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ENUMERATION OF CONNECTED UNIFORM HYPERGRAPHS

TSIRY ANDRIAMAMPIANINA AND VLADY RAVELOMANANA

Abstract. In this paper, we are concerned in counting exactly and asymptotically connected
labeled b-uniform hypergraphs (b ≥ 3). Enumerative results on connected graphs are generalized
here to connected uniform hypergraphs. For this purpose, these structures are counted according
to the number of vertices and hyperedges. First, we show how to compute step by step the as-
sociated exponential generating functions (EGFs) by means of differential equations and provide
combinatorial interpretations of the obtained results. Next, we turn on asymptotic enumeration.
We establish Wright-like inequalities for hypergraphs and by means of complex analysis, we obtain
the asymptotic number of connected b-uniform hypergraphs with n vertices and (n + ℓ)/(b − 1)

hyperedges whenever ℓ = o(n1/3/b1/3). This latter result confirms a conjecture made by Karoński
and  Luczak in [20] about the validity of their formula for excesses in the ‘Wright’s range’.

Résumé. Dans cet article, nous nous intéressons à l’énumération exacte puis asymptotique des
hypergraphes b-uniformes (b ≥ 3) . Des résultats énumératifs sur les graphes sont ici généralisés
pour les hypergraphes b-uniformes. Dans cette optique, ces structures sont énumérées suivant le
nombre de sommets et le nombre d’hyperarêtes. Premièrement, nous montrons comment obtenir
récursivement leurs fonctions génératrices exponentielles et nous justifions alors les formes des
résultats ainsi obtenus par des arguments combinatoires. Ensuite, nous faisons l’énumération
asymptotique. Nous établissons des inégalités similaires à celles de Wright pour les hypergraphes,
en passant par de l’analyse complexe, nous obtenons l’asymtotique du nombre d’hypergraphes
connexes b-uniformes ayant n sommets et (n + ℓ)/(b− 1) hyperarêtes quand ℓ = o(n1/3/b1/3). Ce
dernier résultat confirme une conjecture de Karoǹski et  Luczak dans [20] pour avoir une formule
valide avec des excès dans ‘l’intervalle de Wright’.

1. Introduction

In this paper we are concerned with counting exactly and asymptotically members of families
of labeled connected b-uniform hypergraphs with a given number of vertices and hyperedges and
without multiple hyperedges. A labeled hypergraph H = (V, E) is given by a set V of n vertices with
a family E of subsets of V of cardinal ≥ 2 (see Berge [4]). A member of E is called hyperedge and
H = (V, E) is said b-uniform (b ≥ 2) iff each member of E contains exactly b vertices. Therefore,
2-uniform hypergraphs are simply graphs. Let H = (V, E) be a hypergraph, uniform or not, then
its excess is defined as (see [20]):

(1) excess(H) =
∑

e∈E

(|e| − 1) − |V | .

Therefore, if H = (V, E) is a b-uniform hypergraph then its excess is given by the expression

(2) excess(H) = |E| × (b − 1) − |V | .
The notion of excess was first used in [27] where the author obtained substantial enumerative results
in the study of connected graphs according to their number of vertices and edges. Wright’s results
appeared to be very important in the study of random graphs [6, 18, 19]. Later, Bender, Canfield
and McKay [2] but also Pittel and Wormald [24] generalized Wright’s results and obtained the
asymptotic number of connected graphs of any given number of vertices and edges.

Key words and phrases. b-uniform hypergraphs; enumerative and analytic combinatorics; saddle-point method;
generalized Wright’s coefficients; random hypergraphs.
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2 TSIRY ANDRIAMAMPIANINA AND VLADY RAVELOMANANA

In contrary, much less is known about the number of hypergraphs of a given size. As far as we
know, the most important results in these directions are those of Karoński and  Luczak in [20, 21].
In [20], the two authors used ‘purely combinatorial arguments’ to obtain their results. In this paper,
our aim is to obtain analogous results to that of Wright [27, 29]. To do so, our approach is based on
generating functions. Following the previously cited works, namely [18], connected hypergraphs with
excess −1 are called hypertrees, connected hypergraphs with excess 0 are called unicyclic components
or unicycles. Since these structures are labeled, we will use exponential generating functions (EGFs,
for short) [15] to encode their number. Then, denote by Hℓ the EGF of labeled connected b-uniform
hypergraphs with excess ℓ. The purpose of this work is to compute the sequence of EGFs (Hℓ)ℓ≥−1.

