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Abstract

This article gives an overview of different approaches proposed for the storage and the manipulation of
clusters of images. Clustering images consists in grouping together images having a defined relationship.
In this article, images are represented by quadtrees implemented in a hierarchical or in a linear way.
The discussion, presented at the end of the article, allows selecting a quadtree-based representation
well-adapted to a specific area of applications or to the characteristics of the manipulated images.

Key words: hierarchical and linear quadtree, similarity of quadtrees, operations on image quadtrees,

classification of approaches

1 Introduction

The design of efficient image representations
that reduce the storage space of images and
the time required for image manipulations has
been widely studied [1,2,11,19,30,37,42,43]. The
quadtree [9,30] is one of the most used struc-
tures for image representation. This structure
is efficient to store 2D images and has been fre-
quently used in the field of computer graphics
[35], content-based image retrieval [21,22], image
processing [19,33,43], Geographical Information
Systems (GIS) [2,15,28,34] and image databases
[13,38.41].

Clustering images means grouping them together
according to some of their features. For instance,
images may be clustered according to their se-
mantics, their physical characteristics (e.g. color

* This work was supported by the CNRS in France and by
CONICIT (accord numbers 8680 and 10058) and CDCH in
Venezuela.

or texture) or their history. In the applications
mentioned above, it is useful to cluster images
having similarities. In [36], images with the same
semantics belong to the same cluster in a GIS.
The clusters, in that case, preserve the similar-
ity in semantics, creating, for example, water,
grass and agriculture clusters of images. With-
out any semantic clustering, irrelevant images
may be returned by a query, because semanti-
cally not similar images may have a very small
distance between their feature vectors (i.e., the
numerical representations of the image features,
e.g. wavelet transforms [16]). In the image pro-
cessing application presented in [13], images are
generated as the result of an image processing
operation or a sequence of operations applied
on an initial medical image. The purpose is to
make some image elements appear more clearly,
to show some characteristics or salient features
or to emphasize differences. Grouping the result
images in a cluster allows to analyze the modifi-
cations done by the image processing.

In Image and Vision Computing 20(7):513-527, May 2002
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Fig. 1. Four binary images and their quadtree representation.

In this article, a cluster of images is defined as
a data structure used to store a set of related
images. Different approaches based on quadtrees
and proposed for the representation and the
manipulation of clusters of images have been
described [7,13,18,38,40,41]. The main contribu-
tion of this article is a qualitative comparison
of these approaches according to the storage
space and the application of operations on image
quadtrees. It allows selecting a quadtree-based
representation well-adapted to an application or
to the kind of images.

This article is organized in the following way.
Section 2 briefly reminds the principles of
quadtree representations and of operations ap-
plied to quadtrees. Section 3 describes several
approaches which minimize the memory space
used by image quadtrees encoded in a linear
form. Section 4 presents five approaches for man-
aging clusters of images organized in quadtrees.
Section 5 compares all the different approaches
considered in this article. Finally, some conclu-
sions are addressed in section 6.

2 Representing and manipulating images
with quadtrees

A quadtree is built by recursive divisions of the
space in four disjoint quadrants. Quadtrees are
used for different types of data, like curves, sur-

faces or volumes [12,31]. The most widely known
quadtree allows cutting an image in regions or
quadrants according to a given criterion.

2.1 Image quadtree

To represent an image by a quadtree the im-
age is recursively cut in four disjoint quadrants
or squares of the same size so that a node of
the quadtree represents a quadrant. The root
node represents the initial quadrant containing
the whole image. In the presentation below, to
make the explanations clear, we use a particular
case where the cutting of image quadrants stops
when quadrants are homogeneous according to
the pixel color, black or white. Other criteria,
like the same texture [33,36] for instance, may
be used to cut images in quadrants.

If an image is not homogeneous (according to a
particular criterion), the quadtree root has four
descendant nodes representing the four first level
image quadrants: northwestern (NW), north-
eastern (NE), southwestern (SW) and southeast-
ern (SE). A node is a leaf when its corresponding
image quadrant is homogeneous; otherwise the
node is internal or non-terminal. Internal nodes
are called gray (G) in case of binary images, i.e.
containing black (B) and white (W) pixels. In
general, the leaf nodes of a quadtree are not all
at the same level, i.e. the quadtree is unbalanced.
Figure 1 presents an example of four binary im-



ages and their quadtree representations.

Different encoding methods [1,11,13,29,30,39]
are used to associate an identifier (also called
locational code, quadcode or locational key) with
a quadtree node: a quadtree node and the cor-
responding image quadrant use the same iden-
tifier. In this paper, we use a Z ordering [29],
following the NW, NE, SW, SE directions, as
shown on figure 1. However, any other encod-
ing method can be used. For example, in figure
1, the numeral 0 identifies the initial quadrant
representing the whole image. Numerals 0, 1,
2 or 3, following their parent node identifier 0,
identify the four first level image quadrants. Re-
cursively, sub-quadrants of an image quadrant n
are identified by nk where k € [0, 3].

2.2 Operations on image quadtrees

To compare the manipulation of images in the
quadtree-based approaches presented in the fol-
lowing sections, we apply the same set of op-
erations on image quadtrees. We analyze how
the operations should be performed even if they
have not been defined by the authors.

Operations on images organized in quadtrees
may be considered as operations on quadtrees.
In this section, we briefly present a non exhaus-
tive set of operations, divided into three classes:
operations applied to one image quadtree, oper-
ations applied to two quadtrees and operations
applied to a set or a cluster of images represented
by quadtrees.

2.2.1 Operations applied to one quadtree
Operations applied to a quadtree consist in
reading or modifying an image quadtree. For
instance, the complement operation consists in
accessing each leaf node of the quadtree and
changing the node value. That is, this operation
changes the value p of each pixel by the value
(255 — p), when a total of 256 different intensity
levels are used to represent a pixel, p € [0,255].
In the case of binary images, black and white
values are interchanged.

2.2.2  Operations applied to two images

We define homologous nodes as nodes of different
quadtrees having the same identifier. The basic
operations (union, intersection, difference and
comparison) [30] applied to two image quadtrees
are applied to the homologous nodes of the cor-
responding quadtrees. Table 1 shows the result
of these operations applied to a pair of homol-
ogous nodes in the case of binary images where
each pixel has only two values: black and white.
In the following sections, we just describe the
union and the comparison of images. The inter-
section and the difference operations are per-
formed through a similar process. More details
can be found in [30,35].

Quadtree comparison needs some explanation.
Comparing two image quadtrees means the com-
parison of the values of each pair of homologous
nodes. To compare the descendant nodes of a
node n which is internal in a quadtree ¢ but is a
leaf in a quadtree 7, either the descendant nodes
of node n in quadtree j have a special value called
does not exist, or node n in quadtree j becomes
internal and has four descendant leaf nodes hav-
ing the same value. In the case of binary images,
the values of two nodes are equal (marked ¢rue in
Table 1) if both nodes are black (B), white (W)
or gray (G). In the case of colored or gray-scale
images, a similarity measure on image features
(e.g. color or texture) [10,22,20,27,33,36] can be
used to define the distance between the values
of homologous nodes. Two node values may be
considered as similar if the similarity distance
between them is below a given threshold. The
comparison of two image quadtrees returns two
sets of node identifiers: (1) a set corresponds to
homologous nodes having the same or a similar
value in both quadtrees, (2) another set corre-
sponds to the homologous nodes having different
values in both quadtrees. In order to obtain a
value of the comparison, a similarity between
image quadtrees can be defined.

