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Deconvolution in white noise with a random blurring function

Thomas Willer

Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VII (Denis Diderot), 175
rue de Chevaleret, F-75013 Paris, France.

Abstract

We consider the problem of denoising a function observed after a convolution with a random
filter independent of the noise and satisfying some mean smoothness condition depending on an
ill posedness coefficient. We establish the minimax rates for the Lp risk over balls of periodic
Besov spaces with respect to the level of noise, and we provide an adaptive estimator achieving
these rates up to log factors. Simulations were performed to highlight the effects of the ill
posedness and of the distribution of the filter on the efficiency of the estimator.

Keywords: Adaptive estimation; Deconvolution; Inverse problem; Minimax risk; Nonpara-
metric estimation; Wavelet decomposition.

1 Motivations and preliminaries

1.1 Inverse problems in practice

Deconvolution is a particularly important case in a more general setting of problems, known
as inverse problems. They consist in recovering an unknown object f from an observation hn

corresponding to H(f) corrupted by a white noise ξ, for some operator H. The model is of the
kind:

hn = H(f) + σn−1/2ξ, ∀n ≥ 1. (1)

Inverse problems appear in many scientific domains. Several applications can be found for
example in OFTA [1999] in various domains such as meteorology, thermodynamics and mecanics.
Deconvolution, in particular, is a common problem in signal and image processing (see Bertero
and Boccacci [1998]). It appears notably in light detection and ranging devices, computing
distances to an object by measuring the lapse of time between the emission of laser pulses and
the detection of the pulses reflected by the object. In the underlying model f is a distance to an
object measured up to small gaussian errors after being blurred by a convolution phenomenon
due to the fact that the system response function of the device is longer than the time resolution
interval of the detector. Several papers deal with this application of deconvolution methods, for
example Harsdorf and Reuter [2000] or Johnstone et al. [2004].

In some cases, it is difficult to know a priori the underlying operator which transformed
the object to be determined into the observed data. This problem appears notably when the
operator is sensitive to even slight changes in the experimental conditions, or is affected by
external random effects that cannot be controlled, and thus changes for every observation. In
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Figure 1: Reconstruction of a density of activity

these conditions, a framework with a random operator is more adapted than a setting with a
fixed deterministic operator.

As an example let us consider an inverse problem of reconstruction in a tomographic imagery
system, borrowed from OFTA [1999]. The problem is to find the density of activity f of a
radioactive tracer by collecting the γ photons which it radiates on a detector. The framework is
illustrated on Figure 1. The setting is such that only the photons transmitted perpendicularly
to the detector are taken into account. A given pixel Ad of the detector collects a number of
photons that depends on the density of activity f along some segment [FAd], where F is the focal
point towards which Ad is headed. Each point M of this segment transmits a contribution f(M)
towards Ad but the pixel detects only a(M,Ad)f(M) photons from M because the radiation
diminishes after it has gone across the fluid between M and Ad. So the following quantity is
observed on the pixel Ad:

Xµf(F,Ad) =

∫

M∈[F,Ad]
f(M)a(M,Ad)dM,

and the function a can be put in the following form :

a(M,Ad) = exp
[

−
∫

M ′∈[M,Ad]
µ(M ′)dM ′

]

,

where µ is a coefficient quantifying the radiation fading around M ′. On figure 1 several zones
characterized by different densities of activity and different coefficients µ are represented. If µ
is constant along the segment [FAd], then recovering f is a deconvolution problem.

In practice the cartography of µ is not well known a priori. There is a different function
for each pixel and this function depends on the characteristics of the fluid where the tracers
were injected. Complementary measures and reconstruction algorithms are necessary to obtain
it. In this context a probabilistic model is useful, where µ is a random function determined a
posteriori thanks to additionnal measures.

1.2 Estimation in inverse problems with random operators

In the case of deterministic operators, inverse problems have been studied in many papers in
a general framework where (1) holds with some linear operator H. Two main methods of
estimation are generally used to recover f from the observation: singular value decomposition
(SVD) and Galerkin projection methods. The former uses a decomposition of f on a basis of
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eigenfunctions of HTH, which can be hard to perform if H is difficult to diagonalize. The latter
uses a decomposition of f on a fixed basis adapted to the kind of functions to be estimated
and then consists in solving a finite linear system to recover the coefficients of f . Wavelet
decomposition is a very useful tool in such settings, see Donoho [1995] and Abramovich and
Silverman [1998].

Among others, a method combining wavelet-vaguelettes decompositions and Galerkin pro-
jections can be found in Cohen et al. [2002], whereas a sharp adaptive SVD estimator can be
found in Cavalier and Tsybakov [2002]. Concerning the deconvolution problem, wavelet-based
estimation techniques were developed in Pensky and Vidakovic [1999], Walter and Shen [1999],
Fan and Koo [2002], Kalifa and Mallat [2003] and Johnstone et al. [2004]. Multidimensional
situations have also been considered: minimax rates and estimation techniques can be found in
Tsybakov [2001].

Generalisations of inverse problems to the case of random operators have been made in
several recent papers. First, random operators enable to treat situations where, in practice, the
operator modifying the object to be estimated is not exactly known because of errors of measure.
In such settings, equation (1) holds with an unknown deterministic operator H, and additionnal
noisy observations provide a random operator Hδ where δ is a level of noise : Hδ = H(f) + δξ.
The problem is to build an estimator of f based on the data (hn,Hδ) achieving minimax rates.
Several adaptive estimation methods have been developed in this case. Some are based on
SVD methods such as in Cavalier and Hengartner [2004], whereas estimators based on Galerkin
projection methods were developed in Efromovich and Koltchinskii [2001] or Cohen et al. [2004].

Random operators also appear quite naturally in models where the evolution of a random
process is influenced by its past. For example let us consider the problem of estimating an
unknown function f thanks to the observation of Xn ruled by the following equation (called
stochastic delay differential equation, SDDE in short):

dXn(t) = (

∫ r

0
Xn(t− s)f(s)ds)dt+ σn−1/2dW (t) ∀t ≥ 0,

Xn(t) = F (t) ∀t ∈ [−r, 0].

This problem is close to problem (2): a convolution of the unknown function with the random
filter Xn is observed with small errors. However this filter is not independent from W so our
results do not apply to this particular problem. Numerous estimation results in SDDEs can be
found in Reiss [2004] and in Reiss [2001], with a different asymptotic framework.

The organisation of the paper is as follows. Section 2, 3 and 4 present respectively the model,
the estimator and the main results. Section 5 gives simulation results where the behaviour of
the estimator is investigated for several distributions of the random filter, and section 6 gives
the proofs of the theorems.