The outline of this paper is as follows. In the second section, we establish the differential equation
satisfied by the EGFs Hℓ (ℓ ≥ −1). We show how these EGFs can be computed exactly from this
combinatorial equation and we retrieve some results that appeared in [25, 20]. In the third section,
we give the forms of the expression of Hℓ. We show that for every ℓ ≥ −1, Hℓ can be expressed
in terms of the EGF of rooted hypertrees and we give combinatorial interpretations of the forms of
these EGFs. The next section is devoted to the asymptotic enumeration of uniform hypergraphs.
First, we establish Wright-like inequalities for hypergraphs. Next, these inequalities are combined
with methods from complex analysis and lead us to the asymptotic number of connected hypergraphs
with n vertices and (n + o(n1/3))/(b − 1) hyperedges.

2. Combinatorial equations satisfied by Hℓ

2.1. Hypergraphs surgery. Let us start with a figure that illustrates, with 4-uniform hypergraph,
the main idea from which we deduce the enumeration.
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The figure on the left side is a connected 4-uniform hypergraph with 14 vertices and 5 hyperedges one
of which is distinguished, namely the dashed hyperedge {2, 4, 8, 12}. The figure on the right side
is a 4-uniform hypergraph with also 14 vertices but with only 4 hyperedges. This latter hypergraph
is not connected but contains 3 components in which one or more vertices are distinguished (resp.
{2, 8}, {4} and {12}). The above figures reflect combinatorial relations between families of connected
hypergraphs with on first hand a distinguished hyperedge and on the other hand marked vertices. For
instance, we refer the reader to Bergeron, Labelle and Leroux [5] for the use of distinguishing/marking
and pointing in combinatorial species. The following lemma describes the relationships between
number of edges and excesses in b-uniform connected components with distinguished hyperedge and
marked vertices:
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Lemma 2.1. Consider a set M of connected b-uniform hypergraphs with one or more distinguished
vertices. For any couple (j, k) , denote by mjk the number of connected components in M of excess
j and with k marked vertices. Then, the hypergraph obtained when creating a (new) hyperedge
connecting all the distinguished vertices of all the components in M is (i) connected, (ii) b-uniform
and (iii) has excess ℓ if and only if

(3)
∑

j,k

k mjk = b and
∑

j,k

(j + k) mjk = ℓ + 1 .

Proof. It is clear that the created hypergraph is connected and is b-uniform if and only if the total
number (

∑

j,k k mjk) of distinguished vertices in the set is equal to b . Let N be the number of

(connected) hypergraphs in the considered set M and let n be the total number of vertices in this
set. Let us assign an arbitrary order to the members of the set and let ni, si and ki be respectively
the number of vertices, hyperedges and distinguished vertices in the i-th hypergraph. The excess of
the newly created hypergraph is then equals to ℓ if and only if
∑N

i=1 si(b − 1) + (b − 1) − n = ℓ. We get
∑N

i=1 si(b − 1) +
∑N

i=1 ki −
∑N

i=1 ni = ℓ + 1 and
∑N

i=1

(

{si(b − 1) − ni} + ki

)

= ℓ + 1. Therefore,
∑

j,k mjk(j + k) = ℓ + 1. �

2.2. Combinatorial equations. In this paragraph, the previous correspondences are expressed in
terms of EGFs. Let us consider the bivariate EGF Hℓ. We have

Hℓ(w, z) =

∞
∑

s=0

∞
∑

n=0

hℓ(s, n) ws zn

n!

=

∞
∑

n=0

hℓ

(

(n + ℓ)/(b − 1), n
)

w(n+ℓ)/(b−1) zn

n!
,(4)

where w (resp. z) is the variable related to the number of hyperedges (resp. labeled vertices). In (4),
hℓ(s, n) denotes the number of connected b-uniform hypergraphs with excess ℓ with s hyperedges
and n vertices. Using (2), we note that hℓ(s, n) 6= 0 iff (n + ℓ)/(b − 1) ∈ IN. The following theorem
is inspired by the observations of paragraph 2.1 and gives recursive relation between the EGFs Hℓ.

Theorem 2.2. The bivariate EGFs (Hℓ)ℓ≥−1 of labeled connected b-uniform hypergraphs satisfy

(5) w
∂

∂w
Hℓ(w, z) = w

∑

(mjk)∈Sℓ







∏

j,k

1

mjk!

(

zk

k!

