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Abstract The structure of the lower part (i.e. ε-away below the two-boson threshold) spectrum

of Fröhlich’s polaron Hamiltonian in the weak coupling regime is obtained in spatial dimension

d ≥ 3. It contains a single polaron branch defined for total momentum p ∈ G(0), where G(0) ⊂ R
d

is a bounded domain, and, for any p ∈ R
d, a manifold of polaron + one-boson states with boson

momentum q in a bounded domain depending on p. The polaron becomes unstable and dissolves

into the one boson manifold at the boundary of G(0). The dispersion laws and generalized

eigenfunctions are calculated.

1 Introduction

We consider the quantum system consisting of a particle coupled with a Bose field by an
interaction linear in the creation-annihilation operators, known in the physics literature
as Fröhlich’s polaron model [1]. There are many papers, both physical and mathematical,

devoted to this subject, see [2]-[5]. These are mainly concerned with the ground state F
(0)
p

of the Hamiltonian Hp of the system at fixed total momentum p acting in the Hilbert space
H(p) (see below). It is shown that for sufficiently small particle-field coupling constant α

the ground state F
(0)
p exists only for momentum p in a certain domain G(0) ⊂ Rd, where

G(0) is bounded for space dimension d ≥ 3 and G(0) = Rd for d = 1, 2. The ground state
describes the ”polaron”, i.e. the particle in a ”cloud of virtual bosons”.

Here we study the next, ”one-boson”, branch of the spectrum of Hp for d ≥ 3.
The expected mathematical picture is the following: there exists an invariant subspace
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H1(p) ⊂ H(p) of the operatorHp, which is isomorphic in a natural way with L2

(

G
(1)
p , dq

)

,

where G
(1)
p ⊂ R

d is a certain bounded domain, such that Hp acts in this subspace as
multiplication with a function ξp (q), which can be viewed as the energy of a boson of
momentum q (while the total momentum of the system is p). The range of this function
is the segment [λ1 (p) , λ2 (p)), where λ1 (p) and λ2 (p) are the thresholds of the one- and
two-boson states, respectively. Moreover, in the subspace orthogonal to H0(p) ⊕ H1(p),

where H0(p) =
{

cF
(0)
p

}

is the one-dimensional subspace generated by the ground state

whenever it exists, the spectrum of Hp lies above λ2 (p) (this latter property will be called
”the completeness of the one-boson spectrum”). The states in H1(p) can be viewed as
scattering states of a boson and a polaron.

Unfortunately, we shall obtain here only part of the above picture. Namely, we are

able to construct only a subspace Hκ
1(p) ⊂ H1(p) isomorphic to L2

(

G
(1),κ
p , dq

)

, where

G
(1),κ
p =

{

q ∈ G
(1)
p : ξp(q) < κ

}

. Here, κ < λ2 (p) can be chosen arbitrarily close to λ2 (p),

at the expense of taking the coupling constant α sufficiently small. Apparently, our
techniques allow the construction of the whole spaceG

(1)
p and the proof of the completeness

of the one-boson spectrum for sufficiently large space dimension d.
Our analysis of the one-boson branch covers only the cases d ≥ 3, though we expect

that the same picture holds in lower dimension, with G
(1)
p = Rd for d = 1, 2. The

calculations are based on a technique used by one of the authors in [2], and also on
certain facts connected with the spectral analysis of the so-called generalized Friedrichs
model [6].

We proceed now to a detailed presentation of the model and a precise statement of
the main result.

The state space of our model is the Hilbert space

H = L2(Rd) ⊗ F ,

where F is the symmetric (boson) Fock space

F = Fsym

(

L2(Rd)
)

=

∞
⊕

n=0

H(n),

with H(0) = C, H(n) =
(

L2(Rd)
)⊗n

sym
the symmetric tensor power (n ≥ 1). Thus, the

vectors of H are sequences

F = {f0 (p0) , f1 (p0; q) , ..., fn (p0; q1, ..., qn) , ...} , (1.1)

where fn are, for every p0 ∈ Rd, symmetric functions of the variables q1, ..., qn, and the
norm is given by

‖F‖2 =

∫

Rd

|f0 (p0)|2 dp0 +

∞
∑

n=1

1

n!

∫

Rd

∫

Rnd

|fn (p0; q1, ..., qn)|2 dp0

n
∏

i=1

dqi. (1.2)
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The Hamiltonian of our system has the form

H = Hpart
0 +Hfield

0 + αHint, (1.3)

where α > 0 is a coupling constant and
(

Hpart
0 F

)

n
(p0; q1, ...qn) = 1

2
p2

0fn (p0; q1, ..., qn) ,

(

Hfield
0 F

)

n
(p0; q1, ...qn) =

(

n
∑

i=1

ε (qi)

)

fn (p0; q1, ..., qn) ,

(HintF )n (p0; q1, ...qn) =
n
∑

i=1

c(p0; qi)fn−1 (p0 + qi; q1, ..., q̌i, ..., qn)

+
∫

Rd c(p0; q)fn+1 (p0 − q; q1, ...qn, q) dq,

(1.4)

with the convention that a sum over a void set is 0, and where the notation q̌ means that
the variable q is omitted. The properties of the functions ε and c will be given in detail
later. Notice that, with the minimal assumptions: ε is a positive real function and the
function c is bounded and with sufficiently rapid decay for q → ∞, the operator H is
self-adjoint and bounded from below.

A first simplification in the spectral analysis of H comes from the conservation of the
total momentum, i.e. from the fact that H commutes with the operator

(

P̂F
)

n
(p0; q1, ...qn) =

(

p0 +

n
∑

i=1

qi

)

fn (p0; q1, ..., qn) , n ≥ 0. (1.5)

As a consequence, H can be written as a direct integral of Hilbert spaces H (p)

H =

∫ ⊕

Rd

H (p) dp, (1.6)

which reduces both P̂ and H , i.e. induces the decompositions

P̂ =

∫ ⊕

Rd

pIdp, H =

∫ ⊕

Rd

Hpdp, (1.7)

where I (the unit operator) and Hp are operators in H (p). For a vector F as given in
(1.1), we get the representation:

F =

∫ ⊕

R
d

F̂pdp,

where F̂p =
{

f̂p,n

}

n≥0
and f̂p,n is the restriction of fn to the hyperplane p0 +

n
∑

i=1

qi = p.

The spaces H (p) will be identified with F = Fsym

(

L2(Rd)
)

by means of the unitaries

(

UpF̂p

)

n
(q1, ...qn) = fn

(

p−
n
∑

i=1

qi; q1, ..., qn

)

. (1.8)
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With this identification, the action of Hp in F is given by the formula

(HpF )n (q1, ...qn) = e0n,p (q1, ..., qn) fn (q1, ..., qn)

+α
n
∑

i=1

c(p−
n
∑

j=1

qj ; qi)fn−1 (q1, ..., q̌i, ..., qn)

+α
∫

Rd

c(p− q −
n
∑

j=1

qj ; q)fn+1 (q1, ...qn, q) dq, (1.9)

where

e0n,p (q1, ..., qn) =
1

2

(

p−
n
∑

i=1

qi

)2

+

n
∑

i=1

ε (qi) , (1.10)

The functions ε and c are supposed to fulfill the following conditions:

1. ε(q) is a convex, non-decreasing function of |q| and there exists co > 0, such that

ε(q1) + ε(q2) ≥ ε(q1 + q2) + co, ∀q1, q2 ∈ R
d. (1.11)

Also, we need stronger regularity properties: ε ∈ C∞
(

Rd
)

and it has bounded
derivatives, i.e. there exists R > 0, such that for all multi-indices α = (α1, ..., αd) 6=
0,

sup
q∈Rd

∣

∣∂α
q ε (q)

∣

∣ ≤ R, (1.12)

where

∂α
q =

∂|α|

∂qα1
1 ...∂qαd

d

, q = (q1, ..., qd), |α| =

d
∑

i=1

αi.

The following are physically interesting examples of such functions:

a) ε (q) = ε (0) > 0

b) ε (q) =
√

q2 +m2 + co, m > 0, co > 0

2. c(p, q) is sufficiently smooth and there exists a bounded, rapidly decreasing function
h : Rd → R+ dominating c and all its derivatives, i.e., for all multi-indices α, β
there exists Cα,β > 0 (C0,0 = 1), such that

∣

∣∂α
p ∂

β
q c (p; q)

∣

∣ ≤ Cα,βh(q), ∀p, q ∈ R
d. (1.13)

We are concerned here with the study by perturbation theory of the (lower part of
the) spectrum of the Hamiltonian (1.9) for every fixed p:

Hp = H(0)
p + αHp,int, (1.14)

where H
(0)
p denotes the first term, and αHp,int the other terms, of equation(1.9); some-

times, for notational simplicity, the index p will be omitted.
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The spectrum ofH
(0)
p consists of the eigenvalue 1

2
p2, corresponding to the bare particle,

and branches of continuous spectrum e0n,p (q1, ..., qn), corresponding to bare particle + n-
boson states, starting at the thresholds

λ0
n(p) = min

q1,...,qn

e0n,p (q1, ..., qn) . (1.15)

Remark that, in view of the convexity of p2 and ε, the minimum of e01,p (q1) is attained at
a single point q0

1 , which is its unique critical point and is nondegenerate. Moreover, as a
consequence of the inequality (1.11),

λ0
n(p) ≥ λ0

n−1(p) + co. (1.16)

The main result of the paper is summarized in the following:

Theorem 1.1
1) For any d ≥ 3, there exists α0 = α0(d) such that, for any α < α0 there exist functions
λ1(p) < λ2(p) , with λ1(p) < λ0

1(p), λ2(p) < λ0
2(p) , and a bounded domain G(0) ⊂ Rd ,

such that the spectrum of Hp in (−∞, λ1(p)) consists of one nondegenerate eigenvalue

ξ
(0)
p if p ∈ G(0) and is void if p /∈ G(0) . Moreover, ξ

(0)
p < p2/2 and lim

p′→p∈∂G(0)
ξ

(0)
p′ = λ1(p)

, where ∂G(0) denotes the boundary of the domain G(0) . The associated eigenvector F
(0)
p

is the ground state of Hp .
2) For any κ ∈ (λ1(p), λ2(p)) and any p ∈ Rd , there exists ᾱ0 = ᾱ0 (κ, p, d), such that

for any α < ᾱ0 there exists a domain G
(1),κ
p ⊂ Rd , a C∞-function ξκ

p : G
(1),κ
p → [λ1(p), κ]

and a subspace Hκ
1(p) ⊂ F invariant for Hp , such that the restriction of Hp to Hκ

1(p) is

unitarily equivalent to the operator of multiplication by the function ξκ
p in L2

(

G
(1),κ
p , dq

)

. Thereby, for κ1 < κ2 ∈ (λ1(p), λ2(p)) one gets G
(1),κ1
p ⊂ G

(1),κ2
p and ξκ1

p = ξκ2
p |

G
(1),κ1
p

.

