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NUMERICAL MODELING OF ELASTIC WAVES

ACROSS IMPERFECT CONTACTS.

BRUNO LOMBARD∗ AND JOËL PIRAUX†

Abstract. A numerical method is described for studying how elastic waves interact with im-
perfect contacts such as fractures or glue layers existing between elastic solids. These contacts have
been classicaly modeled by interfaces, using a simple rheological model consisting of a combination
of normal and tangential linear springs and masses. The jump conditions satisfied by the elastic
fields along the interfaces are called the ”spring-mass conditions”. By tuning the stiffness and mass
values, it is possible to model various degrees of contact, from perfect bonding to stress-free surfaces.
The conservation laws satisfied outside the interfaces are integrated using classical finite-difference
schemes. The key problem arising here is how to discretize the spring-mass conditions, and how to
insert them into a finite-difference scheme: this was the aim of the present paper. For this purpose,
we adapted an interface method previously developed for use with perfect contacts [J. Comput. Phys.
195 (2004) 90-116]. This numerical method also describes closely the geometry of arbitrarily-shaped
interfaces on a uniform Cartesian grid, at negligible extra computational cost. Comparisons with
original analytical solutions show the efficiency of this approach.

Key words. elastic waves, interface methods, spring-mass jump conditions, discontinuous co-
efficients, imperfect contact, hyperbolic conservation laws.

AMS subject classifications. 35L40, 65M06

1. Introduction. Here it is proposed to study the propagation of mechanical
waves in an elastic medium divided into several subdomains. The wavelengths are
assumed to be much larger than the thickness of the contact zones between subdo-
mains, or interphases [18]. Each interphase is replaced by a zero-thickness interface,
where elastic fields satisfy jump conditions. In elastodynamics, the contacts between
elastic media are usually assumed to be perfect [1]. They can therefore be modeled
by perfect jump conditions, such as perfectly bonded, perfectly lubricated, or stress-
free conditions. For example, perfectly bonded conditions will mean that both elastic
displacements and normal elastic stresses are continuous across the interface at each
time step.

In practice, contacts are often imperfect because of the presence of microcracks
or interstitial media in the interphase. Take, for example, fractures in the earth,
which are filled with air or liquid, and where jumps occur in the elastic displacements
and elastic stresses. The simplest imperfect conditions are the spring-mass condi-

tions (which are sometimes called ”linear slip displacements”): these conditions are
realistic in the case of incident waves with very small amplitudes [17]. The spring-
mass conditions have been extensively studied, both theoretically and experimentally
[18, 20, 21]. This approach has been applied in various disciplines, such as nonde-
structive evaluation of materials [2, 22] and geophysics [17].

However, very few studies have dealt so far with the numerical simulation of wave
propagation across imperfect contacts described by spring-mass conditions. To our
knowledge, only three approaches have been proposed for this purpose. First, Gu
et al. developed a boundary integral method which can be applied to arbitrarily-
shaped interfaces [7]; but this method requires knowing the Green’s functions on
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both sides of the interface, which complicates the study of realistic heterogeneous
media. Secondly, a finite-element method has been proposed by Haney and Sneider
[8]. The jump conditions are incorporated automatically here into the numerical
scheme, via the variational formulation, and attempts have been made to perform
numerical analysis. The main drawback of this approach is that it requires adapting
the mesh to the interface, which increases the computational effort. Thirdly, other
authors have approached this problem by implicitly accounting for the boundary
conditions by using an equivalent medium, and then deriving new finite-difference
formulas [3, 4]. This approach can be applied to arbitrarily-shaped interfaces on a
uniform Cartesian grid, but the accuracy is low, and this method involves explicitly
changing the numerical scheme near the interface. Note that the inertial effects were
not investigated in any of these three cases, although they may be important factors
[18].

The aim of this paper is to describe a procedure for incorporating the spring-
mass conditions into existing finite-difference schemes, on a regular Cartesian grid.
The geometry of arbitrarily-shaped interfaces is properly taken into account, reduc-
ing the unwanted diffraction classically induced by the Cartesian grid. Lastly, the
extra computational cost is low. For this purpose, we adapted the explicit simplified

interface method (ESIM) previously developed for dealing with perfect contacts in
1D [15] and 2D [12]. A study has also dealt with imperfect contacts in 1D [11]. In
the present study, this approach is extended to 2-D configurations. The focus here is
on the description of imperfect contacts; to avoid additional complications, we take
media with simple constitutive laws (elastic and isotropic media), but the procedure
should be suitable for dealing with more realistic media. The inertial effects are taken
into account.

This paper is organized as follows. In section 2, the problem is stated in terms of
the configuration, the conservation laws and the spring-mass conditions. In section 3,
a numerical strategy is described for integrating the conservation laws on the whole
computational domain: the same scheme is used throughout the domain, but near
an interface, modified values of the solution are used, which implicitly account for
the spring-mass conditions. Section 4 is the core part of this paper: it describes in
detail how to compute the modified values. Numerical experiments are described in
section 5, and comparisons with original analytical solutions show the efficiency of
the method. Note that although no rigorous mathematical proof of the validity of
the algorithms was obtained, the results of the numerical experiments performed were
extremely satisfactory.

2. Problem statement.

2.1. Configuration. Let us consider two isotropic elastic media Ω0 and Ω1 sep-
arated by a stationary interface Γ (figure 2.1). We study a two-dimensional configura-
tion with plane strains, and adopt Cartesian coordinates x and y pointing rightward
and upward, respectively. The interface is described by a parametric description
(x(τ), y(τ)). The unit tangential vector t and the unit normal vector n are

t =
1

√

x′2 + y′2





x
′

y
′



 , n =
1

√

x′2 + y′2





−y
′

x
′



 , (2.1)

where x
′

= d x
d τ

and y
′

= d y
d τ

. Γ is assumed to be sufficiently smooth to ensure that
x(τ), y(τ) and their successive spatial derivatives are continuous all along Γ, up to a
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Fig. 2.1. Interface Γ between two elastic media Ω0 et Ω1.

given order of derivation.
The physical parameters are the density ρ, the elastic speed of the compressional

P-waves cp, and the elastic speed of the shear SV-waves cs. For the sake of simpli-
fication, these parameters are taken to be piecewise constant; however, they may be
discontinuous across Γ

(ρ, cp, cs) =







(ρ0, cp0, cs0) if (x, y) ∈ Ω0,

(ρ1, cp1, cs1) if (x, y) ∈ Ω1.
(2.2)

The elastic fields are the two components of the elastic velocity v(v1, v2) and the three
independent components of the elastic stress tensor σ(σ11, σ12, σ22). The projections,
normal and tangential to the interface, of the elastic displacement u(u1, u2), those of
the velocity v, and those of the normal stress σ.n are denoted by

∣

∣

∣

∣

∣

∣

uN = u.n,

uT = u.t,

∣

∣

∣

∣

∣

∣

vN = v.n,

vT = v.t,

∣

∣

∣

∣

∣

∣

σN = (σ.n).n,

σT = (σ.n).t.
(2.3)

Let P be a point on Γ (figure 2.1), and t be the time. Given a function f(x, y, t), the
limit values of f at P on both sides of Γ are written

fl(P, t) = lim
M→P,M∈Ωl

f(M, t), (2.4)

where l = 0, 1. The jump of f across Γ, from Ω0 to Ω1, is denoted by

[f(P, t)] = f1(P, t) − f0(P, t). (2.5)

2.2. Conservation laws. To study the propagation of small perturbations in
Ωi (i = 0, 1), we use a velocity-stress formulation of elastodynamic equations. Setting

U = T (v1, v2, σ11, σ12, σ22), (2.6)

the linearization of mechanics equations gives a first-order linear hyperbolic system
in each subdomain

∂

∂ t
U + Al

∂

∂ x
U + Bl

∂

∂ y
U = 0, l = 0, 1, (2.7)
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which is satisfied outside Γ. The 5×5 piecewise-constant matrices Al and Bl (l = 0, 1)
are [1]

Al = −



































0 0
1

ρ
0 0

0 0 0
1

ρ
0

ρ c2
p 0 0 0 0

0 ρ c2
s 0 0 0

ρ
(

c2
p − 2 c2

s

)

0 0 0 0



































,

Bl = −



































0 0 0
1

ρ
0

0 0 0 0
1

ρ

0 ρ
(

c2
p − 2 c2

s

)

0 0 0

ρ c2
s 0 0 0 0

0 ρ c2
p 0 0 0



































. (2.8)

2.3. Spring-mass conditions. An incident wave at the interface generates four
other waves: a reflected P-wave, a reflected SV-wave, a transmitted P-wave, and a
transmitted SV-wave. To pose the problem suitably, it is necessary to define four
independent jump conditions satisfied by the fields along Γ (figure 2.1). Perfectly

bonded conditions are generally used for this purpose, namely

[uN(P, t)] = 0, [σN (P, t)] = 0,

[uT (P, t)] = 0, [σT (P, t)] = 0,
(2.9)

corresponding to a perfectly bonded contact between the two solids in question.
To describe an imperfect contact, one can generalize (2.9) into spring-mass con-

ditions. With the notations defined in (2.4), the spring-mass conditions are

[uN(P, t)] =
1

KN

σN0(P, t), [σN (P, t)] = MN

∂2

∂ t2
uN0(P, t),

[uT (P, t)] =
1

KT

σT0(P, t), [σT (P, t)] = MT

∂2

∂ t2
uT0(P, t),

(2.10)

where KN > 0, KT > 0, MN ≥ 0, MT ≥ 0, are called the normal stiffness, the tangen-
tial stiffness, the normal mass, and the tangential mass of the interface, respectively.
The conditions (2.10) are called ”spring-mass conditions” because of analogies with
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Fig. 2.2. Spring-mass rheological model of the contact.

the equations governing the dynamics of a spring-mass system (figure 2.2). One basic
underlying assumption made here is that the elastic stresses do not affect the nature
of the contact, and hence, that KN , KT , MN , and MT do not depend on t or on the
fields. They can vary with space, and hence with the parameter τ .

