
HAL Id: hal-00004887
https://hal.science/hal-00004887v1

Preprint submitted on 9 May 2005 (v1), last revised 30 Aug 2005 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near neighbor search in metric and nonmetric space
Joannès Vermorel

To cite this version:

Joannès Vermorel. Near neighbor search in metric and nonmetric space. 2005. �hal-00004887v1�

https://hal.science/hal-00004887v1
https://hal.archives-ouvertes.fr

D
R
A
F
T

Near neighbor search

in metric and nonmetric space

Joannès Vermorel

joannes.vermorel@ens.fr

May 9, 2005

Abstract

We consider the computational problem of finding nearest neighbors
in metric and nonmetric spaces. Nonmetric spaces are the generaliza-
tion of the general metric spaces but without requiring the triangular
inequality assumption. Non-metric spaces are often encountered. Many
of the similarity measures (between images, proteins, etc) do not verify
the triangular inequality. The nonmetric case lead us to introduce a novel
approach, to our knowledge, to the near neighbor search problem by intro-
ducing the notions of exploration and exploration accuracy profile. Those
notions lead us to introduce a new search structure, called densitree (con-
traction of “density tree”),based on classifiers to estimate point densities
in nonmetric spaces. Against well established datasets, our preliminary
empirical results indicates that contrary to a common belief the triangular
inequality (or an equivalent pruning criterion) is not required to perform
efficient near-neighbor search. Additionally, the densitrees, although very
naively implemented, seems to outperform existing methods both in met-
ric and non-metric situation.

Contents

1 Introduction 2

2 Neighbor search in metric space 3
2.1 Metric trees . 3
2.2 Vantage Point trees . 5

3 Neighbor search in non-metric space 8
3.1 Approximate queries in non-metric space 9
3.2 Graphical exploration models . 10
3.3 Query accuracy profile . 12
3.4 Exploration stopping criterion . 13

1

D
R
A
F
T

4 Densitrees 13
4.1 Definition of densitrees . 14
4.2 Queries in densitrees . 14
4.3 Building the densitrees . 16
4.4 Density estimators . 16

5 Experiments 20
5.1 Results in metric space . 20
5.2 Results in non metric space . 29

6 Conclusions 38

1 Introduction

A near neighbor search consist of finding points similar to a given query point
within a given dataset. Performing fast near neighbor search is a useful for
many applications: pattern recognition or statistical learning [11], multimedia
information retrieval, protein database search, audio and video compression.

Historically, the methods used to perform search operation was leveraging
the structure of the data, often numerical or alphabetical. In such a simple
case where a total order exist between the data points, near neighbor search
are performed in logarithmic time of the size of dataset (see [8]). Traditional
databases, structured around the notion of relational algebra, deal with the no-
tion of exact structured search. Language like SQL emphasizes the combination
of explicit total ordering criterions. This approach has the clear advantage of
being computationally very efficient. Nevertheless, the main drawback of the
structured search lies in the tight bound of the method itself to a certain type
data. This bound between the search method and the data structure raises two
issues:

• How do we deal with data that does not fit a relational representation?
For example, proteins are encoded sequences of variable length of amino
acids.

• How do we deal with data when structured search criterion cannot express
the desired similarity? For example, images (of identical dimensions) can
be represented as fixed length real vectors, but dimension-wise similarity
criterion will lead to a poor notion of similarity.

Those issue have led to a more general and unifying approach of near neigh-
bor search: searching a dataset for the points that are close a to given query
point given a similarity function. A vast literature has been devoted to this
model (see [5] for a review), in particular when the similarity function verifies
the distance assumptions such as the triangular inequality (more detail given
here below).

2

D
R
A
F
T

2 Neighbor search in metric space

Most of the NNS literature has been devoted to the metric space model. In-
tuitively the dataset contains points draw from a metric space if a point-wise
measure of similarity d exists and verifies several assumptions. Those assump-
tions ensure that d has a behavior somewhat similar to the simple geometric
euclidian distance.

Definition 1 (Metric function and metric space) Let E be a set. A func-
tion d : E2 → R

+ is said to be a metric over E if d verifies the separa-
tion assumption ∀(x, y) ∈ E2, d(x, y) = 0 ⇔ x = y, the symmetry assump-
tion ∀(x, y) ∈ E2, d(x, y) = d(y, x) and the triangular inequality ∀(x, y, z) ∈
E3, d(x, y) + d(y, z) ≤ d(x, z). A couple (E, d) is called a metric space if d is a
metric over E.

In the following, E will be the dataspace, X the dataset with a cardinal
n = |X| and d : E2 → R

+ a metric.

Given the metric space formalism, the near neighbor search (NNS) literature
classically distinguishes two type of range queries. The range query is the
selection within X of all points included a ball of center q the query point and
of a given radius r (eg. the range), Bd(q, r) = {x ∈ X|d(q, x) ≤ r}. The near
neighbors query is the selection within X of the k nearest points of the query
point q such as Nd(q, k) = {x1, . . . , xk|∀x ∈ X, d(q, x) < d(q, xk)⇒ ∃j, x = xj}.

The NNS literature is devoted to algorithms performing those two types
of queries. In following, when we will speak of computational cost for such
algorithms, we will always refer to the number of calls to the current metric 1.

The strongest of the three metric space assumptions, see here above, is the
triangular inequality. Intuitively the classical NNS algorithms, like [18], makes
an intensive use of the triangular inequality in order to achieve a sub-linear
computational cost for NNS. Such sub-linear cost is achieved by pruning the
search thanks to the triangular inequality. As described in [5], if any of the other
assumptions is removed, it is relatively easy to slightly to adapt the classical
“metric” algorithms to such cases.

2.1 Metric trees

The metric tree [17, 16, 6] is a data structure that supports efficient nearest
neighbor search in metric space. Intuitively, the metric tree organizes the space
in a hierarchical manner, each node corresponding to a particular hyperplane
that split the dataspace in two. This particular structure enable an efficient
branch pruning based on the triangular inequality during the computation of a
query. A remarkable feature of the metric trees is that they can be implemented
into a dynamic collection that allows insertion and deletion. Those elements are
beyond the scope of this document, please refer to [6] for more details. We will

1Other elements could taken into account, like overall computational cost, I/O costs and
memory; see [5] for more details

3

D
R
A
F
T

now provide a more precise description of the two main algorithms related to
metric trees: building a metric tree, and performing a near neighbor query.

Building a metric tree. The algorithm 1 provides the pseudo-code detail
of the metric tree building. Note that an actual implementation should take
care of never calling twice the distance function for a given pair of points. This
can be easily achieved by caching the distance values when they will be required
again later. Nevertheless, for the sake of clarity, in the algorithm 1 pseudo-code,
the use of such caches have been made implicit.