∂k

∂zk
Hj(w, z)

)mjk







− w
∂

∂w
Hℓ−b+1(w, z)

where Sℓ is the following set of matrix:

(6) Sℓ =

{

(mjk)−1≤j≤ℓ
1≤k≤b

with (mjk ∈ IN) such that
∑

j,k

mjk(j + k) = ℓ + 1 and
∑

j,k

kmjk = b

}

and Hj ≡ 0 if j ≤ −2 .

Proof. This equation relates, in terms of generating functions, the bijection between two sets of
objects described by a) and b) as follows. a) In the left-hand side of (5), we have the EGF of the
set of connected hypergraphs with excess ℓ and with a marked hyperedge. b) In the right-hand side,
there are union of sets of components with one or more distinguished vertices that can be obtained
from the removal, in a connected hypergraph of excess ℓ, of a hyperedge. After such removal, in
each newly created component, the vertices which belonged to the removed hyperedge are marked.

If there is k such distinguished vertices, in terms of EGFs, we then have zk

k!
∂k

∂zk Hj(w, z). The second
member of our equation can be interpreted as the creation of a (future) hyperedge with a total of b
distinguished vertices in order to reconnect a set of hypergraphs. In the case where there is only one
component, necessarily its excess is ℓ − b − 1 and there are b of its vertices that are distinguished.
These b vertices must not form an already existing hyperedge because we consider here hypergraphs
without multiple hyperedges. It is the reason why we have to subtract the term w ∂

∂wHℓ−b+1(w, z)
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in the RHS of (5). Observe that by the previous lemma, the definition of the set Sℓ, viz. (6), ensures
that the hypergraph obtained by the creation of a hyperedge connecting the marked vertices in the
RHS is with excess ℓ and that the hyperedge which is created is formed with b vertices. �

Remark 2.3. We note that it is sufficient to determine the univariate EGFs since the corresponding
bivariate EGFs can be deduced from the univariate ones simply using the relation

(7) Hℓ(w, z) = wℓ/(b−1)Hℓ(w
1/(b−1)z) .

Saving the justification of its use for later, let us denote by T (z) the (univariate) EGF corresponding
to rooted hypertrees. Since a rooted hypertree is either a root or a root with a non-empty set of
rooted (sub)hypertrees, borrowing methods from symbolic combinatorics (cf. [11]), we get

(8) T (z) = z exp

(

T (z)(b−1)

(b − 1)!

)

.

Remark 2.4. Throughout this paper, we use the notation Hℓ followed by the couple of variables
(w, z) to express the bivariate EGF, the notation Hℓ followed by the variable (z) to express the
univariate EGF. Whenever the variable are intentionally omitted, the EGF in used is
Hℓ ≡ Hℓ(T (z)) where T (z) is the EGF of rooted (b-uniform) hypertrees implicitly given by (8).

The EGFs Hℓ ≡ Hℓ(T (z)) satisfies the following.

Corollary 2.5. For excess ℓ = −1

H−1 = T − (b − 1)T b

b!
, T ≡ T (z)(9)

and for ℓ ≥ 0

1

b − 1

(

ℓHℓ + T
d

dT
Hℓ

)

=
∑

(mjk)∈Sℓ
∗







∏

j,k

1

mjk!

(

zk

k!

dk

dzk
Hj(z)

)mjk







(10)

− 1

b − 1

(

(ℓ − b + 1)Hℓ−b+1(z) + z
d

dz
Hℓ−b+1(z)

)

where Sℓ
∗ is the same as Sℓ (see (6)) without the matrix where all coefficients equal zero except for

the coefficients m1,1 = b − 1 and mℓ,1 = 1 .

Sketch of proof. Use the fact that

w
∂

∂w
Hj(w, z) =

1

b − 1

(

jHj(w, z) + z
∂

∂z
Hj(w, z)

)

,

with (5) and (7) and set w = 1. For ℓ = −1, we have S−1 = {(m−11, m−12, . . . , m−1,b) = (b, 0, 0, . . . , 0)}.
Therefore, we obtain

1

b − 1

(

−H−1 + z
d

dz
H−1(z)

)

=

(

z d
dz H−1(z)

)b

b!
,

and using the fact that z d
dz H−1(z) = T (z), it yields (9). To prove (10), first we note that for ℓ ≥ 0

the range of the matrix in Sℓ
∗ can be rearranged so that the line index ranges from −1 to ℓ− 1 and

the column index ranges from 1 to b . After some algebra, we get

1

b − 1

(

ℓHℓ + z
d

dz
Hℓ(z)

)

= Jℓ +

(

z d
dz H−1(z)

)b−1

(b − 1)!

