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CONVERGENCE ANALYSIS OF A COLOCATED FINITE VOLUME
SCHEME FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS ON GENERAL 2 OR 3D MESHES

R. EYMARD *, R. HERBIN T, AND J.C. LATCHE

Abstract. We study a colocated cell centered finite volume method for the approximation
of the incompressible Navier-Stokes equations posed on a 2D or 3D finite domain. The discrete
unknowns are the components of the velocity and the pressures, all of them colocated at the center
of the cells of a unique mesh; hence the need for a stabilization technique, which we choose of the
Brezzi-Pitkaranta type. The scheme features two essential properties: the discrete gradient is the
transposed of the divergence terms and the discrete trilinear form associated to nonlinear advective
terms vanishes on discrete divergence free velocity fields. As a consequence, the scheme is proved
to be unconditionally stable and convergent for the Stokes problem, the steady and the transient
Navier-Stokes equations. In this latter case, for a given sequence of approximate solutions computed
on meshes the size of which tends to zero, we prove, up to a subsequence, the L2-convergence of
the components of the velocity, and, in the steady case, the weak L2-convergence of the pressure.
The proof relies on the study of space and time translates of approximate solutions, which allows
the application of Kolmogorov’s theorem. The limit of this subsequence is then shown to be a weak
solution of the Navier-Stokes equations. Numerical examples are performed to obtain numerical
convergence rates in both the linear and the nonlinear case.

Key words. Finite Volume, cell centered scheme, colocated discretizations, steady state and
transient Navier-Stokes equations, convergence analysis.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. We are interested in this paper in finding an approximation
of the fields @ = (@(?);=1, 4 : Qx[0,T] — R? and p: Q x [0,T] — R, weak solution
to the incompressible Navier-Stokes equations which write:

d
0™ — vAuY + 0;p+ > aWo;at = fDin @ x (0,7), fori=1,...,d,
(1.1) p =1
divii =Y "0, = 0in Q x (0, 7).

i=1

with a homogeneous Dirichlet boundary condition for @ and the initial condition
(1.2) aD(,0)=a) in Qfori=1,...,d.

In the above equations, @, i = 1,...,d denote the components of the velocity of a
fluid which flows in a domain  during the time (0,7"), p denotes the pressure, v > 0
stands for the viscosity of the fluid. We make the following assumptions:

(1.3) Q is a polygonal open bounded connected subset of R?, d = 2 or 3,
(1.4) T > 0 is the finite duration of the flow,

(1.5) v e (0,+00),

(1.6) Ui € L2(Q)Y,

(1.7) f@D e L% (0,T)), fori=1,...,d.
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We denote by z = (x(i))i:17,,,7d any point of Q, by |.| the Euclidean norm in
d

e |z)* = Z(:L'(i))Q and by dz the d-dimensional Lebesgue measure dz =
i=1

Rd
dz@M . dz@,
The weak sense that we consider for the Navier-Stokes equations is the following.

DEFINITION 1.1 (Weak solution for the transient Navier-Stokes equations).
Under hypotheses (1.3)-(1.7), let the function space E(Q) be defined by:

(1.8) E(Q) = {t=(0D)iz1. 4 € HY(Q)? divi = 0 a.e. in Q}.

Then  is called a weak solution of (1.1)-(1.2) if u € L?(0,T; E(Q))NL>(0, T; L*(2)4)

and:

Vo € L?(0,T; E(Q2)) N C>®(Q x (—o0,T))%,

(1.9) / / (2,2) - Qup(w, 1) dw dt — /Uml() o(x,0) do
—H// /Vu 2,1) : Vipla, t) da i +/ D 1), 5. 1), (-, 1)) dt

/ /f o(x,t)dedt

where, for all u,v € H}(Q)? and for a.e. x € Q, we use the following notation:

d
Va(z) : Vo(z) = ZV@U) (z) - Vo (x)

and where the trilinear form b(.,.,.) is defined, for all 4 € (HE(Q)?, by
(1.10) b(a, v, @) ZZ/ @) (2)0;0%) ()™ (z) da.
k=1li=1

REMARK 1.1. From (1.9), we get that a weak solution w of (1.1)-(1.2) in the sense
of Definition 1.1 satisfies d;a € L*4(0,T; E(Q)), and is therefore a weak solution in
the classical sense, such that u(-,0) is the orthogonal L?-projection of i on {0 €

L2(Q)4,divo = 0, trace( - npa, 9Q) = 0} (see for example [36] or [7]).

Numerical schemes for the Stokes equations and the Navier-Stokes equations have
been extensively studied: see [23, 33, 34, 35, 25, 24] and references therein. Among
different schemes, finite element schemes and finite volume schemes are frequently
used for mathematical or engineering studies. An advantage of finite volume schemes
is that the unknowns are approximated by piecewise constant functions: this makes it
easy to take into account additional nonlinear phenomena or the coupling with alge-
braic or differential equations, for instance in the case of reactive flows; in particular,
one can find in [33] the presentation of the classical finite volume scheme on rect-
angular meshes, which has been the basis of many industrial applications. However,
the use of rectangular grids makes an important limitation to the type of domain
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which can be gridded and more recently, finite volume schemes for the Navier-Stokes
equations on triangular grids have been presented: see for example [26] where the
vorticity formulation is used and [6] where primal variables are used with a Chorin
type projection method to ensure the divergence condition. Proofs of convergence for
finite volume type schemes for the Stokes and steady-state Navier-Stokes equations
are have recently been given for staggered grids [9], [26], [13], [14], [4], following the
pioneering work of Nicolaides et al. [31], [32].

In this paper, we propose the mathematical and numerical analysis of a discretiza-
tion method which uses the primitive variables, that is the velocity and the pressure,
both approximated by piecewise constant functions on the cells of a 2D or 3D mesh.
We emphasize that the approximate velocities and pressures are colocated, and there-
fore, no dual grid is needed. The only requirement on the mesh is a geometrical
assumption needed for the consistency of the approximate diffusion flux (see [15] and
section (2) for a precise definition of the admissible discretizations).

As far as we know, this work is a first proof of the convergence, of a finite volume
scheme which is of large interest in industry. Indeed, industrial CFD codes (see e.g.
[28], [1]) use colocated cell centered finite volume schemes; leaving aside implemen-
tation considerations, the principle of these schemes seems to differ from the present
scheme only by the stabilization choice. The main reasons why this scheme is so
popular in industry are:

e a colocated arrangement of the unknowns,
e a very cheap assembling step, (no numerical integration to perform)
e an easy coupling with other systems of equations.

The finite volume scheme studied here is based on three basic ingredients. First,
a stabilization technique ¢ la Brezzi-Pikdranta [8] is used to cope with the instability
of colocated velocity/pressure approximation spaces. Second, the discretization of
the pressure gradient in the momentum balance equation is performed to ensure,
by construction, that it is the transpose of the divergence term of the continuity
constraint. Finally, the contribution of the discrete nonlinear advection term to the
kinetic energy balance vanishes for discrete divergence free velocity fields, as in the
continuous case. These features appear to be essential in the proof of convergence.

We are then able to prove the stability of the scheme and the convergence of dis-
crete solutions towards a solution of the continuous problem when the size of the mesh
tends to zero, for the steady linear case (generalized Stokes problem), the stationary
and the transient Navier-Stokes equations, in 2D and 3D. Our results are valid for
general meshes, do not require any assumption on the regularity of the continuous
solution nor, in the nonlinear case, any small data condition. We emphasize that the
convergence of the fully discrete (time and space) approximation is proven here, using
an original estimate on the time translates, which yields, combined with a classical
estimate on the space translates, a sufficient relative compactness property.

An error analysis is performed in the steady linear case, under regularity assump-
tions on the solution. An error bound of order 0.5 with respect to the step size is
obtained in the discrete H' norm and the L? norm for respectively the velocity and
the pressure. Of course, this is probably not a sharp estimate, as can be seen from
the numerical results shown in Section 5. Indeed, a better rate of convergence can be
proved under additional assumptions on the mesh [20].
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This paper is organized as follows. In section 2, we introduce the discretization
tools together with some discrete functional analysis tools. Section 3 is devoted to
the linear steady problem (Stokes problem), for which the finite volume scheme is
given and convergence analysis and error estimates are detailed. The complete finite
volume scheme for the nonlinear case is presented in section 4, in both the steady and
transient cases. We then develop the analysis of its convergence to a weak solution
of the continuous problem. We give some numerical results in section 5, and finally
conclude with some remarks on open problems (section 6).

2. Spatial discretization and discrete functional analysis.

2.1. Admissible discretization of 2. We first recall the notion of admissible
discretization for a finite volume method, which is given in [15].

DEFINITION 2.1 (Admissible discretization, steady case). Let £ be an open
bounded polygonal (polyhedral if d = 3) subset of RY, and 0 = Q\ Q its boundary. An
admissible finite volume discretization of Q, denoted by D, is given by D = (M, E,P),
where:

- M is a finite family of non empty open polygonal convex disjoint subsets of
Q (the “control volumes”) such that Q = Ugem K. For any K € M, let
0K = K \ K be the boundary of K and mg > 0 denote the area of K.

