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CROSSING AND ALIGNMENTS OF PERMUTATIONS

SYLVIE CORTEEL

Abstract. We derive the continued fraction form of the generating function

of some new q-analogs of the Eulerian numbers Êk,n(q) introduced by Lauren
Williams building on work of Alexander Postnikov. They are related to the
number of alignments and weak exceedances of permutations. We show how
these numbers are related to crossing and generalized patterns of permutations
We generalize to the case of decorated permutations. Finally we show how
these numbers appear naturally in the stationary distribution of the ASEP
model.

1. Introduction

The purpose of this paper is to derive the continued fraction form of generating
function of some new q-analogs of Eulerian numbers Êk,n(q) introduced by Lau-
ren Williams [16] building on work of Alexander Postnikov [13] and to link them
to generalized patterns. These numbers are related to the number of alignments
and weak exceedances of permutations and come from the enumeration of totally
positive Grassmann cells. We refer to [13] and [16] for details. We start by some
definitions.

Let σ = (σ(1), . . . , σ(n)) be a permutation of [n]. Then let

• A+(i) = {j | j < i ≤ σ(i) < σ(j)}; A+(σ) =
∑n

i=1 |A+(i)|.
• A−(i) = {j | j > i > σ(i) > σ(j)}; A−(σ) =

∑n

i=1 |A−(i)|.
• A+,−(i) = {j | j ≤ σ(j) < σ(i) < i} ∪ {j | σ(i) < i < j ≤ σ(j)};

A+,−(σ) =
∑n

i=1 |A+,−(i)|.

For example let σ = (4, 7, 3, 6, 2, 1, 5) then A+(σ) = 3, A−(σ) = 1, and A+,−(σ) =
2.

We can also define these parameters using the permutation diagram. If σ is a
permutation of [n]. We draw a line and put the numbers from 1 to n and we draw
an edge from i to σ(i) above the line if i ≤ σ(i) and under the line otherwise. Then
A+(σ) is the number of pairs of nested edges above (resp. under) the line and
A+,−(σ) is the number of pairs of edges such that one is above the line and the
other under and such that their support do not intersect.

1 2 3 4 5 6 7

Figure 1. The permutation diagram of σ = (4, 7, 3, 6, 2, 1, 5)
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The permutation diagram of σ = (4, 7, 3, 6, 2, 1, 5) is on Figure 1. The pairs of
edges contributing to A+(σ) are {(1, 4), (3, 3)}, {(2, 7), (3, 3)} and {(2, 7), (4, 6)}.
The pair of edges contributing to A−(σ) is {(5, 2), (6, 1)}. The pairs of edges con-
tributing to A+,−(σ) are {(7, 5), (1, 4)} and {(7, 5), (3, 3)}.

Definition 1. The number of alignements of a permutation σ is equal to

A+(σ) + A−(σ) + A+,−(σ).

This definition looks a bit different but is equivalent to the definition in [16].
The number of weak exceedances of a permutation σ is the cardinal of the set
{j | σ(j) ≥ j}. In [16] the following result was proved :

Proposition 1. The number of permutations of [n] with k weak exceedances and ℓ
alignments is the coefficient of [q(k−1)(n−k)−ℓ] in

Êk,n(q) = qk−k2

k−1
∑

i=0

(−1)i[k − i]nq qk(i−1)

((

n

i

)

qk−i +

(

n

i − 1

))

.

where [k]q = 1 + q + . . . + qn−1.

These numbers have the property that if q = 1 they are the eulerian numbers,
if q = 0 they are the Narayana numbers and if q = −1 they are the binomial
coefficients. See [16] for details.

Lauren Williams proved in [16] that E(q, x, y) =
∑

n,k qn−kÊk,n(q)ykxn is equal
to

∞
∑

i=0

yi(q2i+1 − y)

qi2+i+1(qi − qi+1[i]x + [i]xy)
.

Here we exhibit the generating function Ê(q, x, y) =
∑

n,k Êk,n(q)ykxn in a contin-
ued fraction form.

Theorem 1.

Ê(q, x, y) =
1

1 − b0x −
λ1x

2

1 − b1x −
λ2x

2

1 − b2x −
λ3x

2

. . .

with bn = y[n + 1]q + [n]q and λn = y[n]2q and [n]q = 1 + q + . . . + qn−1.

