of clarity, we begin our densitree discussion by introducing the
densitree query algorithm. Based on the generic template introduced previously
(see the Algorithm 1), the Algorithm 3 provides the detail of the behavior of
the densitree query process7.

Algorithm 3 DensitreeQuery(q)
1: K ← EmptyStack()
2: r ← CurrentRange(K)
3: K.Push(α0, φα0(q, r))
4: while SomeTerminationConditions do
5: α ← K.Pop()
6: r ← CurrentRange(K)
7: if left(α) 6= null then K.Push(left(α), φleft(α)(q, r))
8: if right(α) 6= null then K.Push(right(α), φright(α)(q, r))
9: end while

10: Return K

Let us give some details about the pseudo-code of the Algorithm 3. The
notation φα refers to the density estimator associated to the node α. The
left branch (resp. the right branch) of the node α is refered by left(α) (resp.
right(α)). We assume that the set of explored points K is designed as a heap, the
points being ordered by decreasing estimated densities. The density estimations
are based on the ball radius provided by the method CurrentRange that takes
K as argument. Like we did for the Algorithm 1, the termination criterion at
line 4 is left unspecified (see Section 2.4 for a discussion of this issue).

The query process in densitrees is conceptually rather simple, but several
issues are left undiscussed. The most critical one is the definition of the density
estimator which will be extensively discussed in Section 3.4. Let us now provide
some details about the CurrentRange function.

Estimating the final range. In the proposed definition for the density es-
timators (see Section 3.1), both the query point and a radius are required to
estimate the density. In the case of a range query, the range value r is given,
and CurrentRange is trivially defined as a constant function returning r. The
difficulty arises from the near-neighbor query case where there are no obvious
ways to define CurrentRange. Here below, we first describe the approach
typically adopted in the metric NNS algorithm to solve a very similar problem
and we explain why this approach leads to poor performance in the nonmetric
context. In order to overcome this issue we introduce a solution that will be
empirically evaluated in Section 4.

7For reasons that have been discussed in Section 2.2, we do not distinguish here range
queries from near-neighbor queries.
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The problem of the definition of the CurrentRange function is somewhat
similar to the notion of “current radius” is classical metric NNS algorithms such
as the metric tree [21, 19, 7] and the vantage point tree [22, 23, 24] (among many
other, see [6] for a survey). The usual approach suggest to return an infinite ra-
dius until |K| = k (k being the number of neighbor specified by the query), and
then to return the radius associated the kth nearest neighbor in K. If the metric
assumptions hold, this approach typically guarantees the correctness of the al-
gorithm ensuring an exact result. Unfortunately, strong empirical evidence (yet
not included in Section 4 for the sake of concision) suggests that this approach
is inefficient in the nonmetric context of densitrees. Intuitively, since φα(x,∞)
is always equal to 1, an initial infinite radius implies a random exploration of
the k first points8 which leads to poor overall performance.

This calls for a deeper analysis of the Algorithm 3 in its nonmetric con-
text. Since the exploration requires, to be efficient, the minimization of the
bias of the density estimator toward the (exact) density function, the function
CurrentRange should ideally return the final radius (being defined as the
distance of kth closest point of the query). The approach used in the experi-
ments of Section 4 is a simple heuristic that consists of performing a sample of
random queries (just after the densitree construction, see Section 3.3) for a given
number of neighbors and of storing the average achieved final range. This ap-
proach has the advantage of requiring no additional metric call at query-time.
Empirical evidence indicates that this approach lead to strong improvements
over the decreasing radius approach presented here above. Nevertheless, this
approach is naive, and we expect further research to provide better solutions to
estimate the final range.

3.3 Building the densitrees

As stated in Section 3.1, the densitree is a binary tree decorated with density
estimators. Here below, we propose a very classical top-down approach to build
the densitree that involves two key tasks: (i) a recursive dataset partitioning
method, (ii) a density estimator learning method. The point (i) is discussed
through the pseudo-code of the Algorithm 4. For being more complicated, the
point (ii) is left to the Section 3.4.

Algorithm 4 BuildDensitree(X)
1: φ ← LearnDensity(X)
2: (XL, XR) ← Split(X)
3: αL ← BuildDensitree(XL)
4: αR ← BuildDensitree(XR)
5: Return (φ, αL, αR)

The Algorithm 4 has a simple recursive structure. For the sake of simplicity,
8Empirical evidence suggests that the radius remains largely inaccurate for a much longer

time.
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the Algorithm 4 does not include the detail of the trivial stopping criterions.
The function Split, as the name suggests, splits the dataset into a left and
a right part (respectively XL and XR following the notations of the pseudo-
code). The detail of the Split function is given here below. The discussion of
the function LearnDensity is left to the next section.