The spring-mass conditions provide an easy way of describing a wide range of
contacts between solids, from perfect contact to disconnected media. For KN → +∞,
KT → +∞, MN = 0, and MT = 0, we obtain the perfectly bonded conditions (2.9).
For KN → +∞, KT → 0, MN = 0, and MT = 0, we obtain σT (P, t) → 0, which
amounts to a perfect slip with no friction. Lastly, for KN → 0, KT → 0, MN = 0,
and MT = 0, we obtain σN (P, t) → 0 and σT (P, t) → 0, hence σ.n(P, t) → 0: the
media Ω0 and Ω1 tend to have stress-free boundaries, which means that no waves are
transmitted from one medium to the other.

The spring-mass conditions entail an important property: the plane waves re-
flected and transmitted by a plane interface with conditions (2.10) are frequency-
dependent [21]. These waves therefore show a distorted profile that is quite different
from the profile of the incident wave, even below the critical angle. In addition,
even if the incident wave is spatially bounded in the direction of propagation, the
reflected and transmitted waves are not spatially bounded: a ”coda” follows each of
these waves. Phenomena of this kind, which do not occur with perfect conditions, are
observed experimentally (see e.g. [17]).

By choosing appropriate values of KN , KT , MN , and MT , it is possible to model
realistic configurations. The spring-mass conditions (2.10) can also be obtained quite
rigorously in some cases; the values of KN , KT , MN , and MT will therefore depend on
the physical and geometrical properties of the interphase. Take a plane elastic layer
sandwiched between two homogeneous isotropic half-spaces. If the thickness of the
intermediate layer is much smaller than the wavelength, the spring-mass conditions
can be deduced from an asymptotic analysis of the wave propagation behavior inside
the layer [18].

The spring-mass conditions model (2.10) has some limitations. First, if KN < +∞
and MN 6= 0, or if KT < +∞ and MT 6= 0, these conditions are asymmetrical. In
Appendix A, we establish that the influence of this asymmetry is either null (in
the case of reflected waves) or negligible (in that of transmitted waves) in the one-
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dimensional context. We have checked numerically that this is also the case in the
2-D context. Setting up symmetrical conditions would considerably complicate the
jump conditions, in return for absolutely negligible effects.

The second drawback follows from the first equation given by (2.10): there is no
reason why a negative jump of uN should not occur, whith an absolute value greater
than the real thickness of the interphase. Since a penetration of both faces on the
interphase is not physically realistic, the conditions (2.10) are valid only in the case of
very small perturbations. With larger perturbations, finer modeling procedures are
required, based on nonlinear contact laws [23]. Jump conditions of this kind, which
are currently under study, require more complex numerical methods.

3. Time-marching.

3.1. Numerical scheme. To integrate the hyperbolic system (2.7), we intro-
duce a uniform lattice of grid points: (xi, yj , tn) = (i ∆ x, j ∆ y, n ∆ t), where ∆ x =
∆ y are the spatial mesh sizes, and ∆ t is the time step. The approximation Un

i,j

of U(xi, yj , tn) is computed using explicit two-step, spatially-centred finite-difference
schemes. The time-stepping of these schemes is written symbolically

Un+1
i,j = Hi,j

(

Un
i+ĩ, j+j̃

, (̃i, j̃) ∈ Σ
)

. (3.1)

Hi,j is a discrete operator, and Σ is the stencil of the scheme. The subscripts in H i,j

refer to the physical parameters at (xi, yj). See [9] for a review of the huge body of
literature on numerical methods for conservation laws.

The interface Γ is immersed in the regular meshing, so that one can distinguish
between two sets of grid points: the regular points, where the stencil of the scheme
involves a single medium, e.g. Ω0 or Ω1, and the irregular points, where the stencil of
the scheme crosses Γ. The distribution of irregular points along Γ obviously depends
on the geometry of Γ and on the stencil of the scheme. At regular points, the scheme
(3.1) is applied classically, as in homogeneous media. At irregular points, however, the
scheme (3.1) is modified to take the spring-mass conditions (2.10) into account. This
modification is carried out using an interface method, and the main aim of the present
article is to describe this procedure, which will be presented in detail in subsequent
sections.

In the numerical experiments described in section 5, we use a second-order scheme:
the Wave Propagation Algorithm (WPALG), originally developed by LeVeque in the
field of computational fluid dynamics [10]. Its stencil is (̃i = −2 ...2, j̃ = −2 ...2)
and (̃i, j̃) 6= (±2,±2). WPALG is a useful tool for dealing with linear elastic wave
propagation, for at least three reasons. First, it involves the use of nonlinear flux lim-
iters that prevent numerical dispersion. Secondly, this scheme reduces the numerical
anisotropy introduced by the Cartesian grid. Thirdly, WPALG is stable in 2D up to
CFL=1. For the convergence measurements performed in section 5 (test 1), we also
used the standard second-order Lax-Wendroff scheme.

Note that other schemes can be used: in particular, we have successfully combined
the interface method with staggered schemes, such as [19]. It should therefore be
possible to adapt most solvers for use with the interface method described in the
forthcoming discussion.

3.2. Interface method. From now on, we will focus on the time-stepping pro-
cedure near the interface. To take into account the spring-mass conditions satisfied
along Γ, the scheme (3.1) is also applied at irregular points, but some of the numer-
ical values used for the time-stepping procedure are changed. The use of so-called
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Value Number of

nv 5(k + 1)(k + 2)/2 components of Uk
l

nc 2(k + 1)(k + 2) jump conditions

nm k(k − 1)/2 compatibility conditions

nq variable grid points to estimate Uk
l

Table 3.1

n with indices used throughout the text (l = 0, 1).

modified values deduced from the jump conditions is the key feature of the interface
method developed in our previous studies: the ”explicit simplified interface method”
(ESIM) [11, 12, 15]. At time tn, the general method used to compute modified values
is as follows. On each side of Γ, one defines a smooth extension U∗(x, y, tn) of the
exact solution on the other side. The extension U∗ is built satisfying the same jump
conditions as the exact solution U . At any irregular point, the modified value is a
numerical estimate of U∗ at this point.

Let us introduce some notations. Take an irregular point M with coordinates
(xI , yJ ), belonging to Ω1 (the following discussion can easily be adapted to the case
where M(xI , yJ) ∈ Ω0). Let P (xP , yP ) be a point on Γ near M , for example the
closest orthogonal projection of M onto Γ (figure 3.1). The vector containing the
limit values of the exact solution U(x, y, tn) and those of its spatial derivatives at P
up to the k-th order is denoted by

Uk
l = lim

M→P,M∈Ωl

T

(

T U , ...,
∂α

∂ xα−β ∂ yβ
T U , ...,

∂k

∂ yk
T U

)

, (3.2)

where l = 0 or 1, α = 0, ..., k and β = 0, ..., α. This vector has nv = 5(k + 1)(k + 2)/2
components. Throughout the text, many n with indices have been used; to avoid any
confusion, they are summed up in table 3.1. To obtain concise expressions for the k-th
order Taylor expansions at P of quantities at (xi, yj), we define the 5 × nv matrix

Πk
i,j =

(

I5, ...,
1

β ! (α − β) !
(xi − xP )α−β(yj − yP )βI5, ...,

(yj − yP )k

k !
I5

)

, (3.3)

where I5 is the 5×5 identity matrix, α = 0, ..., k and β = 0, ..., α. The modified value
U∗

I,J is then defined as a numerical estimate of the smooth extension

U∗(xI , yJ , tn) = Πk
I,J Uk

0 . (3.4)

Note that Uk
0 is the limit value of the solution and its spatial derivatives on the other

side of Γ with respect to M .
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Ω P

M

Fig. 3.1. Zoom on an irregular point M ; orthogonal projection P of M onto Γ.

The modified values at all the irregular points surrounding Γ are computed in a
similar way at tn. The time-stepping at an irregular point (i, j) is written symbolically

Un+1
i,j = Hi,j

(

Û
n

i+ĩ, j+j̃ , (̃i, j̃) ∈ Σ
)

, (3.5)

where

Û i+ĩ, j+j̃ =







Un
i+ĩ, j+j̃

if (xi+ĩ, yj+j̃) ∈ Ω1,

U∗

i+ĩ, j+j̃
if (xi+ĩ, yj+j̃) ∈ Ω0.