The Q-similarity distance [13,23] is a distance
between quadtrees that is defined as the number
of pairs of homologous nodes having different
values, divided by the cardinal of the union of
node identifiers.



Table 1

Results of the operations applied to a pair of homologous nodes

Value of the first node W W W B B B G G G
Value of the second node W B G W B G W B G
Result of the union W B G B B B G B G
Result of the intersection W W W W B G W G G
Result of the difference W B G B W G G G G
Result of the comparison true false false false true false false false true

More formally, let S(i,j) be the set of pairs
of homologous nodes having different values in
quadtrees of images 7 and j. Let U(7, ) be the
union of the set of node identifiers existing in
the quadtree of image ¢ and the set of node iden-
tifiers existing in the quadtree of image j. Let
Card(S(i, 7)) (resp. Card(U(i,j))) be the cardi-
nalof S(i, 7) (resp. of U (4, j), Card(U (i, 5)) # 0).

The Q-similarity distance between image
quadtrees i and 7, d(i,7), is computed according
to definition (1).

d(i,j) € [0, 1], that is, it defines a metric distance
function, i.e. one satisfying the symmetry, non-
negativity and the triangle inequality properties
[23]. d(i,7) = 0 means ”all homologous nodes
have the same values in both quadtrees ¢ and j5”
and d(i,7) = 1 means "no homologous node has
the same value in both quadtrees ¢ and 5 ”.

For example, the Q-similarity distance between
image quadtrees a and b, represented in fig-

ure 1, is equal to: d(a,b) = % =5/9.
Card(S(a,b)) = 5 because homologous nodes 03,
030 to 033 have different values in the quadtrees
of image a and image b. Nodes 030 to 033 have
the doesn’t exist value in the quadtree of image
a. Card(U(a,b)) = 9 because nodes 0, 00 to 03
and 030 to 033 appear in the union of node iden-
tifiers of both quadtrees. If node 03 in quadtree
of image « is cut in four white descendant nodes,
then d(a,b) = 2/9, because only homologous
nodes 031 and 032 have different values in both
quadtrees.

2.2.3 Operations applied to a cluster

Insertion or deletion of images are operations on
a cluster of images modifying the cluster organi-
zation but not the images already stored in the
cluster.

Because images are organized in a cluster, be-
fore performing any operation on the images or
on the image regions, like performing the same
modification on different images, images must be
reached or read. Thus, in the following sections,
we consider how reading an image depending on
the quadtree-based structure used to organize
the cluster.

Access to image regions consists in reaching
the same region in different images. It allows
extracting either similar or different regions in
the images of the cluster [13]. Using quadtree
representation of images, this operation is per-
formed by reaching the sub-trees with the same
root identifier and by comparing all homologous
nodes in the sub-trees.

3 Improving the memory space used by
image quadtrees

The hierarchical implementation of quadtree
uses pointers to nodes and is costly in mem-
ory space [32]. To avoid this problem, the
linear storage of quadtree has been proposed
[1,11,14,18,19,43].

A linear representation of a quad tree is a list
of values, which stores the hierarchical tree
structure. Node values are encoded following
a pre-order (depth-first order) [1,11,14,43] or a
breadth first order [18,19]. This encoding is gen-
erally used for binary images. When only black
leaf nodes are encoded [11], a structure like



BTtree can be used to store the linear quadtree
[1]. This section presents several linear codings
and shows how operations, can be applied to
these quadtree representations.

3.1 Linear quadtree approaches

3.1.1 Encoding only black leaf nodes

The approaches [1,11] represent a quadtree as a
list of its black nodes. A black node is identified
by a unique key derived from its ordered list of
ancestors and the list of node identifiers is se-
quenced by keys [2].

In [11], each black node is encoded in a weighted
quaternary code with digits 0 (for NW), 1 (for
NE), 2 (for SW), 3 (for SE) in base 4, where
each successive digit represents the quadrant
subdivision from which it originates according
a depth-first traversing. All quaternary codes
have the same number n of digits, where n is the
number of levels of the quadtree. If a black node
is at level 7, 1 < n, then the traversing process
obtains only (n — 4) digits and appends i times
the symbol X to the code [18]. For example,
the quadtrees of images a and b, represented on
figure 1, are respectively coded by the following
sequences: {1,2} and {1X,2X,31,32}.

In [1], the SW, NW, SE, NE directions are re-
spectively coded by 1, 2, 3, 4 (following a N-
ordering). The key values are given in base 5 and
begin by a 1, representing the root node. The fill
character is a 0: if a black node is at level ¢, 1 < n,
then the key value contains ¢ zeros. For example,
the quadtrees of images a and b, represented on
figure 1, are respectively coded by the follow-
ing sequences: (11,14) and (110,131, 134, 140).
Moreover, all keys are stored in a Bt tree.

3.1.2  Encoding all leaf and internal nodes

We now consider three different approaches
where all nodes are coded.

The DF-expression [14]: The Depth-First Ez-
pression is a linear implementation where a left
parenthesis represents a gray node. Symbol 1
represents a black leaf node and symbol 0 repre-
sents a white leaf node. The quadtree is coded
according to a depth-first ordering. For example,

the quadtrees of images a and b, represented on
figure 1, are respectively coded by the following
sequences: (0110 and (011(0110.

The Compact Improved Quadtree [43]: The
Compact-1Q codes a white leaf node by 0, a black
leaf node by 1 and a gray node by 2. The entire
image is encoded by a list P =< P, P, ..., P, >
where n is the number of gray nodes in the
quadtree of the image (except the root node
which is not coded). The image quadtree is read
using a pre-order. Each gray node G;, i € [1,n],
is encoded using the coded color (whose value
is 0, 1 or 2) of its four descendants. More for-
mally, the coding value of G;, noted P, is
given by: P; = ?:U C;(G;) * 3, where C; is
the coded color of the j-direction child of Gj,
j € [0, 3] denoting directions NW, NE, SW and
SE. For example, the first quadtree of figure
1 is represented by the list < 12 >, because
0%3% 4+ 13" +1%32+0%3% = 12. The second
quadtree of figure 1 is represented by the list
< 66,12 >, because 0%3° 4+ 153" + 13242433 =
66 and 0+ 3% + 1 %31 +1 %324 0% 3% = 12. Fur-
thermore, in order to reduce the number of bits
required for each coding value P;, the authors
of [43] use an entropy coding. Each P; value is
represented by an Huffman code depending on
the level of the coded gray node in the quadtree.
We do not give more details in this article about
the entropy coding - for details we refer to [43].

The CBLQ code [19]: In the CBLQ (Constant
Bit-length Linear Quadtree) code, each black leaf
node is coded by 1 and each white leaf node by
0. The numeral 2 codes an internal node only if
one of its descendants is internal. Otherwise, if
all its descendants are leaves, a 3 codes the node.
Unlike the encoding of [14,43], a quadtree is rep-
resented by a CBLQ code following a breadth
first order. The root node is not coded. For exam-
ple, the quadtrees of image a and b, represented
on figure 1, are respectively represented by the
following CBLQ codes: 0110 and 0113 0110.