Let us note that this top-down approach is almost identical to the classical
metric tree or vantage point tree (or spill-tree [16] for a more recent example)
construction algorithms, except that density estimators should be additionally
learned in order to decorate the tree. Many heuristics have been proposed in
metric NNS literature to find a good split function (see [6] for a review). An
interesting point to note is that the metric assumptions have little importance
here since the split heuristics do not rely explicitly on them. In the experi-
ments of the Section 4, we have adopted for Split a classical heuristic9 that
computes an approximation of two most distant points (the pivots) with linear
CPU requirement and then splits the remaining points based on their nearest
pivot.

3.4 Density estimators

The purpose of the density estimators is to efficiently approximate the density
function (see Section 3.1 for density estimator motivation). This implies that
two main opposing forces apply on density estimators: (i) the density estimator
must be as accurate as possible, (ii) the density estimator must have a compu-
tational cost as low as possible.

Based on the the insights provided by Algorithm 1, it can be noticed that
the absolute value returned by the density estimators no importance in itself
since only the ranking matters. Therefore, there is no necessity to estimate the
density directly if the ranking can be approximated through other means. In
this respect, the most naive approach to guide the densitree exploration simply
consists of aiming for the nearest point. Formally, this idea takes the form of a
density estimator φ̂ : E × R → R defined by φ̂(x, r) = −s(x, q) where q is the
query point (the minus sign is required because highest densities are explored
first). In the following, we will call this classifier the greedy density estimator10.
Although being naive, this solution leads to efficient results in practice (see
Section 4 for more details).

Let us now introduce a more complicated density estimator, called PA-
TRIOT11, that corresponds to the initial insight of approximating the density
function. We will begin with an intuitive description of the PATRIOT. The
densitree is, as we have seen, a tree where each node is decorated by a density
estimator. When a node is explored, the corresponding the density estimator
is called. First, let us see what information (i.e. computed similarity values)

9Take a random point a. Compute b the most distant point of a. Compute c the most
distant point of b. Return the pair (b, c) as an approximation of the two most distant points.

10A densitree based on the greedy density estimator is nothing more than a metric tree that
skips, at query-time, the triangular inequality pruning.

11PAth To Root densIty estimaTOr
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can be used for the purpose of the density estimator. Since the computation
of the similarity value between the query point is required for the node to be
explored (see Algorithm 3), we can assume this value to be available to the
density estimator12. Additionally, the exploration process ensures that all the
nodes, along the path that leads from the root to the current node, have already
been compared to the query point. Therefore, we propose a density estimator
that exploits all similarity values along the path to the root13.

As a second part of the intuitive description of the PATRIOT, let us give
some insights on the inner workings of the density estimation. As preliminary
remark, let us note that any point a can be projected14 into a real-valued vector
against a set of points (the dimensions being the similarity values between the
point a and the points of the set). The PATRIOT includes a “projection” of
the points associated to the node subtree. The projection is performed against
the path-to-root path described here above. The PATRIOT estimates the den-
sity of a ball centered around the query point using this sample of projected
points. The main advantage of the PATRIOT approach is the exploitation of a
path-to-root vector of similarity values (rather than the single current-node-to-
query similarity value) without requiring any additional to call to the similarity
function neither at construction-time nor at query-time.

We will now provide a more formal definition of the PATRIOT. Let α be
the node of interest (associated to the considered PATRIOT). Let Xα ⊂ X be
the subset of points associated to the subtree defined by the node α. Let B be
the list of points B = (x1, . . . , xd) ∈ Xd that constitutes the path to the root
(x1 is the root point and xd the point associated to the node α). Any point
x ∈ X, can be “projected” on B with x̄ = (s(x, x1), . . . , s(s, xd)). Let X̄α be
the point-wise projection of Xα over B. Let ‖ . ‖ be a norm over Rd (more
details will be given later about this norm). Let κ : R→ R be a real function; κ
is the “scaling function” (more details will be given later about this function).
We have now gathered all the elements required to define the PATRIOT φ̂. For
a point q ∈ E and a range r ∈ R, we have

φ̂(q, r) =
1

|Xα|
∣∣B‖.‖,Xα

(q̄, κ(r))
∣∣ (1)

Let us give a word of explanation about this definition. The notation B‖.‖,Xα

refers the the ball defined over the set Xα based of the norm ‖ . ‖ (used as the
similarity function). Intuitively the query point q is simply projected as q̄, then
the density is evaluated within the projected space which required to scale the
range r into κ(r) as well. The value of φ̂ can be considered as an estimation

12If we try to rely solely on the node-to-query similarity value to infer a density estimation,
then we are likely obtain an estimator pretty much equivalent to the greedy density estimator.