(3.6)

The time-stepping procedure is completed over the whole computational domain by
applying (3.1) at the regular points. It only remains now to calculate U∗’s, since Uk

0

in (3.4) is unknown.

4. Calculating modified values.

4.1. Differentiation of the spring-mass conditions. In the first step towards
calculating the modified value (3.4), we look for the jump conditions satisfied by Uk

l

(3.2), for any k. These conditions are deduced from the spring-mass conditions (2.10)
satisfied by uN,T and σN,T . Before describing the procedure, let us introduce a new
notation. The vector containing the limit values of the (k + 1)-th spatial derivatives
of U(x, y, t) at P is denoted by

U
k+1

l = lim
M→P,M∈Ωl

T

(

∂k+1

∂ xk+1
T U , ...,

∂k+1

∂ xk+1−α ∂ yα
T U , ...,

∂k+1

∂ yk+1
T U

)

, (4.1)

where l = 0 or 1, α = 0, ..., k + 1. This vector has 5(k + 2) components. Once again,
the point P considered and the instant t are omitted.

For k = 0, the two equations in (2.10) that deal with the jump in the elastic
displacement are differentiated in terms of t. The geometry of Γ and stiffness and
mass values do not depend on t; since v = ∂u

∂ t
, we obtain

[vN (P, t)] =
1

KN

∂

∂ t
σN0(P, t), [σN (P, t)] = MN

∂

∂ t
vN0(P, t),

[vT (P, t)] =
1

KT

∂

∂ t
σT0(P, t), [σT (P, t)] = MT

∂

∂ t
vT0(P, t).

(4.2)
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The time derivatives in (4.2) are replaced by spatial derivatives thanks to the conser-
vation laws (2.7). We sum up the relations thus obtained in matrix terms

C0
1 U0

1 = C0
0 U0

0 + E0
0 U

1

0. (4.3)

C0
l (l = 0, 1) are 4×5 matrices; U0

l are the vectors (3.2) for k = 0 (i.e. the limit values

of (2.6)); E0
0 is a 4 × 10 matrix; lastly, U

1

0 is the vector (4.1) for l = 0 and k = 0.
Matrices C0

l describe the perfectly bonded conditions (2.9). Matrix E0
0 describes the

correction induced by the springs and masses in (2.10). Both matrices C0
l and E0

0

depend on τ , but they are independent of t; they are dealt with in greater detail in
Appendix B.

To compute the conditions satisfied up to k = 1, we differentiate (4.3) in terms
of t and τ . First, the differentiation of (4.3) in terms of t yields

C0
1

∂

∂ t
U0

1 = C0
0

∂

∂ t
U0

0 + E0
0

∂

∂ t
U

1

0. (4.4)

The time derivatives in (4.4) are replaced by spatial derivatives, using the conservation
laws (2.7); with the notations (3.2) and (4.1), one readily obtains (l = 0, 1)

∂

∂ t
U0

l =
(

0 −Al −Bl

)

U1
l ,

∂

∂ t
U

1

0 =

(

−A0 −B0 0

0 −A0 −B0

)

U
2

0,

which are injected into (4.4). Secondly, the differentiation of (4.3) in terms of τ yields

(

d

d τ
C0

1

)

U0
1+C0

1

∂

∂ τ
U0

1 =

(

d

d τ
C0

0

)

U0
0+C0

0

∂

∂ τ
U0

0+

(

d

d τ
E0

0

)

U
1

0+E0
0

∂

∂ τ
U

1

0.

(4.5)

Since U0
l (l = 0, 1) and U

1

0 depend on x(τ) and y(τ), the chain-rule gives

l = 0, 1,
∂

∂ τ
U0

l = x
′ ∂

∂ x
U0

l + y
′ ∂

∂ y
U0

l ,

=
(

0 x
′

I5 y
′

I5

)

U1
l ,

and

∂

∂ τ
U

1

0 =

(

x
′

I5 y
′

I5 0

0 x
′

I5 y
′

I5

)

U
2

0.

Due to the normalization of vectors n and t in (2.1) and (2.3), special care must be
taken with the differentiation procedure d

d τ
E0

0 in (4.5) (see Appendix B). From the

previous discussion, one builds three 12×15 matrices C1
0, C1

1 and D1
0, and one 12×15

matrix E1
0, so that

C1
1 U1

1 =
(

C1
0 + D1

0

)

U1
0 + E1

0 U
2

0. (4.6)

Matrices C1
l describe the influence of perfectly bonded conditions. Matrices D1

0 and
E1

0 describe the changes introduced by the springs and masses.
By iterating a similar procedure (k − 1) times, one can find matrices such that

Ck
1 Uk

1 =
(

Ck
0 + Dk

0

)

Uk
0 + Ek

0 U
k+1

0 , (4.7)
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where Ck
0 , Ck

1 and Dk
0 are nc × nv matrices, with nc = 2(k + 1)(k + 2) and nv =

5(k + 1)(k + 2)/2; Ek
0 is a nc × 5(k + 2) matrix (in practice and as shown in section

4.4, the last matrix is never computed). This is a tedious procedure, however, even
with low values of k (e.g. k = 1). This task can be carried out automatically by
developing appropriate formal calculus tools; the simulations shown in section 5 were
obtained in this way.

4.2. Compatibility conditions. Some components of the spatial derivatives of
U are not independent. We set

α1 =
λ + 2 µ

4 (λ + µ)
=

c2
p

4
(

c2
p − c2

s

) , α2 =
−λ

4 (λ + µ)
=

2 c2
s − c2

p

4
(

c2
p − c2

s

) , (4.8)

where λ and µ are the Lamé coefficients. Then, the standard plane elasticity compat-

ibility conditions of Saint-Venant [6, 13] are, in terms of stresses,

α2
∂2 σ11

∂ x2 + α1
∂2 σ22

∂ x2 −
∂2 σ12

∂ x ∂ y
+ α1

∂2 σ11

∂ y2 + α2
∂2 σ22

∂ y2 = 0. (4.9)

Equation (4.9) is differentiated (k − 2)-times in terms of x and y, giving the nm =
k(k − 1)/2 relations

α2
∂k σ11

∂ xk−j ∂ yj
+ α1

∂k σ22

∂ xk−j ∂ yj
−

∂k σ12

∂ xk−j−1 ∂ yj+1

+α1
∂k σ11

∂ xk−j−2 ∂ yj+2
+ α2

∂k σ22

∂ xk−j−2 ∂ yj+2
= 0, k ≥ 2, j = 0, ..., k − 2.

(4.10)

Conditions (4.10) are satisfied at each point in Ωl (l = 0, 1), especially at P (see
figure 2.1). One can therefore express the limit values Uk

l in terms of a vector V k
l

with nv − nm independent components

Uk
l = Gk

l V k
l , l = 0, 1 (4.11)

where Gk
l is a nv × (nv − nm) matrix deduced from (4.10). The relation (4.11) is

useful to reduce the number of components in (4.7), as seen in the next subsection.
An algorithm has been proposed in [12] for computing the non-null components of
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Gk
l but there was a mistake for k ≥ 3. The correct algorithm is (l = 0, 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α = 0, β = 0,

for γ = 0, ..., k, for δ = 0, ..., γ

if δ = 0 then for ε = 1, ..., 5

α = α + 1, β = β + 1, Gk
l [α, β] = 1

if γ 6= 0 and δ 6= 0 and γ 6= δ then

if γ = 2 then ν = 0, η = 0,

else if δ = 1 then ν = 0, η = 1,

else if δ = γ − 1 then ν = 1, η = 0,

else ν = 1, η = 1,

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β + 1, Gk
l [α, β] = 1

α = α + 1, β = β − 5 + ν, Gk
l [α, β] = α2

β = β + 2 − ν, Gk
l [α, β] = α1

β = β + 7, Gk
l [α, β] = α1

β = β + 2 − η, Gk
l [α, β] = α2

α = α + 1, β = β − 5 + η, Gk
l [α, β] = 1

if γ 6= 0 and γ = δ then for ε = 1, ..., 5

α = α + 1, β = β + 1, Gk
l [α, β] = 1.