Intuitively, the process consists of choosing two pivots for each node and
to recursively split the set of points assigning each point to its closest pivot.
The arguments of the algorithm are the distance d and the set of points X.
The partition requires two pivots (refered as l and r in algorithm 1). The
lines 1-3 are in fact a linear approximation of arg maxx,y∈Y {d(x, y)} whose exact
computation would require O(n2). The recursive partition into left and right of
the dataset is actually performed lines 6-14. The left and right radii (refered as
u and v) are computed within the same loop. The tree returned line 15 consists
of two pivots associated with their respective radii and respective subtrees.

Algorithm 1 BuildMTree(d,X)

1: s← RandomPointOf(X)
2: l← arg maxx∈X{d(x, s)}
3: r ← arg maxx∈X{d(x, l)}
4: L← R← ∅
5: u← v ← 0
6: for all x ∈ X \ {r, l} do
7: if d(l, x) < d(r, x) then
8: L← L ∪ {x}
9: u← max{u, d(l, x)}

10: else
11: R← R ∪ {x}
12: v ← max{v, d(r, x)}
13: end if
14: end for
15: Return (l, u,BuildMTree(d, L), r, v,BuildMTree(d,R))

The algorithm 1 is mostly heuristic. There are no actual guaranties over
the computational complexity, that can be O(n2), or the tree depth, that can
be O(n). Nevertheless, in practice the depth of tree is O(ln(n)) (implying a
O(n ln(n)) computational complexity).

Performing a near neighbor query. The algorithm 2 provides the pseudo-
code detail of of NNS algorithm. Note that for the sake of clarity, caching
distance values is implicit in algorithm 2 (see discussion here above). Intuitively,
the search explores first the nearest node (the notion of proximity being defined

4

D
R
A
F
T

as the distance between the query point and the node pivot). Before exploring
any node, the triangular inequality is used to check whether this particular node
can be pruned.

The arguments of the algorithm are the metric tree (refered as t), the dis-
tance function (refered as d), the query point (refered as q) and the number
of neighbors (refered as k). The algorithm 2 relies on two heaps: the nodes B

remaining to be explored and the closest points T encountered so far. We as-
sume that the heap orders the elements in a increasing order, ie the element
being associated with the smallest value being at the root of the heap. Those
two heaps are initialized lines 1-3. The number r represents the current radius
(the distance between the query point and the kth closest point encountered so
far). The lines 5-34 represent the main exploration loop (the exploration goes
forth until there is no more node left). Lines 7-9 correspond to the triangular
inequality pruning criterion. Lines 10-16 correspond to the case where a point
closer that the former kth closest point is encountered (such encounter can lead
to a new value for the current radius r). Lines 17-22 corresponds to pseudo-
recursive tree exploration. The notation left(b) (respectively right(b)) refers to
the left branch of the node b (respectively to the right branch of b). Note the
node exploration order is defined by the proximity of the nodes to the query
point.

The algorithm 2 is an exact search algorithm. We will give here a sketch of
the proof. First, we notice that radius associated to any node in the algorithm 1
is the maximum distance between the node pivot and any of the point contained
in the subtree defined by this node. Then the pruning test d(b, q)−radius(b) > r

performed at line 7 in the algorithm 2 simply checks, based on the triangular
inequality assumption, whether is possible that the node b actually contains any
point closer to q than the closest kth point encountered so far (whose distance
is expressed by r).

2.2 Vantage Point trees

The vantage point tree [18, 19, 20] is somehow similar to the metric tree and
exploit the triangular inequality in a slightly different way.

Intuitively, the vantage point tree organizes the space in a hierarchical man-
ner, each node corresponding to a particular sphere that split the dataspace in
two (inside the sphere vs. outside the sphere). So far it seems that all proposed
vantage point tree implementation are static data collection (build once and
then no point can be either added or removed from the collection).

Proceeding like we did for the metric tree, we will now provide a more precise
description of the two main algorithms related to vantage point trees: building
a metric tree, and performing a near neighbor query.

Building a vantage point tree. The algorithm 3 provides the pseudo-code
detail of the vantage point tree building. Intuitively, the process consists of
choosing one pivot for each node, and to recursively split in two the set of
points, the points having a distance to the pivot less than the median distance

5

D
R
A
F
T

Algorithm 2 SearchMTree(t, d, q, k)

1: B ← EmptyHeap()
2: B.add (root(t), d(q, root(t)))
3: T ← EmptyHeap()
4: r ← +∞
5: while B 6= ∅ do
6: b← B.pop()
7: if d(b, q)− radius(b) > r then
8: continue
9: end if

10: if d(b, q) < r then
11: T.add(b,−d(q, b))
12: if T.count() > k then
13: T.pop()
14: r ← −T.peekV alue()
15: end if
16: end if
17: if left(b) 6= null then
18: B.add (left(b), d(q, left(b)))
19: end if
20: if right(b) 6= null then
21: B.add (right(b), d(q, right(b)))
22: end if
23: end while
24: return T

6

D
R
A
F
T

being assigned to the inner sphere, the other points being assigned to the outer
sphere.

The arguments of the algorithm are the distance d and the set of points X.
The vantage point tree process requires only one pivot to build a node partition.
The lines 1-2 are the vantage point heuristic, the point c is often called the
corner. Then the median distance µ to the corner is computed line-3.

The recursive partition into the inner sphere and the outer of the dataset is
actually performed lines 6-12. The comparison of distance point to corner and
the median distance is used at line 6 as a criterion to distinguish between inner
and outer spheres.

Algorithm 3 BuildVPTree(d,X)

1: s← RandomPointOf(X)
2: c← arg maxx∈X{d(x, s)}
3: µ←MedianOfx∈X(d(x, c))
4: L← ∅
5: R→ ∅
6: for all x ∈ X \ {c} do
7: if d(x, c) < µ then
8: L← L ∪ {x}
9: else

10: R← R ∪ {x}
11: end if
12: end for
13: Return (c, µ,BuildVPTree(d, L),BuildVPTree(d,R))

The algorithm 3 requires a O(n ln(n)) computational time and
(
n) memory.

Like the metric tree building algorithm, the algorithm 3 is mostly heuristic.

Performing a search query. The algorithm 4 provides the pseudo-code de-
tail of of NNS algorithm. Note that for the sake of clarity, caching distance
values is implicit in algorithm 4 (see discussion here above). Intuitively, the
process is similar to the metric tree search.