3.2 Operations on linear quadirees

This section describes how the operations defined
in section 2.2 are applied to linear quadtrees.



Image Reading: Reading (displaying) an im-
age represented by a linear quadtree consists
in uncoding the image. For example, in the
Compact-1Q [43], the uncoding procedure gives
the code value P; of each gray node G; from the
entropy coding of P;. The color of the j-direction
child of G; is unpacked by the function: (P;/3/)
mod 3, for j € [0, 3].

Complement operation: In [1,11], where only
black nodes are encoded, the complement oper-
ation totally changes the linear sequence repre-
senting the quadtree: the black nodes identifiers
are replaced by the white ones. In the DF-
Expression [14] and in the CBLQ code [19], the
complement operation only changes the value 0
to 1 and vice versa. In the Compact-1Q [43], the
same operation modifies the coding value of the
gray nodes (P;) and thus modifies the Compact-
IQ representation (P). Consequently, each P;
value must be uncoded before the application
of the complement operation and coded again
afterward.

Quadtree Union: When only black nodes are
encoded [1,11], the union operation is performed
as a merge of two input quadtrees, with the
nodes from the merge passed serially for com-
paction. The compaction, also called condensa-
tion in [11], consists in reducing the list of black
node identifiers to a minimal list: if a node iden-
tifier appears in the list, then the identifiers of its
descendants must be removed from the list and
if four descendants appear in the list, then the
four identifiers are replaced by the father node
identifier. Performing the union operation is
more complex either using the encoding method
of the CBLQ code [19] or the Compact-I1Q [43].
In these approaches, a table is given and it con-
tains: the encoding of homologous nodes in two
image quadtrees; the result of their union and a
process (copy or deletion of a sub-tree) to be per-
formed later. A process is performed in the case
that the union creates four black (or four white)
descendants, changing the father node from in-
ternal to leaf node. See [19,43] for more details.

Quadtree comparison: Comparing two im-
ages coded by a linear representation amounts
to the comparison of the values of homologous
coded nodes. However, in the Compact-1Q [43],

an image quadtree must be uncoded before any
comparison.

Operations applied to a cluster: Using a
linear coding, images in a cluster are stored inde-
pendently: any image can be inserted (or deleted)
in the cluster. Applying operations to the images
of the cluster using this representation requires:
(1) the retrieval of each image in the cluster and
(2) the reading of the entire linear coding of each
image. Moreover, in the Compact-1Q [43], im-
ages must be uncoded before any operation. The
following section presents structures managing
cluster of images.

4 Representing and managing a cluster of
images

The representation of cluster of images by data
structures has been considered in different arti-
cles. Several approaches have been proposed to
represent the content of images using quadtrees
[21,22,24,33]. However, these approaches focus
on content-based image retrieval and do not con-
sider storage optimization of cluster of images
or operations on images, which is the focus of
interest of this work.

The quadtree-based approaches of [7,13,18,38—
41] focus on the optimization of the storage of
cluster of images. Their goal is to maximize the
sharing of common parts between quadtrees.
The approaches of [18,38-40] (see sections 4.1
and 4.2) are based on extensions of overlapping
between successive data structures of the same
type [3,4]. The approach of [13] (see section 4.4)
is based on the Database Version approach of [6].

4.1 Qwerlapping of hierarchical quadtrees

The technique of overlapping trees was initially
presented in [3,4] to manage the evolution of text
files. The mechanism of overlapping has been ex-
tended to sequences of a given data structure,
like B-trees [5,25], R-trees [26] or quadtrees im-
plemented with the hierarchical [40] or the lin-
ear form [18,38]. The authors of [40] propose a
technique of overlapping to represent sequences
of similar binary raster images using hierarchical
quadtrees. This section presents this structure,



explains how parts of quadtrees are shared and
shows how operations can be applied.

4.1.1 Principles

To store images in sequence, the authors of [40]
use the overlapping mechanism: when a new im-
age 1 is inserted, its quadtree overlaps the last
quadtree of the sequence, i.e. the quadtree of
image (i — 1), if parts of both image quadtrees
have the same value. The quadtrees represent-
ing image (i — 1) and image 7 share identical
parts (homologous nodes with the same value)
in both quadtrees. The common nodes are refer-
enced in the quadtree of (i —1) from the quadtree
of 7. When a leaf node has different values in
two successive quadtrees, all the nodes appear-
ing in the path from the root to the modified
node are copied in the quadtree of image 7. Each
quadtree node has a counter reference, which
contains the number of pointers currently ref-
erencing the node. All nodes with a reference
counter greater than 1, together with all descen-
dants of such nodes, constitute shared informa-
tion. This counter allows to perform deletion of
a particular quadtree from the overlapped fam-
ily [40]. An example of overlapped quadtrees is
presented in figure 2. The parts of quadtrees rep-
resenting the images a (in the left of the figure
2.A) and b (in the right), which are different, are
represented in gray in the quadtree of b. Both
quadtrees share nodes 00 to 02, because they ap-
pear with the same value in both of them. On the
other hand, node 03 has different values in both
quadtrees: a new sub-tree, whose root is node 03,
is created in the quadtree representing image b.
In figure 2.B, dotted lines represent references to
shared nodes when the quadtrees overlap and the
pair of numbers represented under each quadtree
node corresponds to the pair of (node identifier,
reference counter value).

4.1.2  Operations

Image reading: Reading an image ¢ in a se-
quence of overlapped quadtrees consists of
two steps: (1) retrieving the root of the image
quadtree and (2) reaching and reading nodes of
the quadtree from its root node. Reading an im-
age is as much time consuming using overlapped
quadtrees [40] as using independent quadtrees,
i.e., one quadtree for each image.

0
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Fig. 2. Overlapping Quadtrees.

Quadtree modification: The overlapping
structure is partially persistent: all quadtrees
can be reached, but only the last one can be
modified [8]. Thus, a modification or a group of
modifications performed on a quadtree ¢, which
is not the last one of the sequence, creates a new
quadtree j. If the new quadtree j is inserted in
the sequence, then it is appended at the end
of the sequence in order not to modify other
overlapped quadtrees. There is no overlapping
between quadtrees ¢ and j, if j # i + 1. Over-
lapping can exist between quadtree ;7 and the
preceding quadtree in the sequence, (j — 1). It is
worth noticing that the approach of [40] is pro-
posed to store a linear sequence of images. How-
ever, as the authors of [5] show, the overlapping
mechanism, applied to a hierarchical structure,
can be used for a non-linear sequence, i.e. us-
ing a tree ordering. Consequently, if we use the
Q-similarity distance to organize a tree of over-
lapped quadtrees then a new image quadtree ¢
is inserted as overlapping an image quadtree j
when the distance QQ-similarity distance between
1 and j has the smallest value among all the Q-
similarity distances between i and the other im-
ages of the cluster. The smaller the Q-similarity
distance, the greater the sharing of nodes.

Quadtree complement: The complement op-



eration is the same with or without the overlap-
ping mechanisms. It creates a new quadtree i
which can be inserted in the sequence by over-
lapping a quadtree of the sequence (the last one
or using the Q-similarity distance).