13The path-to-the-root is the only set of points guaranteed to be already explored when
the node is reached by the Algorithm 3. Additional similarity values may nevertheless by
available when the node is explored; and more complicated methods can possibly be devised
to exploit such uncertain information.

14Such projection is a well known technique in the metric NNS literature, see [12] as an
example.
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Figure 1: PATRIOT list of issues

The proposed formula is φ̂(q, r) =
1

|Xα|
∣∣B‖.‖,Xα

(q̄, κ(r))
∣∣

• How to choose ‖ . ‖?
• How to choose κ?

• CPU and memory costs of φ̂ at construction-time?

• Idem at query-time?

• The empirical accuracy of φ̂ vs other estimators?

of the density φ. The PATRIOT method raises several practical issues (see the
Figure 3.4) that will be discussed in the following.
The definition of the norm ‖ . ‖ is critical for the accuracy of of PATRIOT
estimator φ̂. A natural idea would be use ‖ . ‖1 or ‖ . ‖2 as very classical metrics
over Rd. Those metrics have been empirically evaluated (the experiments are
not listed in Section 4 for the sake of concision) and lead unfortunately to very
poor accuracies. Let us provide the insight of this poor behavior. To simplify
largely the problem, we can say that the exploration (if not stopped by any
termination criterion) has three phases: (i) descending down the densitree to the
query close neighborhood (ii) visiting the query close neighborhood (iii) visiting
the remaining remote neighborhoods. In practice, the average similarity values
between the query point and the points explored the phase (i) are much greater
than the similarity values between the query point and the points explored
during the phase (ii). As we have designed PATRIOT, this phenomenon leads
to a considerable overweighting of the points at the top of the densitree (points
close to the densitree root). This issue suggests that more complicated norms
for ‖ . ‖ should be considered. A natural solution to overcome the overweighting
mentioned here above is to introduce linear coefficients such as

‖ x̄ ‖=
d∑

i=1

λi|x̄i|

This option raises an other issue that is the actual choice of the coefficients λi.
In Section 4, we have opted to normalize each dimension dividing by the mean
similarity value. Thus we ensure that E[λi|x̄i|] = 1 for all i. This choice is
motivated by the insight provided here above and suppress the overweighting
problem. In practice, this option leads to large improvements over the use of
uniform norms like ‖ . ‖1. Nevertheless, this option is certainly not definitive,
and we suspect that improvements can be obtained by a better “tuning” of this
norm. In particular, empirical observations lead us to suggest that the closer
the pivot point is from the query point, the more accurate is the prediction
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associated to the resulting dimension. Better approaches would certainly take
into account such phenomenon. A more general would approach would even
suggest that the {λi}i coefficients should be directly optimized (learned) in
order to fit the proposed purpose. Such approach goes beyond the scope of the
present study.

The values of the scaling function κ is tightly bound to the actual met-
ric ‖ . ‖. Nevertheless we propose a generic method to estimate the scaling
function κ that can be used along any arbitrary metric ‖ . ‖. The method con-
sists simply in drawing random pair of points (x, y) within Xα and computing
the pair of values (s(x, y), ‖ x̄− ȳ ‖). Let (ui, vi)i be a list of such sample pairs
ordered against the similarity values (ie. i ≤ j ⇒ ui ≤ uj). Considering the list
(ui, vi)i, a simple definition for κ would be κ(u) = varg maxi{ui<u}. Such choice
would be motivated by the intuition that choosing the norm value associated to
a similar similarity value would be an accurate option. Unfortunately, empirical
observations suggest that such an option leads to a very poor overall accuracy
for the PATRIOT estimator. Indeed, the use of a single pair does not provide
an accurate estimate. The empirical solution to overcome this issue that have
been used in the Section 4 is to smooth the previously proposed κ function by
clustering the list (ui, vi)i (gathering the values based on the ui similarity, and
taking the mean of the ui and vi values for each cluster). In the Section 4, the
number of random pairs is fixed to |Xα| and the resulting list is clustered into√
|Xα| (in order to assure an unbiased yet convergent estimator for κ).