(4.12)

4.3. Solution of underdetermined systems. It is now required to express
V k

1 in terms of V k
0 . For this purpose, we inject the compatibility conditions (4.11)

into the jump conditions (4.7). Setting

Sk
1 = Ck

1 Gk
1 , Sk

0 =
(

Ck
0 + Dk

0

)

Gk
0 , (4.13)

we obtain the underdetermined system

Sk
1 V k

1 = Sk
0 V k

0 + Ek
0 U

k+1

0 . (4.14)

To find the full range of solutions of (4.14), a singular value decomposition (SVD) of
Sk

1 [16] is computed. Setting (Sk
1)−1 to denote the (nv −nm)×nc generalized inverse

of Sk
1 , and Rk

s1
to denote the (nv − nm)× (nv − nm − nc) matrix associated with the

kernel of Sk
1 , we obtain

V k
1 =

(

(

Sk
1

)−1

Sk
0 |R

k
s1

)





V k
0

Λk



 +
(

Sk
1

)−1

Ek
0 U

k+1

0 , (4.15)

where Λk is a (nv −nm −nc) vector of Lagrange multipliers. A similar procedure can
be used to express V k

0 in terms of V k
1 .
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4.4. Numerical estimates of limit fields. Consider a set B of nq grid points
surrounding P ; for practical purposes, we define B as the set of grid points whose
distance from P is less than a given distance q. We successively examine each grid
point in B, writing the k-th order Taylor expansions of U(xi, yj , tn) at P . If (xi, yj)
is included in Ω0, we deduce from (3.3) and (4.11) that

(xi, yj) ∈ B ∩ Ω0, U(xi, yj , tn) = Πk
i,j Uk

0 + O(∆ xk+1)

= Πk
i,j Gk

0 V k
0 + O(∆ xk+1)

= Πk
i,j Gk

0 (1 |0)





V k
0

Λk



 + O(∆ xk+1),

(4.16)
where 1 is the identity matrix (nv − nm) × (nv − nm), and 0 is the null matrix
(nv −nm)× (nv −nm−nc). If (xi, yj) is included in Ω1, we deduce from (3.3), (4.11),
and (4.15) that

(xi, yj) ∈ B ∩ Ω1, U(xi, yj , tn) = Πk
i,j Uk

1 + O(∆ xk+1)

= Πk
i,j Gk

1 V k
1 + O(∆ xk+1)

= Πk
i,j Gk

1

(

(

Sk
1

)−1

Sk
0 |R

k
s1

)





V k
0

Λk





+Πk
i,j Gk

1

(

Sk
1

)−1

Ek
0 U

k+1

0 + O(∆ xk+1).

(4.17)
Relations (4.16) and (4.17) are summed up in matrix terms as follows

(Un)
B

= M





V k
0

Λk



 + N U
k+1

0 +







O(∆ xk+1)
...

O(∆ xk+1)






, (4.18)

where (Un)
B

refers to the set of exact values U(xi, yj, tn) at the grid points of B, M

is a 5 nq × (2 nv − 2 nm − nc) matrix, and N is a 5 nq × 5(k + 2) matrix. The value of
nq depends on B; this set is chosen so that (4.18) is overdetermined. In view of Table
3.1 and Table 4.1, this means that

nq ≥ (2 nv − 2 nm − nc)/5,

≥ 2
(

k2 + 5 k + 3
)

/5.

To ensure this inequality,

q = (k + 0.2)∆ x (4.19)

can be used as a radius to obtain B. From now on, numerical values and exact values

are used indiscriminately in (4.18). We also remove N U
k+1

0 and the remainder terms.
The least-squares inverse M−1 of M is computed using classical techniques, such as
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LU or SVD [16]. The set of Lagrange multipliers Λk is not useful for computing

modified values; the restriction M−1 of M−1 is therefore defined by keeping only the
(nv − nm) first lines of M−1. This gives the least-squares numerical estimate

V k
0 = M−1 (Un)

B
. (4.20)

4.5. Modified value. We now have all the tools required to be able to compute
the modified value at M(xI , yJ), as defined in section 3.2. The modified value at
(xI , yJ ) is deduced from (3.4), (4.11), and (4.20)

U∗
I,J = Πk

I,J Gk
0 M−1 (Un)

B
. (4.21)

A similar procedure is applied at each irregular point surrounding Γ. All the matrices
required to compute the modified values are recalled in Table 4.1, with their sizes.

Matrix Size Comment

Ck
l nc × nv jump conditions: perfect contact (4.7)

Dk
l nc × nv jump conditions: imperfect contact (4.7)

Gk
l nv × (nv − nm) compatibility conditions (4.11)

Sk
l nc × (nv − nm) (4.13)

Rk
sl

(nv − nm) × (nv − nc − nm) kernel of Sk
l (4.15)

Πk
i,j 5 × nv Taylor expansions (3.3)

1 (nv − nm) × (nv − nm) identity (4.16)

0 (nv − nm) × (nv − nc − nm) null (4.16)

M 5 nq × (2 nv − 2 nv − nc) (4.18)

M−1 (nv − nq) × 5 nq restriction of M−1 (4.21)

Table 4.1

Matrices used for computing the modified values (l = 0, 1).

4.6. Comments about the algorithm. This algorithm can easily be adapted
to existing codes without having to change the scheme. At each time step, one only
needs to compute a few ”modified values” (4.21), which do not depend on the scheme
selected.
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Since the interface is stationary and the nature of the contacts does not vary
with time, most of the algorithm can be built up during a preprocessing step, con-
sisting in determining irregular points, deriving interface conditions (4.7), solving
underdetermined systems (4.15), and computing the matrices involved in (4.21). All
these quantities are stored for future use. At each time step, we need only to carry
out one matrix-vector multiplication (4.21) at each irregular point, before running
time-stepping procedure. The matrices involved here are small: 5× 5 nq components,
usually with nq ≈ 20. In addition, the number of irregular points is much smaller than
the number of grid points. The extra computational cost is therefore very low. The
CPU time measurements are likely to be approximately the same as those presented
in [12].

The main aim of the interface method is to incorporate the jump conditions into
finite-difference schemes. But it also gives a finer resolution of the geometries than
the poor stair-step description induced by the Cartesian grid. The differentiations of
spring-mass conditions involve successive derivatives of x

′

and y
′

(see section 4.1). In
addition, the Taylor expansions in (4.16), (4.17) and (4.21) give an information about
the position of P inside the mesh.

In section 3.1, we have stated that the interface method can be adapted to stag-
gered grid schemes. This adaptation requires the algebra in sections 3 and 4 to be
completely rewritten (although this is quite straightforward). To give an idea of the
changes involved, let us focus on the staggered scheme [19], with a grid (xi, yj , tn) for
stresses and a grid (xi+ 1

2

, yj+ 1

2

, tn+ 1

2

) for velocities. Two different sets of irregular
points now need to be stored. The jump conditions for velocities and stresses are not
correlated (see (4.3) and Appendix B); two independant systems of jump conditions
(4.7) are therefore written. Since the jump conditions satisfied by the velocities yield
as many equations as unknowns, they do not require a SVD. The compatibility con-
ditions (4.10) are applied only to the jump conditions satisfied by the stresses, that
constitute an underdetermined system. The modified values calculated in sections 4-4
and 4-5 are also split in two parts: at time tn+ 1

2

, the modified values of the stresses

are computed (based on numerical values of σ at tn) before being inserted into the
time-marching procedure performed on the velocities. In the same way, at time tn+1,
the modified values of the velocities are computed (based on numerical values of v at
tn+ 1

2

) before they are used to perform the time-marching procedure on the stresses.

4.7. Open questions. Four questions relating to numerical analysis remain to

be solved. First, what are the effects of the term N U
k+1

0 which was neglected in
(4.18) ? In 1D [11], we established that this term is of the same order as the remainder
terms. The proof in 1D was based on performing explicit calculations on MAPLE;
this approach seems difficult to apply in the 2-D context, because it depends on the
geometry of Γ near P .

Secondly, what is the local truncation error at the irregular points obtained by
combining the interface method with the scheme ? In the 1-D context [11, 15], we
established that the following was true: if r is the order of the scheme, the local
truncation error at irregular points is still equal to r if k ≥ r (which means k ≥ 2
in the case of second-order schemes such as WPALG), when this scheme is combined
with the interface method. Extending this result to the 2-D context would require

answering the previous question about N U
k+1

0 , and bounding the matrix M−1. In
practice, the convergence measurements indicate that this property is false in the 2-D
context (at least for r = 2): we need k = 3 to ensure second-order accuracy (see
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section 5.2).

Thirdly, what happens in the extreme case of a homogeneous medium (that is,
ρ0 = ρ1, cp0 = cp1, cs0 = cs1, KN → +∞, KT → +∞, MN = 0 and MT = 0) ?
The ideal would obviously be that U∗

i,j = Un
i,j , in order to recover the scheme in

homogeneous medium. In 1-D configurations [11], we have shown that it is the case,
given simple conditions about the set B used to estimate the modified values. In a 2-D
context, these conditions cannot be satisfied because estimating the modified values
requires least-squares computations. However, it would be interesting to estimate the
difference between U∗

i,j and Un
i,j , which might lead to an optimal choice of B.

Fourthly and lastly, the stability analysis still remains to be performed. With a
nonlinear scheme (such as WPALG), this seems out of reach so far, but an analysis
could perhaps be carried out with linear schemes (such as the Lax-Wendroff scheme).
In the absence of theoretical rules, we have numerically considered many geometrical
configurations, physical parameters values, stiffness and mass values. With a wide
range of parameters, no instabilities are usually observed up to the CFL limit, even
after very long integration times (a few thousands of time steps). However, insta-
bilities are observed in two cases. First, instabilities can increase when the physical
parameters differ considerably between the two sides of an interface. This problem was
previously mentioned in [12] in connection with perfect contacts. In practice, it is not
too penalizing when dealing with realistic media: even quite large differences between
the impedance values, such as those encountered in the case of Plexiglass-aluminium
interfaces, yield stable computations. Secondly, the instabilities can increase at low
values of KN,T , when the two media tend to be disconnected. This may be due to the
small denominators in (2.10). In this case, increasing the order k provides an efficient
means of improving the stability limit (see subsection 5.4).