- & is a finite family of disjoint subsets of Q (the “edges” of the mesh), such
that, for all o € &, there exists a hyperplane E of R and K € M with
g =0KNE and o is a non empty open subset of E. We then denote by
m, > 0 the (d-1)-dimensional measure of o. We assume that,for all K € M,
there exists a subset Ex of € such that 0K = Uyecg,a. It then results from
the previous hypotheses that, for all o € &, either o C 0Q or there exists
(K,L) € M? with K # L such that K N L =&; we denote in the latter case
o=K]|L.

- P is a family of points of Q indexed by M, denoted by P = (xx)kem. The
coordinates of xx are denoted by :Eg?, i=1,...,d. The family P is such that,
for all K € M, xx € K. Furthermore, for all o € £ such that there exists
(K, L) € M? with o = K|L, it is assumed that the straight line (xx,x1) going
through xx and xy, is orthogonal to K|L. For all K € M and all o € £k, let
zo be the orthogonal projection of xx on o. We suppose that z, € 0.

An _example of two neighbouring control volumes K and L of M is depicted in
Figure 2.1.

The following notations are used. The size of the discretization is defined by:

size(D) = sup{diam(K), K € M}.

For all K € M and o € £k, we denote by ng , the unit vector normal to o outward
to K. We denote by dk , the Euclidean distance between zx and o. The set of
interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is & = {0 € &;
o ¢ 00} (resp. Eext = {0 € & 0 C IN}). For all K € M, we denote by N the
subset of M of the neighbouring control volumes. For all K € M and L € N, we
set ngr = ng g1, we denote by dg |, the Euclidean distance between zx and xp.

We shall measure the regularity of the mesh through the function regul(D) defined
by
( regul(D) = inf {#’(UK), K e M, UGEK}

U{dd’;—’fL‘L K e M, LGNK}U{W}EK), KEM}.
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FiG. 2.1. Notations for an admissible mesh

2.2. Discrete functional properties. Finite volume schemes are discrete bal-
ance equations with an adequate approximation of the fluxes, see e.g. [15]. Recent
works dealing with cell centered finite volume methods for elliptic problems [21], [16],
[14] introduce an equivalent variational formulation in adequate functional spaces.
Here we shall follow this latter path, also introducing discrete analogues of the con-
tinuous Laplace, gradient, divergence and transport operators, each of them featuring
properties similar to their continuous counterparts.

DEFINITION 2.2. Let © be an open bounded polygonal subset of R, with d € N,.
Let D = (M, &, P) be an admissible finite volume discretization of Q in the sense
of definition 2.1. We denote by Hp(Q)) C L?(Q) the space of functions which are
piecewise constant on each control volume K € M. For all w € Hp()) and for
all K € M, we denote by wi the constant value of w in K. The space Hp(Q) is
embedded with the following Euclidean structure: For (v,w) € (Hp(2))?, we first
define the following inner product (corresponding to Neumann boundary conditions)

(2.2) (v,w)p = %KZM LZN I;;}:ILL (v —vg)(wr, — wg).

We then define another inner product (corresponding to Dirichlet boundary conditions)

(2.3) [v,w]p = (v, w)p + Z Z dmd VKWK -

KeM 0EERNEuyy T

Nezxt, we define a seminorm and a norm in Hp(Q) (thanks to the discrete Poincaré
inequality (2.4) given below) by
[wlp = (w,w)p)'?, wlp = ([w,ulp)"?.
We define the interpolation operator Pp : C(Q) — Hp(R2) by (Ppp)k = ¢(xk), for
all K € M, for all p € C(Q).

a € (Hp(Q)?, v = (vD)=1,. .4 € (Hp(Q)? and

vvvvvvvvvv

.....

d 1/2 d
lull> = (z[uuxu%) c wlp =Y 0@ 0,
i=1 P
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and Pp = C(Q)% — Hp(Q)? by (Ppy)x = ¢(xk), for all K € M, for all o € C(Q)<.
The discrete Poincaré inequalities (see [15]) write:

(2.4) ]l 2@y < diam(@)wlp, Ve € Hp(Q),

and there exists Cq > 0, only depending on €2, such that

(2.5) ]2 0 < Calwld, Yu € Hp(Q) with /Qw(x)dm 0.

We define a discrete divergence operator divp : (Hp(Q2))¢ — Hp(Q), by:
1

(26)  divp(u)(z) = — > Agr-(ux +ug), forae x€ K, VK€M,
mE LENK
with
— 1
(2.7) AL = mK‘LM:— Mg|r, DKL, VK € M, VLENK.

dK|L 2 2

We then set Ep(Q) = {u € (Hp(R2))%, divp(u) = 0}.

REMARK 2.1. Any definition of Ak, such that Ak = My rar KL withakr >
0 and axr +arx = 1, combined with the definition divp(u)(x) = ﬁ ZLENK (Akr -
uxg — Apk -ur), produces the same results of convergence as those which are proven
in this paper. On particular meshes, one can prove a better error estimate, choosing
axr = d(zr, K|L)/dkr (see [20]). Nevertheless, in the general framework of this
paper, other choices do not improve the convergence result and_the_ error estimate.
Therefore, we set in this paper ax, = 1/2, which corresponds to (2.7). The advantage
of this choice is that it leads to simpler notations and shorter equations.

The adjoint of this discrete divergence defines a discrete gradient Vp : Hp(Q) —
(Hp(Q))":

1
(2.8) (VDU)K = m— Z AKL(’LLL — UK), VK € M, Yu € HD(Q)
K LeNk

This operator Vp then satisfies the following property.
PROPOSITION 2.3. Let (D(m))meN be a sequence of admissible discretizations of
Q in the sense of Definition 2.1, such that lim size(D(m)) = 0. Let us assume that

there exists C > 0 and o € [0,2) and a sequence (u™)en such that u™ € Hpm) (Q)
and [u(™[3, < C size(D™)=*, for all m € N.
Then the following property holds:

(2.9) lim (Ppmcp(:v)meu(m) (z) +ul™ (x)Vgo(x)) dx =0, Yo € CX(Q),

m——+0o0o Q

and therefore:

(2.10) lim [ Vp, u™(z)- Pp, (x)de =0, Vi € CZ(Q)4 N EQ),

m——400 O

where E(Q) is defined by (1.8).



Proof. Let us assume the hypotheses of the above lemma, and let i = 1,...,d and
p € C(Q) be given. Let us study, for m € N, the term

(m)
Yy

T :/ (Ppmcp(x)VDmu(m)(z)Jru(m)(z)Vgp(z)) dx.
Q
From (2.7) and (2.8), we get that

i m m m
= 3w =l )mg RYY,
0€E&int,0=K|L

where

R%nL) = (%(‘P@K) +p(xr)) — m]1(|L /K|L cp(:v)dv(x)) ngr.

Thanks to the Cauchy-Schwarz inequality,

sy 2
|T1‘ )|2 < |u(m)|%m Z }R;?L)‘ mK‘LdKL.
0€Eint,0=K|L

One has Zoe&nt,a:K\L my|drr < dm(Q2). Thanks to the existence of C, > 0 which

only depends on ¢ such that |R§?L)| < Cwsize(D(m)) and since o < 2, we then get
that
lim 7" =0,
which yields (2.9). O
PROPOSITION 2.4 (Discrete Rellich theorem). Let (D), ,cn be a sequence of ad-

missible discretizations of ) in the sense of definition 2.1, such that lim size(D(m)) =

0. Let us assume that there exists C > 0 and a sequence (u(™)nen such that
u™ € Hpwm () and ||ul™)|p,, < C for all m € N.

Then, there exists u € HE(Q) and a subsequence of (u(™),,en, again denoted
(™) pen, such that:

1. the sequence (u\™),en converges in L*(Q) to @ as m — 400,

2. for all ¢ € C(82), we have

(2.11) liI_Ii_l [w™, Pp, olp, = / Vau(z) - Vo(z)dz,
m—-T00 O
3. Vp, ul™ weakly converges to Vu in L*(Q)% as m — 400 and (2.9) holds.
Proof. The proof of the first two items is given in [15] (see proof of Theorem
91. pp 773-774). Since we have [u™)|p, < |[ul™)||p,,, we can apply proposition 2.3,
which gives the third item. O
REMARK 2.2. Following [12], if we denote

Dk,o ={tex + (1 —t)y, t€(0,1), y€ o}, VK € M, Vo € &,

we may alternatively define a discrete gradient Vp : Hp(Q) — (L*(Q))?, by:

for all K € M,
Vpu(z) = %(uL —ug)ngr, for ae x € Dk, ki UDL kL, VL € Nk,
@pu(ac) =3 (0 —ug)ng,q, for a.e. © € Di o, Yo € Ek N Eext-

Nea
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A result similar to that of Proposition 2.4 holds with this definition of a discrete gradi-
ent, and in fact, it can be shown that the weak convergence of meu(m) s equivalent
to the weak convergence of meu(m).

3. Approximation of the linear steady problem.

3.1. The Stokes problem. We first study the following linear steady problem:
find an approximation of u and p, weak solution to the generalized Stokes equations,
which write:

nu —vAu+ Vp= fin Q
(3.1) divz = 0 in €,
For this problem, the following assumptions are made:

(3.2) Q) is a polygonal open bounded connected subset of R?, d =2 or 3
(3.3) v € (0,+00), n € [0, +00),

(3.4) fe ()

We then consider the following weak sense for problem (3.1).
DEFINITION 3.1 (Weak solution for the steady Stokes equations).
Under hypotheses (3.2)-(3.4), let E(SQ) be defined by (1.8). Then (u,p) is called
a weak solution of (3.1) (see e.g. [36] or[7]) if
ue E(Q), pe L*(Q) with [,p(x)dz =0,
77/ u(x) - v(x)dx + I// Via(z) : Vo(z)dz—
Q Q

/ p(x)divo(z)de = [ f(z) - o(z)dz, Vo € HI(Q)®
Q Q

(3.5)

The existence and uniqueness of the weak solution of (3.1) in the sense of the
above definition is a classical result (again, see e.g. [36] or [7]).