A efficient implementation for φ̂ is required to ensure low CPU and memory
cost for the densitrees both at construction and query-time. Let us begin our
analysis at construction-time. The top-down densitree construction algorithm
(see Algorithm 4) ensures that the projection of each subtree (noted Xα in
Equation 1) requires not additional call to the nonmetric similarity function.
Indeed, all subtree points have been compared to each node along the path
to the root (see the discussion of the Split function in Section 3.3). On this
projected subtree, the PATRIOT method induces an additional range-query
problem. Although our overall objective is to perform a nonmetric NNS, it can
be noticed that the task performed by a PATRIOT, is actually a metric range
query. Therefore, most of the solutions proposed in the NNS literature can
be used here. In Section 4, we have opted for the metric tree algorithm. The
additional CPU cost as construction-time for the whole densitree is null in term
of calls to the similarity function. In term of raw CPU operations, the additional
cost for learning the PATRIOTs is O(n ln(n)2) (n being the number of points)
which asymptotically outgrows the base CPU cost of O(n ln(n)) of Algorithm 4.
In practice this additional cost may be preponderant, if the similarity function
CPU costs are negligible, or negligible if the similarity function is expensive.
In this study, we focus on the later case. In term of memory, the additional
cost of storing the density estimators is a O(n ln(n)) with small constants in
practice. Once again, the interpretation of this cost should take into account
the context of the nonmetric NNS. Indeed, the dataset although theoretically
requiring O(n) of memory may very-well be predominant (typical nonmetric
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situations deal with images or protein sequences). The discussion of the CPU
costs of the PATRIOT that involves many elements such as the resulting query
accuracy profiles is to the Section 4.

The accuracy of the PATRIOT estimator determines the overall explo-
ration quality of the densitree. The PATRIOT estimator aims to a better accu-
racy than the greedy estimator previously described. Intuitively, the PATRIOT
estimator exploits more information than the greedy estimator (several similar-
ity values are used to “score” a node vs a single value). The drawback of this
approach is that the PATRIOT estimator is less “robust” (from a statistical
viewpoint) than the greedy estimator. Empirical observations (yet not included
in the Section 4 for the sake of concision) indicates that the PATRIOT esti-
mator is less accurate than the greedy estimator when the number of points
contained in the node subtree is low. Therefore the ranking ¹K (using the no-
tation of Algorithm 1) used in the experiments of Section 4 is a hybrid method
that mixes greedy estimators and PATRIOTs. The choice is of the classifier to
be used is determined as follow: if both subtree sizes are greater than an given
threshold then the comparison is based on the PATRIOT estimates; if not, the
comparison is based on the respective node similarity values to the query point,
i.e. the greedy estimator. The threshold used in the experiments in Section 4
is
√

n where n = |X| is the number of points in the dataset. This threshold is
mostly arbitrary (although it seems to perform reasonably well, see the results
of Section 4), nevertheless it ensures that the PATRIOT variance and bias tend
to zero when n tends to infinity.

4 Experiments

The objective of this section is to empirically evaluate the quality of the explo-
ration strategy of the various algorithms that have been introduced so far. In
particular we provide experimental results based on the datasets already used
in [16] for a benchmark of metric near neighbor search algorithms, plus a bio-
logical sequence dataset associated to a nonmetric similarity function. Let us
first review those datasets and the corresponding similarity functions.

• aerial: Texture feature data contain 275.000 feature vectors of 60 dimen-
sions representing texture information of aerial photograph [17, 18, 15].
The similarity function associated to this dataset is the L1 norm.

• corel hist: 20.000 histograms with 44 non-zero dimensions of color im-
ages taken from the COREL STOCK PHOTO Library [16, 12, 1, 15]).
The similarity function associated to this dataset is the L1 norm.

• corel uci: 68.000 histograms with 64 dimensions of color images from
the COREL library [16, 15]. The similarity function associated to this
dataset is the L1 norm.
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• disk trace: 40.000 content traces of disk-write operations, each being a
1kb block. The traces are generated from a desktop computer running
SuSe Linux during daily operation [16, 15]. The similarity function asso-
ciated to this dataset is the L1 norm.

• sprot40: 101601 sequences extracted from the Swiss-Prot database ver-
sion 40 [2]. The similarity function associated to this dataset is the Smith-
Waterman distance [20]. The Smith-Waterman distance does not verify
the metric assumptions.