For the sake of simplicity, the algorithm 4 is presented in a recursive manner.
The arguments of the algorithm 4 are b the node to be searched, d the distance
function, q the query point, k the number of researched neighbors, T the heap
of neighbors. Initially, the method SearchVPTree should be called with b

the root of the vantage point tree and T an empty heap. The heap T contains
k nearest neighbors encountered so far ordered in a decreasing order of their
respective distances to the query point (notice the similarity with T the heap
in the algorithm 2). The lines 2-7 handle the node corner and possibly add
this point in the heap T . The lines 8-18 define the exploration behavior of the
algorithm. Depending on the query position, the inner sphere or the outer sphere
is explored first. The tests at line 10 and line 15 reflect triangular inequality
pruning.

7

D
R
A
F
T

Algorithm 4 SearchVPTree(b, d, q, k, T)

1: δ ← d(q, b)
2: if δ < T.peekV alue() then
3: T.add(b, δ)
4: if T.count() > k then
5: T.pop()
6: end if
7: end if
8: if δ < median(b) then
9: SearchVPTree(inner(b), d, q, k, T)

10: if δ + T.peekV alue() > median(b) then
11: SearchVPTree(outer(b), d, q, k, T)
12: end if
13: else
14: SearchVPTree(outer(b), d, q, k, T)
15: if δ − T.peekV alue() < median(b) then
16: SearchVPTree(inner(b), d, q, k, T)
17: end if
18: end if
19: return T

The algorithm 4 is an exact search algorithm. The proof is quite straightfor-
ward and very similar to the proof of the correctness of the algorithm 2.

3 Neighbor search in non-metric space

In the previous section, we have been focusing on the case of NNS within a
metric space. The metric trees and vantage point trees relies mostly on explo-
ration pruning based on triangular inequality constraints. This principle is the
foundation of the algorithm 2 and the algorithm 4. This section focuses on the
NNS in the case of non-metric space. Formally the three metric assumptions
(relative to the distance function) are simply removed. Only remains E the
dataspace and s : E2 → R

+ the similarity criterion. The pair (E, s) is refered
as a non-metric space.

Let us note that the three metric axioms (separation, symmetry and trian-
gular inequality) are far from having an “equal weight” for the NNS purpose.
Indeed, as clearly described in [5], the metric NNS algorithms can easily be
adapted if the separation and/or the symmetry axioms are removed. Neverthe-
less the triangular inequality has a critical importance. Although, the triangular
inequality can be slightly relaxed (the detail goes beyond the scope of this doc-
ument, see also [5] for the detail), it is strongly required by the classical metric
NNS algorithms.

Indeed the immediate consequence of the non-metric assumption is that
there is no “hard” assumption that could be used to ensure any guaranteed

8

D
R
A
F
T

search pruning. Therefore the only guaranteed algorithm that performs queries
in nonmetric space is the naive exhaustive search algorithm. To our knowledge,
no general approach have been proposed so far for the non-metric case. Here
we introduce first a framework whose purpose is to evaluate the performance of
a non-metric NNS algorithm. Then we introduce several methods that can be
used in the context of non-metric NNS. Experimental evaluations are proposed
for those methods. 2

3.1 Approximate queries in non-metric space

As discussed here above, the query methods in the non-metric situation are ei-
ther naive (involving n similarity computations) or approximate. In this section,
we will introduce approximation criterions for queries in non-metric spaces.

The dataspace E is associated to a similarity function s. Let B̃(q, r) be the
approximate result provided by a densitree to the range query B(q, r), idem

Ñ (q, k) being the approximation of N (q, k). In order to be able to evaluate the
approximation quality, we need to introduce some quality criterion.

Most commonly used approximation criterions in the NNS literature are
geometric. Typically an algorithm based on geometric approximations will en-
sure that distance from the query point to the returned point is smaller than
1 + ǫ times the distance of the query point its nearest neighbor (see [3, 9]).
Nevertheless, as pointed out in [4], such geometric approach may suffer from
intrinsic instabilities as the dimension increase. Additionally, since the triangu-
lar inequality do not hold here, the value of similarity between two points has
little interest in itself. Therefore, we will restrict the discussion in this paper to
rank-based approximation criterion.

The most simple criterion is simply the ratio of correct items in the approx-
imate result. We call this criterion the validity3. Formally the validity could
be defined as

v(Ñ (q, k)) =
|Ñ (q, k)

⋂N (q, k)|
|N (q, k)| =

1

k

∣∣∣Ñ (q, k)
⋂
N (q, k)

∣∣∣

The validity value is in the interval [0, 1], zero being a poor answer, one being

the exact answer. The validity of the range queries v(B̃(q, r)) could be similarly
defined. Although being very simple, the validity is not entirely satisfying as
a quality criterion. Indeed the validity is not sensitive to the quality of the
incorrect items. Intuitively, returning very close but incorrect neighbors will
not lead to a higher validity than returning very distant neighbors. In order to
overcome this drawback of the validity, let us introduce a rank based criterion.

2Problem: it seems that the non-metric case has been studied once in Zhang 2002, see
[21]. But the paper is poorly written, quotes 30 years old papers (all modern references are
missing), is purely empirical, and seem to have a very narrow application spectrum (1 specific
metric function). Additionally the proposed algorithm is not even applied to a non-metric
case since, the function is almost a metric (only the separation assumption is not verified and
it is easy to adapt any classical algorithms to handle that, see [5]).

3NOTE: never seen this criterion anywhere in the near neighbor literature.

9

D
R
A
F
T

Let rq(x) be the rank of the item x ∈ X according to the query q, defined as
rq(x) = |{y ∈ X, s(q, y) < s(q, x)}|. Then the shift4 could be defined5 as

f(Ñ (q, k)) =

∑
x∈ eN (q,k) rq(x)

∑
x∈N (q,k) rq(x)

=
2

k(k + 1)

∑

x∈ eN (q,k)

rq(x)

The shift value is in the interval [1,∞), one being the exact answer. Note that
the shift if sensitive to the overall quality of the answer.

3.2 Graphical exploration models

In this section, we introduce a general framework for describing non-metric
NNS algorithms. The purpose of this framework is to outline the key aspects of
non-metric NNS.

Intuitively, any non-metric NNS algorithm A lies on a particular data struc-
ture that contains X the dataset. When performing a query with A, the dataset
X can be divided in two parts: the set of explored points (the similarity between
any of those points and the query has been computed) and the set of unexplored
points. Based on the information relative to the set of explored points, the al-
gorithm A decides which point will be explored next. The data structure G
usually restraints the set of candidate points. In other word, all unexplored
points are not necessary candidates to be explored next. Notice that, here, the
term “exploration” refers to process of choosing the next point to be compared
to the query point based on the information previously acquired.