Quadtree union: The union operation is per-
formed by reading two image quadtrees in the
sequence of overlapped quadtrees. If the result-
ing quadtree of the union is inserted in the clus-
ter, it overlaps a quadtree of the sequence.

Quadtree comparison: Comparing the values
of two homologous nodes in two quadtrees is
performed by reading two paths from the root in
both quadtrees. If the node values are the same
or if a similarity distance between node values is
below a given threshold, then true is returned,
otherwise false is returned. The result of the
comparison of two images returns two sets of
node identifiers or a numerical value if the Q-
similarity distance is used.

Operations applied to a cluster: In the
Overlapping Quadtrees [40], any image can be
inserted, but only at the end of the sequence,
whereas any image can be deleted from the
sequence because of the reference counters. Be-
cause the structure is partially persistent, a mod-
ification or a group of modifications on an image
quadtree, internal to the sequence, generate a
new overlapped quadtree. Hence, performing the
same update on p quadtrees, internal to the se-
quence, requires the creation of p new quadtrees.

Access to image regions: For Overlapping
Quadtrees, the access must be performed from
the root node of each image. Users have access to
each image independently of the other images.
If the purpose of the access is the comparison
of the same region in different images, then the
comparison of the value of node n belonging to
different overlapped image quadtrees must be
explicitly computed, because no information on
the sharing (i.e. knowledge about the quadtrees
currently sharing a node) is directly available
from a node. Only the number of quadtrees shar-
ing a node is known. For example, if the node
n of quadtree ¢ has a reference counter equal to
x, then to know which quadtrees share node n
with quadtree ¢ at most z quadtrees preceding

quadtree 7 in the sequence and z quadtrees fol-
lowing quadtree ¢ in the sequence must be read.
Knowing the sharing implies several readings.
The sharing could be known directly from a node
n by adding the identifier of the first quadtree
sharing node n to the reference counter of n.

The approach of [40] has been extended to linear
representations in [38,39]. In this extension, the
black node identifiers are stored in a Bt tree like
in [1], and the overlapping mechanism is applied
to the BTtrees, each BTtree representing a lin-
ear quadtree linear. Thus, in [38,39], BT trees are
subject to the overlapping mechanism similar to
the Overlapping Quadtrees. As the overlapping
mechanism is the same, we will not consider
further this approach.

4.2 Linear overlapped quadtrees

Among the linear representations presented in
section 3, only Lin proposes a procedure, called
overlapped CBLQ code, for coding a sequence
of images by linear quadtrees [18], i.e. a totally
ordered sequence, with the goal of an efficient
management of sequences of video images. All
the other approaches [1,11,14,43] can also be
used to store a cluster of images, by coding
each image quadtree independently. This section
presents the overlapped CBLQ code of [18] and
shows how parts of image quadtrees are shared
and how operations are applied to overlapped
linear quadtrees.

4.2.1 Principles

In [18], the first image and the last one in the
sequence are coded using the CBLQ code (see
section 3.1.2). Then, all images in the sequence,
except the first one, are coded using an over-
lapped CBLQ representation. This representa-
tion codifies the differences between two succes-
sive images.

The difference between two successive images i
and (i — 1) is obtained through a two-step pro-
cedure. Step 1: the first four nodes of quadtree
of i and (i — 1), are compared. If a node has the
same value in both quadtrees, then it is coded by
A in the overlapped coding of i. If homologous
nodes are different, two cases appear: if one node



Table 2

Coding of a quadtree node by the overlapped CBLQ representation [18]

Value of a node in the first quadtree: White
Value of a node in the second quadtree:  Gray
Overlapped code: C

White Gray Gray Black Black
Black Black White White Gray
D C D C D

is gray, then the code is B, otherwise the code
is C' or D according to the black or white value
of each node (see table 2). Step 2: a letter A, C
or D codes each descendant of a node coded by
B in step 1, according to their respective values
in quadtrees of (i — 1) and ¢ (see table 2). If a
node n coded by a B in step 1 is not subdivided
in quadtree (7 — 1) but is subdivided in quadtree
i, then each value of nodes nk, k € [0,3], in
quadtree of 7 is compared with the value of node
n in the quadtree of (i — 1).

As an example the coding of the four images
represented in figure 1 is:

0110 <— CBLQ code of image a
AAAB ADDA

the differences between a and b

AACB ACCA <— Overlapped CBLQ of image c. It codes
the differences between b and c.

AAAB ADDA <— Overlapped CBLQ of image d. It codes
the differences between ¢ and d.

0103 0110 <— CBLQ code of image d

4.2.2  Operations

Image reading: The following operations are
defined, in [18], for managing an image in a
linear sequence: un_overlap (resp. re_overlap)
recursively computes the CBLQ coding of an im-
age, according to the previous (resp. following)
image. Function un_overlap (resp. re_overlap)
is recursively applied from the first (resp. last)
image of the sequence: i = un_overlap(i — 1, 0;)
and i = re_overlap(i + 1,0;41) with O; repre-
senting the overlapped CBLQ code of image i
i.e. the difference between image (i — 1) and im-
age 1. Reading an image from a sequence coded
by the overlapped CBLQ code consists in recur-
sively using un_overlap (resp. re_overlap) from
the first (resp. the last) image. Then, when the
CBLQ encoding of the image is obtained, the
image can be finally computed. In order to speed
up image reading, the author of [18] proposes to
store the CBLQ code (not only the overlapped

<— Overlapped CBLQ of image b. It codes

one) of some intermediate images of the se-
quence. This allows the application of functions
un_overlap (resp. re_overlap) from intermediate
images of the sequence.

Quadtree modification: In [19], operations
on image quadtrees coded by the CBLQ code
are defined, but they are not defined on over-
lapped CBLQ codes in [18]. Thus, an image
quadtree may be uncoded by using un_overlap or
re_overlap functions before any modification. A
modification or a group of modifications cannot
be directly applied to a quadtree 7 included in
a sequence, because of the change of the CBLQ
code of 4 and therefore the overlapped CBLQ
codes between ¢ and the following quadtrees in
the sequence. Such a structure is partially per-
sistent.

Quadtree complement: The effect of the com-
plement operation in the CBLQ representation
of an image exchanges labels 0 and 1, after the
image uncoding. This operation creates a new
image quadtree which can be inserted at the end
of the sequence.

Quadtree union: As mentioned above, opera-
tions on images coded by an overlapped CBLQ
code are not defined in [18]. Thus, performing
the union of two image quadtrees ¢ and j requires
the uncoding of both images, using un_overlap
or re_overlap functions, in order to obtain the
CBLQ code of each image for which the union
operation is defined [19].

Quadtree comparison: If the compared
quadtrees are successive in the sequence, read-
ing the overlapped CBLQ code of the second
quadtree performs the comparison, because the
overlapped CBLQ representation codes the dif-
ference between a quadtree and the previous
one in the sequence. However, if the compared
quadtrees are not successive in the sequence,
they must be uncoded in order to be compared.



Operations applied to a cluster: Images can
be inserted in the cluster but only at the end of
the sequence, and no image can be deleted with-
out rebuilding all the sequence of overlapped
linear codes. The overlapped linear quadtree
is a partially persistent structure. As a conse-
quence, a modification creates a new overlapped
quadtree. Then, performing the same update
on different images requires the creation of new
images or the rebuilding of the linear representa-
tion of the cluster from the first updated image.