(

z
d

dz
Hℓ(z)

)

where Jℓ is the RHS of (10). Again using z d
dz H−1(z) = T , we obtain

1

b − 1

(

ℓHℓ +

(

z
d

dz
Hℓ(z)

)(

1 − T b−1

(b − 2)!

))

= Jℓ .
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From (8), we have

(11)
dT

dz
=

T

z
(

1 − T b−1

(b−2)!

)

and by the chain rule for differentiation we get the desired result. Note also that zk

k!
dk

dzk Hj(z) can
be expressed in terms of T so that (10) is completely a differential equation w.r.t. T . �

2.3. Analytical resolution. In this section we show how to compute the expression of Hℓ, ℓ ≥ 0,
in terms of the EGF T of rooted hypertrees. We note that the equation (10) for ℓ ≥ 0 allows us to
compute recursively the expression of Hj for successive values of j. Thus, for each step, we have to
solve a differential equation of order one in the variable T to get the expression of Hj which verifies
the condition that Hj |T=0 = 0.

Lemma 2.6. Let us define θ as

(12) θ = 1 − T b−1

(b − 2)!
.

For all j ≥ −1 and for all k ≥ 0, there is a function fjk such that

(13)
dk

dzk
Hj(z) =

fjk(θ)

zkT j
.

Denoting fj ≡ fj0, in particular we have

(14) Hj =
fj(θ)

T j
.

Proof. From (11) and by the chain rule for differential we deduce (13):

(15) fj,k+1 (θ) = −(b − 1)
fjk

′(θ)

θ
+ (b − 1)fjk

′(θ) − j
fjk(θ)

θ
− kfjk(θ) .

The change of variable given by (12) allow us to deduce that fℓ(θ) satisfies:
(16)

d (fℓ(θ))

−(b − 2)!
=





∑

(mjk)∈Sℓ
∗

∏

j,k

1

mjk!

(

fjk(θ)

k!

)mjk

− 1

b − 1
((ℓ − b + 1)fℓ−b+1,0(θ) + fℓ−b+1,1(θ))



 dθ

�

3. On the form of the EGFs Hℓ

In order to establish the forms of the EGFs Hℓ, we introduce some definitions.
Definitions. The degree of a vertex v is the number of the hyperedges that contain v.
A special hyperedge is one that contains 3 or more vertices of degree at least 2.
A special vertex is either a vertex that belongs to a special hyperedge or a vertex of degree ≥ 3.
A pendant hyperedge is one where there are (b − 1) vertices of degree 1. In the following, we call
path a sequence of hyperedges. A path is also characterized by a starting vertex that belongs to
the first hyperedge and by an ending vertex that belongs to the last hyperedge, and the sequence of
hyperedges defining a path is such that each hyperedge contains exactly (b − 2) vertices of degree 1
in the hypergraph and where any pair of successive hyperedges share exactly one vertex that is not
the starting nor the ending vertex of the path. We distinguish four kind of paths:
• α-path: a path that starts from and ends to the same special vertex, there are at least 2 hyperedges
in an α-path and if there are exactly 2 hyperedges in an α-path then it is said to be minimal.
• β-path: a path that connects 2 special vertices such that if any hyperedge in the path is broken,
these 2 special vertices become disconnected, there is at least 1 hyperedge in such a path; a single
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hyperedge β-path is said to be minimal.
• γ-path: a path that joins 2 special vertices such that these vertices remain connected even if this
path is broken, there is at least 1 hyperedge in such a path; a single hyperedge γ-path is said to be
minimal.

A basic hypergraph is an unlabeled hypergraph that can be obtained from a labeled hypergraph
by the following procedure:

- Discard the labels.
- Remove recursively pendant hyperedges.
- Shrink paths to a minimal special path of the same kind.

Thus, basic hypergraph has the same excess as any hypergraph from which it may be obtained: in
the procedure we have described each time a hyperedge is removed (this happens when shrinking
a path), it is just as if we have removed (b − 1) vertices. Furthermore, basic hypergraph has, for a
given kind of paths, as much number of this kind of paths as in any (original) labeled hypergraph
from which it may be obtained.