To prove this theorem we introduce the notion of crossings. Let

• C+(i) = {j | j < i ≤ σ(j) < σ(i)}; C+(σ) =
∑n

i=1 |C+(i)|.
• C−(i) = {j | j > i > σ(j) > σ(i)}, C−(σ) =

∑n
i=1 |C−(i)|.

We define the number of crossings of a permutation σ to be C−(σ) + C+(σ).
We can again define those parameters using the permutation diagram. C+(σ) is

the number of pairs of edges above the line that intersect and C−(σ) is the number
of pairs of edges under the line that cross.

For σ = (4, 7, 3, 6, 2, 1, 5) we have C+(σ) = 2 and C−(σ) = 1. The pairs of edges
contributing to C+(σ) are {(1, 4), (4, 6)} and {(1, 4), (2, 7)}. The pair of edges con-
tributing to C−(σ) is {(7, 5), (6, 1)}.

The proof of the theorem is direct with the following two propositions.
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Proposition 2. The coefficient [xnykqℓ] in Ê(q, x, y) is the number of permutations

of [n] with k weak exceedances with ℓ crossings.

Proposition 3. For any permutation with k weak exceedances the number of cross-

ings plus the number of alignments is (k − 1)(n − k).

We prove these two propositions in Section 2. The proof of the first one uses
a bijection of Foata and Zeilberger between permutations and weighted bicolored
Motzkin paths [9]. The proof of the second one uses basic properties of permuta-
tions. Then in Section 3 we use a bijection due to Françon and Viennot [10] and the
bijection of Foata and Zeilberger and use results from [4, 5] to link with generalized
patterns. One result is :

Proposition 4. There is a one-to-one correspondance between permutations with

k weak exceedances and (n− k)(k − 1)− ℓ alignments and permutations with k − 1
descents and ℓ occurrences of the generalised pattern 13 − 2.

The link between alignments and generalized patterns was conjectured by Ste-
ingrimsson and Williams [15]. In Section 4 we generalize to the case of decorated
permutations. In Section 5 we show how these numbers appear naturally in the
stationary distribution of the ASEP model.

2. Proof of Proposition 2 and 3

2.1. Proof of Proposition 2. We use a bijection of Foata and Zeilberger [9]
between permutations and weighted bicolored Motzkin paths. We could also use
the bijection of Biane [1]. We refer to [5] for a compact definition of these bijections.

A bicolored Motzkin path of length n is a sequence c = (c1, . . . , cn) such that
ci ∈ {N, S, E, Ē} for 1 ≤ i ≤ n such that if hi = {j < i | cj = N}−{j < i | cj = S}
then hi ≥ 0 for 1 ≤ i ≤ n and hn+1 = 0.

To any permutation σ we associate a pair (c, w) made of a bicolored Motzkin
path c = (c1, c2, . . . , cn) and a weight w = (w1, . . . , wn). The path is created using
the following rules :

• ci = N if i < σ(i) and i < σ−1(i)
• ci = E if i < σ(i) and i > σ−1(i)
• ci = Ē if i > σ(i) and i < σ−1(i)
• ci = S if i > σ(i) and i > σ−1(i)

The weight is created using the following rules :

• wi = yp|A+(i)|q|C+(i)| if ci = N, E.
• wi = p|A−(i)|q|C−(i)| if ci = S, Ē.

For example σ = (4, 1, 5, 6, 2, 3) gives the path (N, Ē, N, E, S, S) and the weight
(y, 1, yp, yp, p, 1).

We now need

Lemma 2. If i ≤ σ(i) then

|C+(i)| = hi − |A+(i)|;

and if i > σ(i) then

|C−(i)| = hi − 1 − |A−(i)|.



4 SYLVIE CORTEEL

Proof. It is easy to prove by induction that

hi = |{j < i | σ(j) ≥ i}| = |{j ≥ i | σ(j) < i}|.

Using the definitions given in Section 1, if i ≤ σ(i) then

A+(i) ∪ C+(i) = {j < i | σ(j) ≥ i}

and if i > σ(i) then

A−(i) ∪ C−(i) = {j > i | σ(j) < i} = {j ≥ i | σ(j) < i}\{i}.