2 The model

We consider the following deconvolution problem. Let (Ω,A, P ) be a probability space and W
a standard Wiener process on this space. For a given n ∈ N

∗ we observe the realizations of two
processes Xn and Y linked in the following way:

{

dXn(t) = f ⋆ Y (t)dt + σn−1/2dW (t), ∀t ∈ [0, 1],

Xn(0) = x0,
(2)
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where ⋆ denotes the convolution : f ⋆ Y (t) =
∫ 1
0 f(t − s)Y (s)ds, x0 is a deterministic initial

condition and σ is a positive known constant.

The problem is to estimate the 1-periodic function f when Y is independent of W and
satisfies some condition of smoothness.

2.1 The target function

We introduce functional spaces especially useful to describe the target functions. For a given
ρ > 1, let us first denote by Lρ the following space:

Lρ([0, 1]) = {f : R 7→ R | f is 1 − periodic, and

∫ 1

0
|f |ρ <∞}.

Secondly we use periodic Besov spaces which are defined thanks to the modulus of continuity in
a similar way as in the non periodic case (see Johnstone et al. [2004] for the exact definition).
They have the advantage of being very general, including spatially unsmooth functions, and of
being very well suited to wavelet decompositions. Indeed, the following characterization holds
under several conditions on the wavelet basis similar to the conditions in the general case (which
can be found in Härdle et al. [1998]):

Bs
p,q([0, 1]) = {f ∈ Lp([0, 1]) | ‖f‖s,p,q :=

(

∑

j≤0

2j(s+1/2−1/p)q(
∑

0≤k≤2j

|βj,k|p)q/p
)1/q

<∞}.

We investigate the maximal error when f can be any function in a ball of a periodic Besov
space Bs

p,q([0, 1]) of radius R and when the estimation error is measured by the Lρ-loss. We

suppose that s > 1
p so that f is continuous an hence its Lρ-norm exists.

Definition 1. For given R > 0, p > 1, q > 1 and s > 1
p , define :

M(s, p, q,R) = {f ∈ Bs
p,q([0, 1]) | ‖f‖s,p,q ≤ R}.

Our aim is to determine the rate of the following minimax risk for ρ > 1:

Rn := inf
f̂n

sup
f∈M(s,p,q,R)

Ef (‖f̂n − f‖ρ),

where the infimum is taken over all σ((Xn(t), Y (t))t∈[0,1]))−measurable estimators f̂n.

2.2 The filter

We assume that the blurring function Y is a random process independent of n, f , and (in
probabilistic terms) of the process W , and taking its values in L2([0, 1]).

Throughout this paper, we will use the following notations for two functions A and B de-
pending on parameters p :

• A . B means that there exists a positive constant C such that for all p, A(p) ≤ CB(p),

• A & B means that B . A,

• A ≍ B means that A . B and A & B.
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For j ∈ N we introduce two random variables LY
j and UY

j (whenever they exist) linked to
the smoothness of the process Y :

LY
j =

∑2j+1−1
l=2j |Yl|2

2j
, and UY

j =

∑2j+1−1
l=0 |Yl|−2

2j
,

where (Yl)l∈Z are the Fourier coefficients of (Y (t))t∈[0,1].

To establish the lower (resp upper) bound of the minimax risk, we impose the following
control on the distribution of LY

j (resp UY
j ), which implies that the Fourier coefficients are not

too large (resp small):

Clow: There exists a constant ν ≥ 0 such that, for all j ∈ N:

E(LY
j ) . 2−2νj .

Cup : ∀l ∈ Z, Yl 6= 0 almost surely, and there exist ν ≥ 0, c > 0, α > 0 such that, for all j ∈ N :

∀t ≥ 0, P
(

UY
j ≥ t22νj

)

. e−ctα .

All those conditions are satisfied if the Fourier Transform Ŷ of the process Y has the following
form: |Ŷ (w)| = T (w)

(1+w2)ν/2 , where T is a positive random process with little probability of taking

small or high values (for example bounded almost surely by deterministic constants). This
case includes for example gamma probability distribution functions with some random scale
parameter, which will be used further. On the contrary, condition Cup does not hold for filters

with realizations belonging to supersmooth functions, ie Y such that |Ŷ (w)| = T (w) e−B|w|β

(1+w2)ν/2 ,

for some constants B,β > 0 and with T as before. Results on deconvolution of supersmooth
functions can be found in Butucea [2004].

3 Adaptive estimators

We first build an adaptive estimator, nearly achieving the minimax rates exposed in the next
section, which is close to the one developed in Johnstone et al. [2004] in the case of a deterministic
filter Y . The method combines elements of the SVD methods (deconvolution thanks to the
Fourier basis) and of the projection methods (decomposition on a wavelet basis adapted to the
target functions).

Let us set Rj = {0, . . . , 2j − 1} for all j ∈ N, and let (Φj,k,Ψj,k)j,k∈Z denote the periodized
Meyer wavelet basis (see Meyer [1990] or Mallat [1998] for details). For convenience the following
notations will be used further: R−1 = {0} and Φ−1,0 = Ψ0,0. Any 1-periodic target function f
belonging to M(s, p, q, S) has an expansion of the kind:

f =
∑

j≥−1, k∈Rj

βj,kΨj,k,

where

βj,k =

∫ 1

0
fΨj,k.
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We estimate f by estimating its wavelet coefficients. Let (el(t)) = (exp(2πilt))l∈Z denote the
Fourier basis, and let (Ψj,k,l)l∈Z, (fl)l∈Z and (Yl)l∈Z be the Fourier coefficients of the functions

Ψj,k, f and Y . Set also: Wl =
∫ 1
0 el(t)dW (t) and Xn

l =
∫ 1
0 el(t)dXn(t). Then by Plancherel’s

identity we have:

βj,k =
∑

l∈Z

flΨj,k,l.

Moreover
∫ 1
0 (f ⋆ Y )ēl = flYl, so equation (2) yields:

Xn
l = flYl + σn−1/2Wl,

and thus if we suppose that Yl 6= 0 almost surely for all l, fl can naturally be estimated by
Xn

l
Yl

and we set:

β̂j,k =
∑

l∈Z

Xn
l

Yl
Ψj,k,l.

Then a hard thresholding estimator is built with the following values for the thresholds λj and
the highest resolution level j1:

2j1 = {n/(log n)1+
1
α }1/(1+2ν),

λj = η2νj

√

(log n)1+
1
α /n,

where η is a positive constant larger than a threshold (which is determined in section 6).

Finally the following estimator achieves the minimax rates up to log factors when the filter
satisfies condition Cup:

f̂D
n =

∑

(j,k)∈Λn

β̂j,kI{|β̂j,k|≥λj}
Ψj,k, (3)

where Λn = {(j, k) ∈ Z
2 | j ∈ {−1, . . . , j1}, k ∈ Rj}.