Let us enumerate the number of hypergraphs from which a fixed basic hypergraph with excess ℓ
can be obtained. Let J be the EGF of such hypergraphs. Let m be the number of vertices in the
basic hypergraph and respectively cα, cβ and cγ be the number of α-, β- and γ-paths, then

(17) J =
1

g

T m

θp

where g is the number of automorphisms (e.g. [14]) of the basic hypergraph and p = cα + cβ + cγ is
the number of α-, β- or γ-paths. The proof of this relation is immediate since “original” hypergraphs
are obtained by rooting m rooted hypertrees in the basic hypergraph and by re-inserting p “chains”
of eventually zero length in α- β- and γ-paths of the basic hypergraph. Thus, each hypergraph is
obtained g times because of the number of choices where the m rooted hypertrees can be fixed.
Furthermore, with s denoting the number of hyperedges in the considered basic hypergraph, there
is a positive rational λ such that:

(18) J =
1

g

T s(b−1)−ℓ

θp
= λ

(1 − θ)
s

T ℓθp
,

and necessary s ≥
⌊

ℓ+1
b−1 + 1

⌋

.

Lemma 3.1. For any basic hypergraph with excess ℓ, the total number of α-, β- and γ-paths verifies

cα + cβ + cγ ≤ 3ℓ

Proof. Let B0 be the hypergraph induced by the special vertices in the basic hypergraph, let m0 be
the number of special vertices and r0 be the number of special hyperedges then

(19) m0 + cα + 2(b − 2)cα + (b − 2)cβ + (b − 2)cγ + ℓ = (b − 1) (r0 + 2cα + cβ + cγ) .

Thus, m0 − r0(b − 1) + ℓ = cα + cβ + cγ and

(20) −excess(B0) + ℓ = p .

Therefore, to determine the maximum of the number p over the basic hypergraph, it is sufficient to
determine the minimal value of excess(B0). excess(B0) has minimal value if B0 is a forest where
hypertrees are either a single vertex (of degree 3 in the basic hypergraph) or a hyperedge (with exactly
3 vertices of degree 2 in the basic hypergraph). Therefore, if there is a hypergraph with hypergraph
induced by the special vertices satisfying the above condition, we can deduce the maximum of the
number p. The construction of such hypergraph is depicted in the following figure:
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where only the vertices of degree at least 2 are represented. The basic hypergraph that can be
obtained from the hypergraph in the figure above is only with special vertices of degree 3 and the
hypergraph induced by these vertices consists of exactly 2 × ℓ isolated vertices (because the excess
of the hypergraph is ℓ). Thus, p ≤ 3ℓ . �

Lemma 3.2. Hℓ = fℓ(θ)
T ℓ with fℓ a polynomial of maximum degree

⌊

ℓ+1
b−1 + 1

⌋

.

Proof. A matrix in Sℓ
∗ corresponds to constructions as the one we have described in lemma 2.1.

After having assigned an arbitrary order to the marked hypergraphs used in a such construction,
let:
• the i-th hypergraph be of excess ℓi such that ℓi + 1 = qi(b − 1) + ri

• ℓ + 1 = q(b − 1) + r
with q, qi ≥ 0 and r, ri < b − 1 .

As in the proof of lemma 2.1, we get here ℓ + 1 = q(b − 1) + r =
∑N

i=1(qi(b − 1) + ri − 1 + ki) since
∑N

i=1(ri − 1 + ki) ≥ 0 , we deduce that q ≥∑N
i=1 qi. So,

q + 1 ≥
N
∑

i=1

qi + 1 .

The lemma follows, since the summation in the right-hand side maximizes the degree of θ in fℓ(θ). �

Using lemmas (3.1) and (3.2) with combinatorial identities , we obtain the following theorem and
its corollary about the forms of the EGFs Hℓ.

Theorem 3.3. The EGF of connected b-uniform hypergraphs with excess ℓ can be put into the form

Hℓ =
(1 − θ)

⌊

ℓ+1
b−1 +1

⌋

T ℓ

3 ℓ
∑

p=0

Aℓ p

(

1 − θ

θ

)p

with the coefficients Aℓ p being rational.

Corollary 3.4. The EGF of connected b-uniform hypergraphs with excess ℓ ≥ 1 can be rewritten as

Hℓ =
1

T ℓ

⌊

ℓ+1
b−1 +1

⌋

∑

j=−3 ℓ

cj(ℓ, b) θj ,

where cj(ℓ, b) ∈ Q.

The proofs of theorem 3.3 and corollary 3.4 are omitted in this extended abstract.