Remark 1.2 Refining slightly the technique of this paper, one can reach κ = λ2(p) if the
dimension d is sufficiently large, i.e. ᾱ0 (·, p, d) is bounded away from zero, and the whole

one-boson subspace Hκ=λ2(p)
1 (p) and the function ξ

κ=λ2(p)
p can be constructed.

2 Outline of the proof

We shall present first the strategy we adopt in proving Theorem 1.1, in order not to
obscure it by the cumbersome calculations to be done.

Our constructions involve the resolvent of Hp :

R(z) = (Hp − zI)−1 . (2.1)

We have therefore to solve, for any L ∈ F , the equation:

(Hp − zI)F = L. (2.2)
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We split the space F as an orthogonal sum H(≤1) ⊕H(≥2), corresponding to number n of
bare Bosons ≤ 1, and ≥ 2, respectively, and denote Π1,Π2 the corresponding orthogonal
projections. Hence, F = F1 + F2, where F1 = Π1F={f0, f1, 0, 0, ...}, F2 = Π2F =
{0, 0, f2, ...} and similarly the vector L = L1 + L2. Then the operator Hp has a matrix
representation:

Hp =

(

A11 αA12

αA21 A22

)

, (2.3)

where Aii = ΠiHpΠi, αAij = ΠiHpΠj (i 6= j), in terms of which equation (2.2) writes as
{

(A11 − zI)F1 + αA12F2 = L1

αA21F1 + (A22 − zI)F2 = L2
. (2.4)

We define
λ2(p) = inf spec (A22) . (2.5)

By the variational principle,

λ2(p) = inf
F∈F ;‖F‖=1

(Π2F,HpΠ2F ) ≤ λ0
2(p) (2.6)

as λ0
2(p) is obtained as the infimum of the same expression taken over the subspace H(≤2)

of vectors F with at most two bare bosons. Likewise, we define

λ1(p) = inf
F∈H(≥1);‖F‖=1

(F,HpF ) ≤ λ0
1(p) (2.7)

the infimum of the spectrum of the restriction of Hp to the subspace H(≥1) with at least
one bare boson.

For z in the resolvent set of A22, the second equation in (2.4) can be solved for F2

F2 = (A22 − zI)−1 (L2 − αA21F1) , (2.8)

and hence one arrives at the following equation for F1

(

A11 − α2A12 (A22 − zI)−1A21 − zI
)

F1 = L1 − αA12 (A22 − zI)−1 L2. (2.9)

Let now restrict to real z = ξ and consider the family of self-adjoint operators acting
in H(≤1):

Ap (ξ) = A11 − α2A12 (A22 − ξI)−1A21, ξ ∈ (−∞, λ2(p)) . (2.10)

We shall show that, under our assumptions and for ξ ≤ κ ∈ (λ1(p), λ2(p)), Ap (ξ)
are generalized Friedrichs operators, i.e. each operator Ap (ξ) = A allows in the space
H(≤1) = C ⊕ L2(Rd, dq) a representation of the form:

(AF )0 = e(0)f0 + α
∫

v̄ (q) f1 (q) dq
(AF )1 = αv (q) f0 + a (q) f1 (q) + α2

∫

D (q, q′) f1 (q′) dq′,
(2.11)

where F = (f0, f1) ∈ H(≤1). Here v (q), a (q) and the kernel D (q, q′) fulfill a set of
smoothness conditions (given in detail in Section 4.1), a (q) is bounded from below and
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grows at most linearly at ∞, and v (q), D (q, q′) decrease fast at ∞. Such operators allow,
for small α, a complete spectral analysis (see [6]-[8] and Section 4.1 below), namely,
letting aside the possible eigenvalue ep (ground state), they are unitarily equivalent to the
operator of multiplication by a (q) in L2

(

Rd, dq
)

.
Let us denote, for given p and ξ, by ap (ξ, q) the function a (q) entering equation (2.11)

written for Ap (ξ). In essence, the key to the spectral analysis of Hp lies the following
remark:

Remark 2.1 Let F = F1 + F2 (F1 ∈ H(≤1), F2 ∈ H(≥2)) be (generalized) eigenvector
of Hp with eigenvalue ξ. Then, by equation (2.9), F1 is a (generalized) eigenvector of
the operator Ap (ξ) with the same eigenvalue ξ . Conversely, suppose that Fξ,1 is the
eigenvector of Ap (ξ) of eigenvalue ep (ξ) (whenever it exists). If the equation

ep (ξ) = ξ (2.12)

has a solution ξ
(0)
p , then F = F

ξ
(0)
p ,1

+ F
ξ
(0)
p ,2

, where

F
ξ
(0)
p ,2

= −α
(

A22 − ξ(0)
p I
)−1

A21Fξ
(0)
p ,1

is an eigenvector of Hp with eigenvalue ξ
(0)
p . Likewise, let for a given p, F q

ξ,1 be a
generalized eigenvector of the operator Ap (ξ) corresponding to the eigenvalue ap (ξ, q)
and ξp (q) be a solution of the equation

ap (ξ, q) = ξ. (2.13)

Then for F q
1 = F q

ξ(q),1 and

F q
2 = −α (A22 − ξ (q) I)−1A21F

q
1 , (2.14)

the vector F q = F q
1 + F q

2 is a generalized eigenvector of Hp for the eigenvalue ξp (q) .

The domain G(0) is identified with the set of p for which equation (2.12) has a solution.

For any given p, G
(1),κ
p is the set of q for which equation (2.13) has a solution ξ (q) ≤ κ.

The constructions of the subspace Hκ
1(p) and of the unitary equivalence of the operator

Hp |Hκ
1 (p) to the multiplication by ξκ

p (q) = ξp(q) are done in the standard way in terms of
the family {F q}

q∈G
(1),κ
p

of generalized eigenvectors of Hp.

3 Elimination of the many-body components

In this section we study perturbatively the solution (2.8) and derive its main properties of
interest to us. By virtue of equation (1.14) and the inequality (2.6), one can factorize the

unperturbed (diagonal) part H
(0)
p − z for z /∈ [λ2(p),∞), and bring the second equation

(2.4) to the form of the equivalent fixed-point equation:

F2 +Q(z)F2 = α
(

H(0)
p − z

)−1
L2 −GF1, (3.1)
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where
Q(z) = α

(

H(0)
p − z

)−1
Π2Hp,intΠ2, (3.2)

G = α
(

H(0)
p − z

)−1
Π2Hp,intΠ1 , (3.3)

Explicitly, the vector GF1 has the form {0, 0, g2, 0, ...} with

g2(q1, q2) =
α [c (p− q1 − q2; q1) f1(q2) + c (p− q1 − q2; q2) f1(q1)]

e02,p (q1, q2) − z
. (3.4)

Lemma 3.1 For every κ ∈ (λ1(p), λ2(p)) there exists α0 (κ) such that, for any α < α0 (κ),
and any z ∈ C with Re z = ξ ≤ κ, ‖Q(z)‖ < 1/2, therefore equation (3.1) has a unique
solution F2 for every f1 ∈ L2(Rd, dq) and L2 ∈ H(≥2) .

Proof : We write Q (z) as a sum of its creation and annihilation parts: Q (z) = Q′ +Q′′,
with

(Q′F )n (q1, ..., qn)

=







0, n = 2

α
(

e0n,p (q1, ..., qn) − z
)−1

n
∑

i=1

c
(

p−
∑

j qj; qi

)

fn−1(...q̌i...), n > 2
(3.5)

(Q′′F )n (q1, ..., qn)

= α
(

e0n,p (q1, ..., qn) − z
)−1 ∫

c
(

p−∑j qj − q; q
)

fn+1(q1, ..., qn, q)dq,

n ≥ 2

(3.6)

By condition (1.11) and the inequality (2.6), one gets for ξ ≤ κ

∣

∣e0n,p (q1, ..., qn) − z
∣

∣ ≥ e0n,p (q1, ..., qn) − ξ ≥ (n− 2) co + λ2 (p) − κ, (3.7)

therefore, by virtue of (1.13),

‖(Q′F )n‖L2(Rdn) ≤
nα · ‖h‖L2(Rd) · ‖fn−1‖L2(Rd(n−1))

(n− 2) co + λ2 (p) − κ
, n > 2,

while, for n = 2, the norm vanishes. Therefore,

‖Q′F‖2
H(≥2) =

∞
∑

n=2

1
n!
· ‖(Q′F )n‖

2
L2(Rdn)

≤ α2 ‖h‖2
L2(Rd) maxn≥3

[

n ((n− 2) co + λ2 (p) − κ)−2]

×
∞
∑

n=3

1
(n−1)!