Moreover we also introduce a slightly different estimator f̂R
n with random thresholds instead

of deterministic ones (hence the superscript R instead of D), ie with j1 and λj replaced by j2
and τj:

2j2 = {n/ log n}1/(1+2ν),

τj = η′
√

UY
j log n/n,

where η′ is a large enough constant. The theoretical performances of f̂R
n will be studied in a

separate publication, here only a simulation study is provided.

4 Main results

Let ρ > 1, R > 0, p > 1, q > 1 and s > 1/p. We distinguish three cases for the regularity
parameters characterizing the target functions according to the sign of ǫ = 2s+2ν+1

ρ − 2ν+1
p :

the sparse case (ǫ < 0), the critical case (ǫ = 0) and the regular case (ǫ > 0).

Let us introduce the two following rates:

rn(s, ν) =
( 1

n

)
s

2s+2ν+1 , sn(s, p, ρ, ν) =
( log(n)

n

)

s−1/p+1/ρ
2s+2ν+1−2/p .
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Theorem 1. Under condition Clow on Y :

rn(s, ν)−1Rn & 1 in the regular case,

sn(s, p, ρ, ν)−1Rn & 1 in the sparse and critical cases.

Theorem 2. Under condition Cup on Y :

rn(s, ν)−1Rn . 1 in the regular case,

sn(s, p, ρ, ν)−1Rn . 1 in the sparse case,

sn(s, p, ρ, ν)−1Rn . log(n)
(1− p

ρq
)+ in the critical case.

Theorem 3. Under condition Cup on Y , for estimator f̂D
n defined in (3) and if q ≤ p in the

critical case:

sup
f∈M(s,p,q,R)

Ef (‖f̂D
n − f‖ρ) .

( log(n)1+
1
α

n

)
s

2s+2ν+1 in the regular case,

sup
f∈M(s,p,q,R)

Ef (‖f̂D
n − f‖ρ) .

( log(n)1+
1
α

n

)

s−1/p+1/ρ
2s+2ν+1−2/p in the critical and sparse cases.

When the filter satisfies Clow and Cup the rates of Theorems 1 and 2 match except in the
critical case when ρ > p

q , where the upper bound contains an extra logarithmic factor. This is
also observed in density estimation or regression problems (see Donoho et al. [1996] and Donoho
et al. [1997]), and that factor is probably part of the actual rate of Rn: the lower bound is maybe
too optimistic.

Analysing the effect of ν, we remark that the rates are similar to the ones established in the
white noise model or other classical non-parametric estimation problems (examples can be found
in Tsybakov [2004]), except that here an additional effect reflected by ν slows the minimax speed.
Indeed the convolution blurs the observations, making the estimation all the more difficult as
ν is large. This parameter is called ill-posedness coefficient, explanations about this notion can
be found in Nussbaum and Pereverzev [1999] for example.

Concerning Theorem 3, we remark that estimator f̂D
n is not optimal first by a log factor in

the regular case, which is a common phenomenon for adaptive estimators as was highlighted
in Tsybakov [2000], and secondly by log factors with exponents proportional to 1

α . This is due
to the difficulty to control the deviation probability of the estimated wavelet coefficients when
the probability of having small eigenvalues Yl of the convolution operator is high (ie when α is
small).

The main interest of these results is that bounds of the minimax risk are established in a
random operator setting, for a wide scale of Lρ losses, and over general functional spaces which
include unsmooth functions. As far as we know, the lower bound has not been established in
deconvolution problems for such settings even in the case of deterministic filters.

Let us also note that condition Cup imposed on the filter Y is similar to the conditions
generally used in other inverse problems where the singular values of the operator are required
to decrease polynomially fast. Moreover condition Cup concern means of eigenvalues over diadic
blocs, which enables to include filters for which Fourier coefficients vary erratically individually,
but not in mean, such as some boxcar filters (see Kerkyacharian et al. [2004]). The case of
severely ill-posed inverse problems, where the singular values decrease exponentially fast, has
also been studied in Cavalier et al. [2003] for example.
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Figure 2: Target functions

5 Simulations

To illustrate the rates obtained for the upper bound, the behaviours of estimators f̂D
n and f̂R

n are
examined in practice for the following settings. We consider the four target functions (Blocks,
Bumps, Heavisine, Doppler) represented on figure 2, which were used by Donoho and Johnstone
in a series of papers (Donoho and Johnstone [1994] for example). These functions are blurred by
convolution with realizations of a random filter Y and by adding gaussian noise with root signal
to noise ratio (rsnr) of three levels: rsnr ∈ {3, 5, 7}. Then the two estimators are computed
in each case and their performances are examined, judging by the mean square error (MSE).
For the simulation of the data and the implementation of the estimators, parts of the WaveD
software package written by Donoho and Raimondo for Johnstone et al. [2004] were used.

5.1 Distribution of the filter

A simple way to represent the blurring effect is the convolution with a boxcar filter, ie at time
t one observes the mean of the unknown function on an interval [t− a, t] with a random width
a. However these kinds of filters have various degrees of ill posedness depending on a. For
some numbers called ”badly approximable” numbers, this degree is constant and equal to 3/2.
For other numbers the situation is more complicated, and the set of the badly approximable
numbers has a Lebesgue measure equal to zero (more explanations can be found in Johnstone
and Raimondo [2004] or Johnstone et al. [2004]). However new results have been found recently
for almost all boxcar widths in Kerkyacharian et al. [2004] where the near optimal properties of
several thresholding estimators are established.

So as to keep a fixed ill posedness coefficient boxcar filters are excluded, and one considers
convolutions with periodized gamma functions with parameters ν and λ:

Y (t) =
1

∫ +∞
0 sν−1e−λsds

∑

l∈N

(t+ l)ν−1e−λ(t+l),

where ν is a fixed shape parameter and λ is a random scale parameter with a probability
distribution function Fα parametrized by some α > 0:

Fα(t) = min
(

1, 2e−
Cα
t2α I(t ≥ 0)

)

,

where the constant Cα is set such that E(λ) = 150 for all α.
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Figure 3: Examples of filters, from left to right: (ν, λ) ∈ {(3, 150), (3, 50), (10, 150), (10, 50)}

Such a filter Y satisfies conditions Cup and Clow. Some examples of its shapes are given
in figure 3: ν and λ can be interpreted respectively as a delay and a spreading parameter.
According to the minimax rates, f should be (asymptotically) more difficult to estimate for
large ν and for small α. This is checked in practice in the next section.