4. Asymptotic results

4.1. Wright-like inequalities for hypergraphs. In order to compute the asymptotic number of
connected ℓ-excess hypergraphs of a given size, we need the following result which gives the first two
terms of Hℓ. Let us recall that θ = 1 − T b−1/(b − 2)!.
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Lemma 4.1. Developing the two first coefficients of the partial fraction form of Hℓ, we get for ℓ ≥ 1

T (z)
ℓ
Hℓ(z) =

λℓ(b − 1)2ℓ

3 ℓ θ(z)3ℓ
− (κℓ − νℓ(b − 2))(b − 1)2ℓ−1

(3 ℓ − 1) θ(z)3ℓ−1
+

⌊

ℓ+1
b−1+1

⌋

∑

j=−3ℓ+2

cj(ℓ, b) θ(z)
j
.(21)

In (21), (λℓ)ℓ∈IN is defined recursively by λ0 = 1
2 and

λℓ =
1

2
λℓ−1(3ℓ − 1) +

1

2

ℓ−1
∑

t=0

λtλℓ−1−t , (ℓ ≥ 1) .(22)

Similarly, define (νℓ)ℓ≥1, (µℓ)ℓ≥0 and (κℓ)ℓ≥1 as follows: ν1 = 5
12 and

νℓ =
1

2
λℓ−1 +

1

6
(3ℓ − 4)(3ℓ − 2)λℓ−2 +

1

2

ℓ−2
∑

t=0

(3t + 2)λtλℓ−2−t

+
1

6

ℓ−2
∑

s=0

ℓ−2−s
∑

t=0

λsλtλℓ−2−s−t (ℓ ≥ 2) .(23)

κℓ =
1

2
((3ℓ − 2)µℓ−1 + (3bℓ − b − 2ℓ) λℓ−1) +

ℓ−1
∑

t=0

µtλℓ−1−t .(24)

µ0 = b − 1 and for ℓ ≥ 1, µℓ is given by

µℓ = κℓ − νℓ(b − 2) + λℓ(b −
2

3
) , (ℓ ≥ 1) .(25)

Sketch of proof. Use the differential equation (10) given in corollary 2.5 with corollary 3.4, mainly
focusing on the ‘first two terms’ of Hℓ after a bit of standard algebra we get (21).

We are now ready to state similar inequalities such as those obtained by Wright in [29]. If A and
B are two formal power series such that for all n ≥ 0 we have [zn] A(z) ≤ [zn] B(z) then we denote
this relation A � B (or A(z) � B(z)).

Lemma 4.2. For any ℓ ≥ 1, Hℓ satisfies

(26)
λℓ(b − 1)2ℓ

3 ℓ T (z)ℓ θ(z)3ℓ
− (κℓ − νℓ(b − 2))(b − 1)2ℓ−1

(3 ℓ − 1) T (z)ℓ θ(z)3ℓ−1
� Hℓ(z) � λℓ(b − 1)2ℓ

3 ℓ T (z)ℓ θ(z)3ℓ
,

where (λℓ)ℓ∈IN, (κℓ)ℓ∈IN⋆ and (νℓ)ℓ∈IN⋆ are defined as in lemma 4.1.

The proof of this lemma will be provided in the full paper.

The following lemma gives the order of magnitude of the two first coefficients of the partial fraction
form of Hℓ.

Lemma 4.3. We have

(27) λℓ = 3

(

3

2

)ℓ
ℓ!

2π

(

1 + O

(

1

ℓ

))

,

(28)
∣

∣

∣κℓ − νℓ(b − 2)
∣

∣

∣ = O (ℓλℓ) .

Proof. To prove (27), it suffices to remark that λℓ = 3 ℓbℓ where the sequence (bℓ) corresponds to
the Wright’s coefficients defined in [27, eq. (3.2)]. Therefore, by the proof of Lambert Meertens
reported in [2] (see also Vobly̆ı [26]), (27) holds. The remaining proof of (28) is technical and is
omitted in this extended abstract. �
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4.2. A lemma from contour integration. In order to get rid of the asymptotic behavior of the
coefficients of Hℓ(z), we need a last intermediate step. Define hn(a, β) as follows

(29)
1

T (z)
a
(

1 − T (z)b−1

(b−2)!

)3a+β
=
∑

n≥0

hn(a, β)
zn

n!
.

The following lemma is an application of the saddle point method [8, 11] which is well suited to cope
with our analysis :

Lemma 4.4. Let a ≡ a(n) be such that a(b− 1) → 0 but a(b−1)n
ln n2 → ∞ and let β be a fixed number.

Then hn(an, β) defined in (29) satisfies

hn(an, β) =
n!