Access to image regions: As explained above,
each image must be rebuilt before any access.

4.3  Two approaches to Inverted Quadtrees

The approaches of [7] and [41] propose an In-
verted Quadtree, called Fully (FI-Quadtree) in
[7] and Dynamic (DI-Quadtree) in [41]. In those
structures, a set of binary images is encoded in a
single quadtree. In a classical representation, an
image identifier is associated with a set of pre-
fixes encoding the corresponding bitmap (e.g. a
set of black node identifiers). In the inverted rep-
resentation, a prefix is associated with a set of
image identifiers. An Inverted Quadtree repre-
senting the four images of figure 1 appears in fig-
ure 3. Each node n in the Inverted Quadtree is
associated with either a set of image identifiers,
whose quadtree contains a black node n, or with
an empty set (@) if no image quadtree contains
a black node n. This section presents the prin-
ciples of both approaches and shows how image
operations can be applied.

4.8.1 Principles

The FI-Quadtree [7] consists of a full quadtree,
i.e. a quadtree where each node has four chil-
dren except for the level-0 nodes, which are all
leaves. Each node holds a bit string of maximum
length (the maximum number of images in the
database). Each bit designates a separate im-
age. A black node in the quadtree of any image
is identified by a 1 in the bit corresponding to
the image in the node string. This structure is
static: it can hold a predefined number of im-
ages. This number can be increased after a to-
tal reorganization of the structure. On the other
hand, in the DI-quadtree [41], each node of the
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full quadtree points to a list containing only iden-
tifiers of the images that have the corresponding
black node in their quadtree. The list is imple-
mented by chained segments so that the struc-
ture is dynamic: any number of images can be
added. Both approaches [7,41] are suitable for
answering queries based on image content (e.g.,
exact and fuzzy image pattern searching).

@) @) O
DD PP D DDDD DD Bibdibd D

Fig. 3. An example of an Inverted Quadtree.

4.3.2  Operations

Image reading: To read an image from an
Inverted Quadtree, the structure is read from
the root node. If the image identifier appears
in the list associated with a node n, then the
corresponding quadrant is black in the image.
Otherwise, the corresponding quadrant is white
or gray. To determine the color (white or gray)
of quadrant n, all descendant nodes of node
n, until leaf nodes, are read and, if the image
identifier does not appear in any list associated
with a descendant node, then the corresponding
quadrant is white.

Quadtree modification: Modifying an image
quadtree stored as an Inverted Quadtree con-
sists in a set of additions or deletions of the
image identifier in the lists associated with the
quadtree nodes. The Inverted Quadtree is called
fully persistent structure because every image
quadtree can be reached and modified [8].

Quadtree complement: A quadtree comple-
ment is performed by reading all nodes of the
Inverted Quadtree and by adding or deleting the
corresponding image identifier in the lists asso-
ciated with the quadtree nodes. For each node
n from the root of the Inverted Quadtree, if the
image identifier appears in a list associated with



node n, then the identifier is deleted (node n
was black and becomes white after the comple-
ment operation). If the image identifier does not
appear in the list associated with n, then it is
added only if it is not associated with any node
of the sub-tree whose root is n (node n was white
before the operation). Otherwise node n is gray
and the complement operation does not change
its value but the values of its descendants.

Quadtree union: As shown in Table 1, the
result of the union applied to two homologous
nodes is black when one of the node is black.
Thus, in the Inverted Quadtree, if at least one
image identifier appears in the list associated
with a node n, it means that the result of the
union is black. Otherwise, all descendants of
node n, until reaching the leaf nodes, are read to
determine if the homologous nodes n are white
or gray. The image resulting from the union can
be inserted in the Inverted Quadtree.

Quadtree comparison: Comparing the value
of two homologous nodes is performed by read-
ing the corresponding node in the Inverted
Quadtree. For each node n, if the identifiers
of the compared images appear in the list as-
sociated with the node, then the result of the
comparison is true. Otherwise the descendants
of n in the Inverted Quadtree are read in order
to determine if the node is white or gray in both
image quadtrees.

Operations applied to a cluster: The struc-
ture is fully persistent, thus any image quadtree
can be inserted or deleted. Performing the same
update in different image regions is computed
by reading each image and by performing the
update to each image quadtree. The structure of
the Inverted Quadtree facilitates this operation.

Access to image regions: Accessing a region
in different images is performed by accessing
the corresponding nodes in the image quadtrees,
i.e. by accessing the corresponding nodes in the
Inverted Quadtree. Given the structure of an
Inverted Quadtree it is easy to compare homol-
ogous nodes n in different quadtrees because all
the informations are contained in node n of the
Inverted Quadtree. However, when some homol-
ogous nodes n are not black, some additional
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descendant nodes must be read in order to know
if homologous nodes n are white or gray.

4.4 Generic Quadtree

This section presents the Generic Quadtree [13],
an inverted structure which expands the range of
tractable images in other inverted quadtrees ap-
proaches by allowing the management of binary,
gray-scale or color images.

4.4.1 Principles

The Generic Quadtree is a quadtree-based struc-
ture whose nodes are called generic nodes. For
each node appearing in an image quadtree, there
is a node with the same identifier in the Generic
Quadtree. A generic node n represents all nodes
n of the quadtrees of images belonging to the
cluster. It contains the whole information nec-
essary to rebuild the value of the node with the
same identifier n in each image quadtree. Each
generic node may be seen as a table with two
columns and one or several lines. For example
generic node 02 in figure 4 contains two lines,
while generic node 01 has only one line. Each
line [ of a generic node n contains a list of im-
age identifiers and a value v of quadtree node.
v is the value of node n in each image quadtree
whose identifier 7 appears in line [. A generic
node can take any value in the following logical
OR-sequence: 1, meaning that the node does
not exist in the quadtrees of images appearing in
the corresponding line (see generic node 030 in
figure 4); OR I, meaning that the node is inter-
nal - it has four descendants - (see generic node
0 in figure 4); OR black if it is a black leaf, OR
white if it is a white leaf, etc.

The Generic Quadtree is based on two princi-
ples of sharing of quadrant values between im-
ages: explicit and implicit. If a quadrant ¢ has
the same value in several images, this value is
stored only once and is associated with the list
of image identifiers. In this case, the sharing is
called ezxplicit, because the identifier of each im-
age sharing the value is explicitly present in the
list. The implicit sharing is based on the follow-
ing rule: except if the identifier of an image i is
explicitly associated with another value v, image
1 shares the value with its parent image. To use
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Fig. 4. The Image Tree and the Generic Quadtree of the images represented in figure 1.

this rule, all the images of the cluster are orga-
nized in a tree structure called Image Tree. As
the Q-similarity is a distance between quadtrees,
in order to increase the implicit sharing of node
values and consequently to diminish the size of
generic nodes, an image j is inserted in the Im-
age Tree as a descendant of an image i if the
Q-similarity distance between the quadtrees of
¢ and 7 has the smallest value among all other
distance values (see on the left of figure 4 -
the Q-similarity distance between each pair of
quadtrees is represented in the tree labels). Im-
age identifiers, inside the Image Tree, are built in
such a way that knowing the identifier of an im-
age in the Image Tree, all its ancestor identifiers
can immediately be deduced [6,17]. Applying
the sharing rule, all the nodes n of the quadtrees
representing images descendant of image ¢ im-
plicitly share the value v; this implicit sharing
is stopped by a descendant image identifier ap-
pearing in another line of generic node n, i.e. as-
sociated with another value v (See generic node
02 in figure 4. Only image quadtree b implicitly
shares the value black with image quadtree a).