This implies the result. �

Let Pn be the set of pairs (c, w) obtained from permutations of [n]. Using the
machinery developed in [8, 14], we get directly that if :

Ê(q, p, x, y) =
∑

n

xn
∑

(c,w)∈Pn

n
∏

i=1

wi.

then

(1) Ê(q, p, x, y) =
1

1 − b0x −
λ1x

2

1 − b1x −
λ2x

2

1 − b2x −
λ3x

2

. . .

with bn = y[n + 1]p,q + [n]p,q and λn = y[n]2p,q.

This gives a generalization of Proposition 2. We define the number of nestings
of a permutation σ to be A+(σ) + A−(σ).

Proposition 5. The coefficient of [xnykqℓpm] in Ê(q, p, x, y) is the number of

permutations σ of [n] with k weak exceedances, ℓ crossings and m nestings.

Note that this bijection implies that

Proposition 6. The number of permutations with k weak exceedances and ℓ cross-

ings and m nestings is equal to the number of permutations with k weak exceedances

and ℓ nestings and m crossings.

Similar results are known for set partitions and matchings [11, 3].

2.2. Proof of Proposition 3. We suppose that σ is a permutation of [n] with k
weak exceedances. For any i with 1 ≤ i < n, we first define :

• B+(i) = {j | j < i ≤ σ(j)}
• B−(i) = {j | σ(j) < i ≤ j}

Note that hi = |B+(i)| = |B−(i)| and that for i > σ(i), A−(i)∪C−(i)∪{i} = B−(i).
Therefore

(2) A−(σ) + C−(σ) =
∑

i>σ(i)

(|B−(i)| − 1) = k − n +
∑

i>σ(i)

|B+(i)|

For i ≤ σ(i), let

E+(i) = {j | i ∈ C+(j)} = {j | i < j ≤ σ(i) < σ(j)}.

It is easy to see that :
E+(i) ∪ A+(i) = B+(σ(i)).
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Therefore

A+(σ) + C+(σ) =
∑

i≤σ(i)

|C+(i)| + |A+(i)|

=
∑

i≤σ(i)

|E+(i)| + |A+(i)|

=
∑

i≤σ(i)

|B+(σ(i))|

=
∑

i>σ(i)

|D+(i)|,

where

D+(i) = {j | j ≤ σ(j) and i ∈ B+(σ(j))}.

It is easy to see that for i > σ(i), D+(i) = {j | j ≤ σ(j) and σ(i) < σ(j) < i}
and therefore that B+(i) ∪ D+(i) ∪ A+,−(i) = {j | j ≥ σ(j)}. As they are pairwise
disjoint then

|B+(i)| + |D+(i)| + |A+,−(i)| = k.

Combining equations (2) and (3) we get that A+(σ)+C+(σ)+A−(σ)+C−(σ)+
A+,−(σ) = k − n +

∑

i>σ(i) |D+(i)|+ |B+(i)|+ |A+,−(i)|. This concludes the proof

of Proposition 3. �

3. Link with generalized patterns

Continued fractions like the one presented in equation (1) were studied combina-
torially in [4, 5]. A descent in a permutation is an index i such that σ(i) > σ(i+1).
An ascent in a permutation is an index i such that σ(i) < σ(i+1). The pattern 31-2
(resp. 2-31, 13-2) occurs in σ if there exist i < j such that σ(i) > σ(j) > σ(i + 1)
(resp. σ(j + 1) < σ(i) < σ(j), σ(i + 1) > σ(j) > σ(i)).

Theorem 10 in [5] associated with Theorem 22 in [4] tells us that :

Proposition 7. The coefficient of [tnxkqℓpm] in Ê(t, x, q, p) is the number of per-

mutations σ of [n] with n − k descents, ℓ occurences of the patterns 31 − 2 and m
occurences of the pattern 2 − 31.

This can also be proved bijectively thanks to a bijection of Françon and Viennot
[10]. We present now that bijection. See also [5].