√

2πn
(

b − 1
)(

(b − 1)!
)

an+n
b−1

(

1 − (b − 1)u0

)(1−β)

× exp (nΦ(u0))

(

1 + O
(

√

a(b − 1)
)

+ O
( 1
√

a(b − 1)n

)

)

,(30)

where

Φ(u) = u −
(

a + 1

b − 1

)

ln u − 3 a ln (1 − (b − 1)u)

u0 =
3/2 ab − a + 1 − 1/2

√
∆

b − 1
with ∆ = 9 a2b2 − 12 a2b + 12 ab + 4 a2 − 12 a.(31)

Proof. Cauchy’s integral formula gives
(32)

hn(an, β) = n! [zn]
1

T (z)an
(

1 − T (z)b−1

(b−2)!

)3a n+β
=

n!

2πi

∮

1

(T (z))
a n
(

1 − T (z)(b−1)

(b−2)!

)(3a n+β)

dz

zn+1
.

Note that the radius of convergence of the series T (z) is given by (b−1)
√

(b − 2)! exp (−1/(b − 1)).

We make the substitution u = T (z)(b−1)/(b − 1)! and get successively

T (z) = (b−1)
√

(b − 1)! u , z = (b−1)
√

(b − 1)! u e−u and

dz =

(

1

(b − 1) u
− 1

)

(

(b − 1)! u
)

1
(b−1)

e−u du .(33)

From (32), we then obtain

(34) hn(a n, β) =
n!

2πi
(

(b − 1)!
)(a n+n)/(b−1)

∮

(1 − (b − 1)u)
1−β

(b − 1) u
exp (nΦ(u)) du ,

where Φ(u) = u−
(

a+1
b−1

)

ln u−3 a ln (1 − (b − 1)u). The big power in the integrand, viz. exp (nΦ(u)),

suggests us to use the saddle point method. Investigating the roots of Φ′(u) = 0, we find two saddle

points, u0 = 3/2 ab−a+1−1/2
√

∆
b−1 and u1 = 3/2 ab−a+1+1/2

√
∆

b−1 with ∆ = 9 a2b2 − 12 a2b + 12 ab + 4 a2 − 12 a

Moreover, we have Φ′′(u) = a+1
(b−1)u2 + 3 a(−b+1)2

(1−(b−1)u)2
so that for u /∈ {0, 1/(b − 1)}, Φ′′(u) > 0. The

main point of the application of the saddle point method here is that Φ
′

(u0) = 0 and Φ
′′

(u0) > 0,

hence nΦ(u0 exp (iτ)) is well approximated by nΦ(u0) − nu0
2Φ

′′

(u0) τ2

2 in the vicinity of τ = 0. If
we integrate (34) around a circle passing vertically through u = u0 in the z-plane, we obtain

(35) hn(an, β) =
n!

2π
(

(b − 1)!
)(an+n)/(b−1)

∫ π

−π

(

1 − (b − 1)u0e
iτ
)1−β

(b − 1)
exp

(

nΦ(u0e
iτ )
)

dτ



10 TSIRY ANDRIAMAMPIANINA AND VLADY RAVELOMANANA

where

(36) Φ(u0e
iτ ) = u0 cos τ + iu0 sin τ − a + 1

b − 1
ln u0 − i

a + 1

b − 1
τ − 3a ln(1 − (b − 1)u0e

iτ ) .

Denoting by Re(z) the real part of z, if f(τ) = Re(Φ(u0e
iτ )) we have

(37) f(τ) = u0 cos τ − a + 1

b − 1
ln u0 − 3a ln u0 − 3a ln (b − 1) − 3a

2
ln
(

1 +
1

(b − 1)2u2
0

− 2 cos τ

(b − 1)u0

)

.

It comes

(38) f ′(τ) =
d

dτ
Re(h(u0e

iτ )) = −u0 sin τ − 3a sin τ

u0(b − 1) + 1
(b−1)u0

− 2 cos τ
.

Therefore, if τ = 0 f
′

(τ) = 0. Also, f(τ) is a symmetric function of τ and in [−π,−τ0]∪[τ0, π], for any
given τ0 ∈ (0, π), and f(τ) takes its maximum value for τ = τ0. Since | exp(Φ(u))| = exp(Re(Φ(u))),

when splitting the integral in (35) into three parts, viz. “
∫−τ0

−π +
∫ τ0

−τ0
+
∫ π

τ0
”, we know that it suffices

to integrate from −τ0 to τ0, for a convenient value of τ0, because the others can be bounded by the
magnitude of the integrand at τ0. In fact, we have

(39) Φ(u0e
iθ) = Φ(u0) +

∑

p≥2

φp(eiθ − 1)p

where φp = u0
p

p! Φ(p)(u0). We easily compute Φ(p)(u0) = (−1)p(p − 1)!
(

a+1
(b−1)u0

p + 3a(1−b)p

(1−(b−1)u0)
p

)

, for

p ≥ 2. Whenever ab → 0, we have

(40) (b − 1)u0 = 1 −
√

3 (b − 1) a + (3/2 b − 1) a + O
(

b3/2a3/2
)

.