5. Numerical experiments.

5.1. Configurations. Five numerical experiments are performed here. Except
for test 3, the physical parameters are the same on both sides of Γ: this enables us
to underscore both the effects of the spring-mass conditions and the accuracy of the
interface method, since all wave reflections and changes observed will result from the
spring-mass conditions, described numerically by the interface method.

Three geometrical configurations are studied: a plane interface, a circular in-
terface, and a non-canonical object described by cubic splines. Analytical solutions
can be obtained for the first two configurations when the spring-mass conditions are
constant. The analytical solution of the problem with a plane wave impinging on
a plane interface with spring-mass conditions can be quite easily calculated using
Fourier analysis; this procedure will therefore not be described here. We have not
found articles dealing with the more intricate case of a circular interface; since this
analytical solution is useful to validate the algorithm, it has been described in Ap-
pendix C. Except for the convergence measurements in Test 1, all the computations
were performed with the WPALG.

Apart from test 5, the computations are all initialized by a plane right-going



16 B. LOMBARD AND J. PIRAUX

(i = 0) (i = 0)

100 150 200 250 300 350

−2.5 

−2 

−1.5 

−1 

−0.5 

0 

0.5 

1 

1.5 

2 

x(m)

A
m

pl
itu

de
 (

N
/m

²)
(i = 1) (i = 1)

160 170 180 190 200

−1 

−0.5 

0 

0.5 

1 

x(m)

A
m

pl
itu

de
 (

N
/m

²)

(i = 2) (i = 2)

250 255 260 265 270 275 280

−0.15 

−0.1 

−0.05 

0 

0.05 

0.1 

0.15 

x(m)

A
m

pl
itu

de
 (

N
/m

²)

Fig. 5.1. Test 1: plane interface between identical media at t = t0 + 75 i ∆ t.
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P-wave

U(x, y, t0) = ε

















































−
cos θ

cp1

−
sin θ

cp1

λ1 + 2 µ1 cos2 θ

c2
p1

2 µ1 sin θ cos θ

c2
p1

λ1 + 2 µ1 sin2 θ

c2
p1

















































f

(

t0 −
x cos θ + y sin θ

cp1

)

, (5.1)

where ε is an amplitude factor, µ1 = ρ1 c2
s1 and λ1 = ρ1(c

2
p1 − 2 c2

s1) are the Lamé
coefficients, θ is the angle between the direction of propagation and the x-axis, and
t0 is the initial instant. Function f is a C2 spatially-bounded sinusoid

f(ξ) =











sin(ωc ξ) −
1

2
sin(2 ωc ξ) if 0 < ξ <

1

fc

,

0 else,

(5.2)

where fc is the central frequency, and ωc = 2 π fc.
We will conclude this section by making some comments on the figures. σ11 is

shown with a green-red palette for P-waves, and a magenta-yellow palette for SV-
waves (in the electronic version of this article, the plates are color). The distinction
between these waves depends on numerical estimates of div v and curl v. Most of
the snapshots shown are accompanied by a slice; the position of a slice is denoted by
a horizontal line on the corresponding snapshot. On each slice, the exact solution and
the numerical solution are indicated by a solid line and by points, respectively.

5.2. Test 1: plane interface between identical media. Here we take the
case of a Lx × Ly = 400 × 400 m2 domain, with a plane inclined interface Γ. The
points (x = 168 m, y = 17 m) and (x = 241 m, y = 253 m) belong to Γ, and hence
the angle between Γ and the x-axis is roughly equal to 72.8 degrees. The physical
parameters are identical on both sides of Γ























ρ0 = ρ1 = 1200 kg/m
3
,

cp0 = cp1 = 2800 m/s,

cs0 = cs1 = 1400 m/s,

which corresponds to realistic values in the case of Plexiglass. The spring-mass con-
ditions are constant along Γ; the stiffness and mass values are







KN = 109 kg/s
2
, KT = 107 kg/s

2
,

MN = 2000 kg/m
2
, MT = 1000 kg/m

2
.
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Scheme Nx L∞ error L∞ order L1 error L1 order

Lax-Wendroff 50 6.265e-1 - 4.676e3 -
100 1.760e-1 1.832 1.336e3 1.807

+ 200 4.755e-2 1.888 3.718e2 1.845

400 1.228e-2 1.953 9.437e1 1.978

ESIM 800 3.164e-3 1.956 2.311e1 2.030

1600 7.916e-4 1.999 5.667e0 2.028

WPALG 50 4.570e-1 - 6.259e2 -
100 1.472e-1 1.634 1.504e2 2.058

+ 200 4.260e-2 1.789 3.954e1 1.926

400 1.398e-2 1.607 1.071e1 1.884

ESIM 800 4.464e-3 1.647 2.833e0 1.919

1600 1.503e-3 1.570 7.369e-1 1.943

Table 5.1

Convergence measurements in Test 1.

The incident P-wave (5.1) is defined by: θ = 40 degrees, fc = 49.9 Hz, t0 = 0.1 s, and
ε = 2 10−3. The numerical experiments are performed with Nx ×Ny = 400×400 grid
points, which amounts to 56 and 28 grid points per central wavelength for P-waves and
SV-waves, respectively. We take CFL=0.9, and k = 2 for the extrapolations involved
in the interface method. To initialize the computation, one also needs to compute
reflected and transmitted P- and SV-waves, via discrete Fourier transforms (DFT).
To obtain the required level of accuracy, we perform the DFTs on 32768 points, with
a sampling frequency of 0.018125 Hz. At each time step, the exact solution is imposed
at the boundaries of the computational domain.

Figure 5.1 shows the solution at time steps ti = t0 + 75 i ∆ t (i = 0, 1, 2). The
slices are performed from

• i = 0: (x = 70 m, y = 26 m) to (x = 360 m, y = 26 m),
• i = 1: (x = 156 m, y = 162 m) to (x = 207 m, y = 162 m),
• i = 2: (x = 246 m, y = 198 m) to (x = 282 m, y = 198 m).

Looking from the left to the right on the first slice (i = 0), one can successively
observe the reflected SV-wave, the transmitted SV-wave and the transmitted P-wave.
As mentioned in section 2.3, these waves do not have the same sinusoidal profile as the
incident P-wave. A ”coda” occurs after the reflected and transmitted P and SV-waves:
as in [11], these fields are not spatially bounded in the direction of the propagation.

The second slice (i = 1) crosses the reflected SV-wave. The agreement between
exact and numerical values is good; one only observes a small amount of numerical
diffusion induced by WPALG. This is also so in the case of the last slice (i = 2) across
the transmitted SV-wave.

In table 5-1, we show convergence measurements performed with the Lax-Wendroff
scheme and with WPALG, by taking k = 3. This table was obtained by taking suc-
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cessively refined meshes with a constant CFL and measuring the differences between
the analytical and numerical values. The orders of accuracy (2 for Lax-Wendroff, 1.5
in norm L∞ and 2 in norm L1 for WPALG) are the same as in homogeneous medium.
Similar results can be obtained by increasing k. However, for k = 2, the convergence
orders fall below 1.4. (we recall that k = 2 sufficies to ensure second-order accuracy
for perfect contacts in 2-D contexts [12], and for imperfect contacts in 1-D contexts
[11]).

5.3. Test 2: circular interface between identical media. As a second ex-
ample, we take the case of a Lx ×Ly = 600× 600 m2 domain and a circular interface
(radius a = 100 m, centred at x0 = 330.5 m, y0 = 300 m). The numerical experiments
are performed on Nx × Ny = 600× 600 grid points. The physical parameters are the
same as in the previous example. The spring-mass conditions are







KN = KT = 109 kg/s
2
,

MN = MT = 1000 kg/m2.

Figures 5.2 and 5.3 show the solution at the initial instant t0 = 0.08 s, and at ti =
t0 + 100 i ∆ t (i = 1, ..., 5) on a restricted domain [100, 500]× [100, 500] m2 centred on
the middle of the computational domain. No special treatment is applied to simulate
the wave propagation in infinite medium (such as absorbing boundary conditions or
perfectly matched layers), but the integration times are sufficiently short to prevent
spurious waves reflected by the edges of the computational region from appearing in
the restricted domain (the same comment holds for the further figures). The slices
are carried out from

• i = 0: (x = 101 m, y = 301 m) to (x = 289 m, y = 301 m),
• i = 1: (x = 144 m, y = 300 m) to (x = 243 m, y = 300 m),
• i = 2: (x = 108 m, y = 433 m) to (x = 353 m, y = 433 m),
• i = 3: (x = 339 m, y = 339 m) to (x = 413 m, y = 339 m),
• i = 4: (x = 340 m, y = 300 m) to (x = 493 m, y = 300 m),
• i = 5: (x = 198 m, y = 264 m) to (x = 454 m, y = 264 m).

The analytical solutions are computed on NBessel = 90 points (see (C.16) in Appendix
C), 256 Fourier points, with 1-Hz sampling frequency.

The incident P-wave is converted into transmitted and reflected P- and SV-waves
(i = 1, 2). A series of refraction-conversion events is then observed (i = 3, 4, 5). The
agreement between the numerical and analytical values is excellent.