Given a permutation σ = (σ(1), . . . , σ(n)), we set σ(0) = 0 and σ(n + 1) = n+1.
Let σ(j) = i. Then i is

• a valley if σ(j − 1) > σ(j) < σ(j + 1)
• a double ascent if σ(j − 1) < σ(j) < σ(j + 1)
• a double descent if σ(j − 1) > σ(j) > σ(j + 1)
• a peak if σ(j − 1) < σ(j) > σ(j + 1)
• the beginning (resp. end) of a descent if σ(j) > σ(j + 1) (resp. σ(j − 1) >

σ(j))
• the beginning (resp. end) of a ascent if σ(j) < σ(j + 1) (resp. σ(j − 1) <

σ(j)).
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If σ(j) = i then we define 31 − 2(i) (resp. 2 − 31(i)) to be the number of indices
k < j (resp. k > j) such that σ(k − 1) > σ(j) > σ(k).

To any permutation, we associate a pair (c, w) made of a bicolored Motzkin path
c = (c1, c2, . . . , cn) and a weight w = (w1, . . . , wn). The path is created using the
following rules :

• ci = N if i is a valley
• ci = E if i is a double ascent
• ci = Ē if i is a double descent
• ci = S if i is a peak

The weight is created using the following rules :

• wi = yp31−2(i)q2−31(i) if ci = N, E.
• wi = p31−2(i)q2−31(i) if ci = S, Ē.

For example σ = (6, 2, 1, 5, 3, 4) gives the path (N, Ē, N, E, S, S) and the weight
(y, 1, yp, yp, y, 1).

Now we prove the following Lemma

Lemma 3. For any i

31 − 2(i) + 2 − 31(i) =

{

hi if i is the beginning of an ascent
hi − 1 if i is the beginning of a descent

Proof. We prove this lemma by induction. If i is equal to 1 then i is the
beginning of an ascent and 31 − 2(1) + 2 − 31(1) = 0 = h1. If i > 1 then
31 − 2(i) + 2 − 31(i) = 31 − 2(1) + 2 − 31(i − 1) + v where v is zero, one or
minus one. It is easy to see that v is one if i− 1 is the end of a descent and i is the
beginning of an ascent, v is minus one if i − 1 is the end of an ascent and i is the
beginning of a descent and 0 otherwise. That gives exactly the lemma. �

Let Pn be the set of pairs (c, w) obtained from permutations of [n]. Using the
machinery developed in [8, 14], we get directly that

∑

n xn
∑

(c,w)∈Pn

∏n

i=1 wi. is

Ê(q, p, x, y) defined in equation (1).

Combining the bijection of Françon and Viennot and the inverse of bijection of
Foata and Zeilberger [9] we get that

Proposition 8. The number of permutations of [n] with k descents, ℓ occurences

of the patterns 31− 2 and m occurences of the pattern 2− 31 is equal to number of

permutations σ of [n] with n− k weak exceedances and ℓ crossings and m nestings.

We also propose the direct mapping. Starting from a permutation σ with k
descents, ℓ occurences of the patterns 31 − 2 and m occurences of the pattern
2 − 31, we form a permutation τ with k descents, ℓ occurences of the patterns
31 − 2 and m occurences of the pattern 2 − 31.

We first form two two-rowed arrays f and g. The first line of f contains all the
entries of σ that are the beginning of a descent. They are sorted in increasing order.
The second line of f contains all the entries of σ that are the end of a descent. They
are sorted such that if i is in that row then 2 − 31(i) in σ is the number of entries
of the row to the right of i smaller than i. The second line of f contains all the
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entries of σ that are the end of a descent sorted in increasing order.
The first line of g contains all the entries of σ that are the beginning of an ascent
and that are sorted in increasing order. The second line of g contains all the entries
of σ that are not the end of a descent. They are sorted such that if i is in that row
then 2 − 31(i) in σ is the number of entries of the row to the left of i greater than
i. We create the permutation τ which is the union of f and g.

For example if σ = (5, 1, 7, 4, 3, 6, 8, 2) then the 2 − 31 sequence is

(2 − 31(1), . . . , 2 − 31(8)) = (0, 0, 1, 1, 2, 1, 1, 0).

Then

f =

(

4, 5, 7, 8
1, 3, 4, 2

)

and

g =

(

1, 2, 3, 6
8, 6, 5, 7

)

Then τ =

(

1, 2, 3, 4, 5, 6, 7, 8
8, 6, 5, 1, 3, 7, 4, 2

)

= (8, 6, 5, 1, 3, 7, 4, 2).