· ‖fn−1‖2
L2(Rd(n−1))

≤ α2 ‖h‖2
L2(Rd) 3 (co + λ2 (p) − κ)−2 ‖F‖2

H(≥2) ,
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implying that ‖Q′‖ ≤ α · ‖h‖L2(Rd)

√
3/ (co + λ2 (p) − κ). A similar calculation shows that

‖Q′′‖ ≤ α · ‖h‖L2(Rd)

√
3/ (λ2 (p) − κ). This finishes the proof of the lemma. �

Let us denote by F 0
2 (z, f1) = {f 0

n (z; ·) ;n ≥ 2} the solution of equation (3.1) for L2 =
0. Under the conditions of Lemma 3.1 and taking into account equation (3.4), we get
that ‖F 0

2 (z, f1)‖H(≥2) ≤ Cα ‖f1‖L2(Rd). From now on, we shall denote by S(z) the linear
operator:

H(≤1) ∋ f1
S(z)7−→ F 0

2 (z, f1) ∈ H(≥2). (3.8)

To proceed further with the analysis we need more information about the structure and
regularity of the solution F 0

2 (z, f1). To this aim, we shall solve equation (3.1) with L2 = 0.
In particular, we shall show that the components of F 0

2 (z, f1) have the representation

f 0
n (z; q1, ..., qn) =

n
∑

i=1

bn (q1, ..., q̌i.., qn; qi) f1 (qi)

+
∫

dn (q1, ..., qn; q) f1 (q) dq,
(3.9)

where the functions bn (q1, ..., qn−1; qn) are symmetric in q1, ..., qn−1 and the functions
dn (q1, ..., qn; q) are symmetric in q1, ..., qn, n ≥ 2. The functions bn and dn will be called
coefficient functions.

A simple calculation shows that, if F ∈ H(≥2) has the representation (3.9), then also
F̂ = Q (z)F has the same kind of representation, with coefficient functions

b̂n (q1, ..., qn−1; qn) = α
(

e0n,p (q1, ..., qn) − z
)−1

×
[

n−1
∑

i=1

c

(

p−
n
∑

j=1

qj; qi

)

bn−1 (q1, ..., q̌i.., qn−1; qn)

+
∫

c̄

(

p−
n
∑

j=1

qj − q; q

)

bn+1 (q1, ..., qn−1, q; qn) dq

]

(3.10)

d̂n (q1, ..., qn; q) = α
(

e0n,p (q1, ..., qn) − z
)−1

×
[

n
∑

i=1

c

(

p−
n
∑

j=1

qj ; qi

)

dn−1 (q1, ..., q̌i.., qn; q)

+
∫

c̄

(

p−
n
∑

j=1

qj − q′; q′

)

dn+1 (q1, ..., qn, q
′; q) dq′

+ c

(

p−
n
∑

j=1

qj − q; q

)

bn+1 (q1, ..., qn; q)

]

(3.11)

Let now define the space M of all pairs µ =
{

(bn)n≥2 , (dn)n≥2

}

of sequences of bounded

continuous functions, bn :
(

Rd
)(n−1) × Rd → C, dn :

(

Rd
)n × Rd → C, symmetric with

respect to the first group of variables. Let them fulfill the following condition: there exists
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a constant M , such that,

supq |bn (q1, ..., qn−1; q)| ≤M
n−1
∏

i=1

h (qi) ,

|dn (q1, ..., qn; q)| ≤ Mh (q)
n
∏

i=1

h (qi) , ∀n ≥ 2 (3.12)

where h is the function appearing in equation (1.13). M is a Banach space with the norm

‖µ‖ = inf M, (3.13)

where the infimum is taken over all M for which the condition (3.12) holds. Clearly,
equation (3.9) defines a continuous application of H(1) into H(≥2).

The linear operator Γ (z) acting in M according to Γ (z) µ = µ̂, where µ =
{

(bn)n≥2 , (dn)n≥2

}

and µ̂ = {(b̂n)n≥2, (d̂n)n≥2} are related by (3.10), (3.11), translates in M the action of
Q(z). Then equation (3.1) with L2 = 0 is transformed into

µ+ Γ (z) µ = µ0, (3.14)

where µ0 = {(b0n) , (d0
n)} with b0n = 0, ∀n ≥ 3, d0

n = 0, ∀n ≥ 2, and

b02 (q1; q) = −αc (p− q1 − q; q1)

e02,p (q1, q) − z
. (3.15)

Lemma 3.2 For every κ ∈ (λ1(p), λ2(p)) there exists α̃0 (κ) such that, for any α < α̃0 (κ),
and any z ∈ C with Re z = ξ ≤ κ, ‖Γ(z)‖ < 1/2, and µ0 ∈ M, ‖µ0‖ ≤ α/ (λ2(p) − κ).
Therefore, equation (3.14) has a unique solution µ (z) ∈ M, which is an analytic function
of z in the half-plane Re z ≤ κ. Moreover, for any r ≥ 1, there exists α̃r (κ), such
that, for α < α̃r (κ), the components of µ (z) are Cr-functions of their arguments and the
derivatives up to order r satisfy estimates like (1.13), more precisely, for any multi-indices

An = {α1, ..., αn, β} with |An| =
n
∑

i=1

|αi|+β ≤ r, where αi =
(

α1
i , ..., α

d
i

)

, β =
(

β1, ..., βd
)

,

there exist constants C (An), C̃ (An), such that, for any n ≥ 2 and for all z in the half-
plane the following inequalities hold:

∣

∣∂An−1bn (z; q1, ..., qn−1; q)
∣

∣ ≤ α (λ2(p) − κ)−1 · C (An−1) ·
n−1
∏

i=1

h (qi)

∣

∣∂Andn (z; q1, ..., qn; q)
∣

∣ ≤ α (λ2(p) − κ)−1 · C (An) · h (q)
n
∏

i=1

h (qi)
(3.16)

∣

∣

d
dz
∂An−1bn (z; q1, ..., qn−1; q)

∣

∣ ≤ α (λ2(p) − κ)−2 · C̃ (An−1) ·
n−1
∏

i=1

h (qi)

∣

∣

d
dz
∂Andn (z; q1, ..., qn; q)

∣

∣ ≤ α (λ2(p) − κ)−2 · C̃ (An) · h (q)
n
∏

i=1

h (qi)
(3.17)
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where ∂An =

(

n
∏

i=1

∂αi
qi

)

∂β
q . The vector F 0

2 (z; f1) given by equation (3.9), having as coeffi-

cient functions the components bn, dn of µ (z), belongs to H(≥2) and is the unique solution
of equation (3.1) for L2 = 0.

Proof : Suppose µ ∈ M, ‖µ‖ = 1, i.e. (bn)n≥2 , (dn)n≥2 satisfy the estimates (3.12) with
M = 1. Then, Γ(z)µ = µ̂ of components (3.10),(3.11) satisfies the same estimates with

Â = α · max
n≥2

n+ 1 + ‖h‖2

(n− 2)co + λ2(p) − κ
=
α
(

3 + ‖h‖2)

λ2(p) − κ
.

Therefore, ‖Γ(z)‖ < 1/2 for α sufficiently small. The estimate of ‖µ0‖ is immediate,
therefore ‖µ(z)‖ ≤ 2α (λ2(p) − κ)−1.

So, we are left with the proof of the smoothness of the coefficient functions, equations
(3.16), (3.17). We shall consider only the first derivatives, i.e. |An| = 1. Consider the
subspace M1 ⊂ M of all µ with differentiable components (bn)n≥2 , (dn)n≥2 for which
there exists M1 > 0, such that

max

{

max
1≤i≤n−1

|∇qi
bn (q1, ..., qn−1; q)| , |∇qbn (q1, ..., qn−1; q)|

}

≤M1

n−1
∏

i=1

h (qi) ,

max

{

max
1≤i≤n

|∇qi
dn (q1, ..., qn; q)| , |∇qdn (q1, ..., qn; q)|

}

≤M1h(q)
n
∏

i=1

h (qi) , (3.18)

which is a Banach space with norm ‖µ‖1 = max {‖µ‖ , infM1}, where inf is taken over
all M1 fulfilling (3.18). We show that, for small α, Γ(z) is a contraction in M1, as well.
Taking derivatives with respect, say, to q1 in equation (3.10), one obtains

∇q1 b̂n (q1, ..., qn−1; qn)

= −α
(

e0n,p (q1, ..., qn) − z
)−2 ∇q1e

0
n,p (q1, ..., qn−1, qn)

×
[

n−1
∑

i=1

c

(

p−
n
∑

j=1

qj ; qi

)

bn−1 (..., q̌i, ...; qn)

+
∫

c̄

(

p−
n
∑

j=1

qj − q; q

)

bn+1 (q1, ..., qn−1, q; qn) dq

]

+α
(

e0n,p (q1, ..., qn) − z
)−1

·
[(

∇qc

(

p−
n
∑

j=1

qj; q1

)

−
n−1
∑

i=1

∇pc

(

p−
n
∑

j=1

qj ; qi

))

bn−1 (...q̌i...; qn)

−
∫

∇pc̄

(

p−
n
∑

j=1

qj − q; q

)

bn+1 (q1, ..., qn−1, q; qn) dq

+
n−1
∑

i=2

c

(

p−
n
∑

j=1

qj ; qi

)

∇q1bn−1 (q1, ..., q̌i.., qn−1; qn)

+
∫

c̄

(

p−
n
∑

j=1

qj − q; q

)

∇q1bn+1 (q1, ..., qn−1, q; qn) dq

]

.

(3.19)
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Here, ∇pc and ∇qc denote the gradient of the function c(p, q) with respect to the first,

respectively the second, argument. Similar expressions are obtained for ∇qi
d̂n, ∇qn b̂n, and

∇qd̂n. Suppose that ‖µ‖1 = 1. Then, using the simple estimate
∣

∣

∣

∣

∇q1e
0
n,p (q1, ..., qn−1, qn)

e0n,p (q1, ..., qn) − z

∣

∣

∣

∣

≤ R̄, (3.20)

where R̄ is a constant independent of n, and also the assumption (1.13), one obtains

‖µ̂‖1 ≤
α
(

a+ ‖h‖2) (R̄ + C̄ + b
)

λ2(p) − κ
, (3.21)

where a and b are absolute constants and C̄ = max {|∇pc(p, q)| , |∇qc(p, q)|}. Equation
(3.21) shows that Γ (z) leaves M1 invariant and that ‖Γ(z)‖ < 1/2 for α sufficiently small.
Since µ0 ∈ M1, and

‖µ0‖1 < 2α (λ2(p) − κ)−1 max
{(

R̄ + C̄
)

, 1
}

,

we see that the solution µ (z) of equation (3.14) belongs to M1 and has norm of the order
of α/ (λ2(p) − κ). This finishes the proof of the inequalities (3.16) in the case r = 1. The
higher values of r can be treated similarly, with stronger limitations on α.