3.2. The finite volume scheme. Under hypotheses (3.2)-(3.4), let D be an
admissible discretization of €2 in the sense of Definition 2.1. It is then natural to write
an approximate problem to the Stokes problem (3.5) in the following way.

u € Ep(Q), p € Hp(Q) with / p(z)de =0
Q

(3.6) n/ﬂu(:c) -v(x)dz + viu,v]p

- /Qp(x)divD(v)(ac)dx = /Qf(x) -v(x)de Vv € Hp(Q)?

As we use a colocated approximation for the velocity and the pressure fields, the
scheme must be stabilized. Using a non-consistant stabilization a la Brezzi-Pitkaranta
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[8], we then look for (u,p) such that

(u,p) € Hp(Q)? x Hp(Q) with /Qp(x)dac =0

7 /Q u(x) - v(z)dz + vu,v]p

3.7
(3.7) — / p(x)divp(v)(z)de = [ f(x) - v(z)dx Vo € Hp(Q)?
Q Q
/Q divp (u)(z)q(x)dz = — X size(D)* (p, ¢)p Vq € Hp(Q)

where A > 0 and « € (0,2) are adjustable parameters of the scheme which will have
to be tuned in order to make a balance between accuracy and stability.

System (3.7) is equivalent to finding the family of vectors (urx)xem C RY, and
scalars (px)xem C R solution of the system of equations obtained by writing for
each control volume K of M:

My

m
anquVZ KlL(uquK)fV (0 —ug)

LeNk dK‘L

(3.8) + Z Axr (pL —pr) = /Kf(z)d:c

LENK

0€EK NEext Ko

m
Z Ak - (ug +ur) — A size(D) Z dK‘L(pL_pK):O
LeNk LeNK K|L

supplemented by the relation

(3.9) > mg px =0

KeM

Defining p, = (px +p)/2 if 0 = K|L, and p, = pr if 0 € Eext N Ek, and using the
fact that ZGGSK m,ng , = 0, one notices that: ZLGNK Ak (pr — pk) is in fact
equal to ) o MeP,N o, thus yielding a conservative form, which shows that (3.8)
is indeed a finite volume scheme.

The existence of a solution to (3.7) will be proven below.

3.3. Study of the scheme in the linear case. We first prove a stability
estimate for the velocity.

PROPOSITION 3.2 (Discrete H! estimate on velocities). Under hypotheses (3.2)-
(3.4), let D be an admissible discretization of S in the sense of definition 2.1. Let
A € (0,4+00) and a € (0,2) be given. Let (u,p) € Hp()% x Hp(Q) be a solution to
(3.7). Then the following inequalities hold:

(3.10) vijullp < diam(Q)|[ £ (£2(0))2,
and
(3.11) v X size(D)” |p|% < diam(Q)QHfH?LZ(Q))d.



Proof. We apply (3.7) setting v = u. We get

n/ﬂu(z) dz + v||ul|p — /Qp(x)divD(u)(x)dz = 5 f(x) - v(x)da.

Since n > 0, the second equation of (3.7) with ¢ = p and Young’s inequality yield
that:

. / u(w)2de + v]ull? + A size(D)* [pf3, <

Q
diam(Q)? . v )
5, I llczagaye + m”uﬂ(m(n))d-

Using the Poincaré inequality (2.4) gives

. o diam(£2)? v
ully + A size(D)® (ol < By pye o Y g,

which leads to (3.10) and (3.11). O

We can now state the existence and the uniqueness of a discrete solution to (3.7).

COROLLARY 3.3. [Existence and uniqueness of a solution to the finite
volume scheme] Under hypotheses (3.2)-(3.4), let D be an admissible discretization
of Q0 in the sense of Definition 2.1. Let A € (0,+00) and o € (0,2) be given. Then
there exists a unique solution to (3.7).

Proof. System (3.7) is a linear system. Assume that f = 0. From propositions
3.2 and using (2.5), we get that u = 0 and p = 0. This proves that the linear system
(3.7) is invertible. O

We then prove the following strong estimate on the pressures.

PROPOSITION 3.4 (L? estimate on pressures). Under hypotheses (3.2)-(5.4), let
D be an admissible discretization of Q0 in the sense of definition 2.1 and let > 0
be such that regul(D) > 0. Let A € (0,+00) and o € (0,2) be given. Let (u,p) €
Hp(Q)? x Hp(2) be a solution to (3.7). Then there exists Cy.-only |depending on d,
Q, n, v, A\, a and 0, and not on size(D), such that the following inequality holds:

(3.12) Ipllz20) < Cillflizz))a-

Proof. We first apply a result by Necas [29]: thanks to fﬂ p(x)da = 0, there exists
Co:1>10;which only depends on d and 2, and v € H}(Q)¢ such that divo(z) = p(z)
for a.e. z € 2 and

(3.13) 19l g @0 < ColpllL2(0)-

We then set

o) = —/6(’)(x)d7(x), Voe& Vi=1,...,d.

Me

(note that v((f) =0 forall 0 € ey and i = 1,...,d) and we define v € Hp(Q)¢ by

. 1 .
o) :_/ 7 (2)dz, YK € M, Yi=1,...,d.
K

mg
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Applying the results given p 777 in [15], we get that there exists Csi:>.0, only
depending on d and 0, such that

0 diam (K |
(3.14) (vg() — )2 < %() /K(Vv(z) (z))*dz,
and
(3.15) [ollp < Cs vl g (ea-

We then have

/p(z)diVDv(z)d:c: Z DK Z Akr - (vk +vp) = To-+ T4,
Q

KeM LeENKk

where
Ty = Z PK Z 2AkL - VK|L
KeM LeENKk
= Yo Y [ o madia)
KeM  LeNg Y KIL
- /Qp@)dm(x)dx — [Ipl22 0,
and

I 1
Ts = Y px », mgp <§(UK+UL)UKL) ‘NKL

KeM LeENKk

1
= > mg(px —pr) §(UK +vL) — vk | DKL
0=K|LEEint

We then have, thanks to the Cauchy-Schwarz inequality
1 2
15 < |plp Z mp LdrL (5(01( +or) — UKL) :
o=K|LEEn

Applying Inequality (3.14) and thanks to ((vk + vr) — vk 2)? < 5((vk — vr)? +
(vr —vkL)?), we get that

T5<plp > dkrCssize(D) / i(wm ())*dz.

0=K|LEEin: KUL ;=

This in turn implies the existence of Cy-> 0,-0nly depending on d and 6, such that
T§ < Cusize(D)?|p[p 0]l oy

Thanks to (3.13), we then get, gathering the previous results

(3.16) [ pla)divpu(a)de > a0 — Chsize(D)ploCs e

11



We then introduce v as a test function in (3.7). We get

(3.17) /Qp(x)din(v)(ac)dx = 77/Qu(x) ~v(z)dx + viu,v]p — /Q f(z) - v(z)d.

Applying the discrete Poincaré inequality, (3.15) and (3.16), we get the existence of
Csq-0nly depending on d, ), f, n, v, A and 6, such that

I1pl72(0) — Casize(D)|ploCa [[pll2@) < Cs (lullp + [ fllL2ye) [Pl 2@)-

We now apply (3.10) and (3.11). Since size(D)? < size(D)*diam(Q)?>~2, the condi-
tion « < 2 suffices to produce (3.12) from the above inequality, a factor 1/ being
introduced in the expression of Cy (it is therefore not possible to let A tend to 0 in
(3.12)). O

We then have the following result, which states the convergence of the scheme
3.7).

PROPOSITION 3.5 (Convergence in the linear case). Under hypotheses (5.2)-
(3.4), let (u,Dp) be the unique weak solution of the Stokes problem (3.1) in the sense
of definition 3.1. Let A € (0,400), a € (0,2) and 8 > 0, be given and let D be an
admissible discretization of Q0 in the sense of definition 2.1 such that regul(D) > 0.
Let (u,p) € Hp(Q)? x Hp(Q) be the unique solution to (3.7).

Then u converges to @ in (L?(2))? and p weakly converges to p in L?(2) as size(D)
tends to 0.

Proof. Under the hypotheses of the above proposition, let (D(),,cn be a se-

quence of admissible discretizations of 2 in the sense of definition 2.1, such that
lim,, oo size(D(™) = 0 and such that regul(D™) > 6, for all m € N.
Let (u(™,p("™)) € Hpm ()% x Hpom (Q) be given by (3.7) for all m € N. Let us prove
the existence of a subsequence of (D(m))meN such that the corresponding sequence
(™) e converges in (L?(R2))? to @ and the sequence (p{™)),,en weakly converges
in (L?(9))? to p, as m — oo. Then the proof is complete thanks to the uniqueness of
(w.).