4.4.2  Operations

Image reading: Reading an image 7 from a
Generic Quadtree is performed by reading the
structure from its generic root node, identified by
0. The value of a node n, for an image quadtree
i, is determined according to the sharing rule
presented above. If the value of node n is I for
image quadtree 7, then the node is internal in
the quadtree of 7 and the generic nodes, descen-
dants of n, are read. Otherwise, the node n is a
leaf of image quadtree 7+ and the obtained value
is its color.
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Quadtree modification: The Generic Quadtree
allows any modification. It is a fully persis-
tent structure. Modifying an image updates its
quadtree. When the modification preserves the
image quadtree structure (i.e. when only values
of leaf nodes are changed), performing a mod-
ification of value of quadtree node n generates
changes in generic node n. The new value v.new
of node n for the modified image quadtree i
must be implicitly or explicitly associated with
i. However, to avoid the propagation of the
modification in the possible descendant images
of 7, the implicit sharing between 7 and its im-
age descendants must be cut. Thus each image
descendant of 4, not explicitly associated with
a value in generic node n before the updating,
must be explicitly associated with the old value
v.old that it was implicitly sharing with ¢ be-
fore the modification. When the modification
alters the image quadtree structure (nodes are
divided, merged, created or deleted), performing
the modification implies changes in the modified
nodes and in their ancestor or descendant nodes
in the Generic Quadtree. For example, if after
the modification, four brother nodes n0, nl, n2
and n3 have the same color v in quadtree 7, then
they do not exist anymore in quadtree i (value
1 is associated with the image identifier 4 in the
corresponding generic nodes) and their father
n takes the value v (value v is associated with
the image identifier 4 in generic node n). On the
contrary, if after the modification, a node n is
divided in four descendant nodes in quadtree 7,
then node n is internal in quadtree i (value I is
associated with the image identifier ¢ in generic
node n) and nodes n0, nl, n2 and n3 exist in



quadtree i (a node value is associated with iden-
tifier ¢ in each corresponding generic nodes).

Quadtree complement: The complement op-
eration applied to a quadtree 7 changes the value
of all leaf nodes of the quadtree. This operation
preserves the structure of the image quadtree.

Quadtree union: If both image identifiers are
associated with the same value v of a generic
node mn, then the result of the union of homol-
ogous nodes is v. Table 1 displays the possible
values of the node union operation, when the im-
age identifiers are not associated with the same
value. The implicit or explicit sharing between
image resulting from the union and other images
of the cluster depends on the position of the re-
sulting image in the Image Tree.

Quadtree comparison: Comparing the values
of homologous nodes in the Generic Quadtree is
performed by reading the corresponding generic
node. If the identifiers of the compared images
are associated with a similar node value, the
comparison between the two homologous nodes
is true.

Operations applied to a cluster: This struc-
ture allows performing the same modification di-
rectly on several image quadtrees. For example,
simultaneously updating the node n of image
quadtree ¢ and all quadtrees the images descen-
dant of image i consists in modifying the value
of generic node n associated with image i (for
example from white to black), and in deleting
the identifiers of the descendants of image 4 in
generic node n. Thus all descendants of image
implicitly share the value of node n with image
1. However, the consistency of the quadtrees of
all modified images must be checked: the updat-
ing may lead to node creation, node deletion or
node modification in the modified images (see
above in image modification).

Access to image regions: Each generic node
can be reached according to two dimensions.
One dimension allows hierarchical navigation
inside the quadtree of an image. The other di-
mension, across images, allows jumping from one
image to another using generic nodes. Because
of the sharing, the comparison of node n values
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in different image quadtrees is immediate.

5 Comparison and discussion

In this section, the different methodologies are
qualitatively compared regarding memory space
and operations on image clusters. We intend to
show weaknesses and strengths of each approach
and underscore the areas of applications where
each method could fit better. This comparison
may be seen as a starting point for benchmark
tests. Subsection 5.1 compares image represen-
tation. Then the following subsections compare
the approaches according to: (5.2) image orga-
nization, (5.3) image memory space, (5.4) data
access and (5.5) operations. Table 3 (at the end
of the article) sums up the comparison.

5.1 Classification of approaches

The approaches presented in this article may be
classified in two classes: (1) methods based on
hierarchical quadtrees [7,13,40,41] and (2) meth-
ods based on linear quadtrees [1,11,14,18,19,43].
All of these methodologies, except the Overlap-
ping Quadtrees of [40] and the Generic Quadtree
of [13], manage only binary (white and black)
images.

The hierarchical representations of [7,13,40,41]
(see subsections 4.1, 4.3 and 4.4) are defined
to store clusters of images. On the other hand,
among the linearly coded representations (see
section 3), only the overlapped CBLQ code [18] is
designed to store a cluster of images (see section
4.2). The other linear approaches [1,11,14,43] al-
low the representation of a cluster by represent-
ing independently each image without storage
sharing.

The Overlapping Quadtrees of [40] and the over-
lapped CBLQ code of [18] use the mechanism
of overlapping in order to share homologous
parts of images having the same value. These
approaches are oriented towards the storage of
image sequences, as in video applications where
direct image manipulation is rare.

In the Fully or Dynamic Inverted Quadtree [7,41]
and in the Generic Quadtree [13], all images are



stored in a single quadtree as opposed to the
overlapping methods [40,18] where a quadtree is
associated with each image. These approaches
are oriented toward content-based retrieval or
bookkeeping the changes in image processing.
The Fully or Dynamic Inverted Quadtrees [7,41]
only manage binary image: each node n of the
Inverted Quadtree contains the set of quadtree
identifiers whose node m value is black. The
Generic Quadtree [13] manages gray-scale or
colored images: each generic node m contains
several lines, each line containing a node value
v associated with the set of quadtree identifiers
whose node n value is v. The Generic Quadtree
[13] can be seen as a generalization of the Dy-
namic Inverted Quadtrees [41] to the gray-scale
or colored images with a specific mechanism of
implicit sharing.

5.2 Image organization and value sharing

In the hierarchical [40] and linear [18] overlap-
ping methods, a cluster of images is stored in a
sequence, whereas it is stored according to a tree-
order in the Generic Quadtree [13] and without
any order in the Inverted Quadtrees [7,41].

However, in the hierarchical overlapping method
[40], images can be organized not only in se-
quence but also in a tree-order (see section
4.1.2). When a quadtree i is inserted in a cluster
of images organized in a tree order, it overlaps
a quadtree j which is a leaf of the structure
representing the tree order and which is, for
example, chosen according to the minimization
of the Q-similarity distance. Thus, quadtree ¢
shares homologous parts with quadtree j and
possibly shares identical parts with the ances-
tors of quadtree j. However, a quadtree cannot
share parts with any quadtree but only with
the quadtrees of its lineage (its ancestors or its
descendants in the tree order). For instance if
images a to d are organized in the tree order
presented on the left of figure 4 (see section
4.4), then the quadtree of image d overlaps the
quadtree of image b and quadtree b overlaps
quadtree a. Quadtrees a, b and d share identi-
cal parts (nodes 00, 01 03 and 03z, z € (0, 3]).
However, quadtree of image d cannot share the
value of node 02 with quadtree of image ¢ be-
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cause image c¢ is not an ancestor of image b in
the tree order. Thus, in overlapping methods,
there is no sharing when a quadrant or a part of
a quadtree has repeatedly the same value in dif-
ferent quadtrees, non successive in the sequence
or in the tree order: for instance, in case of peri-
odic or pseudo-periodic occurrences.