More formally, let us introduce an oriented graph G = (V, E), a mapping �K

and a root vertex r ∈ V as a general representation ofA. The set V (respectively
E ⊂ V × V) represents the vertices (respectively the edges) of the graph G. We
have adopted the notation V for the vertices to be more consistent with the
literature, but please note that here V = X. For any subset C ⊂ V , we note C
as the “neighbors” of C, formally defined by

N (C) = {y ∈ V |(x, y) ∈ E and x ∈ C}

Let K represents a set of pairs {x, s} where x ∈ X is a point and s ∈ R is a
similarity value. The set K is an abstraction of the set of explored points. The
mapping �K: K 7→� associates a relation order � to a set of explored points
K. The vertex r represents the “root” of the algorithm A, i.e. the point that
will be compared first to the query. Using those notations, left us now provide
the detail of the general representation of the algorithm A with the following
pseudo-code.

The algorithm 5 is quite simple. It begins with the exploration of the root
at line 1. The main loop (lines 2-6) consists of finding the set C of candidate

4NOTE: never seen this criterion anywhere in the near neighbor literature. May have
already a usual (but different?) name somewhere else.

5For the sake of simplicity, the equality is based on the assumption that the dataset could
be ordered, e.g d(q, x1) < d(q, x2) < · · · < d(q, xn)

10

D
R
A
F
T

Algorithm 5 NonMetricQuery(q)

1: K ← {r, s(q, r)}
2: while SomeTerminationConditions do
3: C ← N (K) \ K
4: v ← min�K

C

5: K ← K ∪ {v, s(q, v)}
6: end while
7: Return K

vertices at line 3, of choosing within C the vertex v to be explored next at line 4
and finally to explore v at line 5. The algorithm returns directly K the set of
explored vertices. Note that the constraints induced by the model underlying
the algorithm 5 are very reasonable ones. This model implies that no similarities
are computed except the ones between the query point and the dataset points
(forbidding the computation of the similarity between two points of the dataset
for ex.). This model also implies that each allowed similarity computed once at
most.

The purpose of the generic non-metric NNSalgorithm representation pre-
sented here above is not to lead to practical efficient implementations. The
purpose of this framework is to help us to outline the following aspects of non-
metric NNS.

• Heuristic stopping criterion.

• Accurate exploration is the key of non-metric NNS.

• No difference between range query and neighbor query.

As discussed here above, the only exacts non-metric NNS algorithm is ac-
tually the exhaustive search through the whole dataset. Therefore, an heuristic
stopping criterion (as expressed line 2 of the algorithm 5) is required. Since
any NNS algorithm A requires to keep K the set of already encountered ver-
tices (or at least a subset of K associated to the closest points), an algorithm A
can be interrupted at any time, the set K being returned. Intuitively the more
exploration is allowed, the more accurate will be the results extracted from K.

This initial remark leads us to the second aspect: an accurate exploration
is the key of non-metric NNS. Indeed, since any algorithm A will be stopped
before having explored the whole dataset, it is critical, for the accuracy of the
results, to explore as fast as possible the nearest points of the query. Therefore
the main issue in non-metric NNSis not to design elaborate pruning criterions
(as opposed to the metric NNS case), but is to design a mapping �K that will
lead the exploration as fast as possible to the nearest neighbors of the query.

Finally, the non-metric NNS is conceptually more simple than the metric
NNS. Indeed, the lack of “hard constraints” like triangular inequality implies
that there is no practical difference between a range query and a near-neighbor
query. It is known for the metric case, that there are tight relationships between

11

D
R
A
F
T

the two query types. General methods are available to convert efficiently a range
query into near-neighbor query and vice-versa (see [5] for the detail). But in the
non-metric situation, the relationships are even stronger. The process described
in algorithm 5 remains the same independently of the query type; only the query
point matters. In both cases, the result will be a subset6 of the returned set K.
In the following, we will restrict our focus to the near-neighbor queries.

3.3 Query accuracy profile

This section introduce the notion of query accuracy profile that is an extension
of the “accuracy” criterion introduced here above. First, let us motivate the
need for the introduction of an additional criterion. The accuracy indicates the
ratio of correct items returned by a certain algorithm A for a given query. The
algorithm 5 provides a new insight to the notion of accuracy. Indeed it become
clear that the accuracy value will be bound to the termination condition (see
line 2) of the algorithmA. Nevertheless, as discussed previously, the termination
condition is a simple tradeoff, whereas the exploration is the critical issue of non-
metric NNS. Those elements call for a criterion that could be used to evaluate
the quality of exploration rather than the termination condition.

Intuitively the query accuracy profile is a mapping p : #call 7→ accuracy.
The accuracy profile p(k) is equal to the accuracy of the best subset of K (taking
the notations of the algorithm 5) after the kth call the similarity function (the
similarity function is called iteratively at line 5 in algorithm 5) Formally, if
N is the set result from an exact computation of the query and K the set of
encountered points after the kth call to the similarity function, then

p(k) =
|K ∩ N|
|N |

The query accuracy profiles are the core of the empirical results present in
section 5. Note that a query shift profile can be defined in a similar fashion.

We will now discuss how query accuracy profiles can be computed in prac-
tice. The main issue is the fact that the profile computation actually requires the
exact query result. Therefore, the most simple solution consists of a two-passes
method: first compute the query result using the naive NNS method (exhaus-
tive exploration); second, perform the exploration and record at each similarity
function call the reached accuracy. When correctly implemented, this method
is O(n) which is the best asymptotical bound that can be achieved here (recall
the fact that the exact query result is required for the profile computation).
Nevertheless, this method can be easily be improved into a single-pass method.
The detail is given in the algorithm 6 which is a slightly modified version of the
algorithm 5.

Note that the termination condition of the algorithm 6 is equivalent to “until
there are no more unexplored vertices”. Additionally, a list L gathers the tuples

6In practice, a heap will probably be chosen to represent K

12

D
R
A
F
T

Algorithm 6 ProfileQuery(q)

1: K ← {r, s(q, r)}
2: i← 0
3: L ← {r, s(q, r), i}
4: while N (K) \ K 6= ∅ do
5: C ← N (K) \ K
6: v ← min�K

C

7: K ← K ∪ {v, s(q, v)}
8: i← i + 1
9: L ← {v, s(q, v), i}

10: end while
11: Return ExtractProfile(L)

(v, s(q, v), i) added at each iteration (where i counts the number of previous
calls to the similarity function). The profile is extracted as post-query process
by calling ExtractProfile whose detail is not given here because being quite
straightforward.