Using (3.10), we obtain (see [18], [15]) an estimate on the translates of u("™): for
all m € N, there exists Cg-> 0, only depending on 2, v, f and g such that

by o @) s < GTEI(E] + dsize(DI),
for k=1,...,d, V¢ € R,

where u(™*) denotes the k-th component of u(™). We may then apply Kolmogorov’s
theorem, and obtain the existence of a subsequence of (D(m))meN and of u € Hg()?
such that (u(™),,en converges to @ in L?(Q)2. Thanks to proposition 3.4, we extract
from this subsequence another one (still denoted u("™) such that (p(™),,cn weakly
converges to some function p in L2(£2). In order to conclude the proof of the conver-
gence of the scheme, there only remains to prove that (u,p) is the solution of (3.5),
thanks to the uniqueness of this solution.

Let ¢ € (C°(2))4. Let m € N such that D™) belongs to the above extracted
subsequence and let (u(™), p(™)) be the solution to (3.7) with D = D™, We suppose
that m is large enough and thus size(D(™)) is small enough to ensure for all K € M
such that KN support(yp) # 0, then 9K N AN = @ holds. Let us take v = Ppmp in
(3.7). Applying proposition 2.4, we get

lim [u(™), Pp ) @] pen) = / Va(z) : Vo(x)de.
Q

n—oo

12



Moreover, it is clear that

fim | @) Pponpl@)de = | f(z)- p(@)dz,

n—oo

and

lim n/ﬂu(m)(x) - Ppemyp(x)da = 7]/ a(x) - p(r)de.

n—oo Q

Thanks to the weak convergence of the sequence of approximate pressures, to (3.11)
and to the hypothesis a < 2, we now apply proposition 2.3, which gives

(3.19) lim [ p™ (z)divpom (PD(m)cp)(x)dz:/ﬁ(x)divgp(z)dx.

The last step is to prove that div(a) = 0 a.e. in Q. Let ¢ € C°(Q) and let m € N
be given. Let us take ¢ = Ppomy in (3.7). We get T\ m) = —T‘ m) , where

™ = / divpom (2) (ul™) Ppom ¢ (z)da.
Q
and
Tgm) = A size(D"™)* (p"™), P )1

On the one hand, the third item of proposition 2.4 produces

lim T™ = Z/ 2)0;aVdz.
On the other hand, using the Cauchy-Schwarz inequality, we get:
Tg‘m) < Asize(D™) |p™) | | Ppny | p

Therefore, thanks to (3.11) and to the regularity of ¢ (that implies that [Ppwm) ¢|p

remains bounded independently on size(D("™))) we obtain lim,, ., T, = 0. This in
turn implies that:

(3.20) Z/ 2)0;u" (x)dx = 0, for all p € CZ(Q),

which proves that @ € E(Q). O

REMARK 3.1 (Strong convergence of the pressure). Note that the proof of the
strong convergence of p to p is a straightforward consequence of the error estimate
stated in Proposition 3.6 below, which holds under additional reqularity hypotheses.

3.4. An error estimate. We then have the following result, which states an
error estimate for the scheme (3.7).

PROPOSITION 3.6 (Error estimate in the linear case). Under hypotheses (3.2)-
(3.4), we assume that the weak solution (@,p) of the Stokes problem (3.1) in the
sense of definition (3.1) is such that (u,p) € H*(Q)4 x HY(Q). Let A € (0, +00) and
a € (0,2) be given, let D be an admissible discretization of Q in the sense of definition

13



2.1 and let @ > 0 such that regul(D™)) > 0. Let (u,p) € Hp(Q)? x Hp(Q) be the
solution to (3.7). Then there exists Cro-which only depends on d, Q, v, n and 0 such
that

(3.21) I — 1320 < Cr (A, size(D), 5, 1),

3.22 X size(D)® |p|% < Cre(A,size(D), p, 4
D

(3'23) ||p _ﬁ”%?(ﬂ) < C7€(>" SiZG(D),ﬁ, ’CL)

where

(3.24) e(\, size(D),p,u) = min (Asize(D)*, ;size(D)*~ %)
’ HpHHl(Q) + ||ﬁ|\§{2(9)

Proof. We define (1, p) € Hp(Q)? x Hp(Q) by @& = Ppti, which means i = u(xy,)
forall K € M, and px = ﬁ J5 p(x)dz for all K € M. Integrating the first equation
of (3.1) on K € M gives

(3.25) 77/ z)dz + Z < e vniodw?ﬁadv > / fla

We introduce, for K € M, slj(—ﬂK —fK x)dx, and, for L € Nk:

Ry 1 = dkl‘L (g — k) — mK\L f Via(x nK,adW( ),

and for 0 € Ex N Eexty RK0 = ﬁ(o —Ug) — m%, [, Va(z) : ng ody(z);

moreover, we define for L € Ng: Ez;(\L = %(ﬁK +pr) — ﬁ leLﬁ(ac)dv(x), and for

0 € Ex NEext, €L = Pr — m%, fa p(z)dv(z). Using these notations and the relation
Y vee, MoK, = 0, we get from (3.25)

anﬂKl/<Z mKlL (i, —ag) + Z o (OﬂK)>+

LeNKk dK‘L c€EKNEext dK’U
> Ak (br—pr) = / f(z)dz + R,
LeNKk K
with
R =nmgey —v ( Z mg Ri o+ Z ma'RK,a'> + Z m, elng .
LeENK 0 €ERNEext oelk

We then set ou = 7 —u and dp = p — p. We then get, substracting the first relation of
the scheme (3.8) to the above equation,

n [ ou x)dx + v]du,v]p — /Q op(x)divp (v)(x)de =
Jo R(z)vdz, Vv € Hp(Q)?,

(3.26)

and, setting v = du in (3.26),

7 /Q Su(x)?dx + v||dul|3 — /Q p(z)divp (du)(z)dr = /Q R(x)du(z)dz.
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We now integrate the second equation of (3.1) on K € M. This gives
Z a(z) -ngdy(z) =0, VK € M.
o€l V7

Using 4 € HE (), we then obtain

Z Agr - (g +Gp) = Z mg e, VK € M
LeNk LeNk

with

1
51;(|L = (5(11K+12L) — /KLﬂ(sc)d'y(z)> ‘ngr, VK € M, VL € Nxk.

Mg

We then give, substracting the second relation of the scheme (3.8) to the above equa-
tion,

/QdiVD(&L)(:c)ép(z)d:c = A size(D)® (p,p — p)p + Lss
with

To= > mgeiqn(@x —dr),

K|LEEint
Gathering the above results, we get

1 fo 0u(x)?dz + v|dul| + A size(D)* |p|p =

(327) A size(D)* (p,p)p + Jq R(x) - du(x)dz + Te.

Let us study the terms at the right hand side of the above equation. We have, using
the Young inequality,

1 1 )
(3.28) (. p)p < 1Pl + 16]5 < 71pID + Cs 12131 -

We then study [, R(z) - du(z)dz = Tt TsetToswith

T, =n /Q e*(x) - du(x)de,

Ts=v Z < Z mp Ry r + Z HlaRK,a> U,

KeM \LeNg o€EK NEext

and

To = E E m, efng . - ouk.

KeMoe€k
Thanks to interpolation results proven in [15] and to (2.4), we obtain

1 . — v
(3.29) Tr < Cysize(D)* [l fraq) + 7 110u]12,
15



(3.30) Ts < Crosize(D)?|[ll32q) + H&LHD,
and

(3.31) Ty < Cr size(D)? [l (o + 7 10ull-
We then study Ts. We have Tg = Tho-—Lh1-with

Tho = E M€ (Px — PL),
K|LEE&ns

which verifies
(3.32) Tio < €1z sine(D) (1532 ) + Nl )
and

T = E mp|LEf L (PK — PL),
K|L€EEins

which verifies

I 1 . o 2 1 . 2—a||=112
(3.33) T < Z/\ size(D)* |p|p + Cis Xsme(D) @l 72 (q)-
Gathering equations (3.27)-(3.33) gives

l|6ul|2, 4 A size(D)* |p|% < Crae(Assize(D), p, @),

where e(A, size(D), p, @) is defined by (3.24). This in turn yields (3.21) and (3.22). We
then again follow the method used in the proof of Proposition 3.4. Using [, p(z)dz =0
and therefore [, dp(x)dz = 0, let v € H}(Q)? be given such that dive(z) = fp(x) for
a.e. x € () and

(3.34) 19l r1g ()2 < CallPllL2(0)-
We again set

vl(f) = L/ﬁ(i)(z)d’y(x), Voe& Vi=1,....d.

mMe

and we define v € Hp(Q)? by

i 1 ) .
o) — _/ o0(@)de, VK € M, Vi =1,...,d,

mg

The same method gives

I19pl17 20y < ; dp(x)divp (v)(z)dz + Cysize(D)|plo||] ()

. . 1
< | dlondivo(o)(a)de + Cissiae(D) ol + 1190

We now use v as test function in (3.26). We get

5 dp(x)divp (v)(x)dx = 7}/ du(z)v(x)da + v[du, v]p + /Q R(z)vdz.



Gathering the two above inequalities, (3.29), (3.30), (3.31) and (3.34) produces

1 . _ _
101220y < 511320 + Crosize)? (11813 (0 + Il (o)
+Cuadldullp - C1s size(D)?|plp.
Applying (3.21) and (3.22) gives (3.23). O
REMARK 3.2. In the above result, it suffices to let « =1 to obtain the proof of an

order 1/2 for the convergence of the scheme. We recall that this result is not sharp,
and that the numerical results show a much better order of convergence.