5.2 Results

First we focus on the effect of ν conditionnally to the filter Y . An example in medium noise for
the Blocks target is given in figure 4, where the filter is kept constant with λ = 150: as expected,
both estimators get less and less efficient when ν increases. Moreover in practice the thresholds
of estimator f̂D

n need to be rescaled for each ν, contrarily to those of estimator f̂R
n which is

thus more convenient. The same results were obtained for the other target functions and by
examining the MSE of the estimators, the figures were not included for the sake of conciseness.

Next we set ν = 1 and we investigate the effect of the distribution of the filter Y . Both
estimators perform well for mean and high realizations of λ, but difficulties appear for small
realizations which are all the more frequent as α is small: the worst case among 10 simulations
is represented in figure 5 when α = 2 and in figure 6 when α = 0.5, and the two estimators
perform more poorly in the last case. However they remain better in that case than a fixed
threshold estimator (ie with thresholds completely independent of the filter) also represented in
the figures.

More generally the MSE were computed for several values of α and for the three noise levels.
The results are given in figure 7: the shape of the distribution of Y clearly affects estimator f̂D

n ,
and also f̂R

n to a much lesser extent. The smaller α, the poorer they behave. Especially the
Doppler and Bumps targets are not well estimated by f̂D

n for small α, mainly because the high
thresholds make it ignore many of the numerous details of these targets.

Finally estimator f̂R
n proves more convenient than estimator f̂D

n when the ill-posedness varies,
and also less sensitive to the weight of the probability of small eigenvalues.
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6 Proofs of the lower and upper bounds

6.1 Lower bound

6.1.1 Sparse case

We use a classical lemma on lower bounds (Korostelev and Tsybakov Korostelev and Tsybakov
[1993]):

Lemma 1. Let V a functionnal space, d(., .) a distance on V ,

for f , g belonging to V denote by Λn(f, g) the likelihood ratio : Λn(f, g) =
dP

X
(f)
n

dP
X

(g)
n

where dP
X

(h)
n

is the probability distribution of the process Xn if h is true.
If V contains functions f0, f1, . . . , fK such that :

• d(fk′ , fk) ≥ δ > 0 for k 6= k
′
,

• K ≥ exp(λn) for some λn > 0,

• Λn(f0, fk) = exp(zk
n − vk

n), where zk
n is a random variable such that there exists π0 > 0

with P (zk
n > 0) ≥ π0, and vk

n are constants,

• supk v
k
n ≤ λn.

Then
sup
f∈V

P
X

(f)
n

(

d(f̂n, f) ≥ δ/2
)

≥ π0/2,

for an arbitrary estimator f̂n.

To use this result, we build a finite set of functions belonging to M(s, p, q,R) as follows. Let
(ψj,k)j≥−1,k∈Z be an s−regular Meyer wavelet basis, which we periodize according to:

Ψj,k(x) =
∑

l∈Z

ψj,k(x+ l).

In the sequel we denote by (Ψj,k)(j,k)∈Λ the periodized Meyer wavelet basis obtained this way,
where Λ = {(j, k) | j ≥ −1; k ∈ Rj} and Rj = {0, . . . , 2j − 1}.

Now for a fixed level of resolution j set for any k ∈ Rj :

fj,k = γΨj,k,

with γ . 2−j(s+1/2−1/p) such that ‖fj,k‖s,p,q ≤ R. Set also f0 = 0.

Let us choose for d the distance d(f, g) = ‖f − g‖ρ. Because of the relation between the Lρ

norm of a linear combination of wavelets of fixed resolution j and the lρ norm of the corresponding
coefficients (see Meyer [1990]), we have for any k, k

′ ∈ Rj, k 6= k
′
:

d(fj,k′ , fj,k) = ‖γΨj,k′ − γΨj,k‖Lρ ≍ γ2j(1/2−1/ρ).

In this framework we have : K = 2j and δ ≍ γ2j(1/2−1/ρ). So as to apply the lemma, we have to
find parameters γ(n) and j(n) such that the other hypotheses of the lemma are satisfied, which
will be true if :

Pfj,k

(

ln(Λn(f0, fj,k)) ≥ −j(n) ln(2)
)

≥ π0 > 0,

12



uniformly for all fj,k. Moreover we have :

Pfj,k

(

ln(Λn(f0, fj,k)) ≥ −j(n) ln(2)
)

≥ 1 − Pfj,k

(

| ln(Λn(f0, fj,k))| > j(n) ln(2)
)

≥ 1 − Efj,k

(

|ln(Λn(f0, fj,k)|
)

/(j(n) ln(2)).

So the previous condition is satisfied when γ(n) and j(n) are chosen such that, with a constant
0 < c < 1:

Efj,k

(

|ln(Λn(f0, fj,k))|
)

≤ cj(n) ln(2). (4)

Consider two hypotheses f0 and fj,k, and let us determine the likelihood ratio of the corre-
sponding distributions of the observations (Xn(t), Y (t))t∈[0,1]. Let F be a bounded measurable
function. Since Y is assumed to be independent of W and free with respect to f in (2), we have:

Efj,k

[

F
(

Xn, Y
)]

= E
[

E{F
(

(

∫ t

0
fj,k ⋆ Y (s)ds+ σn−1/2W (t), Y (t))t∈[0,1]

)

|Y }
]

=

∫

E{F
(

σn−1/2W̃ , y
)

}dPY (y),

where PY denotes the distribution of Y and W̃ (t) = W (t) +
∫ t
0 σ

−1n1/2fj,k ⋆ y(s)ds.

For a given function y let hy
j,k be defined by: hy

j,k(t) = σ−1n1/2fj,k ⋆ y(t). We assumed that

Y takes its values in L2([0, 1]) so for each of its realization there exists a constant Cy such that

for all t ∈ [0, 1],
∫ t
0 (hy

j,k)
2(s)ds < Cy and we can apply the formula of Girsanov: the process W̃

is a Wiener process under the probability Q defined by

dQ = exp
[

−
∫ 1

0
hy

j,k(t)dW (t) − 1

2

∫ 1

0
(hy

j,k(t))
2dt

]

dP.

Thus for any function y:

EP

[

F
(

σn−1/2W̃ , y
)]

= EQ

[

F
(

σn−1/2W̃ , y
)

exp
[

∫ 1

0
hy

j,k(t)dW (t) +
1

2

∫ 1

0
(hy

j,k(t))
2dt

]]

= EQ

[

F
(

σn−1/2W̃ , y
)

exp
[

∫ 1

0
hy

j,k(t)dW̃ (t) − 1

2

∫ 1

0
(hy

j,k(t))
2dt

]]

= EP

[

F
(

σn−1/2W,y
)

exp
[

∫ 1

0
hy

j,k(t)dW (t) − 1

2

∫ 1

0
(hy

j,k(t))
2dt

]]

.