Please note that the only true nonmetric dataset is sprot40. Nevertheless,
since the nonmetric NNS is a generalization of the metric one, it appeared
reasonable to us to include those datasets (which have already been used in NNS
benchmark contrary to sprot40). Those datasets have been tested against the
following three algorithms.

• M-Tree: the metric tree structure [21, 7]. An efficient implementation can
be found at [8].

• Greedy Densitree: the greedy densitree (associated to the greedy density
estimator as defined in Section 3.4).

• PATRIOT Densitree: the PATRIOT densitree (associated to the PATRIOT
density estimator as defined in Section 3.4).

The empirical results, presented in Figure 2 to 6, reflect the query accuracy
profile criterion introduced in Section 2.3. Those results are the average query
accuracy profiles obtained for each algorithm against each dataset with 1000
random queries (only 100 queries for the sprot40 dataset). The number of
neighbors k varies from k = 2 (minimal neighborhood15) to k = 1024 (large
neighborhood). We have excluded the M-Tree from the sprot40 experiment
because of the reliance on the metric assumptions.

Several empirical conclusions can be drawn from the empirical results
of this section. Surprisingly, our most important conclusion is quite counter-
intuitive: the triangular inequality has only a secondary contribution to metric
NNS efficiency. Indeed, if metric tree uniformly outperforms the greedy den-
sitree, the improvement brought by triangular inequality pruning is only a sec-
ondary effect on the exploration quality compared to greedy estimator effect.
In term of exploration improvement over the (naive) random exploration, the
impact of the greedy estimator is clearly the primary factor.

Our second empirical conclusion is about the densitrees performance. Both
greedy and PATRIOTperform reasonably well against the metric dataset. The
PATRIOT densitree uniformly outperform the greedy densitree and is often very

15Since the sample queries were drawn from the same dataset that has been used to build the
NNS data structures, the results for k = 1 are highly biased in favor of the NNS algorithms.
In such situation, the profiles for k = 2 could be interpreted as a good approximation of the
nearest neighbor search profile for a foreign query point (not previously used to build the NNS
data structure).
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Figure 2: aerial dataset
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Figure 3: corel hist dataset
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Figure 4: corel uci dataset
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Figure 5: disk dataset
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Figure 6: sprot40 dataset
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close to the metric tree performance without relying on the triangular inequality.
The PATRIOTd̃ensitree even tends to slightly outperform16 the metric tree
when the number of requested neighbors is large (k = 64 and k = 1024).

The results against the sprot40 dataset are mitigated. On one hand the
greedy densitree accuracy profile for k = 2 clearly indicates that exhaustive
search can be outperformed (75% of accuracy with 20% of exploration). On
the other hand, the PATRIOT densitrees perform very poorly. As we have
seen in Section 3.4, the PATRIOT estimator relies on many heuristics and the
prohibitive CPU computations17 of the Smith-Waterman distance complicates
the “tuning” of appropriate density estimators.

TODO: Smith-Waterman value between very sequence is just noise, any
pointer on that ?

We believe the poor performances of the PATRIOT estimator for k = 2 is
and the poor performance of both density estimator for large neighborhoods
(k = 64 and k = 1024) are related. TODO: complete this.

16Nevertheless, it has to be noticed that in practice the CPU costs are not limited to the
call the similarity function. Based on a pure CPU benchmark, the PATRIOT densitree would
have been outperformed by the metric tree on all the metric datasets where the similarity
functions are cheap to compute.

17The sole Smith-Waterman computations (excluding all other elements) required to com-
pute a single, yet already reduced to 100 sample queries, sprot40 query accuracy profile is
more than 100h of CPU for a single 2Ghz processor
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5 Conclusions

We have introduced, to our knowledge, the first general approach of nonmetric
NNS. This approach includes the query accuracy profile as a new evaluation
criterion of the execution of a nonmetric NNS query, the density estimation
concept of as a ranking criterion to guide the NNS exploration process and the
densitrees as a new category of data structures to perform nonmetric NNS.

The densitrees as well as the metric trees have been tested against well es-
tablished metric and nonmetric datasets. The proposed implementations for
densitrees are still very preliminary and we expect large improvements from
more accurate density estimators. Our empirical metric NNS results also in-
dicate, maybe a quite counter intuitive result, that the triangular inequality
pruning is only second in term of impact on the NNS to the accuracy of the
density estimation

This conclusion should not be misinterpreted as “the triangular inequality
is an unimportant factor for metric NNS”, but it indicates future NNS devel-
opments, both empirical and theoretical, must take into the notion of density
estimation in order to improve the NNS methods.
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