4. The finite volume scheme for the Navier-Stokes equations. Before
handling the transient nonlinear case, we first address in the following section the
steady-state case.

4.1. The steady-state case. For the following continuous equations,

d
nu® — A +0,p+ > a0 = fDin Q, fori=1,...,d,
(4.1) J 7=l
diva = "9;u" = 0in Q.
=1

with a homogeneous Dirichlet boundary condition, we define the following weak sense.

DEFINITION 4.1 (Weak solution for the steady Navier-Stokes equations). Under
hypotheses (3.2)-(53.4), let E(QY) be defined by (1.8). Then (u,p) is called a weak
solution of (4.1) if

u€ E(Q), pe L*(Q) with / p(z)dr = 0,
Q

(4.2) n/Qﬂ(:c) - 0(x)dx + I//Q Via(z) : Vo(x)de

— /Qﬁ(x)div@(ac)dx + b(a, u,v) = i f(z)-o(z)dz Vo e HY(Q)?,

where the trilinear form b(.,.,.) is defined by (1.10).

We now give the finite volume scheme for this problem. Under hypotheses (3.2)-
(3.4), let D be an admissible discretization of € in the sense of Definition 2.1. We
introduce Bernoulli’s pressure p + %uQ instead of p, again denoted by p, and for any
real value A > 0 and « € (0,2), we look for (u,p) such that

(u,p) € Hp(Q)? x Hp () with /Qp(z)d:c =0,

1 9 1.
n/Qu(:c) co(z)dx + vu, v]p + 5 /Q u(z)*divp (v)(z)de

— /Qp(x)divzj(v)(:c)dz + bp(u,u,v) = 5 f(x)-v(z)dr Vv e Hp(Q)?

/Q divp (u)(z)q(x)dz = — X size(D)* (p,q)p Vg € Hp(Q)
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where, for u,v,w € Hp (), we define the following approximation for b(u, v, w)

(44) bD u v, U} Z Z AKL uK +UL)) ((’UL 71)[() ~’LUK)
KeM LeNk

System (4.3) is equivalent to finding the family of vectors (urx)xem C RY, and
scalars (px)xem C R solution of the system of equations obtained by writing for
each control volume K of M:

m me
anuK—uZ K|L(uL—uK)—u Z (0—ug)

LENK dK‘L c€EK NEoxt dK7U
+ Z (Arr - uK+uL))) (up —uk)
LeENK
(4.5)
+ Y Axr (pp—pr) - 5 Z Akr (u —UK)Z/ f(z)dz
LENK LGNK K
m
Z Ak - (ug +ur) — A size(D)” Z dKl‘L (pr —pr) =0
K|L

LeNKk LeNk

supplemented by the relation:

ZprKZO

KeM

Defining px = px — u%/2 and p, = (px + pr)/2 if 0 = KI|L, p, = pr if
0 € Eext N €k, and using the fact that ZUESK m,ng,, = 0, one again notices that:
ZLeNK Ak (pr—pr) is in fact equal to ZUESK m,PeNK,s, thus yielding a conserva-
tive form for the fifth and sixth terms of the left handside of the discrete momentum
equation in (4.5). Defining u, = (ux +up)/2if 0 = K|L, uy = 0if 0 € Eext NEK, One
obtains that the nonlinear convective term ZLENK (Akr - (%(uK +ur))) (up —uk) is
equal to ZUESK mM,(NK o - Us)Ue — Mr Ui (divpu)k; one may note that (divpu)x =
ZUE e MoNK 5 * U Hence the nonlinear convective term is the sum of a conserva-
tive form and a source term due to the stabilization (this source term vanishes for a
discrete divergence free function u).

Let us then study some properties of the trilinear form bp. First note that the
quantity bp(u, v, w) also writes

(6)  bo(wvw) =5 S (Axr-(ux +ur)) (vn — i) - (wr +wic))
K|LEEn

We thus get that, for all u,v € Hp(Q)4,

bp(u,v,v) = % Z (Arr - (uk +UL))((UL)2 - (UK)Q)

(4.7) K|LEE i

1 2 .
- /Q v(@)? divp(u)(z) d

We get in particular, that, for all w € Ep(Q), bp(u,u,u) = 0, which is the discrete
equivalent of the continuous property.
18



REMARK 4.1. [Upstream weighting versions of the scheme] All the results
of this paper are available, setting Fxr(u) = Ak - (ux + ur) and considering, for
u,v,w € HD(Q)7

ups 1
b (u, v, w) = bp(u,v,w) + 3 Z Orr|Frr(w)| (vp —vk) - (wp — wi),
K|LEEin

m

d;‘LL/|FKL(u)|,O). We then get, for all u,v €

with, for example, © k1, = max(1 — 2v
Hp (), the inequality

1
by (u,v,v) > —5/ v(x)?divp (u)(z)dr,
Q
which is sufficient to get all the estimates of this paper, together with the convergence
properties of the scheme. The use of such a local upwinding technique may be useful to
avoid the development of nonphysical oscillations only where meshes are too coarse.

The following technical estimates are crucial to prove the convergence properties
of the scheme.

LEMMA 4.2 (Estimates on bp(., ., .) by discrete Sobolev norms). Under hypotheses
(1.3)-(1.7), let D be an admissible discretization of Qx (0,T) in the sense of definition
4.8, and 0 > 0 such that regul(D) > 0. Then there exists Cig >0 and Cyoi> 0, only
depending on d, 0 and ), such that

(4.8)  bp(u,v,w) < Cig ullpyeye vl lwllzs@ye < Cio [lullp [lvflp [[w]p.

Proof. The quantity bp(u,v,w) reads

bp (u, v, w) = i SN e (wn - ok)) I (e — k) - (e + )

d
KeM LeENK KL

Applying the Cauchy-Schwarz inequality twice and using the fact that (v, — 2x)? =

d% 1, and that, for any admissible discretization Y, o\ F;KL“LL diep, < d B yield:

m
bp(u,v,w)?> < Chg >y BIE ()2 (2, — 20)?(2(uk)? + 2(ur)?)
dr|r
KeM LeNk
m
(Z > dKlL(”LUK)2>
KeM LeNy KIL
1/2 1/2
< o (ZmK|wK|4> (ZmK|uK|4> ol
KeM KeM

The inequality (4.8) is now a straightforward consequence of the following discrete
Sobolev inequality, which holds under the same regularity assumptions on the mesh
(see proof in [10] or [15, pp. 790-791]):

(4.9) ulla) < Co2 lullp.

d
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REMARK 4.2 (Two dimensional cage). In the case d = 2, it may be proven setting
a=2,p=p =2 in the proof p791 of [15], that

1/2

1/2
lull () < Coslullat, llulls

and therefore, that there exists Cago> 0, only depending on d and €Y, such that

bo(u,0.w) < Cai [ollo (lullo [[ull ey lello [w] )™
This is a discrete analogue to the classical continuous estimate on the trilinear form.
The existence of a solution to the scheme (4.3) is obtained through a so-called
“topological degree” argument. For the sake of completeness, we recall this argument
(which was first used for numerical schemes in [17]) in the finite dimensional case in
the following theorem and refer to [11] for the general case.
THEOREM 4.3 (Application of the topological degree, finite dimensional case).
Let V' be a finite dimensional vector space on R and g be a continuous function from
V to V. Let us assume that there exists a continuous function F from V x [0,1] to V
satisfying:
1. F(-,1) =g, F(-,0) is an affine function.
2. There exists R > 0, such that for any (v,p) € V x [0,1], if F(v,p) =0, then
lellv # R.
3. The equation F(v,0) =0 has a solution v € V such that ||v||y < R.
Then there exists at least a solution v € V' such that g(v) =0 and ||Jv||v < R.
Here g(v) = 0 represents the nonlinear system (4.3), and we are now going to
construct the function F and show the required estimates. Note that here, the use of
Bernouilli’s pressure leads to simpler calculations.

PROPOSITION 4.4 (Discrete H}(€2) estimate on the velocities). Under hypotheses
(3.2)-(3.4), let D be an admissible discretization of Qx (0,T) in the sense of definition
4.8. Let A € (0,400) and a € (0,2) be given. Let p € [0,1] be given and let (u,p) €
(Hp(Q2)? x Hp(Q2), be a solution to the following system of equations (which reduces
to (4.3) as p=1 and to (3.7) as p=10)

(u,p) € Hp(Q)? x Hp(Q) with /Qp(z)d:c =0,

P
w10, n/(zu(:c) v(z)dz + viu,v]p + = / )2divp (v)(x)dx

+p bp(u,u,v) — /Qp(x)din x)da = / f(z dz Vv e Hp(Q)?
/QdiVD(u)(x)q(:E)dx = —\ size(D)” (p,q)p Vq € Hp(Q)

Then u and p satisfy the following estimates, which_are the same inequalities as 0b-
tained in the linear case (inequalities (3.10) and (3.11)):

vljullp < diam(Q)[| £l (L2(0))

v X size(D)” |p/5 < diam(Q)QHfH%m(Q))d

Proof. The proof is similar to that of Proposition 3.2, using the property (4.7) on
the discrete trilinear form. O
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We are now in position to prove the existence of at least one solution to scheme
(4.3).