3.4 Exploration stopping criterion

The algorithm 5 refers to an abstract SomeTerminationConditions criterion
to stop the exploration and returns K. In this section, we provide a simple
criterion and discuss how such a criterion could be used in practice.

Intuitively, for a given exploration method, there are two opposing factor for
the client of the NNS algorithm:

• The computational cost of the query.

• The accuracy of the tradeoff.

Intuitively, the most flexible solution is simply to provide the tradeoff curve

u : accuracy 7→ #call

to the client and let him chose the desired level of accuracy. Actually, we have
already introduced, although from a different perspective, such a tradeoff curve
in the previous section as the concept of “query profile”.

A practical way of constructing the tradeoff curse u is to take a random
sample of points from the dataset, to run the algorithm 6 with those points as
arguments, and to compute the average query profile. From such average query
profile, the reverse function (providing the number of similarity calls based on
a chosen accuracy) can easily be computed.

4 Densitrees

The previous section was providing general considerations on the non-metric
NNS algorithms. This section introduces a class of particular data structures

13

D
R
A
F
T

that we call densitrees.

4.1 Definition of densitrees

Intuitively, densitrees are a class of decorated trees that hold the points of
the dataset in a way similar to the metric tree or vantage point tree. The
critical difference lies in the nature of tree decoration; instead of having one or
several real values reflecting some bounds on the triangular inequality attached
to every tree node, each densitree node is associated to a particular classifier
called here a density estimator. We speak of the densitrees (plural) rather than
densitree (singular) because in practice many variations based on the chosen
density estimators types are possible within the densitrees framework.

A density estimator provides estimates of the number of points contained
within a ball (specified by its center and radius). When the query is performed,
the densitree exploration, which starts at the root, follows greedily the paths of
greatest densities. The insights offered by the algorithm 5 motivates the idea of
exploring the nearest points as fast as possible because it will lead to a better
accuracy for any given query termination condition.

Formally, nodes and leaves in the densitree will be treated indifferently. A
densitree node is a tuple defined by α = (x, φ̂, αL, αR) where x ∈ X is point,

φ̂ is a density estimator, αL and αR are respectively left and right nodes (that
may be null). By convention, the root node of the densitree is refered as α0.

A density estimator φ̂ is a mapping φ̂ : E×R→ [0; 1]. In order to clarify the
notion of density estimator, let us first introduce the notion of density function.
The (exact) density function for a dataset X is defined by

φX(q, r) =
1

|X| |X
⋂
B(q, r)|

The function φX associates the ratio of the dataset contained in the specified
ball. Since E always represents the dataset, in the following, the density function
will be refered as φ for the sake of simplicity. From an exploration perspective,
the density function φ is obviously the optimal function to guide the exploration.
Nevertheless the use of the density function does not lead to any computational
improvement over the naive exhaustive search, therefore density estimators (that
can be viewed as efficient approximation of the density function) are be used
instead.

4.2 Queries in densitrees

For the sake of clarity, we will begin our densitree discussion by introducing
the densitree query algorithms. Based on the generic model introduced with
the algorithm 5, the algorithm 7, detailed below, provides some insight on the
behavior of the densitrees.

Let us give some details about the conventions used in the pseudo-code of
the algorithm 7. The notation φα refers to the density estimator associated

14

D
R
A
F
T

Algorithm 7 DensitreeQuery(q)

1: K ← EmptyStack()
2: r ← CurrentRange(K)
3: K.Push(α0, φα0

(q, r))
4: while SomeTerminationConditions do
5: α← K.Pop()
6: r ← CurrentRange(K)
7: if left(α) 6= null then K.Push(left(α), φleft(α)(q, r))
8: if right(α) 6= null then K.Push(right(α), φright(α)(q, r))
9: end while

10: Return K

to the node α. The left branch (respectively the right branch) of the node α

is refered by left(α) and right(α). Here, the set of explored points K has an
explicit structure of heap, the points being ordered by decreasing estimated
densities. The densities are estimated base on the ball radius provided by the
method CurrentRange that takes K as argument. Like we did for the algo-
rithm 5, the termination criterion at line 4 is left unspecified.

There are several issues related to the function CurrentRange that we will
now discuss more extensively. First, the case where the query is a “range query”
is quite simple, in such case CurrentRange simply returns the range specified
by the query. The difficulties arise in the case of the near-neighbor query. The
usual approach, as taken in the algorithm 2 or algorithm 4 would suggest to
return an infinite radius until |K| = k (k being the number of neighbor specified
by the query), and then to return the radius associated the kth nearest neighbor
in K. Unfortunately, this approach is not efficient in practical. The reason lies
in the fact that φα(x,∞) is always equal to 1. Thus an infinite radius leads to
a random exploration at least for the first elements. Heuristics can be used to
overcome this difficulty. Intuitively the idea consists of estimating initially the
final range of the query.

An accurate estimation of the final range is, as we have seen, a critical
issue to ensure an efficient exploration for a near-neighbor query. A simple
solution consists of performing a sample of random queries (just after building
the densitree, see next section) for a given number of neighbor and of storing
the average achieved final range. This is the empirical estimator that is used
in practice in 5. This estimator has the advantage of being computationally
very efficient (it does not require any additional call to the similarity function
at query-time). Nevertheless, the main draw of this estimator lies in its high
(statistical) bias. The use of better estimators, with a more accurate bias vs
variance tradeoff handling, may lead to significant over the results proposed in
section 5.

15

D
R
A
F
T

4.3 Building the densitrees

As we have seen how to perform a query in a densitree, this section presents
how to build a densitree. Building a densitree relies on two elements: (i) a
partitioning method that split a set of points in two, (ii) a density estimator
learning method (this point is left to the section 4.4). Intuitively, this process
is almost identical to the metric tree or vantage point tree building, except that
density estimators should be additionally learned in order to decorate the tree.
The detail is given in the algorithm 8.

Algorithm 8 BuildDensitree(X)

1: φ← LearnDensity(X)
2: (XL,XR)← Split(X)
3: αL ← BuildDensitree(XL)
4: αR ← BuildDensitree(XR)
5: Return (φ, αL, αR)

The algorithm 8 has a simple recursive structure (for the sake of simplicity,
the algorithm 8 does not provide the detail of the trivial stopping criterions).
The function Split, as the name suggests, splits the dataset into a left and a
right part (respectively XL and XR following the notations of the pseudo-code).
The discussion of the function LearnDensity is left to the next section.