5.4. Test 3: circular interface between different media. As a third exam-
ple, we consider the same circular interface as in the previous test, but take it to have
different physical parameters on both each sides of Γ

(ρ, cp, cs) =







ρ0 = 2600 kg/m
3
, cp0 = 6400 m/s, cs0 = 3200 m/s,

ρ1 = 1200 kg/m3, cp1 = 2800 m/s, cs1 = 1400 m/s.

These parameters are those of aluminium (inside Γ) and Plexiglass (outside Γ). Apart
from these physical parameters, the values used for the computations are the same as
in section 5.3. The initial values are the same as in figure 5.2, i = 0.

Figure 5.4 gives the results of a parametric study in terms of the normal stiffness
KN : perfect contact (i = 0) which amounts to KN → +∞, KN = 109 kg/s

2
(i = 1),
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Fig. 5.2. Test 2-a: cylindar between identical media, t = t0 + 100 i ∆ t.
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Fig. 5.3. Test 2-b: cylindar between identical media at t = t0 + 100 i ∆ t.
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Fig. 5.4. Test 3: cylindar between different media at t = t0 + 360∆ t, with various values of
normal stifness.
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and KN = 108 kg/s
2

(i = 2). The inertial effects and the tangential stiffness are not
taken into account here







KT → +∞,

MN = MT = 0 kg/m
2
.

The computations are shown in this figure after 350 time steps. The slices are per-
formed from x = 100 m to x = 500 m, at y = 300 m. Compared with the case of
perfect contact (i = 0), one can see in (i = 1, 2) that the signs of the reflected waves
are reversed. The waves that have entirely crossed the interface also differ greatly
between the three cases. The case (i = 2) is much more difficult to handle than the
cases (i = 0, 1) from the computational point of view. To obtain the good agreement
shown in figure 5.4 (i = 2), it is necessary to use k = 4 (for the numerical solution),
and 32768 Fourier points with a sampling frequency of 0.018125 Hz (for the analytical
solution).

Smaller values of KN have also been investigated (figures not shown here). Below

KN = 107 kg/s
2
, numerical instabilities have been observed when k = 2 (see subsec-

tion 4.7), whereas the computations remain stable when k ≥ 3. Instabilities increase

below KN = 105 kg/s
2

if k = 3. Stable computations and excellent agreement with

the analytical solutions are obtained down to KN = 104 kg/s
2

if k = 4.

5.5. Test 4: cubic spline between identical media. Up to now, we have
dealt only with canonical objects with constant curvature. However, the use of the
interface method is not restricted to such simple geometries. In this section, we study
a more complex configuration corresponding to a cubic spline. The other parameters
are the same as in section 5.3, except t0 = 0.07 s.

Figure 5.5 shows snapshots of the solutions at times ti = t0 + 150 i ∆ t (i =
0, 1, 2). We obviously have no analytical solutions to compare with the numerical
values. However, the computations remain stable, and the wave phenomena seem to
be realistic.

5.6. Test 5: plane interface with variable jump conditions. In the last
experiment, we study the case of a plane interface with variable spring-mass condi-
tions. The interface Γ is placed horizontally at y = 130 m on a Lx × Ly = 600 × 400
m2 domain. The physical parameters have the same values as in section 5.2, and they
are identical on both sides of Γ. The variable values of normal and tangential stiffness
are

KN = KT =























1012 kg/s
2
, on [x = 0 m , x = 270 m],

g(τ) on [x = 270 m , x = 330 m],

107 kg/s
2
, on [x = 330 m , x = 600 m],

(5.3)

where g(τ) is a cubic polynomial that ensures a C1 continuity (τ is the abscissa along
Γ). The stiffness values (5.3) are those of almost perfectly-bonded media on the left
part of the interface, and almost perfectly-disconnected media on the right part of the
interface. The inertial effects are not taken into account: MN = MT = 0 kg/m

2
.

The computations are initialized by a transient explosive P-wave centred at (xs =
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(i = 0)

(i = 1)

(i = 2)

Fig. 5.5. Test 4: cubic spline between identical media, at t = t0 + 150 i ∆ t.
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300 m, ys = 200 m), with an elastic potential [14]

ΦIP (x, y, t) =
(

Φ̃IP ∗ f
)

(x, y, t),

Φ̃IP (r, t) =
1

2 π

H
(

t − r
cp1

)

√

t2 −
(

r
cp1

)2
, r =

√

(x − xs)
2
+ (y − ys)

2
,

(5.4)

where H is the Heaviside function, ∗ denotes the time convolution, and f is the Ricker
wavelet

f(t) =
1

2 π2 f2
c

e− (π fc (t − tc))
2

. (5.5)

The velocities and stresses of the incident wave can be deduced from (5.4) thanks
to classical elastodynamics relations [1]. The numerical experiments are performed
on Nx × Ny = 600 × 400 grid points, with fc = 70 Hz, t0 = 0.03 s, tc = 0.01429 s,
CFL=0.9 and k = 3.

Figure 5.6 shows snapshots of the numerical solution at t = t0 + 150 i ∆ t. The
palettes are changed in each snapshot to maintain a constant range of colours despite
the geometrical spreading of the waves. On the left part of the second snapshot
(i = 1), the incident wave is totally transmitted; on the right part, the wave is almost
totally reflected. The rapid change in the stiffness values occuring near x = 300 m
acts as a point source for cylindrical P- and SV-waves. On the last snapshot, one
can also observe a rightward-moving surface wave, denoted by a yellow-magenta zone.
Since both sides are almost stress-free surfaces in that place, this surface wave is a
Rayleigh wave [1].

6. Conclusion. This paper deals with the numerical simulation of 2D wave
propagation in elastic solids separated by imperfect contacts. These contacts are
modeled by interfaces with linear jump conditions: the spring-mass conditions fre-
quently used in geophysics [17] and nondestructive evaluation of materials [22]. The
spring-mass conditions are incorporated into finite-difference time-domain schemes on
a uniform Cartesian grid, via an interface method. This is an extension of previous
studies on perfect contacts in 1-D [15] and 2-D [12] contexts, and on imperfect contacts
in 1-D context [11]. The interface method also provides a fine description of the sub-
cell geometry of the interfaces, at a negligible extra computational cost. Comparisons
with original analytical solutions show the great accuracy of this approach.

Future paths of study might consist of taking into account numerically more
realistic models for imperfect contact situations. A first improvement consists of
describing the energy dissipation, as done, for example, in linear viscous bonding
models [5]. A second improvement consists of extending the present approach for
including nonlinear contact laws, which model realistic fractures and which prevent
from interpenetration between the materials [23].
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(i = 0)

(i = 1)

(i = 2)

Fig. 5.6. Test 5: plane interface with variable contact at t = t0 + 150 i∆ t.
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Appendix A. On the asymmetry of 1-D spring-mass conditions. The
aim of this section is to show that, in some limit cases, the asymmetry of the jump
conditions (2.10) has a negligible influence.

Consider the following simplified case: that of a compressional plane wave prop-
agating through Ω0 normally to the plane interface Γ located at x = α. Due to the
symmetries involved in the problem, we have a 1-D configuration, with parameters
K = KN , M = MN , c0 = cp0, and c1 = cp1 (a similar study could be performed
with a shear plane wave and parameters K = KT , M = MT , c0 = cs0, and c1 = cs1).
The normalized harmonic components of the elastic displacement u and those of the
elastic stress σ in medium Ω0 (with k0 = ω/c0) are:

û(x, ω) = −i k0 e−ik0x + i k0 R± eik0x,

σ̂(x, ω) = −ρ0 ω2 e−ik0x − ρ0 ω2 R± eik0x,

and in medium Ω1 (with k1 = ω/c1), they are:

û(x, ω) = −i k1 T± e−ik1x,

σ̂(x, ω) = −ρ1 ω2 T± e−ik1x,

where ω is the angular frequency, and R± and T± are the reflection and transmission
coefficients it is required to determine (the superscripts ± are explained below). Under
jump conditions ”shifted to the left” (as in the present paper),

[û(α, ω)] =
1

K
σ̂(α−, ω), [σ̂(α, ω)] = −M ω2 û(α−, ω),

a simple algebraic procedure gives

R− =
ρ1 c1 − ρ0 c0 − i ω

(ρ0 c0 ρ1 c1

K
− M

)

ρ0 c0 + ρ1 c1 + i ω
(ρ0 c0 ρ1 c1

K
+ M

) e
−i ω 2 α

c0 ,

T− =

2 ρ0 c1

(

1 +
M ω2

K

)

ρ0 c0 + ρ1 c1 + i ω
(ρ0 c0 ρ1 c1

K
+ M

) e
i ω

(

1

c1
− 1

c0

)

α
.

(A.1)

Under jump conditions ”shifted to the right”,

[û(α, ω)] =
1

K
σ̂(α+, ω), [σ̂(α, ω)] = −M ω2 û(α+, ω),

we obtain in the same way

R+ =
ρ1 c1 − ρ0 c0 − i ω

(ρ0 c0 ρ1 c1

K
− M

)

ρ0 c0 + ρ1 c1 + i ω
(ρ0 c0 ρ1 c1

K
+ M

) e
−i ω 2 α

c0 ,

T + =
2 ρ0 c1

ρ0 c0 + ρ1 c1 + i ω
(ρ0 c0 ρ1 c1

K
+ M

) e
i ω

(

1

c1
−

1

c0

)

α
.