Finally, µ (z) and its derivatives are analytic in the half-plane ξ ≤ κ′ for any κ′ ∈
(κ, λ2(p)) and satisfy there inequalities like (3.16), implying (3.17) in ξ ≤ κ. The lemma
is proved. �

Finally, going back to the system (2.4) with L2 = 0, we remark that the solution
F 0

2 (z; f1) of the second equation enters the first equation only through its first (n = 2)
component, f 0

2 (z; f1), which, in view of equation (3.9) has the form:

f 0
2 (z; f1; q1, q2) = b2 (z; q2; q1) f1 (q1) + b2 (z; q1; q2) f1 (q2)

+
∫

d2 (z; q1, q2; q) f1 (q) dq.
(3.22)

Inserting this representation into the first equation (2.4) and using the notations:

mp (z; q) = α

∫

c (p− q − q′; q′)b2 (z; q′; q) dq′, (3.23)

Dp (z; q, q′) = 1
α

[c (p− q − q′, q′) b2 (z; q; q′)

+
∫

c (p− q′ − q′′, q′′)d2 (z; q, q′′; q′) dq′′
]

,
(3.24)

one arrives at the following system of equations for the n = 0, 1 components:
{ (

e00,p − z
)

f0 +α
∫

c (p− q, q)f1 (q) dq = l0
αc (p− q, q) f0 + [ap (z; q) − z] f1 (q) + α2

∫

Dp (z; q, q′) f1 (q′) dq′ = l1
(3.25)

where

ap (z; q) = e01,p (q) +mp (z; q) (3.26)
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Corollary 3.3 For z real, the function ap (z; q) is real and the kernel Dp (z; q, q′) is
self-adjoint.

Indeed, the operator V (z) defined by

(V (z)f1) (q) = mp (z; q) f1 (q) + α2

∫

Dp (z; q, q′) f1 (q′) dq′

is equal to −A12 (A22 − zI)−1A21 appearing in equation (2.9), which is manifestly self-
adjoint for real z.

Corollary 3.4 The following asymptotic formulae hold:

mp (z; q) = −α2

∫ |c (p− q − q′; q′)|2
e02,p (q, q′) − z

dq′ +O
(

α3
)

, (3.27)

where O (α3) is a C1-function of norm ‖O (α3)‖1 ≤ Cα3 for some constant C depending
on κ;

Dp (z; q, q′) = −c (p− q − q′; q′)c (p− q − q′; q)

e02,p (q, q′) − z
+O (α) , (3.28)

where O (α) is a smooth function bounded by C αh(q)h(q′) for some constant C de-
pending on κ .

As a consequence of Lemma 3.2, the solution µ (z) has a series representation
∞
∑

n=0

(−Γ (z))n µ0

convergent in M1, the n-th term of which is of the order αn, wherefrom the assertion.

4 Study of the reduced system (3.25)

4.1 The generalized Friedrichs model (a digression)

We collect here the needed information about the spectral representation of the generalized
Friedrichs operator A acting in H(≤1) = C ⊕ L2(Rd, dq), equation (2.11). We shall study
A as a perturbation of A0 = A (α = 0), so α > 0 is supposed sufficiently small to ensure
the convergence.

In order to calculate the resolvent RA(z) of A, one has to solve

{ (

e(0) − z
)

f0 + α
∫

v̄ (q) f1 (q) dq = g0

αv (q) f0 + (a (q) − z) f1 (q) + α2
∫

D (q, q′) f1 (q′) dq′ = g1
(4.1)

for all (g0, g1) = G ∈ H(≤1).
To this end the following assumptions are made:
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1. a (q) is a real, sufficiently smooth function, and there exist constants C1, C2, C3,
such that

C1 ≤ a (q) ≤ C2 |q|2 + C3 ,
|∇a (q)| ≤ C2 (|q| + 1) ,
|∂αa (q)| ≤ C2, |α| ≥ 2 ;

(4.2)

a(q) has a unique nondegenerate minimum ā at q̄0 and no other critical points. We
denote I = [ā,∞) ⊂ R the range of the function a.

2. The function v (q) is continuous and |v (q)| ≤ h(q), for some bounded, rapidly
decreasing, positive h;

3. a (q) restricted to the 0-level of v, {q : v(q) = 0}, is not constant;

4. The kernel D (q, q′) is sufficiently smooth and there exists a constant N , such that,
for any multi-indices α, β with |α| , |β| ≤ r = [d/2] + 2

∣

∣

∣
∂α

q ∂
β
q′D (q, q′)

∣

∣

∣
≤ Nh(q)h(q′). (4.3)

In solving equation (4.1) we proceed like outlined in Section 2 , i.e. we solve the second
equation for f1 in terms of f0 and plug the solution in the first equation.

Let B be the operator defined on its maximal domain in L2
(

Rd, dq
)

by the formula:

Bf(q) = a (q) f (q) + α2

∫

D (q, q′) f (q′) dq′. (4.4)

We need its resolvent RB(z) = (B − zI)−1. We denote by Br the Banach space of all
kernels D (q, q′) satisfying condition 4, i.e. which are r times differentable and satisfy
(4.3) for some N , endowed with the norm ‖D‖r = inf N , where the infimum is taken over
all N for which (4.3) holds.

Lemma 4.1 For α sufficiently small and z /∈ I the resolvent RB(z) = (B − zI)−1 has
the form

(RB(z)g) (q)

= (a (q) − z)−1 [g (q) + α2
∫

K (α, z; q, q′) g (q′) (a (q′) − z)−1 dq′
]

,
g ∈ L2

(

Rd, dq
)

, (4.5)

where the kernel K (α, z; ·, ·) ∈ Br and its norm is bounded for z ∈ C \ I. Moreover, K is
a Br-valued analytic function of z on C \ I and its boundary values

K± (α, x; q, q′) = lim
εց0

K (α, x± iε; q, q′) (4.6)

exist in Br for all x ∈ I. Also, K± (α, x; ·, ·) are [(d− 1)/2] − 1 times differentiable as a
Br-valued function of x ∈ I and their last derivative with respect to x is Hölder continuous
of exponent γ = 1/3 (actually of any γ < 1/2 for even d and any γ < 1 for odd d).
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Remark 4.2 We shall express the last property of K± by saying that I ∋ x 7−→ K± (α, x; ·, ·) ∈
Br is s+1/3 times differentiable, where we put s = [(d− 1)/2]−1. In order to prove it, one
has to find a constant Ñ , such that for all multi-indices α, β with |α| , |β| ≤ r = [d/2] + 2
and k = 0, 1, ..., s:

∣

∣

∣
∂k

x∂
α
q ∂

β
q′K

± (α, x; q, q′)
∣

∣

∣
≤ Ñh(q)h(q′), (4.7)

and

max
x,y∈I;|x−y|≤1

∣

∣

∣
∂s

x∂
α
q ∂

β
q′K

± (α, x; q, q′) − ∂s
x∂

α
q ∂

β
q′K

± (α, y; q, q′)
∣

∣

∣

|x− y|1/3
≤ Ñh(q)h(q′). (4.8)

Proof of Lemma 4.1: Let B0 = B(α = 0), i.e. the operator of multiplication with a(q)
and D the integral operator of kernel D (q, q′). Then, denoting

M = α2D (B0 − z)−1 (4.9)

which is an integral operator of kernel α2D (q, q′) (a(q′) − z)−1, we have, formally, the
expansion:

RB(z) = (B0 − z)−1 (I +M)−1 = (B0 − z)−1

+
∞
∑

n=1

(−1)n (B0 − z)−1Mn,
(4.10)

where (B0 − z)−1Mn, n ≥ 1, are integral operators of kernels

(a (q) − z)−1 Ln (α, z; q, q′) (a (q′) − z)
−1
,

with

Ln (α, z; q, q′) = α2n

∫

...

∫

D (q, q1)D (q1, q2) ...D (qn−1, q
′)

n−1
∏

i=1

(a (qi) − z)

dq1...dqn−1. (4.11)

We shall prove the convergence of the series (4.10) in Br and, hence, show that K sat-
isfies all the assertions of the Lemma, by checking (by induction) the following properties
of the function (4.11):
(i) Ln (α, z; ·, ·) ∈ Br and

‖Ln (α, z; ·, ·)‖r ≤
(

Cα2
)n−1

, (4.12)

where C is a constant (to be specified later);
(ii) The limits

lim
εց0

Ln (α, x± iε; q, q′) = L±
n (α, x; q, q′) (4.13)

exist in Br for all x ∈ I;
(iii) L±

n (α, x; ·, ·) are s+1/3 times differentiable, thereby they satisfy the estimates (4.7),
(4.8) with Ñ = (Cα2)

n−1
.
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Indeed, for n = 1, i.e. for D (q, q′) these assertions hold obviously. For Im z ≥ 0, we
represent

Ln+1 (α, z; q, q′) = α2
∫

D (q, q̄)Ln (α, z; q̄, q′) (a (q̄) − z)−1 dq̄

= iα2
∫∞

0
dteizt

∫

D (q, q̄)Ln (α, z; q̄, q′) e−ita(q̄)dq̄, (4.14)

wherefrom

∂k
z∂

α
q ∂

β
q′Ln+1 (α, z; q, q′) =

iα2
∫∞

0
dt (it)k eizt

∫

∂α
q D (q, q̄) ∂β

q′Ln (α, z; q̄, q′) e−ita(q̄)dq̄.