Many heuristics have been proposed in metric NNS literature to find a good
pivot (see [5] for a review). A interesting point to note is that the non-metric
assumption has little importance here. Indeed most of the tree building method
of the metric literature (see algorithm 1 or algorithm 3) does not relies on
the metric assumptions. In the section 5, the metric tree method (ie. the
algorithm 1) has been used to build the densitree. This adapted method has
the advantage of being adapted to the densitree purposes and computationally
efficient. The computational cost of this method isO(n ln(n)) calls the similarity
function if we assume a linear learning cost for the density estimators (linearity
based on the number of items provided to the function LearnDensity, this
assumption will be extensively discussed in the next section).

4.4 Density estimators

As we have seen the purpose of the density estimator is to efficiently approximate
the density function. This implies that two main opposing constraints apply on
density estimators: first the density estimator must be as accurate as possible,
second the density estimator must have a computational cost as low as possible.

Based on the insights provided by algorithm 5, it can be noticed that the
absolute value returned by the density estimators no importance only their
respective values matters. Therefore, a very simple density estimator φ̂ : E ×
R→ R, yet very efficient in practice (see section 5 for more details) is defined by

φ̂(x, r) = s(x, q) where q is the query point. Intuitively, this density estimator
leads to a greedy exploration, exploring first the nearest point.

16

D
R
A
F
T

We will now introduce a more complicated density estimator, that we call
patriot(path To root density estimator), whose purpose is to take advantage of
the previously computed similarities. Let us begin by an intuitive description
of the patriot. The densitree is, as we have seen, a tree decorated by density
estimators. Each density estimator is associated to a node. When the density
estimator is called, it is natural to compute the similarity value between the
query point and the node point and to exploit this information (it is even possible
to rely solely on this information, as we have seen here above). Nevertheless, it
would be interesting to exploit also the information provided by the previously
computed similarities. In particular, all the nodes along the path that leads from
the root to the current node have already been compared to the query point.
The proposed density estimator includes a sample of points from the subtree
that have been “projected” on the dimensions defined by the nodes constituting
the path that leads to the root. The density value is estimated within this
sample based on an “induced” similarity (a norm L1 in R

k); the advantage of
this induced similarity being that it does not require any additional call the
similarity function.

We will now provide a more formal definition of the patriot density esti-
mator φ̂. Let α be the node of interest. Let Xα ⊂ X be the subset of points
associated to the subtree defined by the node α. Let us consider the list of points
B = (x1, . . . , xd) ∈ Xd that constitutes the path to the root (x1 would be the
root point and xd the point associated to the node α). Any point x ∈ X, can
be “projected” on B with x̄ = (s(x, x1), . . . , s(s, xd)). Let X̄α be the point-wise
projection of Xα over B. Let ‖ . ‖ be a norm over R

d (more details will be
given later about this norm). Let κ : R→ R be a real function; κ is the “scaling
function” (more details will be given later about this function).

We have now all the elements required to define φ̂. For a point q ∈ E and a
range r ∈ R, we have

φ̂(q, r) =
1

|Xα|
∣∣B‖.‖,Xα

(q̄, κ(r))
∣∣ (1)

Let us give a word of explanation about this definition. The notation B‖.‖,Xα

refers the the ball defined over the set Xα based of the norm ‖ . ‖ (used as the
similarity function). Intuitively the query point q is simply projected as q̄, then
the density is evaluated within the projected space which required to scale the
range r into κ(r) as well. The result is considered as being an estimation of

φ̂(q, r) itself.

The patriot method raises several practical issues (listed here below) that
will be discussed in the following.

• How to choose ‖ . ‖?
• How to choose κ?

• Practical implementation of φ̂.

• The computational cost to build φ̂.

17

D
R
A
F
T

• The memory cost to store the φ̂.

• The computational cost to call φ̂ during exploration.

• The empirical accuracy of φ̂ vs other estimators.

The definition of the norm ‖ . ‖ is critical for the accuracy of of patriot

estimator φ̂. A natural idea would be use ‖ . ‖1 or ‖ . ‖2 as very classical
metrics over R

d. Those metrics have been tried (although the experiments are

not listed in section 5) and lead unfortunately to very poor accuracy for φ̂. Let
us provide the insight of this poor behavior. To simplify largely the problem, we
can say that the exploration (if not stopped by any termination criterion) has
three phases: (i) descending down the densitree to query close neighborhood
(ii) visiting the query close neighborhood (iii) visiting the remaining remote
neighborhoods. In practice, the average similarity values between the query
point and the points explored the phase (i) are much greater than the similarity
values between the query point and the points explored during the phase (ii). As
we have designed patriot, this phenomenon leads to a considerable overweighting
of the points at the top of the densitree (points close to the densitree root).

This issue suggests that more complicated ‖ . ‖ should be considered. A
natural solution to overcome the overweighting mentioned here above is to in-
troduce linear coefficients such as

‖ x̄ ‖=
d∑

i=1

λi|x̄i|

This option raises an other issue that is the actual choice of the coefficients
λi. In section 5, we have opted to normalize each dimension dividing by the
mean similarity. Thus we have E[λi|x̄i|] = 1 for all i. This choice is motivated
by the insight provided here above and suppress the overweighting problem.
In practice, this option leads to great improvements over the use of uniform
norms like ‖ . ‖1. Nevertheless, this option is certainly not definitive, and we
suspect that vast amelioration can be obtained by a better “tuning” of this
norm. In particular, empirical observations lead us to suggest that the closer
the pivot point is from the query point, the more accurate is the prediction
associated to the resulting dimension. Better approaches would certainly take
into account such phenomenon. A more general would approach would even
suggest that the {λi}i coefficients should be directly optimized (learned) in
order to fit the proposed purposes. Such approach goes beyond the scope of the
present document.

The values of the scaling function κ is tightly bound to actual metric ‖ . ‖.
Nevertheless we propose a method to estimate the scaling function κ is a fashion
that does not depend on the chosen metric ‖ . ‖. The method consists simply
in drawing random pair of points (x, y) within Xα and computing the pair of
values (s(x, y), ‖ x̄− ȳ ‖). Let (ui, vi)i be a list of such sample pairs ordered

18

D
R
A
F
T

against the similarity values (ie. i <= j ⇒ ui <= uj). Considering the list
(ui, vi)i, a simple definition for κ would be κ(u) = varg maxi{ui<u}. Such choice
would be motivated by the intuition that choosing the norm value associated to
a similar similarity value would be an accurate option. Unfortunately, empirical
observations suggest that such an option leads to a very poor overall accuracy
for the patriot estimator. Indeed, the use of a single pair does not provide
an accurate estimate. The empirical solution to overcome this issue that have
been used in the section 5 is to smooth the previously proposed κ function by
clustering the list (ui, vi)i (gathering the values based on the ui similarity, and
taking the mean of the ui and vi values for each cluster). In the section 5, the
number of random pairs was fixed to |Xα| (requiring a linear additional number
of metric calls), then the resulting list is clustered into

√
|Xα| (in order to assure

an unbiased yet convergent estimator for κ).