We conclude this Section by proving Proposition 4. Given a permutation σ =
(σ(1), . . . , σ(n)). Let π = (σ(n), . . . , σ(1)). If σ has k−1 ascents (or n−k descents)
and ℓ occurences of the pattern 31− 2, then π has k − 1 descents and ℓ occurences
of the pattern 2 − 13. With the previous proposition this gives Proposition 4.

4. Generalization for decorated permutations

We can also derive the generating function of

Ak,n(q) =

k−1
∑

i=0

(

n

i

)

Ek,n−i.

These were introduced in [16].
The following corollary is an easy consequences of Theorem 1. Let A(q, x, y) =

∑

n,k Ak,n(q)xnyk.

Corollary 4.

A(q, x, y) =
1

1 − b0x −
λ1x

2

1 − b1x −
λ2x

2

1 − b2x −
λ3x

2

. . .

with bn = (1 + y)[n + 1]q and λn = yq[n]2q.

Lauren Williams [15] proved that

A(q, x, y) =
−y

1 − q
+

∑

i≥1

yi(q2i+1 − y)

qi2+i+1(qi − qi[i + 1]x + [i]xy)

It would be interesting to have a direct proof of the identity of the formal series
form and the continued fraction form of these generating functions [15].
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We can also interpret these results combinatorially. In [16] the coefficient of
[q(n−k)k−ℓ] in Ak,n(q) is interpreted in terms of decorated permutations with k weak
exceedances and ℓ alignments . Let us define these notions. Decorated permutations
are permutations where the fixed points are bicolored [13]. We color these fixed
points by colors {+,−}. We say that i ≤+ σ(i) if i < σ(i) or i = σ(i) and colored
with color +. We say that i ≥− σ(i) if i > σ(i) or i = σ(i) and colored with color
−.

For a decorated permutation σ and i, let

• A+(i) = {j | j < i ≤+ σ(i) < σ(j)}
• A−(i) = {j | j > i ≥− σ(i) > σ(j)}
• A+,−(i) = {j | i ≥− σ(i) > σ(j) ≥ j} ∪ {j | σ(j) ≥ j > i ≥− σ(i)}
• C+(i) = {j | i < j ≤ σ(i) < σ(j)}
• C−(i) = {j | j > i > σ(j) > σ(i)}

As for permutations we define A±(σ) =
∑

i A±(i).
With these notions, we can again define the number of alignments (resp. nestings,

crossings) of a decorated permutation σ as A+(σ)+A−(σ)+A+,−(σ) (resp. A+(σ)+
A−(σ), C+(σ) + C−(σ)). The number of weak exceedances (resp. descedances)
of a decorated permutation is the cardinality of the set {i | i ≥+ σ(i)} (resp.
{i | i < σ(i)} ).

Let

A(q, p, x, y) =
1

1 − b0x −
λ1x

2

1 − b1x −
λ2x

2

1 − b2x −
λ3x

2

. . .
with bn = (1 + y)[n + 1]p,q and λn = yq[n]2p,q.

A direct generalization of the bijection à la Foata-Zeilberger on decorated per-
mutations gives :

Proposition 9. The coefficient of [xnykqℓpm] in A(q, p, x, y) is the number of dec-

orated permutations σ of [n] with k weak exceedances, ℓ is the sum of the crossings

and the descedances and m nestings.

We can also make a direct link with the alignments :

Proposition 10. For any decorated permutation σ with k weak exceedances

A+(σ) + A−(σ) + C+(σ) + C−(σ) + A+,−(σ) + |{j | j > σ(j)}| = (n − k)k.

Proof. The proof is omitted as it follows exactly the same steps as the proof of
Proposition 3. �

We leave as an open question to derive the bijection à la Françon-Viennot on
decorated permutations to interpret the Ak,n(q) in terms of descents and generalized
patterns.

5. Link with the ASEP model

The ASEP model [12, 6] consists of black particles entering a row of n cells, each
of which is occupied by a black particle or vacant. A particle may enter the system
from the left hand side, hop to the right or to the left and leave the system from the



CROSSING AND ALIGNMENTS OF PERMUTATIONS 9

right hand side, with the constraint that a cell contains at most one particle. We
will say that the empty cells are filled with white particles ◦. A basic configuration
is a row of n cells, each containing either a black • or a white ◦ particle. Let Bn

be the set of basic configurations of n particles. We write these configurations as
though they are words of length n in the language {◦, •}∗.