(4.15)

Using (4.3), the induction hypothesis and the condition 1 for a(q), the internal integral
can be represented by the stationary phase method as

Ĉ
∂α

q D (q, q̄0) ∂
β
q′Ln (α, z; q̄0, q

′) e−ita(q̄0)

td/2 + 1
+ ∆αβ (t; q, q′) , (4.16)

where Ĉ is an absolute constant, and the kernel ∆αβ is bounded by

|∆αβ (t; q, q′)| ≤ N̄
(

Cα2
)n−1 ‖h‖2

L2

h(q)h(q′)

td/2+1 + 1
(4.17)

with some constant N̄ dependent on d and on the function a. The integral

∫ ∞

0

dt
(it)k

td/2 + 1
ei(z−a(q̄0))t

is absolutely convergent for all k ≤ s and defines a continuous function of z in Im z ≥ 0,
which, for k = s, is Hölder continuous with respect to this variable. We have that the
contribution to (4.15) of the first term in (4.16) has the estimate

∣

∣

∣
iα2Ĉ

∫∞

0
dt (it)k eit(z−a(q̄0))(td/2 + 1)−1∂α

q D (q, q̄0) ∂
β
q′Ln (α, z; q̄0, q

′)
∣

∣

∣

≤ C̃h (q̄0)
2 Ñ(Cα2)n−1h(q)h(q′),

(4.18)

where C̃ is a constant. One proves in the same way the Hölder condition (4.8) for k = s.
A similar estimate holds for the integral of the second term in (4.16):

∣

∣

∣

∣

∫ ∞

0

(it)k eizt∆αβ (t; q, q′) dt

∣

∣

∣

∣

≤ C̃ ‖h‖2
L2
N̄(Cα2)n−1h(q)h(q′).

By taking C = max
{

N, C̃
(

|h (q̄0)|2 Ñ + ‖h‖2
L2
N̄
)}

, one gets the estimate (4.12), the

existence of the limit (4.13) and the assertion (iii) for n replaced by n + 1. �
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Once we have RB(z), it is an easy matter to write down the solution of equation (4.1)
for z ∈ C \ I as

f1 = RB(z) [g1 − αf0v] , (4.19)

where

f0 =
1

∆(z)
[g0 − α (v, RB(z)g1)] (4.20)

whenever ∆(z) 6= 0. Here,

∆(z) = e(0) − z − α2 (v, RB(z)v) (4.21)

Clearly, ∆(z) is analytic in C \ I, has limits at the cut I:

lim
εց0

∆ (x± iε) = ∆± (x) , x ∈ I (4.22)

and the limits ∆± (x) are s+1/3 times differentiable, by the same reasoning as in Lemma
4.1. More precisely,

∣

∣

∣

∣

dk

dxk

(

∆± (x) + x
)

∣

∣

∣

∣

≤ const, k = 0, ..., s+ 1/3.

As one can read from equations (4.19), (4.20), the continuous spectrum of the operator
A equals the interval I. Besides, the real zeroes of ∆(z) below ā, if any, are eigenvalues
of A. Since −α2 (v, RB(x)v) is decreasing for x < ā, ∆(x) is strictly decreasing from +∞
to ∆ (ā) on this interval, therefore A has one simple eigenvalue e < ā with eigenvector
ψ0 = (f0, f1 = −αf0RB(e)v) ∈ H(≤1), if, and only if, ∆ (ā) < 0. As, for small α

±Im ∆± (x) = α2π

∫

a(q)=x

|v(q)|2 dq + 0
(

α4
)

> 0, x ∈ I,

in view of condition 3, it follows that there are no eigenvalues of A embedded in the
continuous spectrum (see [7]).

Remark 4.3 It is easy to show using the explicit formulae for RA(z) that the general
criteria of the absence of the singular continuous spectrum [8] are met in our case, hence
that the continuous spectrum I is absolutely continuous. Therefore, we have

H(≤1) =

{

Hac, ∆ (ā) ≥ 0
{cψ0} ⊕Hac, ∆ (ā) < 0

(4.23)

We come now to the scattering theory for the pair of self-adjoint operators (A,B0),
where we denoted B0 the operator of multiplication with a(q) acting in H(1) = L2

(

Rd, dq
)

.

We denote E : H(1) → H(≤1) the injection Eϕ = (0, ϕ) ∈ H(≤1), ϕ ∈ H(1). Known
existence criteria for the wave operators (see e.g.[8]) can be applied to our case and
ensure the existence of the strong limit:

s− lim
t→∞

eitAEe−itB0 = Ω+,
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which is a unitary operator Ω+ : H(1) → Hac ⊂ H(≤1). The generalized eigenfunctions of
the operator B0 are δq(·) = δ (q − ·), therefore, using known formulae in scattering theory,
one can take

ψq = Ω+δq = lim
εց0

iεRA (a (q) − iε)Eδq (4.24)

as generalized eigenvectors of A corresponding to the eigenvalue a(q). Explicitly, in view
of (4.19), (4.20) and Lemma 4.1, one gets for ψq = (f q

0 , f
q
1 (·)) the following expressions:

f q
0 = − α

∆− (a (q))

[

v(q) + α2

∫

K− (α, a (q) ; q′, q) v̄ (q′) dq′

a (q′) − a (q) + i0

]

, (4.25)

f q
1 (q′) = δ (q − q′) +

α2K− (α, a (q) ; q′, q)

a (q′) − a (q) + i0
− (4.26)

αf q
0

1

a (q′) − a (q) + i0

[

v(q′) + α2

∫

K− (α, a (q) ; q′, q′′) v̄ (q′′) dq′′

a (q′′) − a (q) + i0

]

.

This somewhat formal derivation of the formulas (4.25), (4.26) will be justified by the
next lemma, which proves that ψq ∈ C⊕S ′

(

R
d
)

(where S ′
(

R
d
)

is the space of tempered
distributions) and that it verifies the intertwining property of the wave-operator Ω+.

Lemma 4.4 Let d ≥ 3. Then
1. For every fixed q ∈ Rd, f q

0 is finite and it is bounded and continuous as a function of
q.
2. For every fixed q ∈ Rd, f q

1 (·) ∈ S ′
(

R
d
)

; moreover, for every fixed q′ ∈ R
d, f q

1 (q′) ∈
S ′
(

Rd
)

with respect to q.

3. For ϕ ∈ S
(

Rd
)

, let us consider the vector ψϕ = (Cϕ,0, Cϕ,1 (·)) ∈ H(≤1), where

Cϕ,0 =

∫

f q
0ϕ (q) dq, (4.27)

Cϕ,1 (q′) =

∫

f q
1 (q′)ϕ (q) dq. (4.28)

Then, for any ϕ1, ϕ2 ∈ S
(

Rd
)

,

(ψϕ1 , ψϕ2)H(≤1) = C̄ϕ1,0Cϕ2,0 +

∫

C̄ϕ1,1 (q)Cϕ2,1 (q) dq = (ϕ1, ϕ2)L2
, (4.29)

therefore the application ϕ 7→ ψϕ extends to an isometry Ω+ : L2
(

Rd, dq
)

→ H(≤1).
4. The range of the operator Ω+ is Hac and AΩ+ = Ω+B0.

Remark 4.5 The relation (4.29) may be written in the following formal way

(

ψq, ψq′
)

H(≤1)
= f̄ q

0f
q′

0 +
(

f q
1 , f

q′

1

)

H(1)
= δ (q − q′) , (4.30)

meaning the orthonormality of the generalized functions
{

ψq, q ∈ Rd
}

.
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Remark 4.6 Usually, the generalized eigenvectors of a self-adjoint operator A acting in
the Hilbert space H are defined as derivatives dEλϕ/dσϕ (λ), where ϕ ∈ H is an arbitrary
vector, {Eλ} is the family of spectral projections of A, and σϕ (λ) is the spectral measure
corresponding to ϕ. Moreover, if A leaves invariant a certain dense linear subspace H+ ⊂
H and H+ has a Hilbert space structure such that the inclusion is quasi-nuclear, then the
derivative dEλϕ/dσϕ (λ) = χλ exists as an element of the conjugate space H− = H∗

+ and

it is an eigenvector with eigenvalue λ of the adjoint:
(

A |H+

)∗
, of the restriction of A

to H+, which is an extension of A. The vectors χλ ∈ H− are usually called generalized
eigenvectors of the operator A. It can be shown that the generalized vectors introduced
above are generalized eigenvectors of A in this sense. The same remark is valid for the
generalized eigenvectors of the operator Hp (which will be constructed farther on).

Proof of Lemma 4.4:
1. This assertion follows easily from the representation

∫

K− (α, a (q) ; q′, q) v̄ (q′) [a (q′) − a (q) + i0]−1dq′ =

i

∞
∫

0

dt

∫

eit(a(q′)−a(q))K− (α, a (q) ; q′, q) v̄ (q′) dq′

by applying the stationary phase method as done already in the proof of Lemma 4.1.
2. In order to prove the second assertion, we have to consider Cϕ,1 (q′). To this aim, we
represent the q′′-integral in (4.26) as before, using the stationary phase method:

I (x; q′) := i
∞
∫

0

dt
∫

eit(a(q′′)−x)K− (α, x; q′, q′′) v̄ (q′′) dq′′

= i
∞
∫

0

dt
[

Ĉ
td/2+1

eit(a(q̄0)−x)K− (α, x; q′, q̄0) v̄ (q̄0) + ∆ (x; q′, t)
]

,
(4.31)

where the correction term ∆ satisfies the estimates

∣

∣∂k
x∂

α
q ∆ (x; q′, t)

∣

∣ ≤ N̂h (q′)

td/2+1 + 1

for all multi-indices α, |α| ≤ [d/2] + 1, and k = 0, ..., s + 1/3, where N̂ is a constant.
Hence, I (x; q′) fulfills for d ≥ 3 the estimates

∣

∣∂k
x∂

α
q I (x; q′)

∣

∣ ≤ Ñh (q′) ; |α| ≤ [d/2] + 1, k = 0, ..., s+ 1/3.