So finally:

Λn(f0, fj,k) = exp
[

−
∫ 1

0

fj,k ⋆ Y (t)

σn−1/2
dW (t) +

1

2

∫ 1

0

(fj,k ⋆ Y (t)

σn−1/2

)2
dt

]

.

We can now examine under which conditions (4) is true. We have:

E| ln(Λn(f0, fj,k))| = E|γn
1/2

σ

∫ 1

0
Ψj,k ⋆ Y (t)dW (t) − γ2n

2σ2

∫ 1

0
(Ψj,k ⋆ Y (t))2dt| ≤ An +Bn, with:

Bn =
γ2n

2σ2
E

(

∫ 1

0
(Ψj,k ⋆ Y (t))2dt

)

,

An =
γn1/2

σ
E|

∫ 1

0
Ψj,k ⋆ Y (t)dW (t)| ≤ γn1/2

σ

(

E(

∫ 1

0
Ψj,k ⋆ Y (t)dW (t))2

)1/2 ≤ (2Bn)1/2,

13



where we used Jensen’s inequality for An.

Let us find a bound for Bn. We introduce the Fourier coefficients of Y and Ψj,k denoted by
Yl and Ψj,k,l for all l ∈ Z. Since the Fourier Transform of Ψj,k is bounded by 2−j/2 we have:

Bn =
γ2n

2σ2
Efj,k

( 1

2π

∑

l∈Z

|YlΨj,k,l|2
)

. γ2n2−jEfj,k

(

∑

l∈Cj

|Yl|2
)

,

where Cj is the set of integers where the coefficients Ψj,k,l are not equal to zero (it can easily be
shown that this set does not depend on k).

The support of the Fourier transform of the Meyer wavelet is included in [−2π
3 ,−8π

3 ]∪[2π
3 ,

8π
3 ].

So Ψj,k,l = 0 as soon as |2π2−j l| ∈ [2π
3 ,

8π
3 ]c, and Cj ⊂ [−2j+1,−2j−2] ∪ [2j−2, 2j+1] for all j.

Then under condition Clow and noticing that Y−l = Yl we obtain:

Bn . γ2n2−2νj.

Finally, condition (4) holds if we choose γ and j such that:

γ2n2−2νj . j, and γ . 2−j(s+1/2−1/p).

We choose the following values that satisfy those two conditions:

γ ≍ 2−j(s+1/2−1/p), and 2j ≍ (n/log(n))1/(2s+2ν+1−2/p).

Finally, using the lemma and the inequality of Markov, for σ((Xn(t), Y (t)), t ∈ [0, 1])−measurable
estimators f̂n the following bound holds:

inf
f̂n

sup
f∈M(s,p,q,S)

Ef (‖f̂n − f‖ρ) & γ2j(1/2−1/ρ) ≍
( log(n)

n

)

s−1/p+1/ρ
2s+2ν+1−2/p .

6.1.2 Regular case

Here we consider another set of functions belonging to M(s, p, q,R). We use the periodized
Meyer wavelet basis (Ψj,k) like before. But now we set for any ǫ ∈ {−1,+1}Rj :

fj,ǫ = γ
∑

k∈Rj

ǫkΨj,k,

with γ . 2−j(s+1/2) such that ‖fj,ǫ‖s,p,q ≤ S. We also set Ij,k = [ k
2j ,

k+1
2j ].

We use an adaptation of lemma 10.2 in Härdle et al. [1998] to the case of Meyer wavelets
(that do not have compact supports) and of the norm ‖.‖ρ:

Lemma 2. Suppose the likelihood ratio satisfies for some constant λ:

Pfj,ǫ

(

Λn(fj,ǫk , fj,ǫ) ≥ e−λ
)

≥ p∗ > 0,

uniformly for all fj,ǫ and all k ∈ Rj , where ǫk is equal to ǫ except for the kth element which is
multiplied by −1. Then the following bound holds:

max
ǫ∈{−1,+1}Rj

Efj,ǫ
(‖f̂n − fj,ǫ‖ρ) ≥ C2j/2γe−λp∗,

where C is positive and depends only on ρ.
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Similarly to the sparse case, the hypothesis of this lemma is satisfied if, for a small enough
constant c:

Efj,ǫ
| ln

(

Λn(fj,ǫk , fj,ǫ)
)

| ≤ c.

Now the log-likelihood is equal to:

ln
(

Λn(fj,ǫk , fj,ǫ)
)

=
2γn1/2

σ

∫ 1

0
Ψj,k ⋆ Y (t)dW (t) − 2γ2n

σ2

∫ 1

0
[Ψj,k ⋆ Y (t)]2dt.

Like before, we only need to dominate the following quantity:

Bn = γ2nEfj,ǫ
(

∫ 1

0
(Ψj,k ⋆ Y (t))2dt).

We use the same bound as in the sparse case, under assumption Clow. The parameters have to
be chosen such that:

γ2n2−2νj . 1 and γ . 2−j(s+1/2).

Finally the regular rate is obtained for the following choices:

γ ≍ 2−j(s+1/2), and 2j ≍ n1/(2s+2ν+1).

Proof. of the lemma

The Meyer wavelet satisfies ∃A > 0 such that |ψ(x)| ≤ A
1+|x|2

. Consequently:

(

∫

Ij,k

|Ψj,k(x)dx|ρ
)1/ρ

= 2j( 1
2
− 1

ρ
)(

∫ 1

0
|
∑

l∈Z

ψ(x+ 2j l)|ρdx
)1/ρ

≥ 2j( 1
2
− 1

ρ
)(

∫ 1

0
|ψ(x)|ρdx−

∑

l∈Z∗

∫ 1

0
|ψ(x+ 2j l)|ρdx

)1/ρ

≥ 2j( 1
2
− 1

ρ
)(

∫ 1

0
|ψ(x)|ρdx− Aρ

22ρj

∑

l∈N∗

1

(l/2)2ρ

)1/ρ

≥ c2
j( 1

2
− 1

ρ
)
,

for j large enough and c > 0 depends only on ρ.