A efficient implementation for φ̂ is required to ensure low computational
and memory cost for the densitrees. The patriot method, described here above,
induces an additional NNS problem. Although our overall objective is to per-
form a non-metric NNS, it can be noticed that the task performed by a patriot,
is actually a metric NNS. Therefore, most of the solutions proposed in the NNS
literature can be used here. In section 5, we have opted for the metric tree
algorithm, although other options (possibly approximate) may have been used
instead.

The accuracy of the patriot estimator determines the overall exploration
quality of the densitree. The patriot estimator aims to a better accuracy than
the greedy estimator previously mentioned (explore first the nearest node). In-
tuitively, the patriot estimator exploits more information than the greedy esti-
mator (several similarity values are used to “score” a node vs a single value).
The drawback of this approach is that the patriot estimator is less “robust”
(statistical meaning) that the greedy estimator. Empirical observations (yet
not included in the section 5) indicates that the patriot estimator is much less
accurate than the greedy estimator when the number of points contained in the
node subtree is low. Therefore the method used in the section 5 is a mixed
method where the comparison operator �K (using the notation of algorithm 5)
compare the densities returned by the patriot estimators if both subtree sizes
are greater than an given threshold; if not, the comparison is based on the re-
spective node similarity values to the query point. The threshold used in the
experiments in section 5 is

√
|n| where n = |X| is the number of points in the

dataset. This threshold is mainly arbitrary (although it seems to perform rea-
sonably well, see the results of section 5) but it is motivated by the fact that√

n → ∞ when n → ∞ thus ensuring the density estimator variance will tend
to zero.

19

D
R
A
F
T

5 Experiments

This section provides experimental results based on the datasets already used
in [13] for a benchmark of near neighbor search algorithms. All those datasets
are available at [12]

• aerial: Texture feature data contain 275.000 feature vectors of 60 dimen-
sions representing texture information of aerial photograph [14, 15].

• corel hist: 20.000 histograms with 44 non-zero dimensions of color images
taken from the COREL STOCK PHOTO Library (s) [13, 10].

• corel uci: 68.000 histograms with 64 dimensions of color images from the
COREL library [13]. This dataset differs significantly from the Corel hist

dataset available at the UCI repository [1].

• disk trace: 40.000 content traces of disk-write operations, each being a
1kb block. The traces are generated from a desktop computer running
SuSe Linux during daily operation [13].

• sprot40: 101601 sequences extracted from the Swiss-Prot database ver-
sion 40 [2].

The objective of the experiments presented in the following sections is to
evaluate the quality of exploration of the various algorithm that have been
introduced previously. This objective implicitly states that the main computa-
tional cost of a search algorithm is the number of calls to the metric function.
It is not entirely true, I/O costs can also be considered [6], but it is commonly
accepted that the number of call to the metric is representative of the overall
computational cost independently of the specific implementation [5].

We will begin by providing and discussing empirical results about the more
classical metric situation (see section 5.1); then we will review the non-metric
situation (see the section 5.2).

5.1 Results in metric space

The results presented in this section are gathered in the figures 1 to 15. Those
figures are query accuracy profiles (introduced in section 3.3). Although having
been introduced under non-metric assumption, the query accuracy profile dis-
cussion is straightforward to transpose in the metric case; the only subtlety (in
respect to our previous discussion) being that the pruning which occurs in the
metric situation restraints the required amount of exploration.

Our experiments involve the two metric NNS algorithms that have been
previously described:

• M-Tree: the metric tree structure [17, 6]. An efficient implementation
can be found at [7].

20

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 1: aerial, k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 2: aerial, k = 8

21

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 3: aerial, k = 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 4: aerial, k = 256

22

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 5: aerial, k = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 6: corelUci, k = 2

23

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 7: corelUci, k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 8: corelUci, k = 64

24

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 9: corelUci, k = 256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 10: corelUci, k = 1024

25

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 11: disk, k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 12: disk, k = 8

26

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 13: disk, k = 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 14: disk, k = 256

27

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
VP-Tree

Figure 15: disk, k = 1024

• VP Tree: the vantage point tree structure [18, 19, 20].

Those two algorithms have been tried against the dataset aerial, corel hist,
corel uci and disk trace previously described. Note that the dataset sprot40
is left apart because of its associated non-metric similarity function. The queries
of interest here are near-neighbor search queries with various number of neigh-
bors. Please note that no experiments have been done with a single (nearest)
neighbor search. This choice is motivated by the fact that the query points are
actually drawn from the dataset and therefore contained in the data structure
where the query is actually performed. The empirical results for single (nearest)
neighbor are indeed highly biased in favor of the data structures under tests.
Nevertheless, the 2-near-neighbor search queries can considered as representa-
tive for the behavior of the nearest neighbor search.

Several empirical conclusions can be gathered from those results. First,
there is no clear-cut advantage of using metric trees rather than vantage point
trees. The results suggest that for the nearest neighbor search, the vantage
point tree often outperforms the metric tree. In the other hand, the metric tree
tends to outperforms the vantage point tree when the queries involve a large
number of neighbors. To our knowledge, although those algorithms are very
classical, it does not seem that such behavior having been noticed before. We
do not have a rigorous answer to provide to explain this behavior, nevertheless

28

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 16: Non-metric, corelHist, k = 2

we will provide here our interpretation based our empirical observations. Let us
recall the three exploration phases that have discussed here above: (i) descend
(ii) visiting the near-neighbors (iii) visiting the remote neighbors. The insights
provided by the those phases help to interpret the behavior discussed here. The
main difference between vantage point trees and metric trees lies in the fact that
an exploration step requires two similarity function calls for the metric tree vs
a single call for the vantage point tree. Our interpretation is that the single
call method advantages the vantage point tree (compared to the metric tree)
during the phase (i) because it avoids calls that might not be exploited later
one. Nevertheless, the price of those “avoided” calls is a less efficient exploration
in phase (iii). The difference between a single neighbor search or a numerous
neighbors search is the respective weights of the phase (i) and (iii). In a single
neighbor search, the phase (i) is the most heavy phase; in a numerous neighbor
search, the phase (iii) becomes preponderant. In our view, those considerations
provides an explanations of the observed empirical behaviors. Nevertheless more
theoretical approaches might bring much more satisfying answers.