PROPOSITION 4.5 (Existence of a discrete solution). Under hypotheses (3.2)-
(3.4). let D be an admissible discretization of Q x (0,T) in the sense of definition
4.8 Let A € (0,+00) and o € (0,2) be given. Then there exists at least one (u,p) €
(Hp(Q))4 x Hp(Q), solution to (4.3).

Proof. Let us define V = {(u,p) € (Hp(Q))* x Hp(Q) s.t. [,p(x)dz = 0}.
Consider the continuous application F' : V x [0,1] — V such that, for a given
(u,p) € V and p € [0,1], (4,p) = F(u,p, p) is defined by

/Q w(x) - v(x)dr = 77/(z u(z) - v(x)dx + v[u,v]p — /Qp(ac)din(v)(gg)dx

+p (% /( z u(z)2divp (v)(2)dz + bp(u, u, v)>

— /Q f(x) - v(x)de Yo € Hp(Q)?
/ () q(z)de = / divp(u)(2)g(x)dz + A size(D)® (p,q)p g € Hp(2).
Q Q

It is easily checked that the two above relations define a one to one function F(.,.,.).
Indeed, the value of 11([? and pg for a given K € M and i = 1,...,d are readily
obtained by setting v = 1, v =0 for j # i, and ¢ = 1.

The application F'(.,.,.) is continuous, and, for a given (u, p) such that F(u,p, p) =
(0,0), we can apply proposition 4.4 and (2.5), which prove that (u,p) is bounded
independently on p. Since F(u,p,0) is an_affine function of (u,p) (indeed invertible,
see corollary 3.3), we may apply Theorem 4.3 and conclude to the existence of at least
one solution (u,p) to (4.3). O

We then have the following strong estimate on the pressures.

PROPOSITION 4.6 (L? estimate on pressures). Under hypotheses (3.2)-(5.4), let
D be an admissible discretization of 0 in the sense of definition 2.1, and let § > 0
such that regul(D) > 0. Let A € (0,400) and o € (0,2) be given. Let (u,p) €
Hp(Q)? x Hp(2) be a solution to (4.3). Then there exists Cog-only depending on d,
Q, n, v, A\, a and 0, and not on size(D), such that the following inequality holds:

2
(4.11) Pl < Cos (Il a@ne + (1 lzane))

Proof. We may follow the proof of proposition 3.4 until (3.17), which is changed
to:

(4.12) /Qp(x)diVD(U)(x)dx :;7/ u(z) - v(x)dz + viu,v]p — /Q f(z)-v(z)dz
+§ fu(x)QdiVD(v)(z)dx + bp(u,u,v).
Q
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We again apply the discrete Poincaré inequality (2.4), (3.15), (3.16) and we use (4.8).
We get the existence of Chg5:0nly depending on d, 2, f, n, v, XA and 6, such that

||p||2L2(Q) — Cysize(D)|plpC2 [[pll2(0) <
Cas (Tl + 1l L2(ya + llullp) [Pl 220
We now apply (3.10) and (3.11), which yields the conclusion. O

We now can state the convergence of Scheme (4.3).

THEOREM 4.7 (Convergence of the scheme). Under hypotheses (3.2)-(3.4), let
(D(m))meN be a sequence of admissible discretizations of S in the sense of definition
2.1, such that size(D™)) tends to 0 as m — oo and such that there exists 0 > 0
with regul(D™) > 0, for all m € N. Let A € (0,+00) and o € (0,2) be given.
Let, for all m € N, (u(™ p"™) € (Hpum) (Q))% x Hpwm) (), be a solution to (4.3)
with D = D™ . Then there exists a weak solution (@,p) of (4.1) in the sense of
definition 4.1 and a subsequence of (D")),.cn, again denoted (DU™),,en, such that
the corresponding subsequence of solutions (u("™) ey converges to @ in L*(Q) and
(p™ — L (u(™)?),,en weakly converges to p in L?(1).

Proof. Since the same estimates as in the linear case are available in the steady
nonlinear case, the proof of proposition 3.5 holds for all the terms of (4.2) which are
present in (3.5). We only have to prove that for a given ¢ € (C°(Q))%, as m — +oc:

Tf;”\ = /Qu(m)(x)QdiVD(m (Ppomy@)(z)dz  tends to /Qﬂ(ac)Qdiwp(x)dx

and

Tfé:n> F bD(U(m),U(m),PDm) ) tends to  b(a,u, ).

Thanks to the convergence in L?(Q) of (u(™),,en to @ and to the discrete Sobolev
inequalities |[v]|Le(q) < Cozdllpin for all v € Hpw () and all ¢ < 6 (see [15, p.
790]), we get using (3.10) the convergence in L?(Q) of ((«(™)?),,en to @2 We now
remark that for i = 1,...,d, the sequence (Pp(m)@?)nmen satisfies the hypotheses of
Proposition 2.4. Hence, Vpm) Ppom 0 weakly converges to Vo in L2(Q)4. One
has divpu = Zle V(Dz)u(i) for all u € (Hp(2))? such that ux = 0 if Ex N Eexy # 0.
Hence divpm) (Ppm) ) weakly converges to dive in L?(2), thus providing the limit
of T2V,

Thanks to (4.6), setting for simplicity D = D™, we have:
(m)
bp (u,u, Ppp) = Ty Thse
with:

T = S S (ks wn)((ur — ug) - plo)

KeM LeENK
d d )
= 33 [ w09 @) Pop )i
k=1i=1 "%
T = % > (Axr - (ur —u))((ur — uk) - (plex) — (L))
K|L€E&in
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Thanks to the convergence in L2(2) of (1" Ppm)@)men to @i, we get from propo-
sition 2.4 that:

d d
lim 7470 =373 / a9 (2)0;u™ (2) ™ (z)dz = b(u, i, ¢).
Q

m—00

k=1:=1
We have:
o 1 m
7 = = Y dr(Engr - (up - ur)((un — uk) - (plex) — (zr))
4 K|LEEins dg|L

and therefore, since |p(zx) — p(xr)| < dix1Cysize(D) where Cy, is a bound of Vi in
L>(Q)%, and since dx 1, < 2size(D), the following estimate holds:

7557 < dsize(D)*Cyllullp.
Therefore, (3.10) yields:

lim 7479 =0,

m—00

which concludes the proof of convergence. O

4.2. The transient case. We now turn to the study of the finite volume scheme
for the transient Navier-Stokes equations, the weak formulation of which is given in
(L.1).

We first give the definition of an admissible discretization for a space-time domain.

DEFINITION 4.8 (Admissible discretization, transient case). Let € be an open
bounded polygonal (polyhedral if d = 3) subset of RY, and 9 = Q \ Q its boundary,
and let T > 0. An admissible finite volume discretization of  x (0,T), denoted by
D, is given by D = (M,E, P, N), where (M,E,P) is an admissible discretization of
QO in the sense of definition 2.1 and N € Ny is given. We then define & = T/N, and
we denote by size(D) = max(size(M, E, P), &) and regul(D) = regul(M, &, P).

Under hypotheses (1.3)-(1.7), let D be an admissible discretization of € x (0,T)
in the sense of definition 4.8 and let A € (0, +00) and « € (0,2) be given. We write a
Crank—Nicholson scheme for the time discretization, and follow the nonlinear steady—
state case for the space discretization; the finite volume scheme for the approximation
of the solution (1.1)—(1.2) is then:

Uug € HD(Q)d,
1
(4-13) Uo, K = —/ uini(ac)dx, VK € M,
mg K

and, again using Bernoulli’s pressure p + %uQ instead of p, again denoted by p,

(Un-l-laanr%) € (HD(Q))d X HD(Q)’
f(zpn-l-%(z)dx =0, Upil = %(U”Jrl + u”)’

Q(un+1(z) — un()) - v(z)dz + vdfu, 1, v]p
(4.14) _&/Qpn-l-%(‘r)diVD(’U)(iC)de'-f—%/Q’U/n_i_%(l')2diV’D(’U)(.’L')dx
(n+1)ét
0D (Up g1, Uy 1,0) = /n& /Qf(x,t) -v(z)dxdt,

[ divotu,. ) lata)de = ~X size(D)* (b 000,
Q
Yo € Hp(Q)4,¥q € Hp(Q), Yn e N.
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In (4.14), we consider the approximation of bp given by (4.4). We then define the set
Hp (2 x (0,T)) of piecewise constant functions in each K x (nd, (n + 1)&), K € M,
n € N, and we define (u,p) € Hp(2 x (0,T)) by

u(z,t) = u, 1(z), and p(z,t) =p,1(z), forae. (z,t) € Ax(nd,(n+1)&), Vn € N}
(4.15)

REMARK 4.3 (Time discretization). It is wellknown that the Crank-Nicholson
discretization is implicit. If we use the 6 scheme: wu, 1 = Oupi1 + (1 — O)uy,, with
0 € [%,1], the convergence proof which follows applies with a few minor changes.
Variable time steps may also be considered.

Let us now prove the existence of at least one solution to scheme (4.13)-(4.15).

PROPOSITION 4.9 (Existence of a discrete solution). Under hypotheses (1.3)-
(1.7). let D be an admissible discretization of Q@ x (0,T) in the sense of Definition
4.8 Let A € (0,+00) and o € (0,2) be given. Then there exists at least one (u,p) €
(Hp (2 x (0,T)))2 x Hp(Q x (0,T)), solution to (4.13)-(4.15).