Then using a concavity inequality and similar arguments as in the compact support case, we
have:

max
ǫ
Efj,ǫ

(‖f̂n − fj,ǫ‖ρ) ≥ 2−2j
∑

ǫ

Efj,ǫ
[

2j−1
∑

k=0

∫

Ij,k

|f̂n − fj,ǫ|ρ]
1
ρ

≥ 2
−2j+j( 1

ρ
−1)

∑

ǫ

2j−1
∑

k=0

Efj,ǫ
[

∫

Ij,k

|f̂n − fj,ǫ|ρ]
1
ρ

≥ 2−2j+j( 1
ρ
−1)

2j−1
∑

k=0

∑

ǫ|ǫk=1

Efj,ǫ
[(

∫

Ij,k

|f̂n − fj,ǫ|ρ)
1
ρ + Λn(fj,ǫk, fj,ǫ)(

∫

Ij,k

|f̂n − fj,ǫk|ρ)
1
ρ ]

≥ 2−2j+j( 1
ρ
−1)

2j−1
∑

k=0

∑

ǫ|ǫk=1

Efj,ǫ
[δI{

∫

Ij,k

|f̂n − fj,ǫ|ρ ≥ δρ} + Λn(fj,ǫk , fj,ǫ)δI{
∫

Ij,k

|f̂n − fj,ǫk|ρ ≥ δρ}]
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with δ = cγ2
j( 1

2
− 1

ρ
)
.

Noticing that

(

∫

Ij,k

|f̂n − fj,ǫ|ρ
)1/ρ

+
(

∫

Ij,k

|f̂n − fj,ǫk|ρ
)1/ρ ≥ 2γ

(

∫

Ij,k

|Ψj,k(x)|ρ
)1/ρ ≥ 2γc2

j( 1
2
− 1

ρ
)

for j large enough, the end of the proof follows as in Härdle et al. [1998].

6.2 Upper bounds

6.2.1 Properties of the estimated wavelet coefficients

The performances of the thresholding estimators rest on the properties of the estimated wavelet
coefficients β̂j,k. In the sequel we will also need properties for the estimators α̂j,k defined the

same way as β̂j,k in estimator (3) except with Φ instead of Ψ. We have the following results:

Proposition 1. Under condition Cup we have for all j ≥ −1, k ∈ Rj and r > 0,

E(|β̂j,k − βj,k|r) .
( 2νj

√
n

)r
and E(|α̂j,k − αj,k|r) .

( 2νj

√
n

)r
,

and there exist positive constants κ, and κ′ such that for all λ ≥ 1,

P (|β̂j,k − βj,k| ≥
2νj

√
n
λ) . 2−κλ

2α
α+1

and P (|β̂j,k − βj,k| ≥

√

UY
j

n
λ) . 2−κ′λ2

,

where the constants in the inequalities do not depend on j, k and λ.

Proof. of Proposition 1

Remark that conditionally to the process Y , (β̂j,k −βj,k) is a centered gaussian variable with
variance:

V ar(|β̂j,k − βj,k| |Y ) = E[
σ2

n

∑

l∈Z

|Wl

Yl
Ψj,k,l|2 |Y ].

Since the Fourier transform of the Meyer wavelet is bounded by 2−j/2 and only
l ∈ [−(2j+1−1),−2j−2]∪ [2j−2, 2j+1−1] has to be considered, we have for some constant C > 0:

V ar(|β̂j,k − βj,k| |Y ) ≤ CUY
j /n.

Thus the moment of order r of (β̂j,k − βj,k) is bounded by

E(|β̂j,k − βj,k|r) . E[(V ar(|β̂j,k − βj,k| |Y ))r/2] . E[(UY
j /n)r/2],

and by similar arguments the same bound holds for (α̂j,k − αj,k) because the support of the
Fourier Transform of φj,k is 4π

3 [−2j, 2j ].
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For the deviation probability we use a probabilistic inequality for a centered standard gaus-
sian variable Z. Conditionally to Y we have:

P (|β̂j,k − βj,k| >
2νj

√
n
λ |Y ) ≤ P (|Z| ≥ λ

√

22νj/(CUY
j ) |Y )

.
1

λ
√

22νj/(CUY
j )

exp(−λ
222νj

2CUY
j

).

Then we take the expectation over Y , by Cauchy Schwartz we obtain for λ ≥ 1:

P (|β̂j,k − βj,k| >
2νj

√
n
λ) .

√

√

√

√E(
UY

j

22νj
)E(exp(−λ

222νj

CUY
j

)).

The end of the proof is directly deducible from the lemma below, and the last part of

Proposition 1 is easily proved by replacing 2νj by
√

UY
j in the three inequalities above.

Lemma 3. Let Xj be the following random variable: Xj =
UY

j

22νj . For all j ≥ 0 there exists
positive constants C ′, C ′′, C(.) such that for all r > 0:

E(e
− r

Xj ) ≤ C ′e−C′′r
α

α+1
, and E(Xr

j ) ≤ C(r).

Proof. of the lemma

For all r > 0 we have:

E(e
− r

Xj ) =

∫ 1

0
P (e

− r
Xj ≥ u)du

= r

∫ +∞

0
P (Xj ≥ 1/u)e−rudu

≤ r

∫ 1

0
P (Xj ≥ 1/u)e−rudu+ e−r

. r

∫ 1

0
e−ru−c/uα

du+ e−r,

and one can check that there exists C ′′ > 0 such that
∫ 1
0 e

−ru−c/uα
du . e−C′′r

α
α+1

.

The second part of the lemma is easily proved by using similar arguments.
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6.2.2 Proof of the sharp rates

In the regular and critical zones, estimator (3) is not optimal up to a logarithmic factor. In
order to show that the rates of Theorem 1 are sharp, we exhibit estimators achieving the rates
of Theorem 2. Those are not as interesting in practice as (3), since they depend on caracteristics
of f , ie they are not adaptive.

We will use the following bound to estimate the risks, which holds for any −1 ≤ jm ≤ jM ≤ ∞
and any set of random or deterministic coefficients β̃j,k such that the quantities below are finite:

E‖
∑

jm≤j≤jM

∑

k∈Rj

β̃j,kΨj,k‖ρ .
∑

jm≤j≤jM

2
j( 1

2
− 1

ρ
)(

∑

k∈Rj

E|β̃j,k|ρ
)

1
ρ . (5)

The proof is immediate by Minkowski inequality, the fact that ‖∑

k∈Rj
β̃j,kΨj,k‖ρ ≍ 2

j( 1
2
− 1

ρ
)‖β̃j,.‖lρ

(established in Meyer [1990]) and a concavity argument.

Let us denote: ν ′ = ν + 1/2 and ǫ = ps − ν ′(ρ − p). We distinguish two cases: ρ ≤ p and
p < ρ. In the first case M(s, p, q,R) is included in the regular zone. By concavity we have:

inf
f̂n

sup
f∈M(s,p,q,R)

Ef‖f̂n − f‖ρ ≤ inf
f̂n

sup
f∈M(s,p,q,R)

Ef‖f̂n − f‖p.

So seeing the expected rate only the case ρ = p needs to be considered. We take the following
linear estimator:

f̂n =
∑

k∈Rj1

α̂j1,kΦj1,k.