Therefore, we obtain after a bit of algebra

(41) |φp| ≤ O

(

2p

a
p
2−1(b − 1)

p
2

)

, as a(b − 1) → 0 .

On the other hand,

(42) |eiτ − 1| =
√

2(1 − cos τ) < τ , τ > 0 .

Thus, the summation in (39) can be bounded for values of τ and a such that τ → 0, ab → 0 (a → 0)
but τ√

a
→ 0 and we have

(43)






∑

p≥4

φp(eiτ − 1)p




 ≤
∑

p≥4

|φpτ
p| ≤

∑

p≥4

O
( 2pτp

a
p
2−1(b − 1)

p
2

)

= O
( τ4

a(b − 1)

)

.

It follows that for τ → 0, a(b − 1) → 0 and τ√
a(b−1)

→ 0, Φ(u0e
iτ ) can be rewritten as

Φ(u0e
iτ ) = Φ(u0) − 1

(b − 1)

(

1 −
√

a
√

3(b − 1)

3b − 4

2
+

(9b2 − 12b + 4)

12(b − 1)
a

)

τ2

− i

(b − 1)

(

1 − (3b − 4)
√

a

2
√

3(b − 1)
+

(9b2 − 12b + 4)

12(b − 1)
a

)

τ3 + O

(

τ4

a(b − 1)

)

.(44)

Therefore, if a(b − 1) → 0 but a(b−1)n

(ln n)2
→ ∞, if we let τ0 = ln n√

n u2
0Φ′′(u0)

(with u2
0Φ′′(u0) = 2

b−1 +

O(
√

a(b − 1))) we can remark (as already said) that it suffices to integrate (35) from −τ0 to τ0,
using the magnitude of the integrand at τ0 to bound the resulting error. In fact,





(1 − (b − 1)u0e
iτ0)(1−β) exp

(

nΦ(u0e
iτ0) − nu0 +

n(a + 1)

(b − 1)
ln u0 + 3an ln

(

1 − (b − 1)u0

)

)





 =





1 − (b − 1)u0e
iτ0







(1−β)

exp
(

− n

2
u2

0Φ′′(u0) τ0
2 + O

(

n
τ0

4

a(b − 1)

))

= O
(

e−
(ln n)2

2

)

.(45)
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The rest of the proof is now standard application of the saddle point method (see for instance De
Bruijn [8, Chapters 5 & 6]) and is omitted in this extended abstract. After a bit of algebra, one gets
the formula (30). �

4.3. Asymptotic number of connected hypergraphs. We are now ready to state the main
result of this section.

Theorem 4.5. For ℓ ≡ ℓ(n) such that ℓ = o
(

3
√

n
b

)

as n → ∞, the number of connected b-uniform
hypergraphs built with n vertices and having excess ℓ satisfies

√

3

2 π

(

b − 1
)

ℓ
2

e
ℓ
2 nn+ 3 ℓ

2 − 1
2

12
ℓ
2 ℓ

ℓ
2

(

(b − 2)!
)

n+ℓ
b−1

exp

(

n

b − 1
− n

)

(

1 + O

(

1√
ℓ

)

+ O

(
√

b ℓ3

n

))

.(46)

We urge the reader to compare the methods and results obtained by Karoński and  Luczak in [20]
with ours. In particular, the authors of [20] obtained results concerning various kinds of hypergraphs
(smooth hypergraphs, clean hypergraphs, etc.). Unlike their results, where the excesses are of order
o(log n/ log log n), the theorem above states that the three variables n, ℓ and b can tend together to
infinity but (46) remains valid whenever ℓ = o

(

3
√

n
b

)

. Note also that by setting b = 2 in (46), we
retrieve Wright’s formula for graphs [29]. We remark also that the powerful methods developed in
[2] and in [24] can be used to extend the validity of our asymptotic result.
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France.

Vlady RAVELOMANANA, LIPN – UMR CNRS 7030, Université de Paris-Nord, F 93430 Villetaneuse,
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