5.2 Results in non metric space

The results presented in this section are gathered in the figures 16 to 26. Sim-
ilarly to the previous section, those figures are query accuracy profiles (intro-
duced in section 3.3).

29

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 17: Non-metric, corelHist, k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 18: Non-metric, corelHist, k = 64

30

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 19: Non-metric, corelHist, k = 256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 20: Non-metric, corelHist, k = 1024

31

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 21: Non-metric, corelUci, k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 22: Non-metric, corelUci, k = 8

32

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 23: Non-metric, corelUci, k = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 24: Non-metric, disk, k = 2

33

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 25: Non-metric, disk, k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 26: Non-metric, disk, k = 64

34

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 27: Non-metric, disk, k = 256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 28: Non-metric, disk, k = 1024

35

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 29: Non-metric, sprot, k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 30: Non-metric, sprot, k = 8

36

D
R
A
F
T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 31: Non-metric, sprot, k = 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000

V
al

id
ity

Metric calls

M-Tree
Densitree

Figure 32: Non-metric, sprot, k = 256

37

D
R
A
F
T

Our experiments involve the two metric NNS algorithms that have been
previously described:

• M-Tree: the metric tree structure (see references here above).

• Densitree: the densitree extensively discussed in section 4.

The metric tree used in this section has been slightly modified to fit the non-
metric assumption. In particular, the triangular inequality pruning has been
removed from the metric tree query algorithm. Consequently, the metric tree
exploration relies solely on a greedy nearest-node first approach.

The details of the densitree implementation have been given in section 4,
and will not be provided here again. Let us just recall that the densitree explo-
ration is based on particular classifiers that we call “density estimator”. Those
classifiers aim to exploit several similarity values to score each node.

Several empirical conclusions can be drawn from the experiments of this
section. The most important conclusion, is that, contrary to a common belief,
the triangular inequality is far from being a necessity to perform an efficient
exploration. It is clear, by comparing the d accuracy profiles with or without
the triangular inequality, that relying on the triangular inequality improves the
algorithm efficiency; nevertheless the improvement is rather limited.

The second empirical conclusion is that the densitree tends to outperforms
the metric tree based on the sole query accuracy profile. The behavior is not
surprising, because the densitree exploration exploits much more data to decide
which will be explored next. Additionally, as discussed in section 4, our cur-
rent implementation of density estimators relies on a large number of heuristics.
Therefore many improvements can be expected from a better “tuning” of the
densitree query algorithm. Although not presented here, please not that this
behavior would be exactly the same if the triangular inequality had been used.
Indeed, the dataset partitioning of the densitree is identical to the metric tree
one’s. Therefore, the two methods (metric tree and densitree) would be benefit
of the triangular inequality pruning in an equal fashion. This implies, in partic-
ular, that the densitrees, can actually also lead to any improved NNS even in
the more classical metric case.

Nevertheless, it has to be noticed that in practice the CPU costs are not
limited to the call the similarity function. Based on a pure CPU benchmark,
the densitrees would have been outperformed by the metric tree excepts for the
datasets that are associated to an expensive similarity function).

6 Conclusions

After reviewing the most classical NNS algorithms that relies on the metric
space assumption, we have introduced the more general problem of NNS in
non-metric space. In particular, no triangular inequality assumption is avail-
able in non-metric spaces. The analysis of the non-metric NNS problem has lead

38

D
R
A
F
T

us to introduction the notion of query accuracy profile to evaluate in a meaning-
ful way the efficiency of a NNS in non-metric space. Taking the accuracy profile
as a criterion to evaluate the NNSalgorithms, we have seen that the exploration
criterions become the key issue to design an efficient NNS algorithm in non-
metric space. We have proposed as simple greedy non-metric search algorithm
by on the very classical metric tree structure. Then a deeper analysis of the
exploration problem lead us to introduce a new data structure that we call “den-
sitrees”. The densitree exploration exploits more information than the simple
greedy exploration. Finally the previously discussed algorithms are empirically
compared against classical datasets of the NNS literature. The densitrees seems
to outperform previously known methods for metric or non-metric NNS.

References

[1] http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html.

[2] http://www.expasy.org/sprot/.

[3] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and
Angela Y. Wu. An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. Journal of the ACM, 45(6):891–923, 1998.

[4] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is “nearest neighbor” meaningful? Lecture Notes in Computer Sci-
ence, 1540:217–235, 1999.

[5] Edgar Chavez, Gonzalo Navarro, Ricardo A. Baeza-Yates, and Jose L. Mar-
roquin. Searching in metric spaces. ACM Computing Surveys, 33(3):273–
321, 2001.

[6] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access
method for similarity search in metric space. In Proc. Of the 23 rd VLDB
Conference, 1997.

[7] Paolo Ciaccia, Fausto Rabitti, Pavel Zezula, and Marco Patella. M-tree
project. http://www-db.deis.unibo.it/Mtree/.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. McGraw-Hill, 1990.

[9] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in
high dimensions via hashing. In The VLDB Journal, pages 518–529, 1999.

[10] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in
high dimensions via hashing. In VLDB ’99: Proceedings of the 25th In-
ternational Conference on Very Large Data Bases, pages 518–529. Morgan
Kaufmann Publishers Inc., 1999.

39

D
R
A
F
T

[11] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[12] Ting Liu and Andrew W. Moore. Datasets repository.
http://www.cs.cmu.edu/ tingliu/dataset/dataset.html.

[13] Ting Liu, Andrew W. Moore, Alexander Gray, and Ke Yang. An investiga-
tion of practical approximate nearest neighbor algorithms. In Lawrence K.
Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Informa-
tion Processing Systems 17, Cambridge, MA, 2005. MIT Press.

[14] B. S. Manjunath. Airphoto dataset.
http://vision.ece.ucsb.edu/download.html.

[15] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval
of image data. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):837–842,
1996.

[16] M. Omohundro. Bumptrees for efficient function, constraint, and classifi-
cation learning.

[17] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. In Information Processing Letters, volume 40, pages 175–179, 1991.

[18] Peter N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1993.

[19] Peter N. Yianilos. Excluded middle vantage point forests for nearest neigh-
bor search. Technical report, NEC Research Institute, Princeton, NJ, July
1998.

[20] Peter N. Yianilos. Locally lifting the curse of dimensionality for nearest
neighbor search. In Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 361–370, 2000.

[21] B. Zhang and S.N. Srihari. A fast algorithm for finding k-nearest neighbors
with non-metric dissimilarity. In FHR02, pages 13–18, 2002.

40