For any f ∈M(s, p, q,R) the risk is composed of a bias error and a stochastic error:

Ef‖f̂n − f‖p ≤ As +As,

with:

As = E‖
∑

k∈Rj1

(α̂j1,k − αj1,k)Φj1,k‖p . 2j1( 1
2
− 1

p
)[

∑

k∈Rj1

E|α̂j1,k − αj1,k|p]
1
p .

(2νj1
√
n

)

2
j1
2 =

2ν′j1
√
n
,

Ab = ‖
∑

j>j1

∑

k∈Rj

βj,kΨj,k‖p .
∑

j>j1

2
j( 1

2
− 1

p
)
(
∑

k∈Rj

|βj,k|p)
1
p .

∑

j>j1

2
j( 1

2
− 1

p
)
2
−j(s+ 1

2
− 1

p
)
. 2−j1s,

and we obtain the rate by choosing j1 = [ log2(n)
2s+2ν′ ].

In the second case (p < ρ) we consider the following estimator:

f̂n =
∑

k∈Rj1+1

α̂j1+1,kΦj1+1,k +
∑

j1<j<j2

∑

k∈Rj

β̂j,kI{|β̂j,k|≥λj}
Ψj,k,

where:

2j1 ≈ n
1

2s+2ν′ , 2j2 ≈
( n

(log n)I{ǫ<0}

)

s

(2s+ν′)(s− 1
p + 1

ρ ) , λj = η
√

UY
j (j − j1)/n,

and η > 2(2ρν′

κ′ )
1
2 , so that we have by Proposition 1: P (|β̂j,k − βj,k| ≥ λj) . 2−κ′η2(j−j1).
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We proceed as in Donoho et al. [1996] by distinguishing six terms:

f̂n − f =
∑

k∈Rj

(α̂j1,k − αj1,k)Φj,k +
∑

j≥j2

∑

k∈Rj

βj,kΨj,k

+
∑

j1<j<j2

∑

k∈Rj

(β̂j,k − βj,k)Ψj,k[I{|β̂j,k|≥λj ,|βj,k|<λj/2} + I{|β̂j,k|≥λj ,|βj,k|≥λj/2}]

+
∑

j1<j<j2

∑

k∈Rj

βj,kΨj,k[I{|β̂j,k|<λj ,|βj,k|≥2λj}
+ I{|β̂j,k|<λj ,|βj,k|<2λj}

]

= es + eb + ebs + ebb + esb + ess.

Like before the stochastic error is bounded by:

E(‖es‖ρ) .
2ν′j1
√
n
,

and by using Sobolev embeddings it is easy to see that:

E(‖eb‖ρ) . 2−j2(s−
1
p
+ 1

ρ
).

The terms ebs and esb can be grouped together because of the two following assertions:
{|β̂j,k| < λj , |βj,k| ≥ 2λj} ∪ {|β̂j,k| ≥ λj, |βj,k| < λj/2} ⊂ {|β̂j,k − βj,k| > λj/2}, and

[|β̂j,k| < λj , |βj,k| ≥ 2λj ] ⇒ [|βj,k| ≤ 2|β̂j,k − βj,k|]. Consequently:

E(‖ebs‖ρ + ‖esb‖ρ) .
∑

j1<j<j2

2
j( 1

2
− 1

ρ
)
(E

∑

k∈Rj

|β̂j,k − βj,k|ρI{|β̂j,k−βj,k|>λj/2})
1
ρ

≤
∑

j1<j<j2

2j( 1
2
− 1

ρ
)(

∑

k∈Rj

(E|β̂j,k − βj,k|2ρ)
1
2 (P{|β̂j,k − βj,k| > λj/2})

1
2 )

1
ρ

.
∑

j1<j<j2

2
j( 1

2
− 1

ρ
)
(
∑

k∈Rj

2ρνj

n
ρ
2

2−
κ′(η/2)2(j−j1)

2 )
1
ρ

≤ 2ν′j1

n
1
2

∑

0<j<j2−j1

2
(ν′−κ′(η/2)2

2ρ
)j

.
2ν′j1

n
1
2

,

where we used Cauchy Schwartz inequality and Proposition 1.

For ebb we use the characterization of Besov spaces:

E(‖ebb‖ρ) .
∑

j1<j<j2

2
j( 1

2
− 1

ρ
)
(
∑

k∈Rj

E|β̂j,k − βj,k|ρI{|βj,k|≥λj/2}

)
1
ρ

.
∑

j1<j<j2

2
j( 1

2
− 1

ρ
)(

∑

k∈Rj

2ρνj

n
ρ
2

(
|βj,k|
λj/2

)p
)

1
ρ

.
∑

j1<j<j2

(2j( ρ
2
−1+(ρ−p)ν)

n
ρ−p
2 (j − j1)

p
2

2
−pj(s+ 1

2
− 1

p
)
(‖f‖s

p,∞)p
)

1
ρ

.
1

n
ρ−p
2ρ

∑

j1<j<j2

( 2−ǫj

(j − j1)
p
2

)
1
ρ .
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Lastly for ess we remark that |βj,k|ρ ≤ (2λj)
ρ−p|βj,k|p and we use again the characterization

of Besov spaces:

E(‖ess‖ρ) .
∑

j1<j<j2

2j( 1
2
− 1

ρ
)((2λj)

ρ−p
∑

k∈Rj

|βj,k|p
)

1
ρ

.
∑

j1<j<j2

(2j(−ps+ν′(ρ−p))

n
ρ−p
2

(j − j1)
ρ−p
2 (‖f‖s

p,∞)p
)

1
ρ

.
1

n
ρ−p
2ρ

∑

j1<j<j2

(

2−ǫj(j − j1)
ρ−p
2

)
1
ρ

According to these bounds ebs, esb and es are of the same order and ess dominates ebb, so we
choose j1 and j2 so as to balance the bounds of eb, es and ess.
In the regular zone we have:

E(‖ess‖ρ) .
(2−ǫj1

n
ρ−p
2

)
1
ρ ,

and in the sparse zone:

E(‖ess‖ρ) .
(j22

−ǫj2

n
ρ−p
2

)
1
ρ .

Thus with the announced choices of j1 and j2 we get the prescribed rates in both zones.

Lastly in the critical zone we change the majoration of (βj,k) in ebb and ess by using:

∑

j1<j<j2

(

2
pj(s+ 1

2
− 1

p
)

∑

k∈Rj

|βj,k|p
)

1
ρ . (j2 − j1)

1− p
ρq (‖f‖s

p,q)
p
ρ if

p

ρ
< q,

. (‖f‖s
p,q)

q if
p

ρ
≥ q.

Here again ess is dominant and of the order: E(‖ess‖ρ) . ( j2
n )

ρ−p
2ρ j

(1− p
ρq

)+

2 , hence the extra
logarithmic factor.