The ASEP defines a Markov chain P defined on Bn with the transition proba-
bilities α, β, and q. The probability PX,Y , of finding the system in state Y at time
t + 1 given that the system is in state X at time t is defined by:

• If X = A • ◦B and Y = A ◦ •B then

(3a) PX,Y = 1/(n + 1); PY,X = q/(n + 1)

• If X = ◦B and Y = •B then

(3b) PX,Y = α/(n + 1).

• If X = B• and Y = B◦ then

(3c) PX,Y = β/(n + 1).

• Otherwise PX,Y = 0 for Y 6= X and PX,X = 1 −
∑

X 6=Y PX,Y .

See an example for n = 2 in Figure 2.

α/3

q/3 1/3

β/3

α/3β/3

Figure 2. The chain P for n = 2.

This Markov chain has a unique stationary distribution [6]. The case q = 0 was
studied combinatorially by Enrica Duchi and Gilles Schaeffer [7]. In [2] another
combinatorial approach was taken to treat the general case.

Definition 2. [2] Let P(n) be the set of bicolored Motzkin paths of length n. The

weight of the path in P(0) is 1. The weight of any path p denoted by w(p) is the

product of the weights of its steps. The weight of a step, pi, starting at height h is

given by:

if pi = N then w(pi) = [h + 1]q

if pi = Ē then w(pi) = [h]q + qh/α

if pi = E then w(pi) = [h]q + qh/β

if pi = S then w(pi) = [h]q + qh/(αβ) − qh−1(1/α − 1)(1/β − 1).
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Given a path p, θ(p) is the basic configuration such that each Ē and S step is
changed to ◦ and each E and N step is changed to •. Let

(5) W (X) =
∑

p∈θ−1(X)

w(p)

and

(6) Zn =
∑

X∈Bn

W (X)

Theorem 5. [2] At the steady state, the probability that the chain is in the basic

configuration X is
W (X)

Zn

We can use these results and observations from the previous sections to get :

Theorem 6. If α = β = 1, at the steady state, the probability that the chain is in

a basic configuration with k particles is

Êk+1,n+1(q)

Zn

.

Before proving that theorem, we need a Lemma

Lemma 7. There is a weight preserving bijection between P(n, k) the set of bicol-

ored Motzkin paths of length n where the weight of any step starting at height h
is [h + 1]q and where k is the number of steps N plus the number of steps E and

P ′(n + 1, k + 1) the set of Motzkin paths of length n + 1 where the weight of any

step starting at height h is [h + 1]q if the step is N or E and [h]q otherwise and

where k + 1 is the number of steps N plus the number of steps E.

Proof. This is a general version of the classical bijection between bicolored Motzkin
path of length n and bicolored Motzkin path of length n + 1 where one of the hor-
izontal steps can not appear at height 0. The proof consists of transforming each
step N (resp. E, Ē, S) weighted by w by two steps (N, N) (resp. (N, S), (S, N),
(S, S)) each of them weighted by w/2. Then we add a N step at the beginning and
add a step S at the end both with weight 1/2 and apply the reverse map. �

Proof of the Theorem. We want to compute for α = β = 1

W (k, n) =
∑

X∈Bn

X has k particles

W (X) =
∑

p∈P(n,k)

w(p).

Now we use the previous lemma and get

W (k, n) =
∑

p∈P′(n+1,k+1)

w(p).

Using [8, 14] and the definition of the weight of the steps of P ′(n + 1, k + 1), we
conclude that :

1 +
∑

n≥0

xn+1
n

∑

k=0

yk+1W (k, n) = Ê(q, x, y)

and therefore that W (k, n) = Êk+1,n+1(q). �
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6. Conclusion

Several open problems naturally arise :

• Can we define generalized patterns for decorated permutations?
• Can we generalize these q-Eulerian numbers to understand the ASEP when

α 6= 1 or β 6= 1?
• Can we extend the definition of k-crossing and k-nesting that were defined

for matchings and set partitions [3] ?
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