(A.2)
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Comparisons between (A.1) and (A.2) show that the reflected waves are the same

under both types of jump conditions, and that
∣

∣

∣

∣

T− − T +

T−

∣

∣

∣

∣

=
M ω2

K
.

With realistic contacts [11, 18], the stiffness and mass satisfy K ∼ ρ c2 / h and M ∼
ρ h, where ρ and c are the parameters of the intermediate medium (or interphase) and
h is its thickness. Since ω = 2 π c/λ (where λ is the wavelength) and h ≪ λ (a basic
assumption underlying the spring-mass model), we obtain

∣

∣

∣

∣

T− − T +

T−

∣

∣

∣

∣

∼ 4 π2

(

h

λ

)2

≪ 1.

Hence, the coefficients of transmission are very close together under both types of
jump conditions.

Appendix B. Zero-th order matrices of spring-mass conditions. The
matrices C0

l in (4.3) are (l = 0, 1)

C0
l =





















−y
′

x
′

0 0 0

x
′

y
′

0 0 0

0 0 y
′2 −2 x

′

y
′

x
′2

0 0 −x
′

y
′

x
′2 − y

′2 x
′

y
′





















.

Setting

β1 =
ρ0

KN

1
√

x′2 + y′2
, β2 =

ρ0

KT

c2
s0

√

x′2 + y′2
,

β3 =
MN

ρ0

√

x′2 + y′2, β4 =
MT

ρ0

√

x′2 + y′2,

the non-null components of E0
0 in (4.3) are

E0
0[1, 1] = β1

(

y
′2c2

p0 + x
′2

(

c2
p0 − 2 c2

s0

)

)

, E0
0[3, 3] = −β3 y

′

,

E0
0[1, 2] = β1

(

−2 x
′

y
′

c2
s0

)

, E0
0[3, 4] = β3 x

′

,

E0
0[1, 6] = β1

(

−2 x
′

y
′

c2
s0

)

, E0
0[3, 9] = −β3 y

′

,

E0
0[1, 7] = β1

(

x
′2c2

p0 + y
′2

(

c2
p0 − 2 c2

s0

)

)

, E0
0[3, 10] = β3 x

′

,

E0
0[2, 1] = β2

(

−2 x
′

y
′

)

, E0
0[4, 3] = β4 x

′

,

E0
0[2, 2] = β2

(

x
′2 − y

′2
)

, E0
0[4, 4] = β4 y

′

,

E0
0[2, 6] = β2

(

x
′2 − y

′2
)

, E0
0[4, 9] = β4 x

′

,

E0
0[2, 7] = β2

(

2 x
′

y
′

)

, E0
0[4, 10] = β4 y

′

.

Appendix C. Exact solution for a plane wave on a circular interface

with spring-mass conditions.

This analytical solution is obtained in 6 steps:
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1. Fourier-transforming the incident wave (5.1);
2. writing the elastic potentials on the basis of circular functions;
3. expressing the elastic fields in terms of their potentials;
4. computing the reflection and transmission coefficients from (2.10);
5. returning to Cartesian coordinates;
6. inverting Fourier transform of the elastic fields (not described here).

Step 1. The Fourier transform F of a function s(t), and its inverse Fourier transform
F−1, are denoted by

ŝ(ω) = F(s(t)) =
1

2 π

∫ +∞

−∞

s(t) e−i ω t d t,

s(t) = F−1(ŝ(ω)) =

∫ +∞

−∞

ŝ(ω) ei ω t dω,

(C.1)

where ω is the angular frequency. Applying a Fourier transform (C.1) to the following
part of the initial wave (5.1)

ΦIP (x, y, t) = f

(

t −
x cos θ1 + y sin θ1

cp1

)

gives the harmonic potential of the incident P-wave

Φ̂IP (x, y, ω) = e
−i ω

cp1
(x cos θ1+y sin θ1) f̂(ω). (C.2)

The Fourier transform of the bounded sinusoid (5.2) is

f̂(ω) = A =
ωc

2 π

(

1

ω2 − ω2
c

+
1

ω2 − 4 ω2
c

)

(

e−i 2 π
ωc

ω − 1
)

. (C.3)

Step 2. The circular interface is centred on (x0, y0). A point M(x, y) ∈ Ω1 has polar
coordinates (x = x0 + r cosφ, y = y0 + r sinφ). We set (l = 0, 1)

kpl =
ω

cpl

, ksl =
ω

csl

, S = e−i kp1(x0 cos θ1+y0 sin θ1), θ = φ − θ1.

The first-kind Bessel functions Jn satisfy the classical property [14]

e−i r cos θ =

+∞
∑

n=0

εn in (−1)n cosn θ Jn(r), (C.4)

with εn = 1 if n = 0, 2 else. From (C.2), (C.3), and (C.4), we can therefore express
the harmonic potential of the incident P-wave as

Φ̂IP (x, y, ω) = AS

+∞
∑

n=0

εn in(−1)n cosn θ Jn(kp1 r). (C.5)

To satisfy the Sommerfeld condition, the harmonic elastic potential Φ̂RP of reflected
P-waves and the harmonic pseudo-potential Ψ̂RS = (0, 0, Ψ̂RS) of reflected SV-waves
are written on the basis of second-kind Hankel functions Hn. To prevent singularities
from occuring at r = 0, the harmonic potential Φ̂TP of transmitted P-waves and the
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harmonic pseudo-potential Ψ̂TS = (0, 0, Ψ̂TS) of transmitted SV-waves are written
on the basis of first-kind Bessel functions. Hence, we write

Φ̂RP =

+∞
∑

n=0

Rp
n cosn θ Hn(kp1 r), Ψ̂RS =

+∞
∑

n=0

Rs
n sin n θ Hn(ks1 r),

Φ̂TP =

+∞
∑

n=0

T p
n cosn θ Jn(kp0 r), Ψ̂TS =

+∞
∑

n=0

T s
n sin n θ Jn(ks0 r),

(C.6)

where Rp
n, Rs

n, T p
n and T s

n are the unknown coefficients of reflection and transmission,
which still remain to be determined. Note that numerical routines [16] usually provide
Yn and Y

′

n (with Yn = Jn or Hn). Later in the text, we will need Y
′′

n ; to determine
this last value, we use the differential equation satisfied by the Bessel and Hankel
functions

Y
′′

n (x) +
1

x
Y

′

n(x) +

(

1 −
(n

x

)2
)

Yn(x) = 0.

Step 3. The elastic displacement u = T (ur, uθ) is deduced from Φ (for P-waves) or
from Ψ = (0, 0, Ψ) (for SV-waves) by

u = gradΦ for P-waves, u = curlΨ for SV-waves. (C.7)

In cylindrical coordinates, the grad and curl operators are

grad Φ =

(

∂ Φ

∂ r
,

1

r

∂ Φ

∂ θ

)

, curlΨ(0, 0, Ψ) =

(

1

r

∂ Ψ

∂ θ
, −

∂ Ψ

∂ r

)

. (C.8)

In cylindrical coordinates, the three independent components of σ are [14]

σrr = (λ + 2 µ)
∂ ur

∂ r
+ λ

(

ur

r
+

1

r

∂ uθ

∂ θ

)

,

σrθ = µ

(

∂ uθ

∂ r
−

uθ

r
+

1

r

∂ ur

∂ θ

)

,

σθθ = (λ + 2 µ)

(

1

r

∂ uθ

∂ θ
+

ur

r

)

+ λ
∂ ur

∂ r
,

(C.9)

where λ and µ are the Lamé coefficients. From (C.5), (C.6), (C.9), we easily deduce
the harmonic fields over the whole domain. The components of the harmonic incident
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P-wave are

ûip
r = AS kp1

+∞
∑

n=0

εn in(−1)n cosn θ J
′

n(kp1 r),

ûip
θ = −

AS

r

+∞
∑

n=0

εn in
n sin n θ

r
Jn(kp1 r),

σ̂ip
rr = AS

+∞
∑

n=0

εn in(−1)n cosn θ
(

(λ1 + 2 µ1) k2
p1 J

′′

n (kp1 r)

+λ1
kp1
r J

′

n(kp1 r) − λ1

(n
r
)2

Jn(kp1 r)

)

,

σ̂ip
rθ = AS 2 µ1

+∞
∑

n=0

εn in(−1)n sin n θ

(

1

r2 Jn(kp1 r) −
kp1

r
J

′

n(kp1 r)

)

,

σ̂ip
θθ = AS

+∞
∑

n=0

εn in(−1)n cosn θ
(

λ1 k2
p1 J

′′

n (kp1 r)

+ (λ1 + 2 µ1)
kp1
r J

′

n(kp1 r) − (λ1 + 2 µ1)
(n
r
)2

Jn(kp1 r)

)

.