6.2.3 Proof of the rates of the adaptive estimator

To prove Theorem 3 we use a theorem for thresholding algorithms established by Kerkyacharian
and Picard (Theorem 3.1 in Kerkyacharian and Picard [2000]) which holds in a very general
setting where one wants to estimate an unknown function f thanks to observations in a sequence
of statistical models (En)n∈N. It uses the Temlyakov inequalities, let us first recall this notion.

Definition 2. Let en be a basis in Lρ. It satisfies the Temlyakov property if there are absolute
constants c and C such that for all Λ ∈ N:

c
∑

n∈Λ

∫

|en(x)|ρdx ≤
∫

{
∑

n∈Λ

∫

|en(x)|2}ρ/2dx ≤ C
∑

n∈Λ

∫

|en(x)|ρdx.

Now let (ψj,k)j,k denote a periodized wavelet basis and let ρ > 1 and 0 < r < ρ. Assume that
there exist a positive value δ > 0, a positive sequence (σj)j≥−1, a positive sequence cn tending
to 0, and a subset Λn of N

2 such that :

|Λn| ∼ c−δ
n where |S| denotes the cardinal of the set S, (6)
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(σjψj,k)j,k satisfies the Temlyakov property, (7)

sup
n

[µ{Λn}cρn] <∞, (8)

where µ is the following measure on N
2:

µ(j, k) = ‖σjψj,k‖ρ
ρ = 2j(ρ/2−1)σρ

j ‖ψ‖ρ
ρ.

Assume also that we have a statistical procedure yielding estimators β̂j,k of the wavelet
coefficients βj,k of f in the basis (ψj,k)j,k and a positive value η > 0 such that for all (j, k) ∈ Λn:

E(|β̂j,k − βj,k|2ρ) ≤ C(cnσj)
2ρ, (9)

P (|β̂j,k − βj,k| ≥ ησjcn/2) ≤ Cmin(c2ρ
n , c

4
n). (10)

Finally let lr,∞(µ) and A(cρ−r
n ) be the following spaces and let f̂n be the following estimator:

lr,∞(µ) = {f, sup
λ>0

[λqµ{(j, k)/|βj,k | > σjλ}] <∞},

A(cρ−r
n ) = {f, c−(ρ−r)

n ‖f −
∑

κ∈Λn

βκψκ‖ρ
ρ <∞},

f̂n =
∑

j,k∈Λn

β̂j,kI{|β̂j,k|≥ησjcn}
ψj,k.

Theorem 4. Using the objects defined above and under the hypotheses (6) to (10), we have the
following equivalence:

E‖f̂n − f‖ρ
ρ . cρ−r

n ⇐⇒ f ∈ lr,∞(µ) ∩A(cρ−r
n ).

We adapt this to estimator f̂D
n by setting, for given ρ > 1, p > 1, s > 1/p and q > 1:

cn =

√

log(n)
α+1

α

n , σj = 2νj , 2j1 ≈ { n

log(n)
α+1

α
}

1
1+2ν , Λn = {(j, k) | − 1 ≤ j ≤ j1, k ∈ Rj}.

With these choices we have:

|Λn| ≍ 2j1 ≍ c−2/(1+2ν)
n ,

µ(Λn) =

j1−1
∑

j=0

2j2j(ρ/2−1)2ρνj ≍ 2j1ρ(ν+1/2).

Consequently (8) and (6) hold with δ = 2/(1+2ν). Condition (7) is also satisfied, the proof can
be found in Johnstone et al. [2004]. Moreover thanks to Proposition 1, it is easy to establish

that the estimators β̂j,k used by (3) satisfy (9) and (10) as soon as η > 2(max(2,ρ)
κ )

α+1
2α .

Then we prove Theorem 3 by setting r such that the right hand side of the inequality in the
first point of the theorem corresponds to the rates in the sparse and in the regular case, ie:

r = ρ− 2ρ
s− 1/p + 1/ρ

2s+ 2ν + 1 − 2/p
,
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or
r = ρ− 2ρ

s

2s + 2ν + 1
,

and by showing that the space over which the risk is maximized is included in the maxiset, if
we add the condition q ≤ p in the critical case 2s+2ν+1

ρ = 2ν+1
p :

M(s, p, q,R) ⊂ lr,∞(µ) ∩A(cρ−r
n ).

The inclusion M(s, p, q,R) ⊂ A(cρ−r
n ) is established in Johnstone et al. [2004], and the

following proof of M(s, p, q,R) ⊂ lr,∞(µ) uses the same arguments as Kerkyacharian et al.
[2004] for the boxcar blur. We have:

µ{(j, k) : |βj,k| > 2νjλ} =
∑

j≥0, k∈Rj

2j(ρ(ν+1/2)−1)I{|βj,k| > 2νjλ}

≤
∑

j

(2jρ(ν+1/2)) ∧ (2j(ρ(ν+1/2)−1)
∑

k

(|βj,k|/(2νjλ))p

≤
∑

j

(2jρ(ν+1/2)) ∧ (
2−j(sp+ν′p−ν′ρ)

λp
ǫpj ),

where ν ′ = ν + 1/2 and ǫj ∈ lq. We cut the sum at J such that 2J ≍ λ−r/(ν′ρ).

In the regular case we have:

µ{(j, k) : |βj,k| > 2νjλ} ≤ λ−r +
λ

(sp−ν′(ρ−p)) r
ν′ρ

λp
,

and the power of λ in the second term is also exactly −r.

In the critical case we obtain, since q ≤ p:

µ{(j, k) : |βj,k| > 2νjλ} ≤ λ−r +

∑

j ǫ
p
j

λp
. λ−r +

∑

j ǫ
q
j

λp
. λ−r + λ−p,

and r = p in this case.

Lastly in the sparse case (where r ≥ p is satisfied) we use the Sobolev embedding Bs
p,q ⊂ Bs′

r,q

with s′ = s− 1/p+ 1/r. We proceed as before by cutting the sum at J such that 2J ≍ λ−r/(ν′ρ)

and noticing that s′r + ν ′r − ν ′ρ = 0. There exists ǫ̃j ∈ lr such that:

µ{(j, k) : |βj,k| > 2νjλ} ≤
∑

j

(2jρν′
) ∧ (2j(ρν′−1)

∑

k

(|βj,k|/(2νjλ))r

≤
∑

j

(2jρν′
) ∧ (

ǫ̃rj
λr

)

. λ−r.

Thus µ{(j, k) : 2νjλ} . 1/λr for both values of r, and finally using the equivalence in
Theorem 4 and Jensen inequality we obtain the prescribed rates for E‖f̂D

n − f‖ρ.
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