The contribution of this term to Cϕ,1 (q′) is:

∫

dq

∫

dq′′
f q

0ϕ (q)K− (α, a(q); q′, q′′) v̄ (q′′)

(a (q′) − a (q) + i0) (a (q′′) − a (q) + i0)

=

∫

dq
f q

0ϕ (q) I (a (q) ; q′)

a (q′) − a (q) + i0
=

∫

R

dx
m(x)I(x; q′)

a (q′) − x+ i0
, (4.32)
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where

m(x) =

∫

a(q)=x

f q
0ϕ (q) dq. (4.33)

As it follows from the proof of the point 1, m(x) is s+1/3 times differentiable. The same
property is shared by I (x; q′) as a function of x for every fixed q′. Therefore, the integral
over x in (4.32) converges. The convergence of the other terms entering Cϕ,1 (q′) can be
proved similarly.
3. Using the representation

ϕ (q) =

∫

ϕ (q0) δ (q − q0) dq0, ϕ ∈ S
(

R
d
)

and the formula (4.24) we find that

Ω+ϕ =

∫

ϕ (q0)ψ
q0dq0 = (Cϕ,0, Cϕ,1 (·)) ∈ Hac ⊆ H(≤1). (4.34)

In view of the unitarity of the application Ω+ : L2
(

R
d
)

→ Hac, one has

(ϕ1, ϕ2)L2(Rd) = (Ω+ϕ1,Ω
+ϕ2)

= C̄ϕ1,0Cϕ2,0 +
∫

C̄ϕ1,1 (q)Cϕ2,1 (q) dq.
(4.35)

4. Since S
(

Rd
)

is dense in L2
(

Rd
)

, the image Ω+S
(

Rd
)

is dense in Hac, therefore, in
view of the unitarity of Ω+, Ω+L2(Rd) = Hac. The intertwining property AΩ+ = Ω+B is
obtained in the standard way. Lemma 4.4 is proved. �

This lemma implies in particular that any vector ψ ∈ Hac has a unique representation
as

ψ = ψf =

∫

Rd

f (q0)ψ
q0dq0 := lim

ϕn→f
ψϕn , f ∈ L2

(

R
d
)

.

Here, the limit in the right-hand side is meant in Hac and {ϕn} is a sequence of elements
of S

(

Rd
)

converging to f in L2.

4.2 Construction of the one-boson subspace

As explained in Section 2, the construction of the one-boson subspace of Hp relies on
the spectral representation of the operators {Ap (ξ)}ξ≤κ, see (2.10), entering the reduced
system (3.25):

(Ap (ξ)F )0 = e00,pf0 +α
∫

c (p− q, q)f1 (q) dq

(Ap (ξ)F )1 (q) = αc (p− q, q) f0 +ap (ξ; q) f1 (q)
+α2

∫

Dp (ξ; q, q′) f1 (q′) dq′,

F = (f0, f1 (·)) ∈ H(≤1).

(4.36)
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Since for any ξ ≤ κ the operator Ap (ξ) satisfies all the assumptions of the previous
subsection, there exists a family

{

F q
ξ,1 =

(

f q
ξ,0, f

q
ξ,1 (·)

)}

q∈Rd
(4.37)

of generalized eigenvectors of Ap (ξ) with eigenvalues {ap (ξ; q)}q∈Rd, given by (4.25),

(4.26), where a (q) is replaced by ap (ξ; q), and ∆−, K− by the functions ∆−
ξ , K−

ξ , enter-
ing the expression of the resolvent of Ap (ξ). Let F q

ξ,2 be constructed in terms of f q
ξ,1 (·)

according to (3.9), i.e. F q
ξ,2 = S (ξ) f q

ξ,1 where the application S (ξ) was introduced in

equation (3.8) (more precisely, S(ξ) is the extension of that operator to the space B(k)
1

defined below), where the coefficient functions are the solution of the fixed point equation
(3.14). Then, the complete sequence

F q
ξ =

(

F q
ξ,1, F

q
ξ,2

)

=
(

f q
ξ,0, f

q
ξ,1 (q1) , f

q
ξ,2 (q1, q2) , ...

)

(4.38)

satisfies the equation
HpF

q
ξ = ξF q

ξ + (ap (ξ; q) − ξ) F̂ q
ξ , (4.39)

where we denoted F̂ q
ξ =

(

F q
ξ,1, 0

)

. Therefore, if ξ (q) is a solution of equation

ap (ξ; q) − ξ = 0, (4.40)

then F q
ξ(q) is a generalized eigenvector of the operator Hp with eigenvalue ξ (q) ≡ ξp (q),

cf (2.13) in Remark 2.1.
We shall give below sense to the generalized eigenfunctions F q

ξ as elements of the

dual
(

B(k)
)′

of an auxiliary Banach space B(k), k = [d/2] + 2, densely and continuously
embedded in the Fock space F .

Definition 4.7 Let us denote B(k)
n the space of all symmetric functions g of n variables

q1, ..., qn ∈ Rd, k times continuously differentiable with respect to each qi, and for which
there exists a constant C such that, for all multi-indices α = (α1, ..., αn), αi =

(

α1
i , ..., α

d
i

)

,

|αi| =
d
∑

s=1

αs
i ≤ k, one has

∣

∣∂α
q g (q1, ..., qn)

∣

∣ ≤ C
n
∏

i=1

h (qi) , ∀q1, ..., qn ∈ R
d. (4.41)

It is a Banach space if endowed with the norm ‖g‖(k)
n = inf C, where the infimum is taken

over all C for which the estimate (4.41) holds.

Clearly, the inclusion B(k)
n ⊂ H(n) is continuous and B(k)

n is dense in H(n). Let next

B(k) = C + B(k)
1 + ...+ B(k)

n + ... ⊂ F (4.42)
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be the space of sequences

G = (g0, g1 (q1) , ..., gn (q1, ..., qn) , ...) , g0 ∈ C, gn ∈ B(k)
n ,

with norm

‖G‖(k)

B(k) =

[

|g0|2 +
∑

n≥1

1

n!

(

‖gn‖(k)
n

)2
]1/2

. (4.43)

Obviously, B(k) is continuously and densely embedded in the Fock space F , as required.
The dual

(

B(k)
)′

of B(k) consists of sequences F = (f0, f1, ..., fn, ...), where f0 ∈ C, and

fn ∈
(

B(k)
n

)′

are linear continuous functionals on B(k)
n ; thereby, the value of F at an

element G ∈ B(k) is given by the series:

(F,G) =

[

f̄0g0 +
∑

n≥1

1

n!
(fn, gn)

]1/2

, (4.44)

and the norm of F is

‖F‖(k)

(B(k))
′ =

[

|f0|2 +
∑

n≥1

1

n!

(

‖fn‖(
B

(k)
n

)′

)2
]1/2

. (4.45)

Clearly, F ⊂
(

B(k)
)′

and the inclusion is continuous.

Lemma 4.8 For every q ∈ Rd and ξ ≤ κ , F q
ξ ∈

(

B(k)
)′

and has the representation

F q
ξ = δ̂q + F̃ q

ξ , (4.46)

where δ̂q = (0, δq, 0, ...) and
∥

∥

∥
F̃ q

ξ

∥

∥

∥

(B(k))
′
≤Mα h (q) (4.47)

for some constant M .

Proof : We prove this statement in three steps.
I. The n = 0 component of F̃ q

ξ , f̃ q
ξ,0, is given by equation (4.25), where v(q) = c(p− q, q),

a(q) = ap (ξ, q) and K− = K−
ξ . If condition 2 in Section 4.1 is fulfilled for every ξ ≤ κ

and p, we have ∆− (a (q)) ≥ τ > 0, therefore we obtain for the first term in (4.25)
∣

∣

∣

∣

(−αv(q))
∆− (a (q))

∣

∣

∣

∣

≤ α

τ
h(q). (4.48)

The second term in (4.25) is treated using as before the stationary phase method, which
gives

∫

K− (α, a (q) ; q′, q) v̄ (q′) (a (q′) − a (q) + i0)−1 dq′

= i
∞
∫

0

dt
[

Ĉ
(

td/2 + 1
)−1

eit(a(q̄0)−a(q))K− (α, a (q) ; q̄0, q) v̄ (q̄0) + ∆ (q, t)
]

, (4.49)

22



where
|∆ (q, t)| ≤ Ch(q)

(

td/2+1 + 1
)−1

. (4.50)

for some constant C. Equations (4.48), (4.49), (4.50) provide

∣

∣

∣
f̃ q

ξ,0

∣

∣

∣
≤ Bα h(q). (4.51)

II. The n = 1 component of F q
ξ , f q

ξ,1 = δq + f̃ q
ξ,1, is given by equation (4.26), with the same

assignments for v, a, and K−. Again, reducing the estimate of every integral entering
(

f̃ q
ξ,1, g1

)

for a generic g1 ∈ B(k)
1 to the estimate of the corresponding oscillatory integral,

and using thereby the estimate (4.48), we obtain

∥

∥

∥
f̃ q

ξ,1

∥

∥

∥
(

B
(k)
1

)′ ≤ Lα2 h (q) . (4.52)

III. The higher components of F̃ q
ξ , {f̃ q

ξ,n}n≥2 , are estimated using their representation
(3.9) in terms of f q

ξ,1. We have

(

f̃ q
ξ,n, gn

)

=

=
n
∑

i=1

∫

bn (q1, ..., q̌i.., qn; qi) f
q
ξ,1 (qi) gn (q1, ..., qn) dq1...dqn

+
∫

dn (q1, ..., qn; q′) f q
ξ,1 (q′) gn (q1, ..., qn) dq1...dqndq

′. (4.53)

Using the estimates for bn, dn and their derivatives (see (3.12) and Lemma 3.2), and also
the bound (4.52), we have that

∫

∣

∣

∣

∫

bn (q1, ..., q̌i.., qn; qi) f̃
q
ξ,1 (qi) gn (q1, ..., qn) dqi

∣

∣

∣
dq1...dq̌i...dqn

≤ C1α (λ2(p) − κ)−1 ‖gn‖B(k)
n

(1 + Lα2) h (q)
(∫

h(q′)dq′
)n−1

for i = 1, ..., n, and also that

∣

∣

∣

∫

dn (q1, ..., qn; q′) f̃ q
ξ,1 (q′) gn (q1, ..., qn) dq1...dqndq

∣

∣

∣

≤ C2α (λ2(p) − κ)−1 ‖gn‖B(k)
n

(1 + Lα2h (q))h (q)
(∫

h(q′)dq′
)n
.