Proof. We remark that, for a given n = 0,..., N — 1, taking as unknown Upy 1,
and noting that w1 = 2, 1 — U, Scheme (4.14) is under the same form as scheme

(4.3), with n = % and with a term in w, included in the right hand side. Therefore
the existence of at least one solution follows from proposition 4.5. 0

We then have the following estimate.

PROPOSITION 4.10 (Discrete L2(0,T; H}(2)) estimate on velocities). Under hy-
potheses (1.3)-(1.7), let D be an admissible discretization of Q@ x (0,T) in the sense
of definition 4.8. Let A\ € (0,4+00) and o € (0,2). Let (u,p) € (Hp(Q x (0,7)))% x
Hp(Q x (0,T)), be a solution to (4.13)-(4.15). Then there exists Cag| > 0, only
depending on d, Q, v, ug, f, T such that the following inequalities hold

(4.16) [l (0,122 (0)4) < Cos s

(4.17) 1wl 20,7 Hp (0)2) < Cas

and
N—-1 T

(118)  Asize(D)" Y gl =X size(D)* [ ol )b < Cis.
n=0 0

Proof. Let p=1,..., N. We get, setting v = U, 11 in the first equation of (4.14),
summing on K € M and n = 0,...,p — 1 in the first equation of (4.14) and using
property (4.7),

1 p—1 p—1
32 [ (@ = (2ot v 3 gty
n=0 Q

p-1 "o
Z a /Q Py 2 (@)divp(u, 1 )(2)de = Z /
n=0 n=0""

This leads, setting g = Pnsl in the second equation of (4.14), to

(n+1)dt

[ 7t @zt
9]

ot

1 -
5 / (up(x)? — up(2)?)dz + v Z &ty 15U, 1]Dt
(4.19) ¢ n=0

p—1 Dot
A size(D)* Z &ppy1lp = / / fz,t) - u(zx, t)dadt.
=0 2 0o Ja
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Setting p = N in (4.19) gives (4.17) and (4.18). The discrete Poincaré inequality (2.4)
and the inequality [uollz2(q)e < [UinillL2(0)e give

diam(£2)?
||UPH%2(Q)(£ < T"fH%Z(QX(O,T))d + ||Uini||2L2(Q)d, Vp = 1, . .,N,

which proves (4.16), since [lu,;1[[r2(0) < 5([unllr2(@ys + luntill p2(qye) for all n =
0,...,N—1.0

We then have the following estimates on translations.

PROPOSITION 4.11 (Space and time translate estimates). Under hypotheses
(1.3)-(1.7), let D be an admissible discretization of  x (0,T) in the sense of def-
inition 4.8. Let A € (0,+00), a € (0,2) and 6 > 0, such that regu)(D) > 6. Let
(u,p) € (Hp(2 x (0, 7)) x Hp(2 x (0,T)), be a solution to (§.13)-(4.15). We de-
note by u the prolongment in R x R of u by 0 outside of Q2 x (0,T). Then there exists
Cag | > 0 and Csp-> 0, only depending on d, 0, v, \, a, ug, f, 0 and T such that the
following inequalities hold:

(4.20) [u(- + &) = ull7egaxr) < Coo €] (€] + dsize(M)), VE € R,
and
(4.21) ||u(, -+ T) — UHLl(R;LZ(Rd)) < Csp |T|1/2, V1 e R.

Proof. In the following proof, we denote by C;, where ¢ is an integer, various
positive real numbers which can only depend on d, Q, v, A\, a, ug, f, 0 and T.
Inequality (4.20) is obtained from (4.17) (see [15]). Let us prove (4.21). Let 7 € (0,T)
be given. We define the following norms on (Hp(9))?, by:

Vwe (HD(Q))d,
lwl3 5 = lwlp+

(4.22) 2
sy (] [ v @@, ¢ < Ho(@). o =1})

and

(423) Y€ H@)

[wll,px = sup { f w(@) - v(@)dz,v € (Hp(Q), |[v]lpx =1}
We then have, for a.e. t € (0,7T),

luCyt+7) = u, )2 @ye < llult+7) —ul OllpalluC,t +7) = ul, 1),
and therefore, thanks to the Young formula,

luCt+7) = ul, D)l ageye < S ult+7) =l 0)lloa

4.24
(4.24) tazlluCt+7) —ul, 1)

We get, from (4.14), for all ¢ € Hp(2) and for a.e. ¢t € (0,T),

[ divp(u(,1))(@)ala)de = A size(D)* (ol 1), ).
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which proves, using (4.22), that
[ul, )l < llul, )l + A size(D)*[p(-, 1)[p-

Using the Cauchy-Schwarz inequality, we have that:

2

T—1 T
( / lu(t+7) — u(wt)|D,Adt> <ar / (-, )] xdt,
0 0

and therefore, using (4.17), (4.18),

T—1
(4.25) / (st +7) — e, 8) | padt < Cs1 .
0

We now study |u(-,t 4+ 7) — u(-, t)|lx,p,x. We can write, for a.e. t € (0,7 — 1) and
x €€,
N-1
1
U((E, t+ T) - U(.’L‘, t) = 5 Z (X"(ta T) + Xn—i—l(t; T))(Un+1(.’L') - u"(‘r))’

n=0

where, for all n € N and ¢t € (0,7), xn(t,7) = 1 if né € [t,t + 7[, and x,(¢t,7) =0
otherwise. This implies

[u(s t+7) =l t)lpx <

4.26 N
(4.26) LS N1 (07) 4 X (6 7)) [t — tinllepa

Let us then obtain a bound for ||up+1 — tn|«,p.x. Using the scheme (4.14), we get
that, for all v € (Hp(2)),

/Q(Un+1(x) —up(2)) - v(z)de = /n:H)&/Qf(x,t) v(z)dadt

V81, 0D+ & [ poys(2)divp(v)(z)de
Q
o .
=) /Q ui+%d1vD(U)(x)d:E = &bp(Upy 1, Uy 1, 0).
(4.27)
Using the definition of divp, the fact that
Schwarz inequality, there exists Csg.such-that:

vee, MoNk,, = 0, and the Cauchy-

/QuiJr%(x)divD(v)(:v)dx < T2 ey vl
The discrete Sobolev inequality (4.9) leads to
d _ d
a2 3l < Doy ) leae) = DIl s s < Cosllungsy 17
i=1 i=1
We take ||v||p,» = 1 and note that, from Definition (4.22), we obtain that ||v||p < 1,

and that [, p,, 1 (2)divp(v)(z)de < (A size(D)*)"? |p,,1|p. We then pass to the
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supremum in (4.27). Using the Cauchy-Schwarz inequality, the discrete Poincaré
inequality, and (4.8), this yields:

oA < Vadiam(Q)[| £l 2o (net, (1)) &
+0tv |y o + (A size(D)*)'? |p,palp
1
+0(5C32 Tz + Cao ) [[up -

Hun-i-l - un|

Summing the above equation for n = 0 to N — 1, applying the Cauchy-Schwarz
inequality to all terms of the right hand side except the last, using (4.17) and (4.18),
we get that there exists Csq such that

N-1

Z Hun-i-l - un|

n=0

oA < Csg .

Hence, noting that for alln =0,..., N, fTiT

o Xnl(t,7)dt <7, we have:

T—7 N—-1

1
5/ Z (Xn (&, 7) 4 X1 (& 7)) [tin g1 — tn [l padE < Cag 7,
0 n=0

which proves, using (4.26),

T—1
(4.28) / lu(-,t +7) —u(-, )|« p2dt < CsqT.
0

Thanks to (4.24), (4.25) and (4.28), we obtain that

T—1
/ lut 4 7) — ule, ) geedt < Caon/.
0

Using (4.16), we have

T T
/ lu(t+7) —u(- )| L2(edt = / | = u(-, t)]| p2yedt < Cas T < /TVTCsg,
T

T—71 —T

and a similar inequality holds for fST lu(-,t +7) = u(-, )| L2(qyedt. This thus gives
(4.21), for any 7 € (0,T). The case 7 > T is obtained again using (4.16), and the case
7 < 0 is obtained from 7 > 0 by the change of variable s =t + 7. This completes the
proof of (4.21). O

THEOREM 4.12 (Convergence of the scheme). Under hypotheses (1.3)-(1.7),
let 0 > 0 be given and let (DU™),en be a sequence of admissible discretizations of
Q x (0,T) in the sense of definition 4.8, such that regul(D™)) > 0 and size(D™))
tends to 0 as m — oo. Let A € (0,400) and o € (0,2) be given. Let, for all m € N,
(u™), ptm™)) € (Hpe (2 x (0,T)))% x Hpwm (2 x (0,T)), be a solution to (§.13)-
(4.15) with D = D). Then there exists a subsequence of (D"™),.en, again denoted
(D), en, such that the corresponding subsequence of solutions (u™),,en converges
in L?(Q x (0,T)) to a weak solution @ of (1.1)-(1.2) in the sense of definition 1.1.