(C.10)

The components of harmonic reflected P-waves are

ûrp
r = kp1

+∞
∑

n=0

Rp
n cosn θ H

′

n(kp1r),

ûrp
θ = −

1

r

+∞
∑

n=0

Rp
n n sin n θ Hn(kp1r),

σ̂rp
rr =

+∞
∑

n=0

Rp
n cosn θ

(

(λ1 + 2 µ1) k2
p1 H

′′

n (kp1r) + λ1
kp1

r
H

′

n(kp1r) − λ1

(n

r

)2

Hn(kp1r)

)

,

σ̂rp
rθ = 2 µ1

+∞
∑

n=0

Rp
n n sin n θ

(

1

r2 Hn(kp1r) −
kp1

r
H

′

n(kp1r)

)

,

σ̂rp
θθ =

+∞
∑

n=0

Rp
n cosn θ

(

λ1 k2
p1 H

′′

n (kp1r) + (λ1 + 2 µ1)
kp1

r
H

′

n(kp1r)

− (λ1 + 2 µ1)
(n

r

)2

Hn(kp1r)

)

.

(C.11)
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The components of harmonic reflected SV-waves are

ûrs
r =

+∞
∑

n=0

Rs
n

n cosn θ

r
Hn(ks1r),

ûrs
θ = −ks1

+∞
∑

n=0

Rs
n sin n θ H

′

n(ks1r),

σ̂rs
rr = −2 µ1

+∞
∑

n=0

Rs
n cosn θ

(

1

r2 Hn(ks1r) −
ks1

r
H

′

n(ks1r)

)

,

σ̂rs
rθ = −µ1

+∞
∑

n=0

Rs
n sinn θ

(

k2
s1 H

′′

n (ks1r) −
ks1

r
H

′

n(ks1r) +
(n

r

)2

Hn(ks1r)

)

,

σ̂rs
θθ = −2 µ1

+∞
∑

n=0

Rs
n n cosn θ

(

ks1

r
H

′

n(ks1r) −
1

r2 Hn(ks1r)

)

.
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The components of harmonic transmitted P-waves are

ûtp
r = kp0

+∞
∑

n=0

T p
n cosn θ J

′

n(kp0r),

ûtp
θ = −

1

r

+∞
∑

n=0

T p
n n sin n θ Jn(kp0r),

σ̂tp
rr =

+∞
∑

n=0

T p
n cosn θ

(

(λ0 + 2 µ0) k2
p0 J

′′

n (kp0r)

+λ0
kp0

r
J

′

n(kp0r) − λ0

(n

r

)2

Jn(kp0r)

)

,

σ̂tp
rθ = 2 µ0

+∞
∑

n=0

T p
n n sin n θ

(

1

r2 Jn(kp0r) −
kp0

r
J

′

n(kp0r)

)

,

σ̂tp
θθ =

+∞
∑

n=0

T p
n cosn θ

(

λ0 k2
p0 J

′′

n (kp0r) + (λ0 + 2 µ0)
kp0

r
J

′

n(kp0r)

− (λ0 + 2 µ0)
(n

r

)2

Jn(kp0r)

)

.
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Lastly, the components of harmonic transmitted SV-waves are

ûts
r =

+∞
∑

n=0

T s
n

n cosn θ

r
Jn(ks0r),

ûts
θ = −ks0

+∞
∑

n=0

T s
n sin n θ J

′

n(ks0r),

σ̂ts
rr = −2 µ0

+∞
∑

n=0

T s
n cosn θ

(

1

r2 Jn(ks0r) −
ks0

r
J

′

n(ks0r)

)

,

σ̂ts
rθ = −µ0

+∞
∑

n=0

T s
n sin n θ

(

k2
s0 J

′′

n (ks0r) −
ks0

r
J

′

n(ks0r) +
(n

r

)2

Jn(ks0r)

)

,

σ̂ts
θθ = −2 µ0

+∞
∑

n=0

T s
n n cosn θ

(

ks0

r
J

′

n(ks0r) −
1

r2 Jn(ks0r)

)

.
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Step 4. We now compute the coefficients Rp
n, Rs

n, T p
n and T s

n. For this purpose, we
deduce from the spring-mass conditions (2.10) that

(

ûip
r + ûrp

r + ûrs
r

)

(a+, θ) =

(

ûtp
r + ûts

r +
1

KN

(

σ̂tp
rr + σ̂ts

rr

)

)

(a−, θ),

(

ûip
θ + ûrp

θ + ûrs
θ

)

(a+, θ) =

(

ûtp
θ + ûts

θ +
1

KT

(

σ̂tp
rθ + σ̂ts

rθ

)

)

(a−, θ),

(

σ̂ip
rr + σ̂rp

rr + σ̂rs
rr

)

(a+, θ) =
(

σ̂tp
rr + σ̂ts

rr − MN ω2
(

ûtp
r + ûts

r

))

(a−, θ),

(

σ̂ip
rθ + σ̂rp

rθ + σ̂rs
rθ

)

(a+, θ) =
(

σ̂tp
rθ + σ̂ts

rθ − MT ω2
(

ûtp
θ + ûts

θ

))

(a−, θ),

(C.15)

for all θ. Applying (C.15) to the fields (C.10)-(C.14) yields an infinite number of linear
systems. For computational purpose, these systems are computed up to NBessel terms,
giving the systems (n = 0, 1, ..., NBessel)

Qn Xn = Y n, with Xn = T (Rp
n, Rs

n, T p
n , T s

n) , (C.16)

and

Y n = −AS εn in(−1)n



























J
′

n(kp1 a)

n

a
Jn(kp1 a)

(λ1 + 2 µ1) k2
p1 J

′′

n (kp1 a) +
λ1

a
kp1 J

′

n(kp1 a)

−λ1

(n

a

)2

Jn(kp1 a)

2 µ1 n

(

1

a2 Jn(kp1 a) −
kp1

a
J

′

n(kp1 a)

)


























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The coefficients of the matrices Qn are

Qn[1, 1] = kp1 H
′

n(kp1 a), Qn[1, 2] =
n

a
Hn(ks1 a),

Qn[1, 3] = −

(

kp0 J
′

n(kp0 a) +
1

KN

(

(λ0 + 2 µ0) k2
p0 J

′′

n (kp0 a)

+
λ0

a
kp0 J

′

n(kp0 a) − λ0

(n

a

)2

Jn(kp0 a)

))

,

Qn[1, 4] = −

(

n

a
Jn(ks0 a) −

2 µ0 n

KN

(

1

a2 Jn(ks0 a) −
ks0

a
J

′

n(ks0 a)

))

,

Qn[2, 1] =
n

a
Hn(kp1 a), Qn[2, 2] = ks1 H

′

n(ks1 a),

Qn[2, 3] = −

(

n

a
Jn(kp0 a) −

2 µ0 n

KT

(

1

a2 Jn(kp0 a) −
kp0

a
J

′

n(kp0 a)

))

,

Qn[2, 4] = −

(

ks0 J
′

n(ks0 a) +
µ0

KT

(

k2
s0 J

′′

n (ks0 a)

−
ks0

a
kp0 J

′

n(ks0 a) +
(n

a

)2

Jn(ks0 a)

))

,

Qn[3, 1] = (λ1 + 2 µ1) k2
p1 H

′′

n (kp1 a) +
λ1 kp1

a
H

′

n(kp1 a) − λ1

(n

a

)2

Hn(kp1 a),

Qn[3, 2] = −2 µ1 n

(

1

a2 Hn(ks1 a) −
ks1

a
H

′

n(ks1 a)

)

,

Qn[3, 3] = −

(

(λ0 + 2 µ0) k2
p0 J

′′

n (kp0 a) +

(

λ1

a
− MN ω2

)

kp0 J
′

n(kp0 a)

−λ0

(n

a

)2

Jn(kp0 a)

)

,

Qn[3, 4] =

(

2 µ0 n

a2 + MN ω2 n

a

)

Jn(ks0 a) −
2 µ0 n ks0

a
J

′

n(ks0 a),

Qn[4, 1] = 2 µ1 n

(

1

a2 Hn(kp1 a) −
kp1

a
H

′

n(ks1 a)

)

,

Qn[4, 2] = −µ1

(

k2
s1 H

′′

n (ks1 a) −
ks1

a
H

′

n(ks1 a) +
(n

a

)2

Hn(ks1 a)

)

,

Qn[4, 3] = −

((

2 µ0 n

a2 + MT ω2 n

a

)

Jn(kp0 a) −
2 µ0 n kp0

a
J

′

n(kp0 a)

)

,

Qn[4, 4] = µ0 k2
s0 J

′′

n (ks0 a) −
(µ0

a
+ MT ω2

)

ks0 J
′

n(ks0 a) + µ0

(n

a

)2

Jn(ks0 a).

(C.18)
Since the values of Hankel functions can be huge (typically 1060), one must be careful
when inverting (C.16). Normalisation of Qn and the use of extended arithmetic are
required for this purpose.
Step 5. To return to Cartesian coordinates, we use the rotation formulas [6]























v1

v2

σ11

σ12

σ22























=























cosφ − sin φ 0 0 0

sinφ cosφ 0 0 0

0 0 cos2 φ −2 sinφ cosφ sin2 φ

0 0 sin φ cosφ cos2 φ − sin2 φ − sin φ cosφ

0 0 sin2 φ 2 sinφ cosφ cos2 φ












































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vθ

σrr

σrθ

σθθ























.
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