Hence, with suitable constants C̃, L̃,

∥

∥

∥
f̃ q

ξ,n

∥

∥

∥
(

B
(k)
n

)′ ≤ C̃
α

λ2(p) − κ

(

1 + L̃α2
)

· h (q)

(
∫

h(q′)dq′
)n−1

. (4.54)

Putting together equations (4.51), (4.52) and (4.54), we obtain (4.47). The lemma is
proved. �

Now we come back to the study of the generalized eigenvectors F q
ξ(q).
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Let us remark that ap (ξ; q) is, for every fixed q, a smooth, monotonously decreasing
function of ξ on (−∞, κ]. If

G(1),κ
p =

{

q ∈ R
d : ap (κ; q) − κ < 0

}

, (4.55)

then equation (4.40) has a unique solution ξ (q) < κ if q ∈ G
(1),κ
p , and no solution if

q /∈ G
(1),κ
p , see Figure 1.

Proposition 4.9 The function ξ (q) ≡ ξp (q) can be represented in the form

ξp (q) = ε (q) + γ (p− q) (4.56)

where the function γ (k) is defined in the domain {k : p− k ∈ G
(1),κ
p }.

Proof : Indeed, let us use the expansion

µ = µ0 − Γµ0 + Γ2µ0 + ... (4.57)

for the solution of equation (3.14), and remark that the function b02 (q1; q) appearing in
(3.15) can be written in the form

b02 (q1; q) ≡ b02,p (q1; q) = ϕ0
q1

(p− q; z − ε (q)) (4.58)

with ϕ0
q1

(k;w) defined for k ∈ Rd, w ∈ C such that Rew < κ − ε (q). One can prove by
induction, using the formula (3.10), that, in every term Γkµ0 of the expansion (4.57), the

function b
(k)
n,p (z; q1, ..., qn−1; q) has, for fixed q1, ..., qn−1, a form similar to (4.58), i.e.

b(k)
n,p (z; q1, ..., qn−1; q) = ϕ(k)

q1,...,qn−1
(p− q; z − ε (q)) . (4.59)

Then, it follows that the coefficient functions bn ≡ bn,p of the solution µ given by (4.57)
are of the same form (4.59), in particular,

b2,p (q1; q) = ϕq1 (p− q; z − ε (q)) (4.60)

Plugging this expression into (3.23), we find that mp depends only on the differences p−q
and z − ε (q):

mp (z, q) = τ (p− q; z − ε (q)) . (4.61)

Hence, by virtue of (1.10), ( 3.26) and (4.61) the equation (4.40)

1

2
(p− q)2 + ε (q) +mp (ξ, q) = ξ (4.62)

writes as
1

2
(p− q)2 + τ (p− q; γ) = γ (4.63)

This implies that γ ≡ ξ − ε (q) is a function of p− q alone. �
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Clearly, by the convexity of e01,p and the asymptotical properties of mp(ξ, q) given in

Corollary 3.4, G
(1),κ
p is a bounded domain, nonvoid for κ > λ1(p), and min

q∈G
(1),κ
p

ξ (q) = λ1(p).

By the smoothness of ap (ξ, q) with respect to both arguments, the function ξ (q)

defined on G
(1),κ
p is also smooth. Moreover, for α sufficiently small, this function has

a unique critical point (namely, a minimum), which is nondegenerate. In particular, it
follows that on every level of ξ (q),

χx =
{

q ∈ G(1),κ
p : ξ (q) = x

}

,

one can define a measure νx (the Gelfand-Leray measure, see [9]), such that, for any

integrable function ϕ on G
(1),κ
p ,

∫

G
(1),κ
p

ϕ (q) dq =

κ
∫

λ1(p)

dx

∫

χx

ϕxdνx, (4.64)

where ϕx = ϕ |χx is the restriction of ϕ to the surface χx. From (4.64) it follows that

L2
(

G
(1),κ
p , dq

)

can be represented as a direct integral of Hilbert spaces:

L2
(

G(1),κ
p , dq

)

=

⊕
∫

[λ1(p),κ]

Hxdx, (4.65)

with Hx := L2 (χx, νx).

Let us now consider the family
{

F q
ξ(q)

}

q∈G
(1),κ
p

⊂
(

B(k)
)′

of generalized eigenvectors of

Hp. The next lemma , which may be stated formally as an approximate orthonormality
of this family, is an important element of our constructions. We denote

F (ϕ) :=

∫

Gκ
p

F q
ξ(q)ϕ(q)dq ∈

(

B(k)
)′
,

for ϕ ∈ D
(

G
(1),κ
p

)

, the space of infinitely differentable functions with support in G
(1),κ
p .

Lemma 4.10 (i) For any ϕ ∈ D
(

G
(1),κ
p

)

, one has F (ϕ) ∈ F .

(ii) There exist functions S(q) and M(q, q′) defined for q, q′ ∈ G
(1),κ
p , such that, for any

ϕ1, ϕ2 ∈ D
(

G
(1),κ
p

)

, the following representation holds:

(F (ϕ1) , F (ϕ2))F =
κ
∫

λ1(p)

dx
[

∫

χx
(1 + Sx(q)) |ϕx(q)|2 dνx

+
∫

χx

∫

χx
ϕ̄x(q)Mx(q, q

′)ϕx(q
′)dνx (q) dνx (q′)

]

. (4.66)
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Here, ϕx, Sx and Mx denote the restrictions of the functions ϕ, S and M to χx and
χx × χx , respectively.
(iii) The following estimates hold with suitable constants C̄, Ĉ :

|S(q)| ≤ C̄
α

λ2(p) − κ
, (4.67)

|M(q, q′)| ≤ Ĉ α h(q)h(q′), (4.68)

implying that F (ϕ) ∈ F , for ϕ ∈ L2
(

G
(1),κ
p

)

and

C1 ‖ϕ‖L2
(

G
(1),κ
p

) ≤ ‖F (ϕ)‖ ≤ C2 ‖ϕ‖L2
(

G
(1),κ
p

) . (4.69)

Proof : (i) This assertion will follow from the calculations below.
(ii) In the sense of distributions, equation (4.66) means that

(

F q
ξ(q), F

q′

ξ(q′)

)

F
= (1 + S(q)) δ (q − q′) +M(q, q′)δ (ξ(q) − ξ(q′)) (4.70)

Before we proceed, the following remarks are in order:

1◦. We seemingly make an abuse in calculating the scalar product
(

F q
ξ , F

q′

ξ′

)

F
of two

generalized functions. Such calculations can be justified in the following way. The Fourier
transform F̃ q

ξ,n (ζ1, ..., ζn) of the generalized function F q
ξ,n (q1, ..., qn) is, as one can easily

verify, a usual function of the variables (ζ1, ..., ζn) polynomially bounded at infinity in

these variables. If, further, we view the scalar product
(

F q
ξ,n, F

q′

ξ′,n

)

L2(Rnd)
as the limit of

scalar products:

(

F̃ q
ξ,n, F̃

q′

ξ′,n

)

L2(Rnd)
:= lim

δց0

∫

Rnd

F̃ q
ξ,n (ζ1, ..., ζn)F̃

q′

ξ′,n (ζ1, ..., ζn)

n
∏

i=1

(

e−δ|ζi|dζi
)

,

then one can prove that this limit exists in the sense of convergence of generalized functions
of the variables q, q′. We shall not provide the details of this justifying procedure, and
write instead directly its result entering our calculations.
2◦. We shall exploit the ”orthogonality” of the generalized eigenfunctions F q

ξ(q), q ∈ G
(1),κ
p ,

corresponding to different eigenvalues ξ(q) 6= ξ(q′), by supposing that the support of the
generalized function

Q (q, q′) :=
(

F q
ξ(q), F

q′

ξ(q′)

)

F

is contained in the surface Σ =
{

(q, q′) ∈ G
(1),κ
p ×G

(1),κ
p : ξ(q) = ξ(q′)

}

:

suppQ ⊂ Σ (4.71)

and neglect in our calculation all terms which do not contribute to the factors in front
of δ (ξ(q) − ξ(q′)) or δ (q − q′). However, the relation (4.71) likewise needs a justification.
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Namely, if we did not skip these ”non-contributing” terms in the calculations, we would
obtain a generalized function Q̃ (q, q′), such that, for smooth functions ϕi (q), i = 1, 2 with

support contained in G
(1),κ
p , the scalar product

(F (ϕ1) , F (ϕ2))F =

∫

G
(1),κ
p ×G

(1),κ
p

Q̃ (q, q′) ϕ̄1 (q)ϕ2 (q′) dqdq′

would be finite, in particular, F (ϕ) ∈ F for smooth ϕ. On the other hand, if the support
of ϕ was contained in an ε-neighbourhood of the level χx, then F (ϕ) ∈ E (x− ε, x+ ε)F ,
where {E (∆)} denotes the family of spectral projections of Hp. Hence, for ϕi (q), i = 1, 2
with supports respectively contained in nonintersecting ε-neighbourhoods of the levels
χxi

, where x1 6= x2, the vectors F (ϕi), i = 1, 2, would be orthogonal. This proves in fact
(4.71).