Proof. Let us assume the hypotheses of the theorem. Using translate estimates
(4.20) and (4.21) in the space L' (R?xR), we can apply Kolmogorov’s theorem. We get
that there exists @ € L*(Q x (0, 7)) and a subsequence of (D™),,,cn, again denoted
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(D(m) )men, such that the corresponding subsequence of solutions (u(m))meN converges
in L'(2x(0,7)) to @ as m — oo. Using (4.17), we get [|u!™) | 120 711, () < Cas , for
all m € N, which gives, using the discrete Sobolev inequalities, ||U(m)||L1(O7T;L4(Q)) <
Csgiofor all m € N. Using a classical result on spaces LP(0,T; LY(2)), we get that
(u(™),nen converges in L(0,T; L?(Q)) to @ as m — oo. Thanks to (4.16), we have
[u™ || o< (0.7 12(0)ay < Cas , for all m € N. The same result on spaces L?(0,T'; L9(12))
implies that (u(™),,cy converges in L2(0, T; L*(2)) to @ as m — oo. We can therefore
pass to the limit in (4.20). The resulting inequality implies @ € L2(0,T; Hi(Q)4) (see
[15]). Passing to the limit in (4.16) leads to @ € L>(0,T; L%(Q2)%).

Let us now prove that @ is a weak solution of (1.1)-(1.2) in the sense of definition
1.1.

Let ¢ € O®(2 x (—o0,T))? be given, with divg(x,t) = 0 for all (x,t) € Q x
(=00, T). Let D™ be a given admissible discretization extracted from the considered
subsequence. Omitting some of the indices m for the simplicity of notation, we then
set v = Ppp(-,nd) in (4.14), and we sum for n = 0,..., N — 1. We thus get

(4.29) T + 17+ T + Tig? + Ty = T3,

with

N—-1
T =Y / (1 (2) — n()) - Pop(z, ndt)da,
n=0

N-1
T = Z &, 1, Ppp(-,ndt)|p,
n=0
. N-1
T == 3" & | puey @ivp(Pogl-,nd)) ()i
n=0
(m) 1 R
ThespE 3 Z &/QUn+%(.’17)2diVD(P'DQD(',n&))(lﬂ)d.’l],
n=0
N
TQ‘Z)”/ = Z &bD(un—i-%’un-‘,—%aPD(P(',n&))’
n=0

and
PR N-1 ,(n+1)&
Ty = Z / f(z,t) - Ppp(x,ndt)dzdt.
n—0 v not Q

In the following, we denote by C; various positive reals which can only depend on d,
Q, T, i, [, v, 0 and \. We first start with the study of T17. We classically have
(see [15])

m— 00

T
(4.30) lim T = / / Vi(z,t) : Vo(z, t)dadt.
0 Q
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The proof that
(4.31) lim 790 =0

is a consequence of (4.18) and of a direct adaptation of Proposition 2.3 to time-
dependent functions. Let us now prove that

(4.32) lim T = 0.

m— 00

Since (u(™)? tend to @ as m — oo in L*(Q x (0,T)), the same argument as in the
steady state case (see proof of theorem 4.7) provides (4.32).

We now turn to the study of Thy. Following the proof of proposition 4.7, the proof
that

m— 00

‘. T
(4.33) lim 1;5”>/0 b(a(-,t), al-,t), (-, t))dt.

is a direct consequence of the convergence of u to @ in L?(2 x (0,T)) and proposition
2.3. The study of T5; is classical, and we have

T
(4.34) lim Ti = / Fla,t) - oz, t)dzdt.
m—eo o Jo

Let us now prove that

T
(4.35) lim Tll‘én) = —/ /ﬂ(x,t)@ttp(x,t)dxdt—/uini(ac)go(x,O)dx.
mmee 0 JQ Q

Indeed, we have

i(in (m) 1 (m)
14 = [ uo(w) - Poglo,0)ds — 157 5T,
Q
with
, N—-1
TGS [ iy (0) (Posp(a, 0+ D)) = Ppli,nit)) o
n=0 Q
and

N—-1
157 = Y- [ (nes(&) = @) - (Posp(a, (0 + D3) = Posp(z, )
n=0 Q
We classically have

lim [ wug(z) - Ppo(x,0)dz = / Uini (@) (2, 0)da.

We also easily have, thanks to the convergence properties of u(™, that

m—00

T
lim Té\éﬂ —/0 /Qﬂ(x,t)atcp(x,t)d:cdt.
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Let us prove that the term TQ‘/‘;”) tends to 0 as m — oo. We have TQ‘/‘g) T2<:1ﬂ> Tfén),

with
o N—-1
T4 = Y [ (unea@) = un(a) - Poip(a, (0 + D),
n=0 "8

Thanks to the limits given by (4.30), (4.31), (4.32), (4.33) and (4.34), and thanks to
(4.29), we obtain that lim T2 = Ths, with

) T
Th'= —Z/Z/ Vuld (2, 1) - ch(z)(x,t)dxdt—/o bu-, 1), ul-s 1), (-, £))dt+

/ /f o(x, t)dadt.

Since (4.30), (4.31), (4.32), (4.33) and (4.34) are available as well, replacing Ppy(-, ndt)
by Ppp(-,(n + 1)&) in Th7, This, Tho, Too and Thy, we also get using (4.14) with
v = Ppo(-,(n+ 1)&) that lim T3{" = Ths. Thus we get that lim, . Tp5" = 0,
which concludes the proof of (4.35). Thanks to (4.29), (4.35), (4.30), (4.31), (4.32),
(4.33) and (4.34), we thus obtain (1.9), provided that we can prove

diva(x,t) =0, for a.e. (z,t) € Qx (0,7).

This last relation can be shown, following the proof of (3.20). This completes the
proof of the above theorem. O

REMARK 4.4. Using the above proof of convergence, we get the energy inequality
for d =2 or 3 from inequality (4.19), since we have the property

N _q

T
/ /Q(Vu(i) (z,t))?dzdt < liminf Z &t[u Sj_ Z)]Dm)

5. Numerical results. An industrial implementation of a colocated finite vol-
ume scheme may be found in [1] for instance, where complex applications are consid-
ered. Focusing in this paper on properties of convergence and error estimates, some
simple numerical experiments are described here to observe the convergence rate of
Schemes (3.7) and (4.13)-(4.14) with respect to the space and time discretizations. To
that purpose, we use a prototype code where the nonlinear equations are solved by
an underrelaxed Newton method, and the linear systems by a direct band Gaussian
elimination solver. This code handles Stokes or Navier-Stokes problems with various
boundary conditions, using non uniform rectangular or triangular meshes on general
2D polygonal domains.

The linear Stokes equations are first considered in the case d = 2, Q = (0,1) x
(0,1), v =1, and f is taken to satisfy (3.1) with a solution equal to

aM (M, 2?) = 9@ (zM), ()
@@ (2 2?) = oWw (M) ()
p(x(l),x@)) =100 ((x(l))2 4 (x(2))2) ,

denoting by (zM,2®?) = 1000 [z (1 — 1)z (1 — £))]2. The approximate
solution (u,p) is computed with the scheme (3.7). The observed numerical order of
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convergence, considering the norms |[u — Pp||12(q) and ||p — Ppp||r2(), is equal to
2 for the velocity components, and to 1 for the pressure in the cases of non uniform
rectangular and square meshes (from 400 to 6400 grid blocks). Note that in these
cases, there is apparently no need for a significant positive value of the stabilization
coefficient A. The observed numerical order of convergence is similar in the case of
triangular meshes (from 1400 to 5600 grid blocks), but values such as A = 1074, a = 1
have to be used in order to avoid oscillations in the pressure field. This confirms that in
the case of triangles, the approximate pressure space is too large to avoid stabilization.
In fact, other tests were performed (e.g. the classical backward step) which show that
stabilization is also needed in the case of rectangles when more severe problems are
considered. Note that in industrial implementations, stabilization may be performed
with other means, see [28], [1], (see also [6] in the triangular case).

We then proceed to a similar comparison in the case of transient nonlinear prob-
lems. Considering a transient adaptation of the above steady-state analytical solu-
tion, the continuous problem is then defined by zero initial and boundary conditions,
T = 0.1, and the function f is taken to satisfy (1.1) with a solution equal to

AOED, 2 1) = —t 9D, £2)
A0 2 1) =t w0, 22)
p(zM, 23 1) =100 ¢ ((x(l))2 + (x(Q))Q) ,

with the same function ¥ as above. We again observe an order 2 of convergence of
the approximate solution at times ¢ = .05 and ¢ = .1, when the space and the time
discretizations are simultaneously modified with the same ratio (from & = 0.01 to
o = 0.0025 as the size of the mesh is divided by 4). Similar observations are still valid
for the classical Green-Taylor example.

6. Conclusions. The above numerical results show that the theoretical error
estimate which is proved in Section 3 for the linear Stokes equations is non optimal;
a sharper estimate is currently being written [20] under more regularity assumptions
on the mesh.

The proof of convergence of the full space-time discrete approximation of (I1.1)
given by (4.14) uses estimates on the time translates, which were introduced in the
L?(Q2x (0,T)) framework for the proof of convergence of the finite volume method for
degenerate parabolic equations [19, 15] and used for several other cases, see e.g.[21]. A
major difficulty which arises here is the handling on the nonlinear convective term, as
in the continuous case, which leads us to establish an estimate on the time translates
in L1(0,T; L?(€2)). This new technique may be used for parabolic problems with other
type of nonlinearities.

We remarked that industrial codes use other types of stabilizations than the
one used here. Further works will be devoted to the mathematical study of such
stabilizations, for which, to our knowledge, no proof of convergence is known up to
now.

Finally, let us also mention undergoing work on a generalization of the scheme
studied here to the full transient Navier-Stokes equations including the energy balance,
under the Boussinesq approximation.
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