On the contrary, the Fully or Dynamic Inverted
Quadtrees of [7,41] and the Generic Quadtree
[13] maximize the sharing of quadrant values. In
these approaches, the information on the sharing
is stored in each node of the structure, respec-
tively called inverted or generic node (see sec-
tions 4.3.1 and 4.4.1). In the Inverted Quadtrees,
any quadtree of a binary image can share the
black value of node n with any other image
quadtree: the image quadtrees, whose identifiers
appear in the list associated with node n, share
the black value of node n. For example, in figure
3, the quadtree of image d shares the black value
of node 031 and 032 with the quadtree of image
b. Given that identifiers ¢ and d do not appear
in the list associated with node 02 (SW) and be-
cause the lists associated with descendant nodes
of 02 are empty, the value white of node 02 is
shared by the quadtrees of images ¢ and d. In
the same way, in the Generic Quadtree, a com-
mon value v is stored only once and is shared by
as many image quadtrees as necessary when the
same value v appears in the node n of several im-
age quadtrees: value v is automatically shared,
implicitly or explicitly. For instance, in figure 4,
the quadtree of image d explicitly shares value
white of node 02 with the quadtree of image
¢ and implicitly shares values of node 03 and
its descendants with the quadtree of image b.
Reading a node in such structures (Inverted or
Generic) allows to know which image quadtrees
share the node value, whereas in the Overlapping
Quadtrees [40], each quadtree node only con-
tains a counter of references indicating the num-
ber of pointers currently referencing the node.
This counter does not directly indicate which
quadtrees are currently sharing the node. In
the absence of special features, discovering this
sharing in the Overlapping Quadtrees requires
an explicit comparison of the image quadtrees.



5.3 Image memory space

5.3.1 Comparison of linear representations

In the case of binary images, linear approaches
[14,18,19,43] do not manipulate pointers as op-
posed to other approaches [7,13,40,41]. Using
experiments, Lin [18] shows that the space stor-
age required by the overlapped CBLQ code is
less than for the Overlapping Quadtrees [40].

Compared to CBLQ code of [19] or to the DF-
expression of [14], the authors of [43] argue that
the Compact-IQ improves the compaction of
images by using an entropy coding (see [43] for
experimental results). However, the images of
the cluster are coded independently as opposed
to the overlapped CBLQ code [18]. From the
point of view of [18], the space reduction from
linear quadtrees to overlapped linear quadtrees
is equal to the overlapping percentage of images.

5.3.2  Comparison of hierarchical approaches
In the Overlapping Quadtrees approach of [40],
the memory space may be modified in case of
creation and deletion of an image quadtree.
The former leads to adding a new overlapped
quadtree whereas the later removes the quadtree
nodes whose reference counter is equal to 1
(otherwise nodes are shared by other quadtrees
and must not be deleted). In the Overlapping
Quadtrees, images are stored in a partially per-
sistent structure thus modifying an image is not
allowed when it is inside the sequence and this
operation creates a new image quadtree. After
an quadtree insertion, at least one new path
from the root of the quadtree to a non shared
leaf node is inserted in the set of the overlapped
quadtrees. The order of size of the mean depth
of a quadtree is logs(N), where N is the number
of nodes in the quadtree. Thus, the minimum
order of size of the mean additional space occu-
pied by a structure of k overlapped quadtrees is
k x logs(N) nodes.

In the Generic Quadtree, the memory space may
be modified in case of creation, modification or
deletion of an image. It must be noticed that, in
the table representing a generic node, the max-
imum number of lines is the number of possible
values for a leaf node plus 2 (I for internal node
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and L for does not exist). For instance in the
black-and-white case, each generic node has a
maximum of 4 lines. As a consequence, the stor-
age space used by the Generic Quadtree depends
on the number of different node values in the
different quadtrees representing the images of
the cluster.

In the Inverted Quadtrees [7,41], the mem-
ory space may be modified in case of creation,
modification or deletion of an image. All these
operations add or delete image identifiers in
the lists associated with the nodes of the In-
verted Quadtree. The number of image identi-
fiers stored in the Inverted Quadtree is directly
proportional to the number of black quadrants
in the image of the cluster. Moreover, among
the Inverted Quadtrees, the Dynamic one [41] is
more compact than the Fully one [7] (see [41] for
an analytical comparison between both inverted
structures).

When updates are performed in the images of
the cluster, the Generic Quadtree [13] and the
Fully or Dynamic Inverted Quadtrees [7,41] re-
quire less memory space than the Overlapping
Quadtrees [40]. The justification for this last
statement is based on two considerations (1) Let
k be the number of elements of an initial set
of images stored in the cluster. After a number
u of update groups performed on images, the
number of images stored in the Generic or the
Inverted Quadtrees is still k, whileit is k' = k+u
in the Overlapping Quadtrees. This is because
modifications on one image, internal to the se-
quence, always create a new image and then a
new quadtree in the Overlapping Quadtrees. (2)
In the Overlapping Quadtrees, an image shares
a node value only with the precedent images in
the sequence, whereas in the Generic and In-
verted Quadtrees, all the stored image quadtrees
can potentially share a node value.

Moreover, it must be noticed that, the Fully
and the Dynamic Inverted Quadtrees [7,41] do
not store any specific value, like the value does
not ezxist managed in the Generic Quadtree [13],
or any additional path, like in the Overlapping
approach [40].



5.4  Image reading

5.4.1 Reading the entire image

When images are coded independently, find-
ing and displaying an image need no additional
operations, except an uncoding for linear repre-
sentations [14,19,43]. On the contrary, the over-
lapped CBLQ code [18] is proposed to store and
read images in sequence. Rebuilding an image
from the sequence in the CBLQ code is complex
because of the recursive use of un_overlap or
re_overlap, depending on the choice of begin-
ning the computing by the first or the last image
(see section 4.2).

In the Overlapping Quadtrees [40], images are
stored in such a way that the storage do not in-
terfere with the reading of images. In the Generic
Quadtree [13], reading an image i is performed
by reading all generic nodes containing the im-
age 1 identifier or the identifiers of image ¢ an-
cestors. The reading of generic nodes stops when
all leaf nodes of the quadtree 7 are found. On the
contrary, in the Inverted Quadtrees [7,41], the
number of inverted nodes read is higher because
nothing indicates if a node is white or gray: the
color of a non-black node is only known after the
reading of all its descendants.

Each inverted or generic node is explored using
an algorithm (see sections 4.3.2 and 4.4.2) whose
complexity is O(k), k being the number of stored
images in the cluster. On the other hand, the re-
trieval of image ¢ in the Overlapping Quadtrees
[40] consists of two steps: (1) retrieving the root
of the image quadtree ; the complexity of this
operation is O(k) (2) reaching and reading nodes
of the quadtree from its root node. Thus, for
the same number of images stored in the cluster
(if there is no image updates), an entire image
reading is faster in the Overlapping Quadtrees
[40] than any other approach.