Keeping these remarks in mind, we proceed with the proof of (ii).
One has

(

F q
ξ(q), F

q′

ξ(q′)

)

F
=
(

Π1F
q
ξ(q),Π1F

q′

ξ(q′)

)

H(≤1)
+

∞
∑

n=2

(

F q
ξ(q),n, F

q′

ξ(q′),n

)

H(n)
(4.72)

As Hp is self-adjoint and F q
ξ(q) are its generalized eigenfunctions with eigenvalue ξ(q), the

support of this distribution is contained in ξ(q) = ξ(q′). As Π1F
q
ξ(q) = ψq and Π1F

q′

ξ(q′) =

ψq′ are generalized eigenvectors of the operator A (ξ) for ξ = ξ (q) = ξ (q′), we can use the
relation (4.30):

(

Π1F
q
ξ(q),Π1F

q′

ξ(q′)

)

H(≤1)
= δ (q − q′) , (ξ(q) = ξ(q′)) . (4.73)

We are therefore left with calculating
(

F q
ξ(q),n, F

q′

ξ(q′),n

)

H(n)
for n ≥ 2. To this aim, use is

made of the representation (3.9)

F q
ξ(q),n =

n
∑

i=1

bn (ξ(q); q1, ..., q̌i.., qn; qi) f
q
ξ(q),1 (qi)

+
∫

dn (ξ(q); q1, ..., qn; q′) f q
ξ(q),1 (q′) dq′. (4.74)

The second term in (4.74) is a smooth function of q1, ..., qn and does not contribute to the
terms containing δ (ξ(q) − ξ(q′)) or δ (q − q′). Likewise, it is not hard to see that the only
contributions to such terms come from

∫

bn (ξ(q); q1...q̌i...qn; qi) f
q
ξ(q),1 (qi)bn (ξ(q′); q1...q̌i...qn; qi) f

q′

ξ(q′),1 (qi) dq1...dqn

=
∫

gn (ξ(q), ξ(q′); q̂) f q
ξ(q),1 (q̂)f q′

ξ(q′),1 (q̂) dq̂,
(4.75)

where

gn (ξ, ξ′; q̂) =

∫

bn (ξ; q1...qn−1; q̂)bn (ξ′; q1...qn−1; q̂) dq1...dqn−1. (4.76)
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In the integral over q̂ in the r.h.s. of equation (4.75), we separate the singular parts

of f q
ξ(q),1, f

q′

ξ(q′),1 using the Sokhotski formula:

1

x+ i0
= P

(

1

x

)

+ iπδ (x)

in their expression (4.26) and the fact that ap (ξ (q) , q′) = ξ (q) implies ξ (q) = ξ (q′),
hence also ap (ξ (q) , q′) = ξ (q′) (in view of the uniqueness of the solution of ap (ξ, q) = ξ):

f q
ξ(q),1 (q′) = δ (q − q′) + iπRξ(q) (q, q′) δ (ξ(q) − ξ(q′))

+ regular terms
(4.77)

where
Rξ (q, q′) = α2K−

ξ (ξ; q, q′) − αf q
ξ,0c(p− q, q)

+α2f q
ξ,0

∫

K−
ξ (ξ; q′, q′′) c(p− q′′, q′′) (ap (ξ, q′′) − ξ + i0)−1 dq′′.

(4.78)

The regular parts do not contribute to (4.75), which becomes, after performing the inte-
gration over q̂:

gn (ξ(q), ξ(q); q) δ (q − q′)
+iπδ (ξ(q) − ξ(q′))

[

gn (ξ(q), ξ(q); q′)Rξ(q) (q, q′)
−gn (ξ(q), ξ(q); q) R̄ξ(q) (q′, q)

]

+π2
∫

ξ(q′′)=ξ(q)

gn (ξ(q), ξ(q); q′′)Rξ(q) (q, q′′) R̄ξ(q) (q′, q′′) dq′′. (4.79)

Let us define the function:

T (ξ, q′) =

∞
∑

n=2

1

n!
ngn (ξ, ξ; q′) . (4.80)

Then, one can see from equations (4.73), (4.79) that (4.70) is fulfilled with

S(q) = T (ξ(q), q), (4.81)

M(q, q′) = iπ
[

T (ξ(q), q′)Rξ(q) (q, q′) − T (ξ(q), q)R̄ξ(q) (q′, q)
]

+π2
∫

T (ξ(q), q′′)Rξ(q) (q, q′′) R̄ξ(q) (q′, q′′) dq′′.
(4.82)

(iii) Using the estimates in Lemma 3.2, one obtains for T :

|T (ξ, q′)| ≤ C
α

λ2(p) − κ

∞
∑

n=2

‖h‖2(n−1)
L2

(n− 1)!
= C̄

α

λ2(p) − κ
.

Also, from the inequalities (4.51) and (4.8) it follows that

∣

∣Rξ(q) (q, q′)
∣

∣ ≤ Ch(q)h(q′),

28



wherefrom (4.67), (4.68) follow. Using these estimates in equation (4.66), one obtains

that F (ϕ) ∈ F for any ϕ ∈ L2
(

G
(1),κ
p

)

and, moreover the estimate (4.69) holds. The

lemma is proved. �

Let now Hκ
1(p) ⊂ F be the subspace spanned by

{

F (ϕ), ϕ ∈ L2
(

G
(1),κ
p

)}

. Equation

(4.69) implies that the application ϕ 7−→ F (ϕ) is continuous and invertible. Thereby,
Hκ

1(p) is Hp-invariant and

HpF (ϕ) = F
(

ξ̂ϕ
)

, (4.83)

where
(

ξ̂ϕ
)

(q) = ξ(q)ϕ(q). (4.84)

Lemma 4.11 There exists a bounded, invertible operator B : L2
(

G
(1),κ
p

)

→ L2
(

G
(1),κ
p

)

which commutes with Hp and such that:

(F (Bϕ1) , F (Bϕ2))F = (ϕ1, ϕ2)L2
(

G
(1),κ
p

) . (4.85)

Proof : We use the representation (4.65) of L2
(

G
(1),κ
p , dq

)

as a direct integral of the spaces

Hx and write Hκ
1(p) as a direct integral:

Hκ
1(p) =

⊕
∫

[λ1(p),κ]

H1,xdx . (4.86)

Here H1,x is the image of Hx by the application of L2
(

G
(1),κ
p , dq

)

into Hκ
1(p) and consists

of functionals

Fx (ϕ) =

∫

χx

F q
ξ(q)ϕ (q) dνx(q). (4.87)

By virtue of (4.70),

(Fx (ϕ1) , Fx (ϕ2))F =
∫

χx

(1 + S(q)) ϕ̄1(q)ϕ2(q)dνx(q)

+
∫

χx×χx

ϕ̄1(q)M(q, q′)ϕ2(q
′)dνx(q)dνx(q

′)

= ((Ix + Vx)ϕ1, ϕ2)H1,x
, (4.88)

where Ix is the unit operator in H1,x and Vx is a bounded operator with small norm (cf.
equations (4.67), (4.68)). Also, Hp acts in H1,x as xIx.

Let Bx = (Ix + Vx)
−1/2. Then, equation (4.88) reads as

(Fx (Bxϕ1) , Fx (Bxϕ2))F = (ϕ1, ϕ2)H1,x
.

Finally, defining B =
∫ ⊕

[λ1(p),κ]
Bxdx, one gets both that the operator B commutes with

Hp and that equation (4.85) is satisfied . �
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5 The ground state of Hp

A detailed analysis of the ground state of Hp is performed in arbitrary dimension in [2].
In this section we shall briefly show how the existence of the ground state follows from
our considerations for d ≥ 3.

As explained in Section 2, Hp has a ground state if, and only if, there exists ξ < λ1 (p),
such that operator Ap (ξ) in H(≤1) has the eigenvalue ξ. By the analysis done in Section
4.1, Ap (ξ) has one simple eigenvalue ep (ξ) < λ1 (p) if, and only if, ∆p (λ1 (p)) < 0 (where
∆p (ξ) is the function defined by equation (4.21) for Ap (ξ)), in which case ep (ξ) equals

the unique solution of the equation ∆p (ξ) = 0. Since e
(0)
p −λ1 (p) → ∞ for p→ ∞, while

(v, RB (λ1 (p)) v) (with v and B corresponding to Ap (ξ)) is bounded, {p; ∆p (λ1 (p)) < 0}
is a bounded domain.

As seen from equation (2.10), Ap (ξ) is a decreasing family (in the usual order of self-
adjoint operators), implying that ep (ξ) is a decreasing function of ξ ∈ (−∞, λ1 (p)). We

conclude that the equation ep (ξ) = ξ has a solution ξ
(0)
p if, and only if, p belongs to the

subdomain
G(0) = {p : ep (λ1 (p)) < λ1 (p)} .

For p ∈ G(0), let F
ξ
(0)
p ,1

be an eigenvector of Ap

(

ξ
(0)
p

)

, and Fξp,2 ∈ H(≥2) be defined

according to (2.14). Then, the vector F
(0)
p = F

ξ
(0)
p ,1

+ F
ξ
(0)
p ,2

is a ground state of the

operator Hp.
Therefore, Hp has a unique ground state if p ∈ G(0), and no ground state if p /∈ G(0).

6 Concluding remarks

The main result of the paper is the construction, in the weak coupling regime, of a manifold
of states indexed by a phonon momentum q. The ground state describing a single polaron
becomes unstable at a certain momentum threshold, above which it dissolves into this
manifold. It is to be expected that at still higher momenta the latter states become
themselves unstable and dissolve into two-phonon states, etc. The representation (4.56) of
the eigenvalue ξ (q) strongly suggests the interpretation of the generalized eigenfunctions
F q

ξ(q) associated to it as scattering states of a free phonon and a certain particle with the

dispersion law γ (k). We cannot yet decide whether the latter particle is a polaron defined

in our Theorem 1.1, i.e. whether γ (k) = ξ
(0)
k , although we checked that this equality is

true in the first nontrivial order in coupling constant: ∼ α2. In this case the ground state
instability at high k might be interpreted as emission of a phonon.

Unfortunately, we were not able to prove in the present paper two essential results in
favour of the above heuristic physical picture:

1. First of all, we did not construct the whole one-boson subspace Hκ=λ2(p)
1 up to the

two-boson threshold λ2 (p). The approach used here of eliminating the higher components
of the eigenvectors can equally well be applied in the case of the decomposition F =
H≤2 ⊕H≥3, leading to a family of self-adjoint operators {A (ξ) , λ1 (p) ≤ ξ ≤ κ}, (where
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λ2 (p) ≤ κ < λ3 (p), i.e. κ is between the two-boson and the three-boson threshold,
defined similarly with λ2 (p)), acting in the space H≤2 of triples (f0, f1 (·) , f2 (·, ·)). These
operators have a more complicated structure than the Friedrichs operators in H≤1 and
their spectral analysis and scattering theory is not available in such details as for the
Friedrichs operators. If this theory was elaborated (e.g. using equations analogous to
the Faddeev-Yakubovski equations for the resolvent of n-body Schrödinger operators, see
[11] - [13]), then the approach of the present paper would provide the construction of the
whole one-boson subspace and of a part of the two-boson subspace.

2. Secondly, we did not prove the completeness of the constructed subspaces H0 (p)
(generated by the ground state) and Hκ

1 (p), meaning that in (H0 (p) ⊕Hκ
1 (p))⊥ the spec-

trum of Hp has no point below κ. We are convinced that this assertion is true and hope
to prove it in the future.
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