5.4.2  Accessing regions in the image

In the approaches of [18,40,43], each image is read
independently of the others and the comparison
of node n values in different image quadtrees
must be explicitly computed. In the overlapped
CBLQ code of [18] and in the Compact-1Q [43],
the image must be uncoded before reaching any
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image region.

For Overlapping Quadtrees [40], the access must
be performed from the root node of each image.
On the other hand, using the Inverted Quadtree
[7,41] or the Generic Quadtree [13], it is easy to
have access simultaneously to the same nodes in
different image quadtrees because the nodes of
these structures allow jumping from one image
to another. The comparison of the value of node
n in different image quadtrees is immediate,
except for the reading of some additional de-
scendant nodes (in order to determine if a node
is gray or white) in the Inverted Quadtrees.

5.5 Operations

The overlapping methods [18,40] have been pro-
posed to store sequences of images. Thus, the
only operations allowed on images stored in
overlapped quadtrees are reading an image, in-
serting a new image (at the end of the sequence)
or modifying an image whose quadtree is not
overlapped (the last image of the sequence).

In the Overlapping Quadtrees [40], an image
quadtree can be deleted but only non shared
nodes are removed (see 5.3.2). On the other
hand, the deletion is not allowed in the over-
lapped CBLQ code, because deleting an image
quadtree requires the rebuilding of the end of
the sequence. To operate on image quadtrees
coded by the overlapped CBLQ code of [18],
image quadtrees must be uncoded. Similarly, op-
erating on image quadtrees represented by the
Compact-1Q [43] implies the uncoding of each
gray node (value P}, see section 3.1.2).

On the contrary, for image quadtrees stored
in the Fully or Dynamic Inverted Quadtrees
[7,41] or in the Generic Quadtree [13], there is
no limitation on allowed operations (insertion,
modification and deletion). There is a great dif-
ference between these approaches and the other
methods. These approaches allow many opera-
tions which do not explicitly exist for the other
approaches: computing the difference between
two images or parts of images, following the
evolution of an area across images, etc. As a con-
sequence, they are efficient for working on one



image and simultaneously on a set of images. It
must be stressed that the Inverted Quadtrees
are limited to binary image, whereas the Generic
Quadtree can manage any kind of image (binary,
gray-scale, color).

6 Conclusions

This paper presents a survey of quadtree-based
structures [7,13,18,40,41,43] to give an overview
of pros and cons of a variety of approaches
for the storage and the manipulation of clus-
ters of images organized in quadtrees. Among
the proposed structures, the linear approaches
[18,19,43,38] and the Inverted Quadtrees [7,41]
are limited to binary images. On the other hand,
the Overlapping Quadtrees [40] and the Generic
Quadtree [13] allow the manipulation of gray-
scale or color images. Some approaches are based
on the same mechanisms: the linear representa-
tion of quadtree [18,19,38,43], the overlapping
mechanisms [19,38,40], or an inverted structure
[7,13,41]. The comparison of these approaches is
summed-up in table 3.

Each approach, presented in this article, has
been proposed for specific applications. The
CBLQ code [18,19] and the Compact-1Q [43]
compact binary images with a perspective of
image manipulation. The Inverted Quadtrees
[7,41] compact binary images as well but with
the aim of researching pattern in images. Com-
paction and delivery of video sequence are the
main areas of applications of the Overlapping
Quadtrees [40] and the overlapped CBLQ code
[18], whereas it is the application of image pro-
cessing operations and the bookkeeping of the
changes in the processed images for the Generic
Quadtree [13]. As a consequence, none of these
structures efficiently supports all operations or
presents the best compromise solution between
compaction and image manipulation. This qual-
itative comparison presents the advantages and
the disadvantages of each approach allowing the
reader to be able to choose the "best” structure
according to its application needs.
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Table 3
Summing-up and comparison of quadtree-based approaches storing and managing clusters of images

Linear structures Linear quadtrees [1,2,11], DF-Expression [14], CBLQ code [19], Compact-1Q [43]

Purposes: Compacting images within linear quadtrees without using pointers.

Main areas of application: Transfer through a network and manipulation of binary images being too large to be
represented wholly in the primary memory.

Limitation: Only binary images are managed, reading an image represented by a linear quadtree consists
in uncoding the image and a cluster of images is store by coding each image independently.

Differences:  Only black nodes are coded in [1,2,11], whereas other encoding methods [14,19,43] code all
leaf and internal nodes.

Operations (union, intersection and difference) on coded image quadtrees are only proposed
for the approaches of [2,19,43].

According to the authors of [43], the Compact-IQ improves the compaction of images
compared to other linear approaches.

Overlapping structures Overlapping Quadtrees [40] and Overlapped CBLQ code [18].

Purposes: Compacting a linear sequence of images within a structure of quadtrees.
Main areas of application: Compaction and delivery of video.

Limitation: Modifications are not allowed on quadtrees which are internal to the sequence: new quadtrees
are created and added to the end of the sequence.

Differences: The approach of [40] is based on hierachical quadtrees and the approach of [18], which is
limited to black and white images, is based on linear quadtrees.

In [40], reading an image is as much time consuming using overlapped quadtrees as using
independent quadtrees, i.e., one quadtree for each image.

In [18], before applying any operation on an image, the CBLQ code of the image must be
rebuilt and, if the image is internal to a sequence, several preceding images must be rebuilt.
Moreover, before any reading, the image must be computed from its CBLQ code.

The compaction of images is improved by [18] in comparison with [40] because no pointer
is manipulated.

Inverted structures Fully [7] and Dynamic [41] Inverted Quadtree and Generic Quadtree [13].

Purposes: Compacting a cluster of images within a single quadtree structure, allowing the querying
of images by fuzzy search pattern for [7,41] and allowing the manipulation of images and
the comparison of the homologous regions in different images for [13].

Main areas of application: Content-based image retrieval for [7,41] and bookkeeping of the changes in the image
processing [13].

Limitation: Reading an image is more time consuming than using independent quadtrees.

Differences:  The structure of [7] is static ; it must be totally reorganized when the number of stored
images increases.

The approaches of [7,41] are limited to black and white images.

Comparing homologous regions in different images is more time consuming in [7,41] than
in [13] because more quadtree nodes must be read.

In [13], additional node values (internal and 1) are managed.

Differences between all Linear approaches [11,1,14,18,19,43] do not uses pointers as opposed to the others approaches
structures [7,13,40,41] based on hierachical quadtrees.

The approaches based on overlapping mechanisms [18,40] manage sequences of images
whereas in the other approaches managing clusters [7,13,41], there is no predefined order
between images.

Among approaches managing cluster of images, the structures proposed by [18,40] are
partially persistent, whereas the structures proposed by [7,13,41] are fully persistent.

Comparing the same node in different image quadtrees is faster using inverted structures
[7,13,41] than using overlapping approaches [18,40].

The Fully and Dynamic Inverted [7,41] Quadtrees and the Generic Quadtree [13] approaches
allow many operations which do not explicitly exist for the other approaches: computing
the difference between two images or parts of images, following the evolution of an area
across images, etc.
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